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Abstract
Geometric, robust-to-noise features of curves in Euclidean space are of great inter-
est for various applications such as machine learning and image analysis. We apply
Fels–Olver’s moving-frame method (for geometric features) paired with the log-
signature transform (for robust features) to construct a set of integral invariants under
rigid motions for curves in R

d from the iterated-integrals signature. In particular, we
show that one can algorithmically construct a set of invariants that characterize the
equivalence class of the truncated iterated-integrals signature under orthogonal trans-
formations, which yields a characterization of a curve in R

d under rigid motions (and
tree-like extensions) and an explicit method to compare curves up to these transfor-
mations.

Keywords Geometric invariants · Orthogonal group · Shuffle product ·
Log-signature · Coordinates of the first kind · Polynomial invariants · Integral
invariants · Signed volume · Signed area · Almost-polynomial moving-frame

Mathematics Subject Classification 60L10 · 14L24 · 53A04 · 16T05 · 22E66

Communicated by Teresa Krick.

B Nikolas Tapia
tapia@wias-berlin.de

1 Universität Greifswald, Institut für Mathematik und Informatik, Walther-Rathenau-Str. 47,
17489 Greifswald, Germany

2 Institut für Mathematik, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin,
Germany

3 University of San Francisco, 101 Howard St., San Francisco, CA 94501, USA

4 Weierstraß-Institut Berlin, Mohrenstr. 39, 10117 Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-022-09569-5&domain=pdf


1274 Foundations of Computational Mathematics (2023) 23:1273–1333

Nomenclature
ch The coordinate of c≤n ∈ g≤n((Rd)) corresponding to the Hall

basis element bh

c≤n An element of g≤n((Rd)) with coordinates given by ci1i2···im for
m ≤ n

G(R) A real variety with associated complex variety G, of which it is
also a subgroup

g≤n((Rd)) The free step-n nilpotent Lie algebra over R
d

Gz The stabilizer of a point z, the largest subgroup of G that keeps z
invariant

Id The set of rational invariants defining Ud(C)

IIS(Z) The iterated-integrals signature of the curve Z
IM The set of polynomial invariants generatingC(Cd ⊕sod(C))Od (C)

given by φk · φk , 1 ≤ k < d
IWd (C) The generating set for C(L(d−1)

d )Wd (C) given by σd−1(Id)

k(X) The field of rational functions on the variety X with coefficients
in k

k(X)G The subfield of k(X) of rational invariants for the action of G on
X

K2,≤2 The cross-section for the action of O2(R) on U2;≤2
Kd;≤n The cross-section for the action of Od(R) on Ud;≤n

k[X ] The ringof polynomial functions on thevariety X with coefficients
in k

k[X ]G The subring of k[X ] of polynomial invariants for the action of G
on X

L(d−1)
d The relative Wd(C)-section for the action of Od(C) on C

d ⊕
sod(C)

Ld The Lyndon words over the alphabet {1, . . . ,d}
L(d−1);R

d The intersection of L(d−1)
d and R

d ⊕ sod(R)

L(i)
d The relative N d−i

d (C)-section for the action of Od(C) on C
d ⊕

sod(C)

log(IIS(Z)) The log-signature of the curve Z
N i

d(C) The product of the groups Oi
d(C) and Wd(C); the normalizer of

L(d−i)
d

Oi
d(C) The subgroup of Od(C) isomorphic to Oi (C) which leaves the

last d − i components of a C
d vector invariant

φk The map φk : C
d ⊕ sod(C) → C

d , (v, M) �→ Mkv

proj≤n The canonical projection proj≤n : T ((Rd)) → T≤n((Rd))

proj≤n→≤2 The canonical projection proj≤n→≤2 : g≤n((R
d)) → g≤2((R

d))

ρ̃2 The moving-frame map ρ̃2 : U2;≤2 → O2(R) for the action of
O2(R) on U2;≤2

ρ2 The moving-frame map for the action of O2(R) on U2;≤n , where
ρ2(c≤n) = ρ̃2(proj≤2 c≤n)

ρ̃d The moving-frame map for the action of Od(R) on Ud;≤2
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ρd The moving-frame map for the action of Od(R) on Ud;≤n , where
ρd(c≤n) = ρ̃d(proj≤2 c≤n)

σi Thefield isomorphismσi : C(Cd⊕sod(C))Od (C)→C(L(i)
d )N d−i

d (C)

so(d, R) The space of skew-symmetric R
d×d matrices

U2;≤2 The domain of the moving-frame ρ̃2, a Zariski-open subset of
g≤2((R

2))

Ud;≤n The domain of the moving frame ρd , a Zariski-open subset of
g≤n((Rd))

Ud(C) The Zariski-open subset ofC
d ⊕sod(C)where none of the invari-

ants in Id vanishes
Ud(R) The intersection ofUd(C) andR

d ⊕sod(R), a Zariski open subset
of R

d ⊕ sod(R)

Wd(C) The group of diagonal matrices with diagonal entries in {−1, 1};
the normalizer of L(d−1)

d
X(R) A real variety with associated complex variety X
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1 Introduction

A central problem in image science is constructing geometrically relevant features
of curves that are robust to noise. In this sense, rigid motions of space make up a
natural group of “nuisance” transformations of the data. For this reason, rotation- and
translation-invariant features are often desired, for instance, in human activity recog-
nition [39, Section 6] or in matching contours [52]. Classically, differential invariants
such as curvature have been used for this purpose [25], and more recently, integral
invariants of curves have been of interest [13, 16]. In this work, we construct a rigid
motion-invariant representation of a curve through its iterated-integrals signature by
applying the Fels–Olver moving-frame method. We show that this yields sets of inte-
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gral invariants that characterize the truncated iterated integral signature up to rigid
motions.

Iterated integrals, a subject of study introduced by Chen in the 50s [6, 8], will be
properly reviewed in Sect. 2.2. In a nutshell, they are descriptive features of continuous
curves that moreover possess desirable stability properties. Regarding their use for
invariant theory, we consider two concrete examples, reproduced from [13]. Given a
smooth curve X = (X (1), X (2)) : [0, 1] → R

2, starting at X0 = 0, the norm squared
of total displacement is clearly invariant to the orthogonal group O2(R) acting on the
ambient space. Using the fundamental theorem of analysis, we can write this invariant
as

||X1||2 = (X (1)
1 )2 + (X (2)

1 )2

= 2
∫ 1

0
X (1)

r Ẋ (1)
r dr + 2

∫ 1

0
X (2)

r Ẋ (2)
r dr

= 2
∫ 1

0

∫ r

0
Ẋ (1)

u du Ẋ (1)
r dr + 2

∫ 1

0

∫ r

0
Ẋ (2)

u du Ẋ (2)
r dr

=: 2
∫ 1

0

∫ r

0
d X (1)

u d X (1)
r + 2

∫ 1

0

∫ r

0
d X (2)

u d X (2)
r ,

where we introduced the shorthand d X (i)
t := Ẋ (i)

t dt . We have expressed this invariant
as the linear combination of iterated integrals. A less trivial invariant is given by the
square1 of the signed area2 enclosed by the curve (for simplicity assume that the
curve is closed, i.e., X1 = 0). By Green’s theorem (see [48, Theorem 10.33] and [36,
Proposition 1]), the signed area can be expressed in terms of iterated integrals, namely
as

1

2

(∫ 1

0

∫ r

0
dX (1)

u dX (2)
r −

∫ 1

0

∫ r

0
dX (2)

u dX (1)
r

)
.

These examples illustrate that simple, and geometrically relevant, invariants can be
found in the collection of iterated integrals.

The Fels–Olver moving-frame method, introduced in [15], is a modern generaliza-
tion of the classical moving-frame method formulated by Cartan [3]. In the general
setting of a Lie group G acting on a manifold M , a moving frame is defined as a
G-equivariant map from M to G. A moving frame is determined by a choice of cross-
section to the orbits of G and hence a unique “canonical form” for elements of M
under G. Thus, the moving-frame method provides a framework for algorithmically
constructing G-invariants on M that characterize orbits and for determining equiva-
lence of submanifolds of M under G.

The moving-frame method has been used to construct differential invariants of
smooth planar and spatial curves under Euclidean, affine, and projective transforma-

1 The signed area is an SO2(R) invariant; however, only its square (resp. its absolute value) is an O2(R)

invariant.
2 For more on the specific relevance of signed area in the study of the iterated-integrals signature, see [12].
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tions, and, in certain cases, these differential invariants lead to a differential signature,
which can be used to classify curves under these transformation groups [2]. The dif-
ferential signature has been applied in a variety of image science applications from
automatic jigsaw puzzle assembly [26] to medical imaging [22]. Also in the realm
of image science, the moving-frame method has been used to construct invariants of
grayscale images [1, 51].

We consider the induced action of the orthogonal group of rotations on the log-
signature of a curve, which provides a compressed representation of a curve obtained
by applying the log transform to the iterated-integrals signature, and provide an explicit
cross-section for this action. We show that for most curves and any truncation of the
curve’s log-signature, the orbit is characterized by the value on this cross-section. As
a consequence, a curve is completely determined up to rigid motions and tree-like
extensions by the invariantization of its iterated-integrals signature induced by this
cross-section.

This yields a constructive method to compare curves up to rigid motions and to
evaluate invariants that characterize the iterated-integrals signature under rotations.
These invariants are constructed from integrals on the curve and hence are likely to
be more noise-resistant than their differential counterparts such as curvature. One can
easily set up an artificial example where this is visible. Consider, for instance, the
circle of radius n−3/2 given by the parameterization γ : [0, 1] → R

2 where

γ (t) = (x(t), y(t)) =
(
cos(2πnt)

n3/2 ,
sin(2πnt)

n3/2

)
,

which as n → ∞ converges to the constant curve (at the origin). Now the curvature of
this curve does not converge (in fact, it blows up). In contrast, the iterated integrals do
all converge (to zero) since γ converges in variation norm. Then, the invariants built
out of the iterated integrals (Sect. 5.1) also converge to their value on the zero curve.
On this toy example, these integral invariants are hence more “stable”. More precisely,
iterated integrals are continuous in p-variation norm, for p < 2, [20, Proposition 6.11],
thus even covering paths that are not even differentiable. Curvature is continuous only
in the (much) stronger C2-norm.

Additionally, in contrast to themethods in [13], the resulting set of integral invariants
is shown to uniquely characterize the curve under rotations, and moreover, does so in
a minimal fashion. Since the iterated-integrals signature of a curve is automatically
invariant to translations, this provides rigidmotion-invariant features of a curve, which
can be used for applications such as machine learning or shape analysis.

Thiswork is structured as follows: In Sect. 2,we provide background on the iterated-
integrals signature and themoving-framemethod, aswell as some facts about algebraic
groups and invariants. In Sect. 3, we construct the moving-frame map for paths in
R
2 and R

3 motivating the construction of the moving-frame map for R
d . We also

provide explicit sets of invariants at these lower dimensions, which might be useful
for applications. In Sect. 4, we consider the orthogonal action on the second-order
truncation of the log-signature over the complex numbers. Using tools from algebraic
invariant theory, we construct the linear space, which will form the basis for the
cross-section in the following section. We also provide an explicit set of polynomial
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invariants that characterize the second-order truncation of the log-signature under the
orthogonal group. In Sect. 5.1, we construct a general moving frame for paths in R

d ,
and in Sect. 5.2 we introduce sufficient conditions for the resulting moving-frame
invariants to be polynomial, showing these conditions are satisfied for some values of
d. Finally, in Sect. 6 we discuss some of the interesting questions that arise as a result
of our work.

2 Preliminaries

2.1 The Tensor Algebra

Let d ≥ 1 be an integer. Aword, or multi-index, over the alphabet {1, . . . ,d} is a tuple
w = (w1, . . . ,wn) ∈ {1, . . . ,d}n for some integer n ≥ 0, called its length, which
is denoted by |w|. As is usual in the literature, we use the short-hand notation w =
w1 · · ·wn , where the wi , words of length one, are called letters. The concatenation of
two words v,w is the word vw:=v1 · · ·vnw1 · · ·wm of length |vw| = n +m. Observe
that this product is associative and non-commutative. There is a unique element of
length zero, called the empty word and denoted by e. It satisfies we = ew = w

for all words w. If we denote by T (Rd) the real vector space spanned by words, the
bilinear extension of the concatenation product endows it with the structure of an
associative (and non-commutative) algebra. We also note that T (Rd) admits the direct
sum decomposition

T (Rd) =
∞⊕

k=0

spanR{w : |w| = k}.

In d = 4, typical element of T (Rd) might look like

w = √
2 e + 3143 + π2

6
21.

We note that when writing elements of T (Rd), our notation distinguishes the letter 3
from the real coefficient 3 in the second term.

There is a commutative product on T (Rd), known as the shuffle product, recur-
sively defined by e� w:=w=:w� e and

vi� wj:=(v� wj)i + (vi� w)j,

where vi denotes the concatenation of the word v and the letter i, and analogously
for wj.

Example 2.1 Suppose d = 2. The first few non-trivial shuffle products are

1� 1 = 211, 2� 2 = 222,

1� 2 = 2� 1 = 12 + 21
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Table 1 Lyndon words in two
letters up to length 4

h u v bh

1 – – 1

2 – – 2

12 1 2 [1,2]
112 1 12 [1, [1,2]]
122 12 2 [[1,2],2]
1112 1 112 [1, [1, [1,2]]]
1122 1 122 [1, [[1,2],2]]
1222 122 2 [[[1,2],2],2]

12� 1 = (1� 1)2 + (12� e)1, 12� 2 = (1� 2)2 + (12� e)2

= 2112 + 121 = 2122 + 212.

The commutator bracket [u, v]:=uv − vu endows T (Rd) with the structure of a
Lie algebra. The free Lie algebra over R

d , denoted by g(Rd), can be realized as the
following subspace of T (Rd),

g(Rd) =
∞⊕

n=1

Wn

where W1:= spanR{1, . . . ,d} ∼= R
d and

Wn+1:=[W1, Wn]:={[w, v] : v ∈ W1, w ∈ Wn}. (1)

There are multiple choices of bases for g(Rd), but we choose to work with the
Lyndon basis (see [45] for further details). A Lyndon word is a word h such that
whenever h = uv, with u, v �= e, then u < v for the lexicographical order. We denote
the set of Lyndon words over the alphabet {1, . . . ,d} by Ld . In particular, h with
|h| ≥ 2 is Lyndon if and only if there exist non-empty Lyndon words u and v such that
u < v and h = uv. Although there might be multiple choices for this factorization, the
one with v as long as possible is called the standard factorization of h. The Lyndon
basis bh is recursively defined by setting bi = i and bh = [bu, bv] for all Lyndon
words h with |h| ≥ 2, where h = uv is the standard factorization.

Example 2.2 Suppose d = 2. The Lyndon words up to length 4, their standard factor-
izations and the associated basis elements are shown in Table 1.

Elements of the dual space T ((Rd)):=T (Rd)∗ can be identified with formal word
series. For F ∈ T ((Rd)), we write

F =
∑
w

〈F, w〉w.
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In particular, we have no growth requirement for the coefficients 〈F, w〉 ∈ R. The
above expression is meant only as a notation for treating the values of F on words as
a single object. This space can be endowed with a multiplication given, for F, G ∈
T ((Rd)), by

FG =
∑
w

( ∑
uv=w

〈F, u〉〈G, v〉
)

w. (2)

Observe that since there is a finite number of pairs of words u, v such that uv = w, the
coefficients of FG are well defined for allw, so the above formula is an honest element
of T ((Rd)). It turns out that this product is dual to the deconcatenation coproduct
Δ : T (Rd) → T (Rd) ⊗ T (Rd) given by

Δw =
∑

uv=w

u ⊗ v, (3)

in the sense that

〈FG, w〉 = 〈F ⊗ G,Δw〉

for all words. This formula is nothing but Eq. (2) componentwise. In this sense, one
can say that Δ is the transposition of the concatenation product.

More explicitly, if w = w1 · · ·wn then

Δw = w ⊗ e + e ⊗ w +
n−1∑
i=1

w1 · · ·wi ⊗ wi+1 · · ·wn .

One can then think of the coefficient 〈FG, w〉 as the coefficient in front of the word
w in the product FG, when the latter is computed by concatenation of words and then
re-expanded in the word basis.

Example 2.3 Suppose d = 2, and let

F = 〈F, e〉e + 〈F,1〉1 + 〈F,2〉2 + 〈F,12〉12 + · · · ,

G = 〈G, e〉e + 〈G,1〉1 + 〈G,2〉2 + 〈G,12〉12 + · · ·

be two elements in T ((Rd)). Then, their product is given by:

FG =
(
〈F, e〉e + 〈F,1〉1 + 〈F,2〉2 + 〈F,12〉12 + · · ·

)
(
〈G, e〉e + 〈G,1〉1 + 〈G,2〉2 + 〈G,12〉12 + · · ·

)

= 〈F, e〉〈G, e〉e+(〈F,1〉〈G, e〉 + 〈F, e〉〈G,1〉)1+(〈F,2〉〈G, e〉+〈F, e〉〈G,1〉)2
+ (〈F,12〉〈G, e〉 + 〈F,1〉〈G,2〉 + 〈F, e〉〈G,12〉)12 + · · ·
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Remark 2.4 It is well known (see, for example, [37]) that T (Rd) with the product�,
the coproduct Δ and canonical unit, counit and antipode, forms a Hopf algebra.

