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Abstract
Recent advances in quantized compressed sensing and high-dimensional estimation
have shown that signal recovery is even feasible under strong nonlinear distortions
in the observation process. An important characteristic of associated guarantees is
uniformity, i.e., recovery succeeds for an entire class of structured signals with a
fixed measurement ensemble. However, despite significant results in various special
cases, a general understanding of uniform recovery from nonlinear observations is still
missing. This paper develops a unified approach to this problem under the assump-
tion of i.i.d. sub-Gaussian measurement vectors. Our main result shows that a simple
least-squares estimator with any convex constraint can serve as a universal recovery
strategy, which is outlier robust and does not require explicit knowledge of the under-
lying nonlinearity. Based on empirical process theory, a key technical novelty is an
approximative increment condition that can be implemented for all common types
of nonlinear models. This flexibility allows us to apply our approach to a variety of
problems in nonlinear compressed sensing and high-dimensional statistics, leading to
several new and improved guarantees. Each of these applications is accompanied by
a conceptually simple and systematic proof, which does not rely on any deeper prop-
erties of the observation model. On the other hand, known local stability properties
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can be incorporated into our framework in a plug-and-play manner, thereby implying
near-optimal error bounds.

Keywords Uniform recovery · High-dimensional estimation · Nonlinear
observations · Quantized compressed sensing · Empirical processes
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1 Introduction

This paper is concerned with the following fundamental reconstruction task:

Problem 1 Consider a set of signalsX ⊂ R
p and let a1, . . . , am ∈ R

p be a collection
of measurement vectors. Moreover, let F : Rp ×X → R be a scalar output function.
Under what conditions can the following recovery problem be solved uniformly for
all x ∈ X : Assume that x is observed in the form

yi :=F(ai , x)+ νi , i = 1, . . . ,m, (1.1)

where ν1, . . . , νm ∈ R is scalar noise. Given {(ai , yi )}mi=1, is it possible to recover the
underlying signal x efficiently?

The prototypical instance of Problem 1 is the approach of compressed sensing. Dating
back to the seminal works of Candès, Romberg, Tao, and Donoho [10, 11, 19], the tra-
ditional setup of compressed sensing focuses on the case of noisy linear observations,
i.e., we have yi = 〈ai , x〉 + νi for i = 1, . . . ,m. In this regime, Problem 1 is nowa-
days fairly well understood, underpinned by various real-world applications, efficient
algorithmic methods, and a rich theoretical foundation; see [21] for a comprehensive
overview. In a nutshell, compressed sensing has proven that signal recovery is still
feasible when m � p, supposed that the signal set X carries some low-dimensional
structure, e.g., a variant of sparsity, while the measurement ensemble {ai }mi=1 follows
an appropriate random design. The uniformity over X plays an important role in this
context, since the measurement device—determined by {ai }mi=1 in our case—is typ-
ically fixed in applications and should allow for the reconstruction of all (or most)
signals in X . But also apart from this practical relevance, the above quest for uniform
recovery is an interesting mathematical problem in its own right. It is significantly
more involved than its non-uniform counterpart, where the {ai }mi=1 may vary for each
x ∈ X .

The present work is devoted to Problem 1 in the much less explored situation of
nonlinear output functions. In fact,many conceptions fromcompressed sensing theory,
such as the restricted isometry or nullspace property, are tailored to linear models and
do not carry over directly to the nonlinear case. As we will see in the next subsection,
the presence of nonlinear measuring components is not merely an academic concern
but affects many problems in signal processing and high-dimensional statistics.
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1.1 Prior Art

There exist two branches of research that are particularly relevant to this work. The
first one is based in the field of (memoryless) quantized compressed sensing, which
deals with the fact that analog (linear) measurements often need to be quantized before
further processing in practice. A common scenario in this respect is 1-bit compressed
sensing where only a single bit of information is retained, e.g., if (1.1) renders obser-
vations of the form yi = sign(〈ai , x〉). Due to this considerable loss of information,
it may come as a surprise that tractable recovery methods are still available and Prob-
lem 1 is relatively well understood in this situation. A solid theoretical basis as well
as efficient algorithms have been developed over the last few years, including signif-
icant progress on lower bounds [18, 34], robustness [17, 49], advanced quantization
schemes [3, 36, 37, 44, 65], and non-Gaussian measurements [1, 16–18]. While this
list of references is certainly incomplete, the surveys of Dirksen [14] and Boufounos
et al. [6] provide nice overviews of the field of quantized compressed sensing.

The above achievements have also given rise to several important mathematical
tools. One of the most notable breakthroughs are quantized embedding results for
signal recovery—a highly geometric argument based on uniform, random hyperplane
tessellations, e.g., see [17, 34, 45, 49, 50]. Closer to the original ideas of compressed
sensing are reconstruction guarantees relying on variants of the restricted isometry
property, e.g., see [16, 20, 33, 65]. However, these techniques are strongly tailored to
quantized measurements and it remains unclear how they could be extended to other
instances of Problem 1.

The second branch of related literature is much less restrictive with respect to the
underlying observation model. It allows (1.1) to take the form yi = f (〈ai , x〉) + νi ,
where f : R → R can be nonlinear and random. A pioneering work on these so-
called single-index models is the one of Plan and Vershynin [51] (inspired by ideas of
Brillinger [7]), who study the generalized Lasso as reconstruction method:

min
z∈K

1
m

m∑

i=1
(yi − 〈ai , z〉)2. (PK , y)

Here, K ⊂ R
p is a convex constraint set, serving as an appropriate relaxation of the

actual signal setX andmaking (PK , y) tractable inmany situations of interest. Although
this “linearization” strategy might appear very coarse, it was shown to produce sat-
isfactory outcomes for Gaussian measurements, even when f is highly nonlinear. A
key benefit of (PK , y) is that it does not require any (explicit) knowledge of the obser-
vation model, which enables various applications to signal processing and statistical
estimation, e.g., see [23, Chap. 3 & 4]. The article of Plan and Vershynin [51] is just
an example of a whole line of research with many related and follow-up works, e.g.,
see [22, 28, 29, 47, 52, 56, 60, 62]; remarkably, this approach also extends to phase-
retrieval-like problems where f is an even function [25, 61, 66]. For a more detailed
discussion of the literature, we refer to [52, Sec. 6] and [23, Sec. 4.2].

At first sight, the aforementioned works seem to provide a general solution to Prob-
lem 1, but they lack a crucial feature, namely uniformity. Indeed, most of these results
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are based on concentration inequalities over high-dimensional signal sets, exploiting
their “local geometry” around a fixed x ∈ X . This strategy naturally leads to non-
uniform recovery guarantees, and we are not aware of a uniform extension in that
regard. Finally, we point out that the two research areas discussed above are not inde-
pendent but exhibit certain overlaps in terms of their main achievements and proof
techniques, for instance, see [28, 62].

1.2 Contributions and Overview

The primary objective of this work is to fill the striking gap between the lines of
research discussed in the previous subsection. On the one hand, we show that uniform
recovery is not only limited to linear and quantized measurement schemes but applies
to a much larger family of observation models. On the other hand, it turns out that
under mild assumptions, known non-uniform guarantees for single-