There are two distinct subsets of T ((Rd)) that will be important in what follows.
The first one is the subspace g((Rd)) of infinitesimal characters, formed by linear
maps F such that 〈F, u � v〉 = 0 whenever u and v are non-empty words, and such
that 〈F, e〉 = 0. It can be identified with the dual space

g((Rd)) ∼= g(Rd)∗ ∼=
∞∏

n=1

Wn .

It is aLie algebra under the commutator bracket [F, G] = FG−G F . The secondone is
the set G ((Rd)) of characters, i.e., linear maps F such that 〈F, u�v〉 = 〈F, u〉〈F, v〉
for all u, v ∈ T (Rd).

We may define an exponential map exp : g((Rd)) → G ((Rd)) by its power series

exp(F):=
∞∑

n=0

1

n! Fn . (4)

On a single word, the map is given by

〈exp(F), w〉 =
∞∑

n=0

1

n!

( ∑
v1···vn=w

〈F, v1〉 · · · 〈F, vn〉
)

, (5)

and since F vanishes on the empty word, all terms with n > |w| also vanish, so that
the sum is always finite. Therefore, exp(F) is a well-defined element of T ((Rd)).

Example 2.5 Suppose that d = 2 and consider

F = α 1 + β 2 + γ 12 + δ 21 + η 11 + λ22 ∈ T ((R2)).

First, we determine conditions on α, β, γ, δ ∈ R so that g((R2)). Since the coefficient
〈F, w〉 vanishes for |w| > 2, the only non-trivial shuffle product to check is of the
form i� j = ij + ji for i,j ∈ {1, 2}. In particular, this means that there are no
restrictions on α, β, and

〈F,1� 1〉 = 2〈F,11〉 = 2η,

〈F,2� 2〉 = 2〈F,22〉 = 2λ,

〈F,1� 2〉 = 〈F,2� 1〉 = 〈F,12 + 21〉 = γ + δ,

so we must have η = λ = 0 and γ + δ = 0. Therefore,

F = α 1 + β 2 + γ (12 − 21) = α 1 + β 2 + γ [1,2].

Note that F is expressed in the Lyndon basis (see Example 2.2).
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Now, using Eq. (4) (or equivalently Eq. (5)) we may compute

exp(F) = e + F + 1

2
F2 + 1

6
F3 + · · ·

= e+α 1+β 2+
(

γ + 1

2
αβ

)
12+

(
1

2
αβ − γ

)
21+ 1

2
α2 11+ 1

2
β2 22 + · · ·

The reader can check that exp(F) ∈ G ((Rd)).

It can be shown that the image of exp is equal to G ((Rd)) and that it is a bijection
onto its image [38], with inverse log : G ((Rd)) → g((Rd)) defined by

log(G):=
∞∑

n=1

(−1)n−1

n
(G − ε)n

where ε is the unique linear map such that 〈ε, e〉 = 1 and zero otherwise.
Finally, we remark some freeness properties of the tensor algebra and its subspaces.

Below,

T +(Rd) =
⊕
n>0

(Rd)⊗n

denotes the reduced tensor algebra over R
d . The following result can be found in [18,

Corollary 2.1].

Proposition 2.6 Let φ : T +(Rd) → R
e be a linear map. There exists a unique exten-

sion φ̃ : T (Rd) → T (Re) such that

(φ̃ ⊗ φ̃) ◦ Δ = Δ ◦ φ̃

and π ◦ φ̃ = φ, where π : T (Re) → R
e denotes the projection of T (Re) onto R

e,
orthogonal to Re and

⊕
n>2 spanR{w : |w| = n}, and Δ denotes the deconcatenation

product (3). Moreover, the extension is explicitly given by

φ̃(w) =
|w|∑
k=1

∑
v1···vk=w

φ(v1) · · · φ(vk). (6)

By transposition, we obtain a unique map Φ : T ((Re)) → T ((Rd)) such that
〈Φ(F), w〉:=〈F, φ̃(w)〉, i.e.,

F =
∑
w

〈F, w〉w �→ Φ(F) =
∑
w

〈F, φ̃(w)〉w.

In particular, we have that

Φ(FG) = Φ(F)Φ(G)
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for all F, G ∈ T ((Re)). Morever, by Eq. (6),

Φ(F) =
∑
w

⎛
⎝ |w|∑

k=1

∑
v1···vk=w

〈F, φ(v1) · · · φ(vk)〉
⎞
⎠ w. (7)

2.2 The Iterated-Integrals Signature

The iterated-integrals signature of (smooth enough) paths was introduced by Chen
for homological considerations on loop space [7]. It played a vital role in the rough
path analysis of Lyons, a pathwise approach to stochastic analysis [35]. Recently, it
has found applications in statistics and machine learning (see, e.g., [9] and references
therein), where it serves as a method of feature extraction for possibly non-smooth
time-dependent data, as well as in shape analysis [5, 33].

Let Z = (Z1, . . . , Zd) : [0, 1] → R
d be an absolutely continuous path.3 Given a

word w = w1 · · ·wn , define

〈IIS(Z), w〉:=
∫

· · ·
∫

0<s1<···<sn<1

Żw1(s1) · · · Żwn (sn) ds1 · · · dsn ∈ R. (8)

This definition has a unique linear extension to T (Rd). We obtain thus an element
IIS(Z) ∈ T ((Rd)), called the iterated-integrals signature (IIS) of Z .

It was shown by Ree [47] that the coefficients of IIS(Z) satisfy the so-called shuffle
relations:

〈IIS(Z), v〉〈IIS(Z), w〉 = 〈IIS(Z), v� w〉.

In other words, IIS(Z) ∈ G ((Rd)).
As a consequence of the shuffle relation, one obtains that the log-signature

log(IIS(Z)) is a Lie series, i.e., an element of g((Rd)). Moreover, the identity
IIS(Z) = exp (log(IIS(Z))) holds. The log-signature therefore contains the same
amount of information as the signature itself; it in fact is a minimal (linear) depic-
tion of it: there are no functional relations between the coefficients of an general
log-signature.4

The entire iterated-integrals signature IIS(Z) is an infinite-dimensional object and
hence can never actually be numerically computed. We now provide more detail on
the truncated, finite-dimensional setting.

For each integer N ≥ 1, the subspace In ⊂ T ((Rd)) generated by formal series such
that 〈F, w〉 = 0 for all words with |w| ≤ N is a two-sided ideal, that is, the inclusion

InT ((Rd)) + T ((Rd))In ⊂ In

3 One can get away with much less regularity, see [35]. Since our considerations are purely algebraic, there
is no loss in restricting to ’smooth’ paths.
4 This follows from Chow’s theorem, [20, Theorem 7.28].
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holds. Therefore, the quotient space T≤n((Rd)):=T ((Rd))/In inherits an algebra struc-
ture from T ((Rd)). Moreover, it can be identified with the direct sum

T≤n((Rd)) ∼=
N⊕

k=0

spanR{w : |w| = k}.

We denote by proj≤n : T ((Rd)) → T≤n((Rd)) the canonical projection.
Denote with g≤n((R

d)) the free step-N nilpotent Lie algebra (over R
d ). It can be

realized as the following subspace of T≤n((Rd)), see [20, Section 7.3],

g≤n((Rd)) =
N⊕

k=1

Wk,

where, as before W1:= spanR{i : i = 1, . . . , d} ∼= R
d and Wn+1:=[W1, Wn]. In the

case of N = 2, this reduces to

W1 ⊕ W2 ∼= R
d ⊕ sod(R), (9)

where we denote with so(d, R) the space of skew-symmetric d × d matrices. Indeed,
an isomorphism is given by:

∑
1≤i≤d

cii +
∑

1≤i< j≤d

ci j [i,j] �→

⎛
⎜⎜⎜⎝

⎡
⎢⎣

c1
...

cd

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎣

0 c12 · · · c1d

−c12 0 · · · c2d

· · · · · · . . . · · ·
−c1d −c2d · · · 0

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ . (10)

We remark that the coefficients ci and ci j are the coordinates5 with respect to the
Lyndon basis (see Example 2.2).

The linear space g≤n((Rd)) is in bijection to its image under the exponential map.
This image, denoted G≤n(Rd):= exp g≤n((Rd)), is the free step-N nilpotent group
(over R

d ). It is exactly the set of all points in T≤n(Rd) that can be reached by the
truncated signature map, that is (see [20, Theorem 7.28])

G≤n((Rd)) = {proj≤n IIS(Z) | Z : [0, T ] → R
d is rectifiable} ⊂ T≤n((Rd)).

(Equivalently, the truncated log-signature completely fills out the truncated Lie algebra
g≤n((Rd)).

We have

log IIS(Z) =
∑

h∈Ld

ch(Z) bh,

5 These are often referred to as coordinates of the first kind, see [30, 44]
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where ch(Z) = 〈ISS(Z), ζh〉 for uniquely determined ζh ∈ T (Rd). This inspires us to
also denote the coordinates of an arbitrary c≤n ∈ g≤n((Rd)) by ch , were analogously

c≤n =
∑

h∈Ld ,
|h|≤n

ch bh .

Example 2.7 (Moment curve)
We consider themoment curve in dimension 3, which is the curve Z : [0, 1] → R

3

given as

Xt :=(t, t2, t3).

It traces out part of the twisted cubic [23, Example 1.10], see also [29, Sect. 15].
We calculate, as an example,

〈ISS(Z),32〉 =
∫ 1

0

(∫ s

0
3r2dr2s

)
ds

= 2
∫ 1

0
s4ds = 2

5
.

The entire step-2 truncated signature is:

proj≤2 IIS(Z) =
⎛
⎝

⎡
⎣1
1
1

⎤
⎦ ,

⎡
⎣

1
2

4
6

3
4

2
6

1
2

6
10

1
4

4
10

1
2

⎤
⎦

⎞
⎠ ,

and the step-2 truncated log-signature is:

proj≤2 log IIS(Z) =
⎛
⎝

⎡
⎣1
1
1

⎤
⎦ ,

⎡
⎣ 0 1

6
1
4− 1

6 0 1
10− 1

4 − 1
10 0

⎤
⎦

⎞
⎠ ,

where

⎡
⎣ 0 1

6
1
4− 1

6 0 1
10− 1

4 − 1
10 0

⎤
⎦ =

⎡
⎣

1
2

4
6

3
4

2
6

1
2

6
10

1
4

4
10

1
2

⎤
⎦ − 1

2

⎡
⎣1
1
1

⎤
⎦ ·

⎡
⎣1
1
1

⎤
⎦

�
,

is seen to be skew-symmetric, as expected from (9).

2.3 Invariants

In this section, let G be a subgroup of the general linear group acting linearly on R
d .

In this work, we are interested in functions on paths in R
d that factor through the
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signature and that are invariant under this action on the path’s ambient space. While
we mostly focus on G = Od(R), the results in this section apply to any subgroup of
the general linear group acting linearly. The action of A ∈ G on an R

d -valued path Z
is given by AZ : [0, 1] → R

d , t �→ AZt .
Using Proposition 2.6, we can extend the action of G on R

d to a diagonal action
on words. The matrix A� acts on single letters by

φA�(i) =
∑

j

a jij,

and we set φA�(w) = 0 whenever |w| ≥ 2. By Proposition 2.6, this induces an
endomorphism φ̃A� : T (Rd) → T (Rd), satisfying

φ̃A�(w1 · · ·wn) = φA�(w1) · · · φA�(wn). (11)

In particular, φ̃A�(ui) = φ̃A�(u)φ̃A�(i) for all words u and letters i ∈ {1, . . . ,d}.
In order to be consistent with the notation in [13], we will denote its transpose map
(ΦA in Proposition 2.6) just by A : T ((Rd)) → T ((Rd)).

Lemma 2.8 The map φ̃A� : T (Rd) → T (Rd) is a shuffle morphism, that is,

φ̃A�(u � v) = φ̃A�(u)� φ̃A�(v)

for all words u, v.

Proof We proceed by induction on |u| + |v| ≥ 0. If |u| + |v| = 0, then necessarily
u = v = e, and the identity becomes

φ̃A�(e� e) = φ̃A�(e) = e = e� e = φ̃A�(e)� φ̃A�(e),

which is true by definition. Now, suppose that the identity is true for all words u′, v′
with |u′| + |v′| < n. If |u| + |v| = n we suppose, without loss of generality, that
u = u′i, v = v′j for some (possibly empty) words u′, v′ with |u′| + |v′| < n. Then,

φ̃A�(u � v) = φ̃A�(u′i� v′j)

= φ̃A�(u′
� v′j)φ̃A�(i) + φ̃A�(u′i� v′)φ̃A�(j)

= (φ̃A�(u′)� φ̃A�(v′j))φ̃A�(i) + (φ̃A�(u′i)� φ̃A�(v′))φ̃A�(j)

= φ̃A�(u′i)� φ̃A�(v′j)

= φ̃A�(u)� φ̃A�(v).

��
Remark 2.9 Lemma 2.8 is a special case of [10, Theorem 1.2].

Corollary 2.10 Let A ∈ G.
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(i) The character group is invariant under A, that is, A · G ((Rd)) ⊂ G ((Rd)).
(ii) The restriction of A to g((Rd)) is a Lie endomorphism. In particular, the free Lie

algebra is invariant under A, that is, A · g((Rd)) ⊂ g((Rd)).
(iii) log : G ((Rd)) → g((Rd)) is an equivariant map.

Proof

i. Let F ∈ G ((Rd)), and u, v be words. Then

〈A · F, u � v〉 = 〈F, φ̃A�(u � v)〉
= 〈F, φ̃A�(u)� φ̃A�(v)〉
= 〈F, φ̃A�(u)〉〈F, φ̃A�(v)〉
= 〈A · F, u〉〈A · F, v〉,

that is, A · F ∈ G ((Rd)).
ii. Since A·(FG) = (A·F)(A·G), A is automatically aLiemorphism.Nowwecheck

that A ·F ∈ g((Rd))whenever F ∈ g((Rd)). It is clear that 〈A ·F, e〉 = 〈F, e〉 = 0.
Now, if u, v are non-empty words, then

〈A · F, u � v〉 = 〈F, φ̃A�(u � v)〉
= 〈F, φ̃A�(u)� φ̃A�(v)〉
= 0,

i.e. A · F ∈ g((Rd)).
iii. Let G ∈ G ((Rd)). Then, since A · ε = ε we get

log(A · G) =
∞∑

n=1

(−1)n−1

n
(A · G − ε)n

= A ·
∞∑

n=1

(−1)n−1

n
(G − ε)n

= A · log(G).

��
In particular, we easily see that (see also [13, Lemma 3.3])

IIS(A · Z) = A · IIS(Z). (12)

The same is true for the truncated versions, and we note that, in the special case of
g≤2((R

d)), under the isomorphism in Eq. (10), the action has the simple form

A · (v, M) = (Av, AM A�), (13)
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where the operations on the right-hand side are matrix-vector resp. matrix–matrix
multiplication. Indeed, for the first level we have that

〈log(IIS(A · Z)),i〉 = 〈A · log(IIS(Z)),i〉
= 〈log(IIS(Z)), φ̃A�(i)〉
=

∑
j

a ji 〈log(ISS(Z)),j〉

=
∑

j

a ji c j

= (A�v)i

In the same vein, we have that

〈log(IIS(A · Z)),ij〉 = 〈log(IIS(Z)), φ̃A�(ij)〉
= 〈log(IIS(Z)), φA�(i)φA�( j)〉
=

∑
k

∑
l

aki a jl〈log(IIS(Z)),kl〉

=
∑

k

∑
l

aki a jlckl

= (A�M A)i j .

It follows from Corollary 2.10 and (12) that log(IIS(AZ)) = A · log(IIS(Z)). As
already remarked, log is a bijection (with inverse exp). To obtain invariant expressions
in terms of IIS(Z), it is hence enough to obtain invariant expressions in terms of
log(IIS(Z)). Going this route has the benefit of working on a linear object. To be more
specific, IIS(Z) is, owing to the shuffle relation, highly redundant. As an example in
d = 2,

〈
IIS(Z),1

〉2 +
〈
IIS(Z),2

〉2 = 2
〈
IIS(Z),11 + 22

〉
.

Now, both of these expressions are invariant to O2(R). The left-hand side is a nonlinear
expressions in the signature, whereas the right-hand side is a linear one. To not have
to deal with this kind of redundancy, we work with the log-signature. We note that
in [13] the linear invariants of the signature itself are presented. Owing to the shuffle
relation, this automatically yields (all) polynomial invariants. But, as just mentioned,
it also yields a lot of redundant information.

Example 2.11 We continue with Example 2.7. The rotation

A =
⎡
⎣0 1 0
0 0 1
1 0 0

⎤
⎦ ,
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results in the curve

Yt :=AXt =
⎡
⎣t2

t3

t

⎤
⎦ .

Its step-2 truncated signature is

proj≤2 IIS(Y ) =
⎛
⎝

⎡
⎣1
1
1

⎤
⎦ ,

⎡
⎣

1
2

3
5

1
3

2
5

1
2

1
4

2
3

3
4

1
2

⎤
⎦

⎞
⎠

=
⎛
⎝A

⎡
⎣1
1
1

⎤
⎦ , A

⎡
⎣

1
2

4
6

3
4

2
6

1
2

6
10

1
4

4
10

1
2

⎤
⎦ A�

⎞
⎠

= A · proj≤2 IIS(Z).

The step-2 truncated log-signature is

proj≤2 log IIS(Y ) =
⎛
⎝

⎡
⎣1
1
1

⎤
⎦ ,

⎡
⎣ 0 1

10 − 1
6− 1

10 0 − 1
4

1
6

1
4 0

⎤
⎦

⎞
⎠ = A · proj≤2 log IIS(Z).

In the presentwork,we consider general,nonlinear expressions of the log-signature.
That way, we use the economical form of the log-signature, while still providing a
complete—in a precise sense—set of nonlinear invariants.

2.4 Moving-FrameMethod

We now provide a brief introduction to the Fels–Olver moving-frame method
introduced in [15], a modern generalization of the classical moving-frame method
formulated by Cartan [4]. For a comprehensive overview of the method and survey of
many of its applications, see [14, 43]. We will assume in this subsection that G is a
finite-dimensional Lie group acting smoothly6 on an m-dimensional manifold M .

Definition 2.12 Amoving frame for the action of G on M is a smooth map ρ : M →
G such that ρ(g · z) = ρ(z) · g−1.

In general, one can define a moving frame as a smooth G-equivariant map ρ :
M → G. For simplicity, we assume G acts on itself by right multiplication; this is
often referred to as a right moving frame. A moving frame can be constructed through
the use of a cross-section to the orbits of the action of G on M .

Definition 2.13 A cross-section for the action of G on M is a submanifold K ⊂ M
such that K intersects each orbit transversally at a unique point.

6 Here actly smoothly means that the map defining the group action is a C∞ map. For our purposes, there
is no loss in taking ’smooth’ to mean ’C∞’..
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Definition 2.14 The action of G is free if the stabilizer Gz of any point z ∈ M is
trivial, i.e.,

Gz := {g ∈ G | g · z = z} = {id},

where id ∈ G denotes the identity transformation.

The following result appears in much of the previous literature on moving frames
(see, for instance, [42, Thm. 2.4]).

Theorem 2.15 Let G be an action on M and assume that

(∗) The action is free, and around each point z ∈ M there exists arbitrarily small
neighborhoods whose intersection with each orbit is pathwise-connected.

If K is a cross-section, then the map ρ : M → G defined by sending z to the unique
group element g ∈ G such that g · z ∈ K is a moving frame.

Remark 2.16 The equivariance of the map ρ : M → G such that ρ(z) · z ∈ K can be
seen from the fact that ρ(z) · z = ρ(g · z) · (g · z) for any g ∈ G. Since G is free, this
implies that ρ(z) = ρ(g · z) · g, and hence, ρ satisfies Definition 2.12.

Similarly, in this setting, a moving frame ρ specifies a cross-section defined by
K = {ρ(z) · z ∈ M}. This construction can be interpreted as a way to assign a
“canonical form” to points z ∈ M under the action of G, thus producing invariant
functions on M under G.

Definition 2.17 Let ρ : M → G be a moving frame. The invariantization of a
function F : M → R with respect to ρ is the invariant function ι(F) defined by

ι(F)(z) = F(ρ(z) · z).

Given a moving frame ρ and local coordinates z = (z1, . . . , zm) on M , the invari-
antization of the coordinate functions ι(z1), . . . , ι(zm) is the fundamental invariants
associated with ρ. In particular, we can compute ι(F) by

ι(F)(z1, . . . , zm) = F(ι(z1), . . . , ι(zm)).

Since ι(I )(z) = I (z) for any invariant function I , the fundamental invariants provide
a functionally generating set of invariants for the action of G on M . In general, we
will call a set of invariants I = {J1, . . . , Jm} fundamental if it functionally generates
all invariants, i.e., for any invariant I there is a function I ′ such that

I (p) = I ′(J1(p), . . . , Jm(p)).

Now, suppose further that G is an r -dimensional Lie group and that ρ is the moving
frame associated with a coordinate cross-section K defined by equations

z1 = c1, . . . , zr = cr
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for some constants c1, . . . , cr . Then the first r fundamental invariants are the phantom
invariants c1, . . . , cr , while the remaining m − r invariants {I1, . . . , Im−r } form a
functionally independent generating set. In this case,we can see that twopoints z1, z2 ∈
M lie in the same orbit if and only if

I1(z1) = I1(z2), . . . , Is(z1) = Is(z2).

Example 2.18 Consider the canonical action of SO2(R) on R
2 \ {(0, 0)}. This action

satisfies the assumptions of Theorem 2.15, and a cross-section to the orbits is given
by

K = {(x, y) | x = 0, y > 0}.

The unique group element taking a point to the intersection of its orbit with K is
the rotation (see Fig. 1)

ρ(x, y) =
⎡
⎣

y√
x2+y2

−x√
x2+y2

x√
x2+y2

y√
x2+y2

⎤
⎦ .

The fundamental invariants associated with the moving frame ρ : R
2\{(0, 0)} →

SO2(R) are given by

ι(x) = 0 ι(y) =
√

x2 + y2.

Thus, any invariant function for this action can be written as a function of ι(y),
the Euclidean norm. One can check that indeed for an invariant I (x, y), one has
I (x, y) = I (0,

√
x2 + y2). This additionally implies that two points are related by a

rotation if and only if they have the same Euclidean norm.

In practice, it is difficult, or impossible, to find a global cross-section, and thus a
global moving frame, to the orbits of G on M . For instance in the above example, the
origin was removed from R

2 to ensure freeness of the action. If the action of G on M
satisfies condition (∗) from Theorem 2.15, then the existence of a local moving frame
around each point z ∈ M is guaranteed by [15, Thm. 4.4]. In this case, the moving
frame is a map ρ : U → V from a neighborhood z ∈ U of M to a neighborhood of
the identity in V ⊂ G. The fundamental set of invariants produced are also local in
nature and thus only guaranteed to be invariant on U for elements g ∈ V .

The condition (∗) in Theorem2.15 can be relaxed in certain cases. In [28, Sec. 1], the
authors outline a method to construct a fundamental set of local invariants for actions
of G that are only semi-regular, meaning that all orbits have the same dimension. In
particular, Theorem 1.6 in [28] states that for a semi-regular action of G on M , there
exists a local coordinate cross-section about every point z ∈ M . In a neighborhood
U containing z, such a linear space intersects transversally the connected component
containing z of the orbit G ·z at a unique point for each z ∈ U and is of complementary
dimension to the orbits of the action.
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ρ(x1)x1

ρ(x2)x2

ρ(x3)x3

ρ(x4)x4

x1

x2

x3

x4

K

Fig. 1 Cross-section for the canonical action of the special orthogonal group SO2(R)

Remark 2.19 The algebraic actions that we define in the next section are automatically
semi-regular on a Zariski-open subset of the target space (Proposition 2.20(c)), and
hence, a local cross-section exists around any point in this subset. Since orbits are
algebraic subsets, a local coordinate cross-section is a submanifold of complementary
dimension (to the dimension of orbits) intersecting each orbit about z transversally
and hence in finitely-many points. If every sufficiently small neighborhood about z
does not have pathwise-connected intersection with each orbit, a local cross-section
about z necessarily intersects some orbit at infinitely-many points, and hence, a free
algebraic group action necessarily satisfies condition (∗) from Theorem 2.15.

2.5 Algebraic Groups and Invariants

In this work, we will be in the setting of an algebraic group G acting rationally on a
variety X . In other words, G is an algebraic variety equipped with a group structure,
and the action of G on X is given by a rational map Φ : G × X → X . Here we outline
some key facts and results about algebraic group actions and the invariants of such
actions, following [46] for much of our exposition. Unless specified otherwise, both
G and X are both varieties over the algebraically closed field C.
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The orbit G · p of a point p ∈ X under G is the image of G ×{p} under the rational
map Φ defining the action, and hence is open in its closure G · p under the Zariski
topology.7

The following proposition summarizes a few basic results on orbits of algebraic
groups that can be found in [46, Section 1.3].

Proposition 2.20 For any point p ∈ X, the stabilizer G p is an algebraic subgroup of
G and G · p satisfies the following:

(a) The orbit G · p is a smooth, Zariski-open subset of G · p.
(b) The dimension of G · p satisfies dim G · p = dim G − dim G p, where dim G p =

dim Tp(G · p).
(c) The dimension of G · p is maximal on a non-empty Zariski-open subset of X.

For an arbitrary field k, we denote the ring of polynomial functions on the variety
X as k[X ], i.e., if I(X) is the ideal generated by the polynomials defining the variety
X ⊂ C

d , then k[X ] = k[x1, x2, . . . , xd ]/I(X). If X is irreducible, then the field k(X)

of rational functions on X is defined similarly. The polynomial invariants (for the
action of G on the variety X ) form a subring of k[X ] defined by

k[X ]G = { f ∈ k[X ] | f (g · p) = f (p), for all g ∈ G, p ∈ X}

and the rational invariants form a subfield of k(X) given by

k(X)G = { f ∈ k(X) | f (g · p) = f (p), for all g ∈ G, p ∈ X}

respectively. Constructing invariant functions and finding generating8 sets for C[X ]G

is the subject of classical invariant theory [34, 41, 50]. In [24], Hilbert proved his finite-
ness theorem, showing that for linearly reductive groups acting on a vector space V
the polynomial ring C[V ]G is finitely generated leading him to conjecture in his four-
teenth problem that C[X ]G is always finitely generated. In [40], Nagata constructed a
counter-example to this conjecture. ForC(X)G , however, a finite generating set always
exists and can be explicitly constructed (see, for instance, [11, 27]). Furthermore, a
set of rational invariants is generating if and only if it is also separating.

Definition 2.21 A set of rational invariants I ⊂ C(X)G separates orbits on a subset
U ⊂ X if two points p, q ∈ U lie in the same orbit if and only if K (p) = K (q) for
all K ∈ I. If there exists a non-empty, Zariski-open subset X where I separates orbits
then we say I is separating.

Proposition 2.22 For the action of G on X, the field C(X)G is finitely generated over
C. Moreover, a subset I ⊂ C(X)G is generating if and only if it is separating.

7 The Zariski topology on an affine space kd is the topology where closed sets are given by subsets of
the form V ( f1, . . . , fs ) = {(x1, . . . , xd ) ∈ kd | f1(x1, . . . , xd ) = · · · = fs (x1, . . . , xd ) = 0} for some
collection of polynomials f1, . . . , fs ∈ k[x1, . . . , xd ].
8 By a generating set for k[X ]G , we refer to a subset of k[X ]G that generates k[X ]G as a polynomial ring.
Similarly, a generating set of k(X)G is a subset that generates k(X)G as a field.
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Proof The backward direction holds by [46, Lem. 2.1]. By [46, Thm. 2.4], there always
exists a finite set of separating invariants in C(X)G and hence a finite generating set.
Additionally, this finite set can be rewritten in terms of any generating set, and hence,
any generating set is also separating. ��

Under certain conditions, the polynomial ring C[X ]G is also separating, as the
following proposition from [46, Prop. 3.4] shows.

Proposition 2.23 Suppose the variety X is irreducible. There exists a finite, separating
set of invariants I ⊂ C[X ]G if and only if C(X)G = QC[X ]G where QC[X ]G ={

f
g

∣∣∣ f , g ∈ C[X ]G
}

.

One way to understand the structure of invariant rings is by considering subsets of
X that intersect a general orbit.

Definition 2.24 Let N ⊂ G be a subgroup. A subvariety S of X is a relative N -section
for the action of G on X if the following hold:

– There exists a non-empty, G-invariant, and Zariski-open subset U ⊂ X , such
that S intersects each orbit that is contained in U . In other words, we have that
Φ(G × S) = X , where closure is taken in the Zariski topology.

– One has N = {n ∈ G | nS = S}.
We call the subgroup N the normalizer subgroup of S with respect to G. The

following proposition summarizes a discussion in [46, Sec. 2.8].

Example 2.25 For the action of SO2(C) on the Zariski-open subset of C
2 defined by

x2 + y2 �= 0, the variety S defined by x = 0 is a relative N -section for the action
where N is the 2-element subgroup generated by a rotation of 180 degrees. Then, S
intersects each orbit of the action in precisely two points.

Proposition 2.26 Let S be a relative N-section for the action of G on X. Then, the
restriction map

RX→S : C(X) → C(S),

restricts to a field isomorphism between C(X)G and C(S)N .

Corollary 2.27 Let S be a relative N-section for the action of G on X and I ⊂ C(X)G

a set such that RX→S(I) generates C(S)N where RX→S is the restriction map from
Proposition 2.26. Then, I is a generating set for C(X)G.

Relative sections can be used to construct generating sets of rational invariants for
algebraic actions as in [21], which the authors refer to as the slice method. Similar in
spirit to the approach in [28], considerations can be restricted to an algebraic subset of
X . When the intersection of S with each orbit is zero-dimensional, a relative N -section
can be thought of as the algebraic analog to a local cross-section for an action.

We end the section by considering algebraic actions on varieties defined over R,
where the issue ismore delicate. For instance, in this setting Proposition 2.22 no longer
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holds meaning that generating sets of invariants are not necessarily separating and vice
versa (see [32, Rem. 2.7]). Suppose that X(R) and G(R) are real varieties with action
given by Φ : G(R) × X(R) → X(R) and that X and G are the associated complex
varieties. Then, Φ defines an action of G on X .

Proposition 2.28 R(X(R))G(R) is a subfield of C(X)G.

Proof If f ∈ R(X(R))G(R), then the rational function f (g · p) − f (p) is identically
zero on G(R) × X(R) and hence is identically zero on G × X . Thus, f ∈ C(X)G .

��

Corollary 2.29 If I = {I1, . . . , Is} ⊂ R(X(R))G(R) generates C(X)G then I gener-
ates R(X(R))G(R).

Proof Suppose that I generatesC(X)G and that f ∈ R(X(R))G(R). Then, there exists
a rational function g ∈ C(y1, . . . , ys) such that f = g(I1, . . . , Is).We can decompose
g as g = Re(g) + i · Im(g) where Re(g), ·Im(g) ∈ R(y1, . . . , ys). Since f is a real
rational function

2 f = [Re(g) + i · Im(g)] + [Re(g) − i · Im(g)] = 2Re(g).

Thus, g must lie in R(y1, . . . , ys) proving the result. ��

Proposition 2.30 Suppose that R(X(R))G(R) separates orbits for the action of G(R)

on X(R). Then so does any generating set for R(X(R))G(R).

Proof Suppose that I = {I1, I2, . . .} generates R(X(R))G(R) and that R(X(R))G(R)

separates orbits. Then, for any two points p1, p2 ∈ X(R) if

I1(p1) = I1(p2), I2(p1) = I2(p2), . . .

for all invariants in I, then we also have I (p1) = I (p2) for any invariant I ∈
R(X(R))G(R) as I generates R(X(R))G(R). Thus, p1 and p2 lie in the same orbit
under G(R). ��

3 Rigid-Motion Invariant Iterated-Integrals Signature in Low
Dimensions

Herewe showcase themoving-framemethod and some results about invariantizing the
iterated-integrals signature in R

2 and R
3. We later generalize these results to arbitrary

R
d in Sect. 5.1. However, we feel that these low-dimensional cases are useful for

understanding how the method works in higher dimension and that these cases are the
most useful for applications involving spatial data.
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3.1 Planar Curves

In this section, we construct a moving-framemap for the action of O2(R) on g≤n((R2))

and show how this can be used to construct O2(R)-invariants in g≤n((R
2)) and hence

in the coefficients of the iterated-integrals signature of a curve Z .
First consider the action on g≤2((R

2)) = R
2 ⊕ [R2, R

2] (recall the notation from
Sect. 2, in particular (1)). We can denote any element of g≤2((R

2)) as c≤2 with coor-
dinates c1, c2, and c12. Through the isomorphism in (10), we can consider c≤2 as an
element of R

2 ⊕ so(2, R),

c≤2 = (v, M) =
([

c1
c2

]
,

[
0 c12

−c12 0

])
,

and with action as in (13). We will now show that O2(R) is free on g≤2((R
2)) and the

following submanifold

K2,≤2 :=
{
c≤2 ∈ g≤2((R

2)) | c1 = 0; c2, c12 > 0
}

is a cross-section for the action. Similarly to Example 2.18, we start by defining the
group element

A(c≤2) := 1√
c21 + c22

[
c2 −c1
c1 c2

]
,

which is defined outside of {c1 = c2 = 0}. For any such element c≤2 ∈ g≤2((R
2)), we

have that

A(c≤2) · c≤2 =
([

0√
c21 + c22

]
,

[
0 c12

−c12 0

])
.

Unlike in Example 2.18, the action is not free on R
2, the submanifold defined by

c1 = 0, c2 > 0 is not a cross-section, and A(c≤2) does not define a moving-frame
map. This is due to the fact that a reflection about the y-axis will fix v, but change
the sign of M . Thus to define a moving-frame map, we must consider the diagonal
action of O2(R) on all of g≤2((R

2)), not just the action on g≤1((R
2)) = R

2. The map
ρ̃2 : U2;≤2 → O2(R) given by

ρ̃2(c≤2) = 1√
c21 + c22

[
sgn(c12)c2 −sgn(c12)c1

c1 c2

]

defines the group element ρ̃2(c≤2) such that ρ̃2(c≤2) · c≤2 ∈ K where

U2;≤2 =
{
c≤2 = (v, M) | v �=

[
0
0

]
, c12 �= 0

}
⊂ g≤2((R

2)).
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The (unique) intersection point of the orbit O2(R) · c≤2 with K2;≤2 is given by
ρ̃2(c≤2) · c≤2. We later show that this action is free on g≤2((R

2)) (Corollary 4.13), and
hence, the map ρ̃2 defines a moving frame with cross-section K. This immediately
implies that the coordinates of ρ̃2(c≤2) · c≤2 are invariants for the action of O2(R) on
g≤2((R

2))9:

√
c21 + c22, |c12|.

Furthermore, any two elements c≤2, c̃≤2 ∈ g≤2((R
2)) are related by an element of

O2(R) if and only if

√
c21 + c22 =

√
c̃21 + c̃22 and |c12| = |c̃12|.

For any path Z in R
2, let c≤2(Z) denote the element of g≤2((R

2)) given by
proj≤2(log(IIS(Z))). Then, we can define the “invariantized” path Y := ρ̃2(c≤2(Z)) ·
Z . The above statement implies that for any two paths Z , Z ′, we have that c≤2(Y ) =
c≤2(Y ′) if and only if there exists some g ∈ O2(R) such that

g · c≤2(Z) = c≤2(g · Z) = c≤2(Z ′).

In particular, since the log map is an equivariant bijection, the same holds true for the
IIS of a path under the projection proj≤2.

Given a path Z starting at the origin, the values of c1(Z), c2(Z) correspond to x
and y values of Z(1). Similarly, the value of c12(Z) corresponds to the so-called Lévy
area traced by Z (see [13, Section 3.2] in the context of classical invariant theory).
Thus, the moving-frame map applied to such a path Z rotates the end point Z(1) to
the y-axis (and reflects about the y-axis if the Lévy area is negative).

The resulting invariants ong≤2((R
2)) are perhaps unsurprising, but the abovemethod

also yields O2(R)-invariants on g≤n((R2)) for an arbitrary truncation order n, as we
now show. We define a map ρ2 : U2;≤n ⊂ g≤n((R2)) → O2(R) by

ρ2(c≤n) = 1√
c21 + c22

[
sgn(c12)c2 −sgn(c12)c1

c1 c2

]
(14)

for any c≤n ∈ U2;≤n where

U2;≤n := proj−1
≤n→≤2

(U2;≤2
) ⊂ g≤n((R

2)),

with proj≤n→≤2 denoting the canonical projection from g≤n((R
2)) onto g≤2((R

2)).
Since O2(R) acts diagonally on the whole of g≤n((R

2)), ρ2 is a moving-frame map on
g≤n((R2)) with cross-section K2;≤n where

K2;≤n := proj−1
≤n→≤2

(K2;≤2
) ⊂ g≤n((R2)).

9 The constant functions are referred to as the phantom invariants.

123



1298 Foundations of Computational Mathematics (2023) 23:1273–1333

Then, the resulting coordinate functions of ρ2(c≤n) · c≤n ∈ g≤n((R2)) are O2(R)

invariants for the action on g≤n((R2)) (see Sect. 3.1 for a more detailed investigation
of these invariants) and hence O2(R) invariants for paths in R

2. Furthermore, for any
truncation order n and paths Z , Z ′ ∈ R

2, we have that c≤n(Y ) = c≤n(Y ′) if and only
if there exists some element of O2(R) such that g · c≤n(Z) = c≤n(Z ′).

Proposition 3.1 Let Z , Z ′ be paths in R
2 such that

c≤2(Z) := proj≤2(log(IIS(Z))), c≤2(Z ′) := proj≤2(log(IIS(Z ′))),

are elements of U2;≤2. Define

Y :=ρ̃2(c≤2(Z)) · Z , Y ′:=ρ̃2(c≤2(Z ′)) · Z ′.

Then there exists g ∈ O2(R) such that IIS(g · Z) = IIS(Z ′) if and only if IIS(Y ) =
IIS(Y ′) if and only if c≤n(Y ) = c≤n(Y ′) for all n ∈ N.

Proof The result holds by the moving-frame property of ρ̃2 and the fact that the log
map is a bijection. For details, see the Proof of Theorem 5.5. ��

Therefore, two paths, starting at the origin, are equivalent up to tree-like extensions
and action of O2(R) if and only if IIS(Y ) = IIS(Y ′). In this sense, the moving-frame
map ρ̃2 yields a method to invariantize a path Z (Fig. 2).

We end this section with a look at the invariants produced by the construction for
truncation order 4, i.e., O2(R)-invariants on g≤4((R

2)). A (Lyndon) basis for g≤4((R
2))

corresponds to the coordinates (see Example 2.2)

c≤4 = (c1, c2, c12, c112, c122, c1112, c1122, c1222).

With Y as defined in Proposition 3.1, we have that

c1(Y ) = 0, c2(Y ) =
√

c1(Z)2 + c2(Z)2, c12(Y ) = |c12(Z)|,

and that the coordinate functions of log(IIS(Y )), in terms of the coordinates of
log(IIS(Z)), are O2(R)-invariants. Using the action as defined in Sect. 2.3, one can
compute

c112(Y ) = c1(Z)c122(Z) + c112(Z)c2(Z)√
c1(Z)2 + c2(Z)2

c122(Y ) = sgn(c12)

(
−c1(Z)c112(Z) + c122(Z)c2(Z)√

c1(Z)2 + c2(Z)2

)

c1112(Y ) = sgn(c12)

(
c1(Z)2c1222(Z) + c1(Z)c2(Z)c1122(Z) + c2(Z)2c1112(Z)

c1(Z)2 + c2(Z)2

)

c1122(Y ) = −c1(Z)2c1122(Z)+2c1(Z)c2(Z)(c1222(Z)−c1112(Z))+c2(Z)2c1122(Z)

c1(Z)2+c2(Z)2
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−

+

X

−

+ ρ(X)X = ρ(X ′)X ′

+

−
X ′

Fig. 2 Applying the moving-frame map for planar curves to two paths X and X ′ lying on the same O2(R)

orbit

c1222(Y ) = sgn(c12)

(
c1(Z)2c1112(Z)−c1(Z)c2(Z)c1122(Z)+c2(Z)2c1222(Z)

c1(Z)2+c2(Z)2

)
.

As implied by Proposition 3.1, for any two paths Z and Z̃ starting at the origin, we
have that c≤4(Z) is related to c≤4(Z̃) under O2(R) if and only if c≤4(Y ) = c≤4(Ỹ ).
By inspection, we see that a simpler set of polynomial invariants also determine the
equivalence class of the image of a path Z in g≤4((R

2)).

p1(Z) = c1(Z)2 + c2(Z)2

p2(Z) = c12(Z)2

p3(Z) = c1(Z)c122(Z) + c112(Z)c2(Z)

p4(Z) = c12(Z) (−c1(Z)c112(Z) + c122(Z)c2(Z))

p5(Z) = c12(Z)
(

c1(Z)2c1222(Z) + c1(Z)c2(Z)c1122(Z) + c2(Z)2c1112(Z)
)

p6(Z) = −c1(Z)2c1122(Z) + 2c1(Z)c2(Z)(c1222(Z) − c1112(Z)) + c2(Z)2c1122

p7(Z) = c12(Z)
(

c1(Z)2c1112(Z) − c1(Z)c2(Z)c1122(Z) + c2(Z)2c1222(Z)
)

The value of Z on the above invariant set determines the value of c≤4(Y ). Thus,
they provide a simpler invariant representation for c≤4(Z) = proj≤4(log(IIS(Z))).

123



1300 Foundations of Computational Mathematics (2023) 23:1273–1333

Remark 3.2 It is an interesting fact that by adding the invariants c1112(Y ) and c1222(Y ),
we get the much simpler invariant

c1112(Y ) + c1222(Y ) = sgn(c12)(c1112(Z) + c1222(Z)).

In the polynomial invariant set, one can likewise replace either p5 or p7 by

p′
5(Z) = p5(Z) + p7(Z)

p1(Z)
= c12(Z)(c1112(Z) + c1222(Z)).

3.2 Spatial Curves

Here we replicate the results of the previous section, but instead for curves lying in
R
3. We believe this case is worth a detailed look for two reasons: (1) rigid-motion

invariants of spatial curves is likely of interest for applications, (2) the method of
constructing a moving frame in this space more closely the general procedure we
outline later in Sect. 5.1. We will show that the subset of g≤n((R

3)) defined by

K3;≤n = {c1 = c2 = c13 = 0, c3, c12, c23 > 0}

is a cross-section for action of O3(R) on a Zariski-open subset of g≤n((R3)). In this
section, we will denote c≤2 as an element of g≤2((R

3)) ∼= R
2 ⊕ so(2, R) (see (10) for

the explicit isomorphism) where

c≤2 = (v, M) =
⎛
⎝

⎡
⎣c1

c2
c3

⎤
⎦ ,

⎡
⎣ 0 c12 c13

−c12 0 c23
−c13 −c23 0

⎤
⎦

⎞
⎠ .

The action of O3(R) acts as in (13). As is common in constructing a moving frame, we
will proceed iteratively. At each stage, we bring an arbitrary element to a successively
smaller linear spaces containing the desired cross-section and then restrict our attention
to elements of this linear space for the next stage. To start, we choose a transformation
in O3(R) to bring an arbitrary element to the subset

{c1 = c2 = 0, c3 > 0} ⊃ K3;≤2.

(We will later refer to this as L(1)
3 (R) ⊂ L(1)

3 , see (18)) Assuming that v is not the zero
vector, we can accomplish this with the group element

A1(c≤2) =

⎡
⎢⎢⎢⎢⎢⎣

−c1c3√
c21+c22

√
c21+c22+c23

−c2c3√
c21+c22

√
c21+c22+c23

√
c21+c22√

c21+c22+c23
c2√

c21+c22

−c1√
c21+c22

0

c1√
c21+c22+c23

c2√
c21+c22+c23

c3√
c21+c22+c23

⎤
⎥⎥⎥⎥⎥⎦

, (15)
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with the further assumption that c21 + c22 �= 0 (we will see later that this assumption
can be dropped). The resulting element is of the form

A1(c≤2) · c≤2 = (v, M)

where

v =
⎡
⎣ 0

0√
p1

⎤
⎦

M =

⎡
⎢⎢⎢⎢⎢⎣

0 p2√
p1

−c1c13−c2c23√
c21+c22

−p2√
p1

0
(c21+c22)c12+c2c3c13−c1c3c23√

c21+c22
√

p1

c1c13+c2c23√
c21+c22

− (c21+c22)c12+c2c3c13−c1c3c23√
c21+c22

√
p1

0

⎤
⎥⎥⎥⎥⎥⎦

p1 = c21 + c22 + c23
p2 = c1c23 − c2c13 + c3c12.

which we denote c(1)
≤2. We can now restrict our attention to elements of g≤2((R

3)) of
the form

c(1)
≤2 =

⎛
⎜⎝

⎡
⎣ 0

0
c(1)
3

⎤
⎦ ,

⎡
⎢⎣

0 c(1)
12 c(1)

13

−c(1)
12 0 c(1)

23

−c(1)
13 −c(1)

23 0

⎤
⎥⎦

⎞
⎟⎠ ,

where c(1)
12 �= 0, c(1)

3 > 0.We can omit the formulas for the coordinates of c(1)
≤2 in terms

of c≤2 to simplify the computation for the following step. We still have one degree of
freedom left, as the subgroup of matrices of the form

[
B 0
0 1

]
,

with B ∈ O2(R), preserves the conditions that c(1)
1 = c(1)

2 = 0, c(1)
3 > 0. Consider

such a matrix A2, one can show that

A2 · c(1)≤2 =
⎛
⎜⎝

⎡
⎣ 0
0
c13

⎤
⎦ ,

⎡
⎢⎣

0 det(B)c(1)
12 b11c(1)

13 + b12c(1)
23

− det(B)c(1)
12 0 b21c(1)

13 + b22c(1)
23

−(b11c(1)
13 + b12c(1)

23 ) −(b21c(1)
13 + b22c(1)

23 ) 0

⎤
⎥⎦

⎞
⎟⎠ .
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Thus, we can choose

A2(c
(1)
≤2) = 1√(

c(1)
13

)2 +
(

c(1)
23

)2

⎡
⎢⎣
sgn

(
c(1)
12

)
c(1)
23 −sgn

(
c(1)
12

)
c(1)
13 0

c(1)
13 c(1)

23 0
0 0 1

⎤
⎥⎦ ,

where

A2(c
(1)
≤2) · c(1)

≤2=

⎛
⎜⎜⎜⎜⎝

⎡
⎣ 0

0
c(1)
3

⎤
⎦ ,

⎡
⎢⎢⎢⎢⎣

0 |c(1)
12 | 0

−|c(1)
12 | 0

√(
c(1)
13

)2 +
(

c(1)
23

)2

0 −
√(

c(1)
13

)2 +
(

c(1)
23

)2
0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ ,

assuming that
(

c(1)
13

)2 +
(

c(1)
23

)2 �= 0. Thus, we can see the iterative procedure to

bring a point of g≤2((R
3)) to K3;≤2. At this point, we can put this together to obtain

the group element

A(c≤2) = A2(c
(1)
≤2)A2(c≤2)

=

⎡
⎢⎢⎣

sgn(p2)√
p1 p3

0 0

0 1√
p3

0

0 0 1√
p1

⎤
⎥⎥⎦

⎡
⎣ ν11 ν12 ν13

(c12c2 + c13c3) (−c1c12 + c23c3) (−c1c13 − c2c23)
c1 c2 c3

⎤
⎦

where

ν11 = c1(−c13c2 + c12c3) − c23(c
2
2 + c23)

ν12 = c21c13 + c1c2c23 + c3(c12c2 + c13c3)

ν13 = −c21c12 − c1c23c3 + c2(c12c2 + c13c3)

and

p3 = c21(c
2
12 + c213) + 2c1c23(c13c2 − c12c3) + c22(c

2
12 + c223)

+2c12c13c2c3 + c23(c
2
13 + c223).
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Similarly by substituting in the coordinate functions of c(1)
≤2 in terms of the coordinates

of c≤2, we have that

A(c≤2) · c≤2 =

⎛
⎜⎜⎝

⎡
⎣ 0

0√
p1

⎤
⎦ ,

⎡
⎢⎢⎣

0 |p2|√
p1

0
−|p2|√

p1
0

√
p3
p1

0 −
√

p3
p1

0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ . (16)

As the only element of O3(R) that brings an element ofK3;≤2 toK3;≤2 is the identity,
this is the unique intersection point of K3;≤2 with the orbit of an arbitrary c≤2 in the
open subset defined by

U3;≤2 = {c≤2 | p1(c≤2), p2(c≤2), p3(c≤2) �= 0} ⊂ g≤3((R
2)),

and since this action is free (see Corollary 4.13), K3;≤2 is a cross-section. As in the
previous section, we can thus define a map ρ3 : U3;≤n ⊂ g≤n((R

3)) → O3(R) by

ρ3(c≤n) = A(c≤n)

for any c≤n ∈ U3;≤n where

U3;≤n := proj−1
≤n→≤2

(U3;≤2
) ⊂ g≤n((R3)),

which defines a moving-frame map on g≤n((R
3)) with cross-section K3;≤n where

K3;≤n := proj−1
≤n→≤2

(K3;≤2
) ⊂ g≤n((R3)).

All together this implies the following analogue of Proposition 3.1.

Proposition 3.3 Let Z , Z ′ be paths in R
3 such that

c≤2(Z) := proj≤2(log(IIS(Z))), c≤2(Z ′) := proj≤2(log(IIS(Z ′))),

are elements of U3;≤2. Define

Y :=ρ̃2(c≤2(Z)) · Z , Y ′:=ρ̃2(c≤2(Z ′)) · Z ′.

Then, there exists g ∈ O3(R) such that IIS(g · Z) = IIS(Z ′) if and only if IIS(Y ) =
IIS(Y ′) if and only if c≤n(Y ) = c≤n(Y ′) for all n ∈ N.

Propositions 3.1 and 3.3 are both special cases of Theorem 5.2, proven later for general
paths in R

d . We end this section by looking at the invariants produced by this cross-
section and an example of how we can use this procedure to invariantize the moment
curve in R

3.
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For a curve Z in R
3, the nonzero coordinate functions of proj≤2(log(IIS(Y ))),

where Y is defined in Proposition 3.3, are given by10

c3(Y ) = √
p1(Z),

c12(Y ) = |p2(Z)|√
p1(Z),

,

c23(Y ) =
√

p3(Z)

p1(Z)
,

where

p1(Z) = c1(Z)2 + c2(Z)2 + c3(Z)2

p2(Z) = c1(Z)c23(Z) − c2(Z)c13(Z) + c3(Z)c12(Z)

p3(Z) = c1(Z)2(c12(Z)2 + c13(Z)2) + 2c1(Z)c23(Z)(c13(Z)c2(Z) − c12(Z)c3(Z))

+ c2(Z)2(c12(Z)2 + c23(Z)2) + 2c12(Z)c13(Z)c2(Z)c3(Z)

+ c3(Z)2(c13(Z)2 + c23(Z)2).

From this, we can conclude that the polynomial invariants p1(Z), p2(Z)2, and p3(Z)

characterize the equivalence class of c≤2(Z) under O3(R).

Remark 3.4 Note that p3(Z) ≥ 0 for any path Z in R
3. There are two ways to see this:

First by the Cauchy–Bunyakovsky–Schwarz inequality via

p3(Z) = p1(Z)(c12(Z)2 + c13(Z)2 + c23(Z)2) − p2(Z)2

= ‖v‖22‖u‖22 − (v · u)2,

where v = (c1(Z), c2(Z), c3(Z))�, u = (c23(Z),−c13(Z), c12(Z))�. On the other
hand, it can also be written as a sum of squares,

p3(Z) = (c12(Z)c1(Z) − c23(Z)c3(Z))2 + (c13(Z)c1(Z) + c23(Z)c2(Z))2

+ (c12(Z)c2(Z) + c13(Z)c3(Z))2,

revealing that it is nothing but Mv · Mv in the later Example 4.19, while p1(Z) is v ·v.
Example 3.5 Continuing with our running example, the moment curve, we have
already seen (Example 2.7) that

proj≤2 log IIS(Z) =

⎛
⎜⎜⎝

⎡
⎣1
1
1

⎤
⎦ ,

⎡
⎢⎢⎣

0 1
6

1
4

− 1
6 0 1

10

− 1
4 − 1

10 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

10 We note that p2(c≤n(Z)) is the “signed volume” of the curve, cf. [13, Lemma 3.17], [49, Lemma 4.3.0.3]
and [12, Section 6].
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The matrix

A1 =

⎡
⎢⎢⎢⎣

− 1√
6

− 1√
6

√
2
3

1√
2

− 1√
2

0

1√
3

1√
3

1√
3

⎤
⎥⎥⎥⎦

is such that

A(1) · proj≤2 log IIS(Z) =

⎛
⎜⎜⎝

⎡
⎣ 0

0√
3

⎤
⎦ ,

⎡
⎢⎢⎣

0 1
60

√
3

− 7
20

√
2

− 1
60

√
3

0 29
60

√
6

7
20

√
2

− 29
60

√
6

0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

Note that A1 can be obtained via the equation in (15). Finally, the matrix

A2 =

⎡
⎢⎢⎢⎣

29
2
√
541

21
√
3

2
√
541

0

− 21
√
3

2
√
541

29
2
√
541

0

0 0 1

⎤
⎥⎥⎥⎦

is such that

A2 · (A1 · proj≤2 log IIS(Z)) =

⎛
⎜⎜⎜⎝

⎡
⎣ 0

0√
3

⎤
⎦ ,

⎡
⎢⎢⎢⎣

0 1
60

√
3

0

− 1
60

√
3

0
√
541

30
√
6

0 −
√
541

60
√
6

0

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ ∈ K3;≤2.

This invariantization of proj≤2 log IIS(Z)) can either be obtained via this iterative
method, or by directly using (16). The advantage of this iterative method is that one
does not need to know the invariant functions a priori to invariantize the curve. While
we are able to succinctly provide the explicit moving-frame map for an arbitrary curve
inR

3, this will not always be practical in higher dimensions. Figure 3 shows the effects
of these transformations on the path itself.

Geometrically this process corresponds to first rotating the curve so that the end
point lies on the z-axis. We then choose a rotation about this axis to force c≤2(Z) = 0,
which corresponds to forcing the Lévy area of the projection of Ẑ := ρ̃3(c2(Z)) · Z
onto the (x, z) plane to be zero. Figure 4 shows this project; one can check that the
total area under the curve vanishes.

Example 3.6 To get a sense of the robustness of these invariants, we run the following
experiment: we perturb a curve, compute the resulting invariants, then repeat this
1,000,000 times, and compute the mean and standard deviation of the resulting values.
We consider the smooth curve defined by t �→ (cos(t), sin(t), t) for t ∈ [0, 2π ], and
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Fig. 3 Moment curve and the result of each succesive action of O3(R)

Fig. 4 Area between the coordinates 1 and 3 of the invariantized curve in Example 3.5

we perturb it by adding a standard 3-dimensional Brownian motion, scaled down by
a parameter ε > 0, so that our curve looks like

Xt =
⎛
⎜⎝
cos(t) + εB(1)

t

sin(t) + εB(2)
t

t + εB(3)
t

⎞
⎟⎠

where B(1), B(2) and B(3) are independent Brownianmotions on the same interval (see
Fig. 5 for some samples of the perturbed curve). The jagged nature of each perturbed
curve would make using differential invariants more difficult. In practice, one must
often apply appropriate smoothing to the curve before using differential methods, such
as the differential signature [2].

In our case, the resulting invariants11 are quite stable as shown by Table 2, even for
relatively large values of ε, although not all three are equally stable.

11 Note that Brownian motions technically fall out of the scope of this paper, as we assumed the curves
to be studied to be of bounded variation, whereas Brownian motion almost surely has infinite variation.
However, any bounded variation curve perturbed by Brownian motion can be reintegrated into the setup of

123



Foundations of Computational Mathematics (2023) 23:1273–1333 1307

Fig. 5 Samples of the noisy curve X for ε = 0.1

4 Orthogonal Invariants on g≤2((R
d))

In this section, we take a closer look at the action of Od(R) on g≤2((R
d)) ∼=

R
d ⊕ sod(R). In particular, we construct an explicit linear space, of complementary

dimension to the orbits, intersecting each orbit in a large open subset of this space.
To achieve this, we consider the associated action of the complex group Od(C) on the
space C

d ⊕ sod(C) where

Od(C) = {A ∈ GLd(C) | AAT = id}.

As described in Sect. 2.5, we can consider Od(R) and R
d ⊕ sod(R) as the real

points of the varieties Od(C) and C
d ⊕ sod(C).

Remark 4.1 The real Lie group

Od(R):={A ∈ R
d×d : AA� = id},

this paper by applying the theory of Stratonovich integration instead of Riemann–Stieltjes integration. For
our numerical studies, this technicality is of no effect as we effectively only calculate with piecewise-linear
interpolations of Brownian motion, which are of bounded variation again of course. The fact that makes
everything fit together is then the well-known result that the signature of piecewise-linearly interpolated
Brownianmotion converges almost surely to the Stratonovich signature, see [19, Proposition 3.6] (they only
prove convergence of the level 2 signature uniformly over any time interval, but this implies convergence
of the full signature in a suitable topology). Also compare [20, Proposition 13.18] (which is not enough for
what we argue here though).
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can be considered as a subgroup of the Lie group

Od(C):={A ∈ C
d×d : AA� = id}.

We note that we consider Od(C) here as a complex Lie group, in contradistinction to
the Lie group of unitary matrices

Ud :={A ∈ C
d×d : A∗ A = id},

where A∗ is the conjugate transpose of A. Even though Ud contains matrices with
complex entries, it can only be considered as real Lie group.

By investigating the associated complex action, we can utilize tools such as the
relative sections described in Definition 2.24 and then pass these results down to the
real points. As before in (13), the action of Od(C) on C

d ⊕ sod(C) is given by

A · (v, M) = (Av, AM AT ). (17)

We denote the entries as

v =

⎡
⎢⎢⎢⎣

c1
c2
...

cd

⎤
⎥⎥⎥⎦ , M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 c12 c13 ... c1d

−c12 0 c23 ... c2d

−c13 −c23 0 ...
...

...
. . . c(d−1)d

−c1d −c2d ... −c(d−1)d 0

⎤
⎥⎥⎥⎥⎥⎥⎦

to make explicit the connection to Sect. 5.1.

Proposition 4.2 For any v ∈ C
d such that c21 + · · · + c2d �= 0, there exists A ∈ Od(C)

such that ṽ = Av satisfies c̃1 = · · · = c̃d−1 = 0 and c̃d �= 0.

Proof The function (d − 1)(c21 + · · · + c2d) can be written as the sum of all pairwise
sum of squares, i.e.,

(d − 1)(c21 + · · · + c2d) =
d∑

i=1

∑
j �=i

(
c2i + c2j

)
.

Suppose that c21+· · ·+c2d �= 0 and that there exists some ci �= 0where 1 ≤ i ≤ d−1.
(Otherwise we are done by choosing A as the identity.) By the above equation, there
exists a pair of coordinates ci and c j such that c2i + c2j �= 0 for some 1 ≤ i < j ≤ d.

Choose the matrix A ∈ Od(C) defined by

ak� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 k = � �= i, j
c j
w

k = � = i, j
− ci

w
k = i, � = j

c j
w

k = j, � = i
0 otherwise

123



1310 Foundations of Computational Mathematics (2023) 23:1273–1333

where w is an element of C that satisfies w2 = c2i + c2j . The transformation A is the
complex analogue to a Givens Rotation which only rotates two coordinates. Then for
Av = ṽ we have that c̃k = ck for k /∈ {i, j}, c̃i = 0, and c̃ j = w �= 0. This process
can be repeated until ṽ is of the desired form. ��

We define a sequence of linear subspaces of C
d ⊕ sod(C) as

L(1)
d = {(v, M) ∈ C

d ⊕ sod(C) | c1 = · · · = cd−1 = 0},
L(i)

d = {(v, M) ∈ L(i−1)
d | c1(d−i+2) = · · · = c(d−i)(d−i+2) = 0}, 2 ≤ i ≤ d − 1.

(18)

In particular, the subspace L(d−1)
d is given by pairs (v, M) of the form

v =

⎡
⎢⎢⎢⎣

0
0
...

cd

⎤
⎥⎥⎥⎦ M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 c12 0 ... 0
−c12 0 c23 ... 0

0 −c23 0 ...
...

...
. . . c(d−1)d

0 0 ... −c(d−1)d 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)

Example 4.3 For d = 4, elements in L(1)
4 are of the form

⎛
⎜⎜⎝

⎡
⎢⎢⎣
0
0
0
∗

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 ∗ ∗ ∗
∗ 0 ∗ ∗
∗ ∗ 0 ∗
∗ ∗ ∗ 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ ,

elements in L(2)
4 are of the form

⎛
⎜⎜⎝

⎡
⎢⎢⎣
0
0
0
∗

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 ∗ ∗ 0
∗ 0 ∗ 0
0 ∗ 0 ∗
0 ∗ ∗ 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠

and elements in L(3)
4 are of the form

⎛
⎜⎜⎝

⎡
⎢⎢⎣
0
0
0
∗

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
0 ∗ 0 0
∗ 0 ∗ 0
0 ∗ 0 ∗
0 0 ∗ 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

Note again that all sod(C) matrices are skew-symmetric and thus have zero diagonal.
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We will show that L(1)
d , L(2)

d , .. form a sequence of relative sections for the action
of Od(C) on C

d ⊕ sod(C) (see Definition 2.24). For this aim, we need to identify the
normalizer subgroup for each L(i)

d , which will be achieved in Proposition 4.5.
The group Oi (C), for 1 ≤ i < d, appears as a subgroup of Od(C) in several natural

ways, in particular the subgroup obtained by considering elements that rotate some
fixed subset of i coordinates and fix the remaining coordinates. For B ∈ Oi (C), denote

E(B) =

⎡
⎢⎢⎢⎣

B 0 · · · 0
0 1 · · · 0
0 0

. . . 0
0 0 · · · 1

⎤
⎥⎥⎥⎦ , (20)

a matrix rotating the first i coordinates and fixing the last d − i . The set of such E(B)

forms a subgroup of Od(C) isomorphic to Oi (C), which we will denote

Oi
d(C).

Note that Oi
d(C) ⊂ Oi+1

d (C).

Proposition 4.4 Let 1 ≤ i < d and B ∈ Oi (C). The image of the coordi-
nates c1(i+1), c2(i+1), . . . , ci(i+1) under the action of E(B) ∈ Oi

d(C) on (v, M) ∈
C

d ⊕ sod(C) is given by

B

⎡
⎢⎢⎢⎣

c1(i+1)
c2(i+1)

...

ci(i+1)

⎤
⎥⎥⎥⎦ ,

the standard action of Oi (C) on a vector in C
i .

Proof This follows from (17). ��

Consider the subgroup

Wd(C) :=
{
diagonal matrices with diagonal entries lying in {−1, 1}

}
⊂ Od(C).

The action of an element of Wd(C) changes the sign of various coordinates of
C

d ⊕ sod(C). We define the subgroup N i
d(C) of Oi

d(C) as

N i
d(C) := Oi

d(C) · Wd(C) = {g · h | g ∈ Oi
d(C), h ∈ Wd(C)}.
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Note that N i
d(C) exactly contains matrices of the form

⎡
⎢⎢⎢⎣

B 0 · · · 0
0 ±1 · · · 0

0 0
. . . 0

0 0 · · · ±1

⎤
⎥⎥⎥⎦ , (21)

with B ∈ Oi
d(C).

Proposition 4.5 For 1 ≤ i < d, the normalizer of L(i)
d is equal to N d−i

d (C).

Proof It is immediate that N d−1
d (C) leaves the space L(1)

d invariant.
Considering

x =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0
. . .

0
1

⎤
⎥⎥⎦ , M

⎞
⎟⎟⎠ ∈ L(1)

d ,

we see that for g ∈ Od(C) to have

gx ∈ L(1)
d ,

we must have g jd = gd j = 0, j = 1, . . . , d − 1. This proves the claim for i = 1.

Let the statement be true for some 1 ≤ i ≤ d − 2. First, the normalizer of L(i+1)
d

is contained in L(i)
d . Diagonal entries of ±1 leave every L( j)

d invariant, so it remains
to investigate the matrix B in (21). Now by Proposition 4.4 B acts by standard matrix
multiplication on the vector (c1(i+1), . . . , ci(i+1))

�. We can hence apply the argument

of the case L(1)
d to deduce that N d−(i+1)

d (C) is the normalizer of L(i+1)
d .

��
We now show that L(d−1)

d is a relative Wd(C)-section, by constructing a sequence
of relative sections for the action, drawing inspiration from recursive moving-frame
algorithms (see [31] for instance).

Proposition 4.6 The linear space L(d−1)
d is a relative Wd(C)-section for the action of

Od(C) on C
d ⊕ sod(C). More precisely, there exists a set of rational invariants

Id = { f1, . . . , fd} ⊂ C(Cd ⊕ sod(C))Od (C) (22)

such that if we define the invariant, non-empty, Zariski-open subset

Ud(C) =
{
(v, M) ∈ C

d ⊕ sod(C)

∣∣∣∣ (v, M) is in the domain of each fk

and
∏d

k=1 fk(v, M) �= 0

}
(23)
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we have that L(d−1)
d intersects each orbit that is contained in Ud(C). Furthermore,

we can restrict each invariant to obtain

• f1 = c21 + · · · + c2d ,
• fi |L(i−1)

d
= c21(d−i+2) + · · · + c2(d−i+1)(d−i+2) for 2 ≤ i < d.

• fd |
L(d−1)

d
= c212.

Proof By Proposition 4.2, outside of f1 = ||v||2 = 0, there exists a rotation A1 ∈
Od(C) such that A1 · (v, M) ∈ L(1)

d . Thus, by Proposition 4.5, L(1)
d is a relative

N d−1
d (C)-section. We also have that f1|L(1)

d
= c2d . We proceed by induction. Suppose

that for each point in Ui = {∏i
k=1 fk(p) �= 0} there exists a rotation Bi ∈ Od(C)

such that Bi · (v, M) ∈ L(i)
d .

By Proposition 4.5, the linear space L(i)
d is a relative N d−i

d (C)-section and, by
Proposition 2.26, there exists a field isomorphism σi : C(Cd ⊕ sod(C))Od (C) →
C(L(i)

d )N d−i
d (C). Using Proposition 4.4, one can show that on L(i)

d the polynomial

c21(d−i+2)+· · ·+c2(d−i+1)(d−i+2) lies inC(L(i)
d )N d−i

d (C). Let fi+1 be the unique element

in C(Cd ⊕ sod(C))Od (C) such that fi+1 = σ−1
i (c21(d−i+2) + · · · + c2(d−i+1)(d−i+2)).

By Proposition 4.2, for any (v, M) ∈ L(i)
d outside of { fi+1(v, M) = 0}, there exists

a rotation Ai+1 ∈ N d−i
d (C) such that Ai+1 · (v, M) ∈ L(i+1)

d . Thus, for any (v, M)

in Ui+1 = {∏i+1
k=1 fk(v, M) �= 0} there exists a rotation Bi+1 = Ai+1Bi ∈ Od(C)

such that Bi+1 · (v, M) ∈ L(i+1)
d . Using Proposition 4.5, again, we see that L(i+1)

d is
a relative N d−i−1

d (C)-section.
We can continue this induction until we have fd−1 where fd−1|L(d−2)

d
= c213 + c223.

Finally, note that the polynomial c212 lies inC(L(d−1)
d )Wd (C). Since L(d−1)

d is a Wd(C)-
section (since Wd(C) = N 1

d (C)), there exists fd ∈ C(Cd ⊕ sod(C))Od (C) such that
fd |

L(d−1)
d

= c212. ��

Remark 4.7 Denoting ς1 := σ1, ςi+1 := σi+1 ◦ σ−1
i , we have the following chain of

Od(R) transformations Ai and field isomorphisms ςi :

C
d ⊕ sod(C) L(1)

d . . . L(d−2)
d L(d−1)

d

C(Cd ⊕ sod(C))Od (C)
C(L(1)

d )N d−1
d (C) . . . C(L(d−2)

d )N2
d (C)

C(L(d−1)
d )Wd (C)

A1 A2 Ad−2 Ad−1

ς1 ς2 ςd−2 ςd−1

Note though that while the ςi are uniquely determined, the Ai are not. The composition
Ad−1Ad−2 · · · A2A1, however, is unique up to amultiplication of a Wd (C)matrix from
the left.

In particular, the above proposition implies that L(d−1)
d is a relative Wd(C)-section for

the action of Od(C) on C
d ⊕ sod(C), and hence, the function fields C(L(d−1)

d )Wd (C)

and C(Cd ⊕ sod(C))Od (C) are isomorphic. By examining the action of Wd(C) on
L(d−1)

d and the structure of C(L(d−1)
d )Wd (C), we can therefore glean information about
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the action of Od(C) on C
d ⊕ sod(C). Consider a diagonal matrix D ∈ Wd(C) given

by

D =

⎡
⎢⎢⎢⎣

w1 0 ... 0
0 w2 ... 0
...

. . .
...

0 0 ... wd

⎤
⎥⎥⎥⎦

wherewi ∈ {−1, 1} for 1 ≤ i ≤ d. Then, the image of a point in L(d−1)
d is D ·(v, M) =

(v, M) where

v =

⎡
⎢⎢⎢⎣

0
0
...

wdcd

⎤
⎥⎥⎥⎦

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 w1w2c12 0 ... 0
−w1w2c12 0 w2w3c23 ... 0

0 −w2w3c23 0 ...
...

...
. . . wd−1wdc(d−1)d

0 0 ... −wd−1wdc(d−1)d 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(24)

Proposition 4.8 The action of Wd(C) on L(d−1)
d ∩ Ud(C) is free.

Proof Suppose that the action is not free. Then, there exists D ∈ Wd(C) such that
D · (v, M) = (v, M) and D is not the identity. Necessarily we have that for some
1 ≤ i ≤ d − 1, wi = −1. Since wiwi+1ci(i+1) = ci(i+1) and ci(i+1) �= 0, then
wi+1 = −1. Using a similar argument,wi+2 = −1 and so forth. However,wdcd = cd ,
where cd �= 0, implying that wd = 1 which is a contradiction. ��
Corollary 4.9 The action of Od(C) on Ud(C) ⊂ C

d ⊕ sod(C) is free.

Proof By Proposition 4.6, each orbit on Ud(C) meets the linear subspace L(d−1)
d . We

show that the stabilizer of a point in L(d−1)
d ∩ Ud(C) contains only the identity. This

is sufficient to prove the result, as any two points in the same orbit have isomorphic
stabilizer groups.

Let (v, M) ∈ L(d−1)
d and consider g ∈ G such that g · (v, M) = (v, M). By the

proof of Proposition 4.5 g must lie in Wd(C). However, by Proposition 4.8, the only
element of Wd(C) fixing a point in L(d−1)

d ∩ Ud(C) is the identity. ��
Since we have that w2

i = 1 for any 1 ≤ i ≤ d, clearly

IWd (C) := {c2d , c2d(d−1), . . . , c212} (25)
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is a set of invariant functions on L(d−1)
d .

Proposition 4.10 The set IWd (C) separates orbits and is a generating set for

C(L(d−1)
d )Wd (C).

Proof Consider the map F : L(d−1)
d ∩ Ud(C) → C

d defined by evaluating the invari-

ants in IWd (C) on L(d−1)
d ∩ Ud(C), a non-empty, Zariski-open subset of L(d−1)

d .
We show that every fiber of this map is exactly an orbit of Wd(C). Consider any
(v, M) ∈ L(d−1)

d ∩ Ud(C); then, set of points in the fiber of its image is given by

F−1(F(v, M))={(ṽ, M̃) ∈ L(d−1)
d ∩ Ud (C) | c̃2d =c2d , c̃212=c212, . . . , c̃2(d−1)d =c2(d−1)d }

= {(ṽ, M̃)∈ L(d−1)
d ∩ Ud (C) | c̃d =±cd , c̃12=±c12, . . . , c̃(d−1)d = ±c(d−1)d }.

Wecan individually change the sign for any coordinate of (v, M). To change the sign
of only cd , one can act by the matrix D ∈ Wd(C) such thatwi = −1 for all 1 ≤ i ≤ d.
Similarly for ci(i+1), we can act by the matrix D ∈ Wd(C) such that wk = −1 for
1 ≤ k ≤ i and wk = 1 otherwise. This implies that the above set is exactly the orbit
of (v, M) under Wd(C), and hence, IWd (C) is separating on L(d−1)

d ∩ Ud(C). Then by

Proposition 2.22, IWd (C) generates C(L(d−1)
d )W . ��

Corollary 4.11 The set Id in (22) is a minimal-generating set of rational invariant
functions for C(Cd ⊕ sod(C))Od (C) and separates orbits.

Proof By Proposition 4.6, L(d−1)
d is a relative Wd(C)-section for the action of Od(C)

on C
d ⊕ sod(C), and Id restricts to the set of invariants IWd (C) in (25) for the action

of Wd(C) on L(d−1)
d . This means IWd (C) = σd−1(Id), where σd−1 is the isomorphism

from Proof of Proposition 4.6. By Proposition 4.10, the set IWd (C) is a generating set

for C(L(d−1)
d )Wd (C), and hence, by Corollary 2.27, Id is a generating set for C(Cd ⊕

sod(C))Od (C). By Proposition 2.22, Id also separates orbits.
By Corollary 4.9, the action of Od(C) is free on a non-empty, Zariski-open sub-

set of C
d ⊕ sod(C). Thus, the maximum dimension of an orbit on C

d ⊕ sod(C) is
dim(Od(C)) = d(d−1)

2 . By [46, Corollary, Section 2.3], the transcendence degree12

of C(Cd ⊕ sod(C))Od (C) is d(d+1)
2 − d(d−1)

2 = d, and hence, any generating set must
be at least of size d, implying that Id is minimal. ��

The above results for the action of Od(C) onC
d ⊕sod(C) help uncover the structure

of the action of Od(R) on R
d ⊕ sod(R). First we show that the intersection of the

set Ud(C) defined in (23) with R
d ⊕ sod(R) is a non-empty and well-defined Zariski

open subset of R
d ⊕ sod(R).

Proposition 4.12 The set Id in (22) is a subset of R(Rd ⊕sod(R))Od (R). In particular,

12 The transcendence degree ofC(X)G is given by the cardinality of the largest set { f1, . . . , fn} ∈ C(X)G

such that there does not exist a rational function F where F( f1, . . . , fn) ≡ 0 ∈ C(X)G .
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Ud(R) := Ud(C) ∩
[
R

d ⊕ sod(R)
]
,

is a well-defined,Od(R)-invariant, and non-empty Zariski open subset of R
d ⊕sod(R),

and

L(d−1);R
d := L(d−1)

d ∩
[
R

d ⊕ sod(R)
]

intersects each orbit (under Od(R)) contained in Ud(R).

Proof In the proof of Proposition 4.6, each function fi is obtaining by taking the
inverse image of a real invariant function under the field isomorphism σi : C(Cd ⊕
sod(C))Od (C) → C(L(i)

d )N d−i
d (C). The function fi can be decomposed fi = h1 +√−1 · h2, where h1 and h2 are elements of R(Rd ⊕ sod(R))Od (R), and hence by

Proposition 2.28, are elements of C(Cd ⊕sod(C))Od (C). Thus, h1|L(i)
d

= fi |L(i)
d
. Since

σi is a field isomorphism, fi must define the same rational function as h1 and hence
is an element of R(Rd ⊕ sod(R))Od (R).

Note that Proposition 4.2 also holds for any v ∈ R
d , i.e., by applyingGram–Schmidt

to a linearly independent set of d vectors {v, v1, . . . , vd−1} in R
d . Thus if f1(v, M) �=

0, there exists a rotation A ∈ Od(R) such that A · (v, M) ∈ L(1)
d ∩ R

d ⊕ sod(R).
Similarly as in the proof of Proposition 4.6, we can proceed by induction. Suppose
(v, M) ∈ L(i)

d ∩ R
d ⊕ sod(R) and fi+1(v, M) �= 0. Then we have that

c21i + ... + c2(i−1)i �= 0.

By Proposition 4.4, we can find a rotation A ∈ N d−i
d (C) such that A · (v, M) ∈

L(i+1)
d . Therefore, if (v, M) ∈ Ud(R), there exists a rotation A ∈ Od(R) such that

A · (v, M) ∈ L(d−1)
d . ��

The following follows directly from Proposition 4.9.

Corollary 4.13 The action of Od(R) on Ud(R) ⊂ R
d ⊕ sod(R) is free.

Proposition 4.14 The setId generates the invariant function field R(Rd⊕sod(R))Od (R)

and separates orbits on Ud(R).

Proof The fact that Id generates R(Rd ⊕ sod(R))Od (R) follows from Proposi-
tions 4.6, 4.12 and Corollary 2.29. Using a similar argument as in Proposition 4.10,
we can see that IWd (C) in (25) separates orbits for the action of Wd(C) on L(d−1);R

d ∩
Ud(R). By Proposition 4.12, any orbit on Ud(R) meets L(d−1);R

d , and the Id restricts

to IWd (C) on L(d−1);R
d . Thus, Id is separating on Ud(R). ��

We finish the section by constructing an explicit set of invariant polynomial func-
tions that generate C(Cd ⊕ sod(C))Od (C). Consider the map
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φk : C
d ⊕ sod(C) → C

d

(v, M) �→ Mkv.

Then, for the action of A · (v, M) we have that

φk
(

A · (v, M)
) = φk

(
(Av, AM AT )

)
= (AM AT )k Av = AMkv = A φk

(
(v, M)

)
.

Thus, the polynomial obtained by the dot-product of φk with itself is an invariant
function on C

d ⊕ sod(C) under Od(C). We will show that the set of polynomial
invariants (defining a · b := ∑

i ai bi )

IM = {φk · φk | 0 ≤ k < d} (26)

generate the field C(Cd ⊕ sod(C))Od (C) by restricting them to L(d−1)
d .

Lemma 4.15 Consider a matrix M of the form as in (19), i.e. such that (v, M) ∈
L(d−1)

d . Then, for 1 ≤ k < d, Mk satisfies

(a) Mk(d − k, d) =
k∏

i=1

c(d−i)(d−i+1),

(b) Mk(i, d) = 0 for i < d − k,
(c) Mk(i, d) ∈ Q[c(d− j)(d− j+1) | 1 ≤ j < k] for i > d − k.

Proof We proceed by induction. For k = 1, M1 = M . Then M1 satisfies (a)–(c), since
M(d − 1, d) = c(d−1)(d) and M(i, d) = 0 for i < d − 1. Now suppose that (a)–(c)
hold for Mk−1. We have that for Mk = M Mk−1,

Mk(1, d) = c12Mk−1(2, d)

Mk(i, d) = −ci−1,i Mk−1(i − 1, d) + ci,i+1Mk−1(i + 1, d)

Mk(d, d) = −c(d−1)d Mk−1(d − 1, d),

where 1 < i < d − 1. Note that Mk(i, d) is linear combination of Mk−1(i − 1, d)

and Mk−1(i + 1, d). By the induction hypothesis, we know that Mk−1(i, d) = 0 if
i < d − k + 1, and hence, Mk(i, d) = 0 when i + 1 < d − k + 1, or equivalently
when i < d − k. This proves (b).

Suppose that i > d − k. Then, Mk(i, d) is linear in the terms

ci−1,i , ci,i+1, Mk−1(i − 1, d), Mk−1(i + 1, d),

where ci−1,i and ci,i+1 are of the form c(d− j)(d− j+1) for 1 ≤ j < k. By the induction
hypothesis, the latter two terms are polynomials in c(d− j)(d− j+1) where 1 ≤ j < k−1,
proving (c).

Finally suppose that i = d − k. We have that

Mk(d − k, d)=−cd−k−1,d−k Mk−1(d − k − 1, d)+cd−k,d−k+1Mk−1(d − k + 1, d).
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By the induction hypothesis, we know that

Mk−1(d − k + 1, d) =
k−1∏
i=1

c(d−i)(d−i+1) and Mk−1(d − k − 1, d) = 0,

which proves (a). ��
Lemma 4.16 The polynomials obtained from restricting the functions in IM to L(d−1)

d

generate the invariant rational function field C(L(d−1)
d )Wd (C).

Proof First note that to restrict the polynomials in IM to L(d−1)
d , we can assume that

(v, M) are of the form in (19) and then compute the inner product. Then, we can easily
see that

v · v|
L(d−1)

d
= c2d and Mv · Mv|

L(d−1)
d

= c2dc2(d−1)d .

This implies that c2d and c2(d−1)d are rational functions of v ·v|
L(d−1)

d
and Mv ·Mv|

L(d−1)
d

.

We proceed by induction on i : suppose that c2(d−i)(d−i+1) is a rational function of

v · v|
L(d−1)

d
, Mv · Mv|

L(d−1)
d

, . . . , Miv · Miv|
L(d−1)

d
for all 1 ≤ i < k. By Lemma 4.15,

we know that

Mkv · Mkv|
L(d−1)

d
=c2d

k∏
i=1

c2(d−i)(d−i+1)+c2d I
(
c(d−1)d , c(d−2)(d−1), . . . , c(d−k+1)(d−k+2)

)
.

Since Mk · Mkv|
L(d−1)

d
is an invariant function, as well as c2d and c2(d−i)(d−i+1) for

1 ≤ i < d, the function I lies in C(Wd(C))L(d−1)
d . By the induction hypothesis and

Proposition 4.10, I is a rational function of

v · v|
L(d−1)

d
, Mv · Mv|

L(d−1)
d

, . . . , Mk−1v · Mk−1v|
L(d−1)

d
.

Thus, we can rewrite the above equality to

Mkv · Mkv − c2d I
(
v · v|

L(d−1)
d

, Mv · Mv|
L(d−1)

d
, . . . , Mk−1v · Mk−1v|

L(d−1)
d

)

c2d

k−1∏
i=1

c2(d−i)(d−i+1)

= c2(d−k)(d−k+1).

By the induction hypothesis, each c2(d−i)(d−i+1) for 1 ≤ i < k is a rational function
of

v · v|
L(d−1)

d
, Mv · Mv|

L(d−1)
d

, . . . , Mk−1v · Mk−1v|
L(d−1)

d
.
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This implies that c2(d−k)(d−k+1) is a rational function of

v · v|
L(d−1)

d
, Mv · Mv|

L(d−1)
d

, . . . , Mkv · Mkv|
L(d−1)

d
.

Therefore, each element of IWd (C) can be written as a rational function of polynomials

in IM restricted to L(d−1)
d . By Proposition 4.10, IM restricted to L(d−1)

d is a generating

set for C(L(d−1)
d )Wd (C). ��

Proposition 4.17 The set of polynomial invariants IM in (26) generates both C(Cd ⊕
sod(C))Od (C) and R(Rd ⊕ sod(R))Od (R) and also separates orbits on C

d ⊕ sod(C)

and R
d ⊕ sod(R).

Proof ByProposition 4.6 L(d−1)
d is a relativeWd(C)-section for the action ofOd(C) on

C
d ⊕ sod(C), and by Proposition 4.10 IWd (C) is a generating set for C(L(d−1)

d )Wd (C).
Thus, by Lemma 4.16 and Corollary 2.27, IM generates C(Cd ⊕ sod(C))Od (C). By
Corollary 2.29 IM generates R(Rd ⊕ sod(R))Od (R).

By Proposition 2.22, IM separates orbits on C
d ⊕ sod(C). By Proposition 4.14,

there exists a separating set of invariants in R(Rd ⊕sod(R))Od (R), and hence, R(Rd ⊕
sod(R))Od (R) separates orbits. Therefore, by Proposition 2.30, IM separates orbits on
R

d ⊕ sod(R). ��
Remark 4.18 As a consequence, we in particular have that all Mkv · Mkv for k ≥ d
can be expressed as rational functions with variables in IM .

Example 4.19 By Proposition 4.17, the field of invariants R(R3 × so3(R))O3(R) is
generated by:

v · v = c21 + c22 + c23

Mv · Mv = (c12c1 − c23v3)
2 + (c13c1 + c23c2)

2 + (c12v2 + c13c3)
2

M2v · M2v =
(

c12c23c1 − c12c13c2 −
(

c13
2 + c23

2
)

c3
)2

+
(

c13c23c1 + c12c13c3 +
(

c12
2 + c23

2
)

c2
)2

+
(

c13c23c2 − c12c23c3 +
(

c12
2 + c13

2
)

c1
)2

.

As we saw in Sect. 3.2 v · v, Mv · Mv are equivalent to p1(Z), p3(Z), respectively.

5 Od(R)-Invariant Iterated-Integrals Signature

5.1 Moving Frame on g≤n((R
d))

As for O2(R) on R
2, the action of Od(R) on paths in R

d induces an action on its
(truncated) signature that coincides with the diagonal action on the ambient space
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T≤n(Rd). The induced action on the log-signature coincides with this diagonal action
as well, when considering g≤n((R

d)) as a subspace of T≤n(Rd).
Let c≤n be an element of g≤n((Rd)) with coordinates given by ci1i2···im for m ≤ n.

We define the following submanifold of g≤n((Rd)):

Kd;≤n = {
ci = 0, c j(i+1) = 0, cd > 0,

ci(i+1) > 0 | 1 ≤ i ≤ d − 1, 1 ≤ j < i
} ⊂ g≤n((Rd)) (27)

Let proj≤2 : g≤n((R
d)) → g≤2((R

d)) be the projection onto the first two levels
(Sect. 2.2). The projection of this submanifold onto g≤2((R

d)), proj≤2(Kd;≤n) is equal
(up to the identification g≤2((R

d)) ∼= R
d ⊕ sod(R)) to the real, positive points of

L(d−1)
d in (19) where

⎛
⎜⎜⎜⎝

⎡
⎢⎣

c1
...

cd

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎣

0 c12 . . . c1d

−c12 0 . . . c2d
...

...
. . .

...

−c1d −c2d . . . 0

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ = (v, M).

Similarly we can define the analogue toUd(C) in (23). Consider the rational functions
on g≤n((Rd)) given by

Fi (c≤n) := fi (v, M)|v j =c j mk�=ck�

for 1 ≤ i ≤ d where fi (v, M) is given in Proposition 4.6. By Proposition 4.12,
the functions Fi are rational functions on g≤2((R

d)) with real coefficients. Then the
following is a Zariski-open subset of g≤n((Rd)),

Ud;≤n :=
{
c≤n ∈ g≤n((R

d)) | Fi (c≤n) �= 0,∀i, 1 ≤ i ≤ d
}

,

where proj≤2(Ud;≤n) = Ud(C) if we identify c≤2 with (v, M) as above. In particular,
both Ud;≤n and Kd;≤n are completely characterized by proj≤2(c≤n), i.e.,

Ud;≤n = proj−1
≤n→≤2

(
proj≤2(Ud;≤n)

) ⊂ g≤n((R
d))

Kd;≤n = proj−1
≤n→≤2

(
proj≤2(Kd;≤n)

) ⊂ g≤n((Rd)),

with proj≤n→≤2 denoting the canonical projection from g≤n((Rd)) onto g≤2((R
d)).

Note that Kd;≤2 is a subset of L(1);R
d and Ud;≤2 is equal to Ud(R), both defined in

Proposition 4.12.
We now show that on the subset Ud;≤n ⊂ g≤n((Rd)) the submanifold Kd;≤n is a

cross-section, which induces a moving frame.
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Lemma 5.1 For any point c≤2 ∈ Kd;≤2 ∩ Ud;≤2, the orbit Od(R) · c≤2 and Kd;≤2
intersect transversally.

Proof First, we recall that, by definition, Od(R) ·c≤2 andKd;≤2 intersect transversally
if and only if, at every point q in the intersection, the tangent spaces Tq(Od(R) · c≤2)

and TqKd;≤2 generate the whole ambient space g≤2((R
d)), that is

Tq(Od(R) · c≤2) + TqKd;≤2 = g≤2((R
d)).

Now, at a point q = A · c≤2 = (Av, AM A�) in the orbit, the tangent space has the
form

Tq

(
Od(R) · c≤2

)
= {(H Av, [H , AM A�]) : H ∈ sod(R)}. (28)

Indeed, recall that for a manifold M , its tangent space at a point q is the linear space
Tq M :={γ ′(0) : γ curve s.t. γ (0) = q}. A curve γ on Od(R) · c≤2 such that γ (0) = q
has the form γ (t) = (L(t)A) · c≤2 for some curve t �→ L(t) in Od(R) such that
L(0) = I . Hence,

γ ′(0) = (L ′(0)Av, L ′(0)AM A� + AM A�L ′(0)�)

= (L ′(0)Av, L ′(0)AM A� − AM A�L ′(0)).

The tangent space to the cross-section is

TqKd;≤2 = {ci = 0, c j(i+1) = 0 : 1 ≤ i ≤ d − 1, 1 ≤ j < i}.

We note that

dim TqKd;≤2 = d, dim Tq

(
Od(R) · c≤2

)
= d(d − 1)

2
,

where the second equality since the action ofOd(R) is free onUd;≤2 byCorollary 4.13.

Thus, we have that dim TqKd;≤2+dim Tq

(
Od(R)·c≤2

)
= dim g≤2((R

d)). Therefore,

we only need to show that TqKd;≤2 ∩ Tq

(
Od(R) · c≤2

)
= {0} for all q ∈ Kd;≤2 ∩(

Od(R) · c≤2
)
.

Let (Γi, j : 1 ≤ i < j ≤ d) be the standard basis of sod(R), that is, (Γi, j )k,l =
δi,kδ j,l − δ j,kδi,l . It is not hard to show that the commutation relations

[Γi, j , Γk,k+1] = Γk+1, jδi,k + Γi,k+1δ j,k − Γk, jδi,k+1 − Γi,kδ j,k+1 (29)

hold for all 1 ≤ k < d and 1 ≤ i < j ≤ d. By Eq. (28), a generic element

p ∈ Tq

(
Od(R) · c≤2

)
has the form p = (H Av, [H , AM A�]) with

H =
∑

1≤i< j≤d

hi, jΓi, j ∈ sod(R).

123



1322 Foundations of Computational Mathematics (2023) 23:1273–1333

But since q = (Av, AM A�) ∈ Kd;≤2,

Av = αed , AM A� =
d−1∑
k=1

βkΓk,k+1

with α > 0, and βk > 0 for all k ∈ {1, . . . , d − 1}. If p also belongs to TqKd;≤2, then
we have in particular that

H Av =
d−1∑
i=1

hi,dei = α′ed ,

for some α′ ∈ R, thus hi,d = 0 for all i ∈ {1, . . . , d − 1}. Now we show that hi, j = 0
for all 1 ≤ i < j ≤ d − 1 by induction on r :=d − 1 − j . By Eq. (29), we see that

[H , AM A�] =
∑

1≤i< j≤d−1

d−1∑
k=1

hi, jβk(Γ(k+1), jδi,k + Γi,(k+1)δ j,k

−Γk, jδi,(k+1) − Γi,kδ j,(k+1)),

so that

[H , AM A�]i,d−1 = hi,d−1βd−1 = 0.

for i ∈ {1, . . . , d − 2}. Therefore, hi,d−1 = 0 for all i ∈ {1, . . . , d − 2}, and the claim
is proven when r = 0. Suppose it is true for all r ′ < r . Then

[H , AM A�]i,d−1−r = hi,d−1−rβd−1−r = 0

for i ∈ {1, . . . , d − 2− r}, hence hi,d−1−r = 0 for all i ∈ {1, . . . , d − 2− r}. Finally,
we have H = 0 thus p = (H Av, [H , AM A�]) = 0.

We have shown that if q ∈ Od(R) · c≤2 ∩ Kd;≤2 then dim Tq

(
Od(R) · c≤2

)
+

dim TqKd;≤2 = dim g≤2((R
d)) and Tq

(
Od(R) · c≤2

)
∩ TqKd;≤2 is trivial. It follows

that if q ∈ (
Od(R) · c≤2

) ∩ Kd;≤2, then

g≤2((R
d)) = Tq

(
Od(R) · c≤2

)
⊕ TqKd;≤2,

and in particular Od(R) · c≤2 and Kd;≤2 intersect transversally. ��
Theorem 5.2 The submanifold Kd;≤n in (27) is a cross-section for the action of
Od(R) on Ud;≤n ⊂ g≤n((Rd)). In particular, Kd;≤n induces a moving-frame map
ρd : Ud;≤n → Od(R).
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Proof Wefirst claim thatKd;≤n intersects each orbit inUd;≤n at a unique point. Denote
the linear span of Kd;≤n as

K := {
ci = 0, c j(i+1) = 0 | 1 ≤ i ≤ d − 1, 1 ≤ j < i

} ⊂ g≤n((Rd)).

Note that the action on proj≤2 g≤n((Rd)) = g≤2((R
d)) is isomorphic to the action on

R
d ⊕ sod(R) given in (13). Thus, for any c≤n ∈ Ud;≤n , by Proposition 4.12 and the

diagonality of the action (see Sect. 2.3), there exists an element of g ∈ Od(R) such
that g · c≤n = c̃≤n ∈ K .

Consider the subgroup WR ⊂ Od(R) of diagonal matrices w with diagonal entries
w j j ∈ {−1, 1}, 1 ≤ j ≤ d. By Proposition 4.5, any element of WR sends a point in
K to K . For any c̃≤n ∈ K , the action of WR on the coordinates proj≤2(c≤n) = c≤2 is
given by the following (see (24)):

cd �→ wddcd , ci(i+1) �→ wi iw(i+1)(i+1)ci(i+1).

The element w ∈ WR such that w j j = −1 for 1 ≤ j ≤ d changes only the sign on
cd . The element w ∈ WR where w j j = −1 for 1 ≤ j ≤ i and w j j = 1 for i < j ≤ d
changes only the sign of ci(i+1). Thus, there exists g ∈ WR such that g · c̃≤n ∈ Kd;≤n ,
implying Kd;≤n intersects each orbit in Ud;≤n .

Now suppose that for some c≤n ∈ Kd;≤n , g ∈ Od(R) we have g · c≤n ∈ Kd;≤n .
We show that this implies g = id. Since the action of Od(R) on T1(Rd) is isomorphic
to the canonical action on R

d , g ∈ Od−1
d (R) (recall the notation after (20)). By

Proposition 4.4, the action of Od−1
d (R) on the coordinates c1d , c2,d , . . . , c(d−1)d of

c≤n is isomorphic to the canonical action on R
d−1. Thus, we deduce that g must be

in Od−2
d (R). Iterating, we obtain that g must be the identity, as claimed, implying that

Kd;≤n intersects each orbit in Ud;≤n exactly once.
We now show that the intersection with each orbit is transverse. By Corollary 4.13,

the action is free on Ud;≤2, and thus on Ud;≤n . Since the action is free on Ud;≤n , each
orbit Od(R) · c≤n is smooth and of dimension n(n − 1)/2 (see Proposition 2.20). Let
c≤n be a point in Kd;≤n . Since Kd;≤n is on open subset of the linear space K , we
have Tc≤nKd;≤n = K . SinceKd;≤n and Od(R) ·c≤n are of complementary dimension,
Kd;≤n intersects Od(R) · c≤n transversally if and only if the dimension of the span of
their tangent spaces is equal to the dimension of Ud;≤n .

Since Od(R) acts diagonally, we have that

proj≤2(Tc≤nKd;≤n + Tc≤n (Od(R) · c≤n)) = proj≤2(Tc≤nKd;≤n)

+ proj≤2(Tc≤n (Od(R) · c≤n))

= Tproj≤2(c≤n) proj≤2(Kd;≤n)

+ Tproj≤2(c≤n)

(
Od(R) · proj≤2(c≤n)

)
,

where V + W denotes the span of two subspaces V , W . Then by Lemma 5.1

proj≤2(Tc≤nKd;≤n + Tc≤n (Od(R) · c≤n)) = g≤2((R
d)).
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Since for any vector v ∈ Tproj≤2(c≤n) proj≤2(Kd;≤n), 〈v〉 ⊕ g≤3((R
d)) is a subspace of

Tc≤nKd;≤n , we have that Tc≤nKd;≤n + Tc≤n (Od(R) · c≤n) = g≤n((Rd)). Thus, Kd;≤n
and Od(R) · c≤n intersect transversally.

Therefore, Kd;≤n intersects transversally each orbit of Ud;≤n at a unique point and
hence by definition is a cross-section for this action. The free and algebraic action
of Od(R) on Ud;≤n satisfies the hypothesis of Theorem 2.15 (see Remark 2.19), and
hence, there exists a moving-frame map ρd : Ud;≤n → Od(R) taking each element of
Ud;≤n to the unique intersection point of its orbit and Kd;≤n . ��

The Proof of Proposition 4.6 provides a road map for explicitly finding the ele-
ment of Od(R) taking any point c≤n ∈ Ud;≤n to Kd;≤n and hence ρd(c≤n) · c≤n . By
successively applying rotations, one can bring c≤n to the cross-section Kd;≤n .

Remark 5.3 For an example of doing this in practice, see Example 3.5. The two-
step process in this example is similar to the iterative process outlined in the Proof
of Proposition 4.6 of bringing an element of g≤2((R

d)) to successively smaller lin-
ear spaces. The transformation A1 brings c≤2(Z) to L(1)

3 (R) ⊂ L(1)
3 , then finally to

K3;≤2 � L(2)
3 (R) ⊂ L(2)

3 by a transformation A2. In principle, given a procedure
to rotate an element of R

d to a particular axis, this iterative process is quite easy to
perform to bring any c≤2(Z) for any path Z toKd;≤n , and hence invariantize any path.

An important consequence of Theorem 5.2 is the following corollary.

Corollary 5.4 Two elements c≤n, c̃≤n ∈ Ud;≤n lie in the same orbit if and only if they
take the same value on the cross-section Kd;≤n, i.e., if and only if ρd(c≤n) · c≤n =
ρd(c̃≤n) · c̃≤n.

Thus, to find a unique representative of the orbit of c≤n ∈ Ud;≤n we can “invari-
antize” c≤n by computing ρd(c≤n) · c≤n , and the smooth functions defining the
nonzero coordinates of Kd;≤n ∩ Od(R) · c≤n are invariant functions which charac-
terize the orbit. Note that the cross-section Kd;≤n and the moving frame only depend
on the g≤2((R

d)) coordinates. In particular, we have that for any path Z such that
c≤n(Z) = proj≤n(log(IIS(Z))) ∈ U d

n

ρd(c≤n(Z)) = ρd(proj≤2(c≤n(Z))) =: ρ̃d(c≤2(Z))

which implies that the “invariantization” of a pathY := ρ̃d(c≤2(Z))·Z is well-defined.
This is due to the diagonal nature of the action of Od(R) on g≤n((Rd)), and the fact that
dim(Od(R)) < dim(g≤2((R

d))). Since the action of the coordinates on g≤2((R
d)) is not

affected by the higher-level coordinates, we can define a cross-section on g≤2((R
d))

that extends naturally to g≤n((Rd)). For higher-dimensional groups, one may have to
consider a cross-section on g≤3((R

d)) or higher.
As a consequence, the infinite log signature (and thus the iterated-integrals sig-

nature) of a path Z under the action of Od(R) is characterized by its value on the
cross-section.
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Theorem 5.5 For any two paths Z , Z̃ in R
d such that c≤2(Z):= proj≤2(log(IIS(Z))),

c≤2(Z̃):= proj≤2(log(IIS(Z̃))) are elements of Ud;≤2, define

Y :=ρ̃d(c≤2(Z))Z , Ỹ :=ρ̃d(c≤2(Z̃))Z̃ .

Then, there exists g ∈ Od(R) such that IIS(g · Z) = IIS(Z ′) if and only if IIS(Y ) =
IIS(Y ′) if and only if c≤n(Y ) = c≤n(Y ′) for all n ∈ N.

Proof We first note that c≤n(Y ) = c≤n(Ỹ ) for all n ∈ N is equivalent to ISS(Y ) =
ISS(Ỹ ), and that for any g ∈ Od(R), ISS(g · Z) = ISS(Z̃) is equivalent to c≤n(g ·
Z) = c≤n(Z̃) for all n ∈ N. Indeed, c≤n(Y ) = proj≤n log ISS(Y ), and log ISS(Y ) =∑

h∈Ld
ch(Y )bh is given by the family (c≤n(Y ))n through taking each coordinate

ch(Y ) from c≤|h|(Y ) (note that by definition c≤n(Y ) = proj≤n c≤m(Y )), where log is
bijective. The same argument is used for Ỹ , Z , Z̃ .

Now c≤n(Y ) = c≤n(Ỹ ) for all n implies

c≤n(Z̃) = c≤n
(
ρ̃d(c≤2(Z̃))�Ỹ

) = ρ̃d(c≤2(Z̃))�c≤n(Y )

= ρ̃d(c≤2(Z̃))�c≤n
(
ρ̃d(c≤2(Z)) · Z

)
= c≤n

(
ρ̃d(c≤2(Z̃))�ρ̃d(c≤2(Z)) · Z

)

for all n, with ρ̃d(c≤2(Z̃))�ρ̃d(c≤2(Z)) ∈ Od(R) independent of n.
On the other hand, if there is some g ∈ Od(R) with c≤n(g · Z) = c≤n(Z̃) for all n,

then

c≤n(Ỹ ) = c≤n
(
ρ̃d(c≤2(Z̃)) · Z̃

) = ρ̃d(c≤2(Z̃)) · c≤n(Z̃)

= ρ̃d(g · c≤2(Z)) · (g · c≤n(Z)) = ρ̃d(c≤2(Z))g�g · c≤n(Z)

= ρ̃d(c≤2(Z)) · c≤n(Z) = c≤n(Y ),

where we have used the moving-frame property ρ̃d(g · c≤2(Z)) = ρ̃d(c≤2(Z))g�. ��

5.2 Toward a Fundamental Set of Polynomial Invariants

Thenon-constant-zero coordinates ofρd (c≤n)·c≤n forma fundamental set of invariants
for the action of Od(R) on Ud;≤n , since for any Od(R) invariant function I : Ud;≤n →
R we have I (c≤n) = I (ρd(c≤n) · c≤n). The coordinate functions of ρd(c≤n) · c≤n

are, however, in general not rational. However, polynomial invariants of the iterated-
integrals signature have a rich structure and are often desired (see [13]), and hence,
it is of strong interest to obtaining a minimal set of polynomial invariants separating
orbits.

In fact, for subgroups G of SL±
d (R) there is even the following conjecture [13,

Conjecture 7.2] that polynomial invariants separate orbits of paths up to tree-like
equivalence.
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Conjecture 5.6 (Diehl-Reizenstein) Let Z , Z ′ : [0, T ] → R
d be two curves such that

〈IIS(Z), ϕ〉 = 〈ISS(Z ′), ϕ〉

for any ϕ ∈ T (Rd) such that φ̃A�(ϕ) = ϕ for any A ∈ G. Then, there is A ∈ G and
a curve Z̄ which is tree-like equivalent to Z such that

AZ̄ = Z ′.

While a proof of this conjecture for any compact group G is finished and part of
work in progress by J.D., Terry Lyons, Hao Ni and R.P., we are here interested in a
’constructive’ proof which leads to an algorithm for the computation of a minimal set
of polynomial-separating orbits. The following definition and proposition now provide
a sufficient condition for a moving frame to lead to a fundamental set of invariants
consisting only of polynomial invariants.

Definition 5.7 Amoving frame� : U → G for the action ofG onU , whereU is a non-
empty, G-invariant, semialgebraic subset of g≤n((Rd)), is called almost-polynomial,
if there are maps λ : U → GLd(R) and κ : g≤n((Rd)) → GLd(R), where λ is G-
invariant, such that λ(c≤n) is diagonal for all c≤n ∈ U , such that λi i�i j ∈ R[g≤n((Rd))]
for all i, j = 1, . . . , d and

λ(c≤n) = κ
(
λ(c≤n)�(c≤n) · c≤n

)
(30)

for all c≤n ∈ U .

Remark 5.8 Equation (30) may seem odd as an asumption at first sight; however, it
is necessary for the coordinates of λ(c≤n)�(c≤n) · c≤n to form a fundamental set of
invariants: Since we assume λ to be an invariant function, it must functionally depend
on any fundamental set of invariants.

Example 5.9 Looking at the map ρd defined in (14), we introduce

λ2(c≤n) =
⎡
⎣|c12|

√
c21 + c22 0

0
√

c21 + c22

⎤
⎦ .

We can see that λ2 is invariant under O2(R). Then,

λ2(c≤n)ρ2(c≤n) =
[

c12c2 −c12c1
c1 c2

]
,

whose entries are polynomial functions. In particular, the nonzero coordinates of
λ2(c≤n)ρ2(c≤n) · c≤n are given by

ĉ2 := c21 + c22, ĉ12 := c212(c
2
1 + c22)
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We finally obtain λ2(c≤n) = κ2(λ2(c≤n)�(c≤n) · c≤n) via

κ2(ĉ≤n) =
[√

ĉ12 0
0 ĉ2

]
,

showing that ρ2 is an almost-polynomial moving frame.

Proposition 5.10 If � : U → G is an almost-polynomial moving frame for the action
of G on U, then the nonzero components of λ(c≤n)�(c≤n) · c≤n form a fundamental
set of invariants consisting only of polynomial invariants.

Proof Obviously c≤n �→ λ(c≤n)�(c≤n) · c≤n is a polynomial map on U since λi iμi j

is polynomial. The components of �(c≤n) · c≤n form a fundamental set of invariants
since � is a moving frame which implies that I (c≤n) = I (�(c≤n) · c≤n) for any
invariant function I : U → R. Since λ is G invariant by assumption, we have that
the components of λ(c≤n)�(c≤n) · c≤n are invariants. Furthermore,

�(c≤n) · c≤n = κ(λ(c≤n)�(c≤n) · c≤n)−1λ(c≤n)�(c≤n) · c≤n,

implies that the nonzero components of λ(c≤n)�(c≤n) · c≤n form a fundamental set
of invariants, too. ��

Returning to the specific setting of planar curves, we can in fact explicitly show
that the following stronger statement with a slightly different construction on the level
of the individual coordinates of the first kind ch holds.

Theorem 5.11 There exists a set of polynomials qh and a polynomial map r :
g≤n((R2)) → g≤n((R2)) which is bijective when restricted to U2;≤n such that

q(c≤n(ρ2(Z) · Z)) = (qh(c≤n(Z)))h .

Thus, the qh(c≤n) form a set of polynomial invariants determining the equivalence
class of a path Z in g≤n((R2)).

This theorem is stronger in the sense that the map q relating the two invariant sets is
also shown to be polynomial, contrasted with Theorem 5.10 where did not assume the
form of the map

�(c≤n) · c≤n �→ λ(c≤n)�(c≤n) · c≤n .

Proof Let n(i, w) denote the number of times the letteri appears in the wordw. Since
ch(Z) = 〈IIS(Z), ζh〉 for unique ζh ∈ T (Rd), where each ζh is a linear combination
of permutations of the word h, and since B is diagonal, we have

ch(ρ2(c≤n(Z)) · Z) = (μ2)
n(1,h)
11 (μ2)

n(2,h)
22 ch(ν2(c≤n(Z)Z).
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Let m(w) = 0 if n(1, w) is even and m(w) = 1 if n(1, w) is odd. Then, on U 2
n ,

c12(ρ2(c≤n(Z)) · Z)m(h)c2(ρ2(c≤n(Z)) · Z)n(1,h)(μ2)
n(1,h)
11 = c12(Z)m(h)

and

c2(ρ2(c≤n(Z))Z)n(2,h)(μ2)
n(2,h)
22 = 1.

Thus, since ch(C(Z)Z) is polynomial in cn(Z), also

qh(c≤n(Z)) := c12(ρ2(c≤n(Z)) · Z)m(h)c2(ρ2(c≤n(Z)) · Z)|h|ch(ρ2(c≤n(Z)) · Z)

= c12(Z)m(h)ch(ν2(c≤n(Z)) · Z)

is polynomial in cn(Z) and also polynomial in (ch(ρ2(c≤n(Z)) · Z))h . Finally, all
ch(ρ2(c≤n(Z)) · Z) can be retrieved from (qh(c≤n(Z)))h via

ch(ρ2(Z) · Z) = qh(c≤n(Z))
√

q2(c≤n(Z))
m(h)

√
q12(c≤n(Z))

m(h)√
q2(c≤n(Z)

|h| .

��
We can see here how the resulting invariants differ when obtained using the pro-

cedures of Proposition 5.10 and of Theorem 5.11. For the nonzero coordinates of
λ(c≤3)ρ2(c≤3 · c≤3), we get

ĉ2 = c21 + c22, ĉ12 = c212(c
2
1 + c22), ĉ112 = c212(c

2
1 + c22)(c1c122 + c112c2)

ĉ122 = c12(c
2
1 + c22)(−c1c112 + c122c2),

while

q2(c≤n) = c21 + c22, q12(c≤n) = c212(c
2
1 + c22),

q112(c≤n) = (c21 + c22)(c1c122 + c112c2),

q122 = c12(c
2
1 + c22)(−c1c112 + c122c2),

Thus up to level 4, they only differ in the 112 coordinate, which is a bit “simpler”
than the resulting invariant using the procedure of Theorem 5.11. Looking at the
previous pi s we listed, we see how this polynomial set can be further simplified.
However,we lack ageneral algorithm for a “full” simplificationof the set of polynomial
invariants. This would be achieved if they form a minimal algebra generating set for
R[g≤n((R2))]O2(R). This is an interesting investigation for future research.

Let us now have a look again on the spatial moving-frame map from Sect. 3.2. In
this special case, we can determine the global form of the associated polynomials fi

from Proposition 4.6:
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f1(c≤2) = ĉ23 = p1(c≤2),

f2(c≤2) = ĉ223 = p3(c≤2)

p1(c≤2)
,

f3(c≤2) = ĉ212 = p2(c≤2)
2

p1(c≤2)
,

where ĉ3, ĉ12, ĉ23 denote the nonzero components of ρ̃3(c≤2) · c≤2 and pi (c≤2) =
pi (Z) for c≤2 = c≤2(Z). From this, we can show that the moving frame is almost-
polynomial. Toward this, let λ(c≤n) be the diagonal matrix with entries

|p2(c≤n)|√p1(c≤n)p3(c≤n),
√

p3(c≤n),
√

p1(c≤n).

The function λ3 is O3(R)-invariant since p1, p22 and p3 are invariant. Furthermore,
λ3(c≤n)μ3(c≤n) is diagonal with entries

p2(c≤n), 1, 1,

and hence λ3(c≤n)ρ3(c≤n) = λ3(c≤n)μ3(c≤n)ν3(c≤n) is also polynomial in c≤n . The
nonzero coordinates of λ3(c≤n)ρ3(c≤n) · c≤2 are then given by

ĉ3 = p1(c≤n), ĉ12 = p2(c≤n)2 p3(c≤n), ĉ23 = p3(c≤n).

Thus, we have λ3(c≤n) = κ3(λ3(c≤n)ρ3(c≤n) · c≤n) with κ3(ĉ≤n) as the diagonal
matrix with entries

√
ĉ3ĉ12,

√
ĉ23,

√
ĉ3.

Hence, ρ3 is an almost-polynomial moving frame, leading to a fundamental set of
polynomial invariants.

Thus, we have shown that ρd is almost-polynomial for d = 2, 3. As d = 3 is
emblematic of the procedure for higher dimensions, it is possible that this property
is true for higher dimensions. We end with the following conjecture for the moving
frame for which a proof or counter-example would be interesting.

Conjecture 5.12 For any d ≥ 2, the moving frame ρd : Ud;≤n → Od(R) is almost-
polynomial.

We will see in the next section that this conjecture at least also holds true for
d = 3; however, the conjecture remains open for d > 3. This in particular means that
we have our ’constructive’ proof for Conjecture 5.6 restricted to paths Z such that
c≤n(Z) ∈ Ud;≤n in the special case of Od(R) for d = 2, 3. We hope to extend this
result to all dimensions, all paths and to further compact groups in future work.
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6 Discussion and Open Problems

Weconcludewith a discussion of some interesting questions arising from thiswork.We
presented a method to construct Od(R) invariants for a path Z from the coordinates
of the log signature (of the iterated-integrals signature) in a way that completely
characterizes the orbit of projn(log(IIS(Z)) (or projn(IIS(Z))) under Od(R). This
procedure also furnishes a quick method to compare equivalence classes of paths
under Od(R) without computing the full set of invariants (see Example 3.5).

In particular, Theorem 5.5 is similar in spirit to [13, Conjecture 7.2], where the
authors characterize all linear SOd(R)-invariants in the coordinates of IIS(Z) and ask
if these determine a path up to SOd(R) and tree-like extensions. The invariant sets we
construct are smooth functions in the coordinates of log(IIS(Z)), though inmany cases
we can, by inspection, find an equivalently generating polynomial set (see Sect. 3.1).
Polynomials in coordinates of log(IIS(Z)) correspond to polynomial invariants in the
coordinates of IIS(Z), which yield linear Od(R)-invariants by the shuffle relations.
Thus, the conjecture remains open, and more broadly, the connection between the two
sets of invariants should be explored.

In Sect. 4,we investigate sets of separating sets of rational and polynomial invariants
for the action of Od(R) on g≤2((R

d)). An open question is whether the polynomial
invariants we construct, generates the ring of polynomial invariants for this action. In
even more generality questions remain about the relationship between the polynomial
invariants we construct and the ring of polynomial invariants for the action of Od(R)

on g≤n((Rd)).
Additionally we only consider Od(R)-invariants (and to a lesser extent SOd(R))

in this work. The dimension of Od(R) implies that to construct a cross-section for
the action, one only has to consider the action on g≤2((R

d)). For larger groups like
GLd(R), one may have to construct a cross-section using coordinates on g≤3((R

d)).
The cross-section K in Sect. 5.1 can also be used as a starting point for groups

containingOd(R), since any element of g≤2((R
d)) can be brought toK by an element of

Od(R). For instance, if one considers scaling transformations in addition to orthogonal
transformations, changing the conditions of cd , ci(i+1) > 0 on K to cd = ci(i+1) = 0,
for 1 ≤ i < d, likely yields a cross-section.

In Sect. 5.2, we introduce Conjecture 5.12, which we prove holds for d = 2 in
Theorem 5.11 and for d = 3 in Sect. 3.2. In general, the invariants produced by
the moving-frame method are only guaranteed to be smooth, and hence, proving this
conjecture for d > 3 is of interest. In particular, polynomial-invariant functions of
iterated-integrals values are desired because they can be expressed as elements of
T (Rd), they provide the simplest and most structured (graded) way of looking at
invariants, with an immediate connection to polynomial algebraic geometry, and it is
widely assumed and partially proven that they are sufficient for characterization of
orbits, see the discussion of the Diehl–Reizenstein conjecture in Sect. 5.2.

As mentioned in the introduction, there are many applications of the iterated-
integrals signature of paths where finding Od(R)-invariant features could be advan-
tageous. It would be interesting to see if the sets of integral invariants constructed, or
“invariantization” procedure outlined can be useful for such applications. For example,
in [17], the author explores using the features generated from the iterated-integrals sig-
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nature for different tasks using various machine learning algorithms and demonstrates
results that are competitive with state of the art. Two of these tasks include drawing
recognition (where a drawing is represented by a time series of 2D points, and the task
is to classify the drawing) and human action recognition (where different points on the
human body are tracked to construct multiple concurrent time series of 3D points, and
the task is to classify the action). In both of these tasks, the data is spatial in nature, and
it is possible that using an invariantized iterated-integrals signature or adding invariant
features could improve the accuracy of common machine learning algorithms.
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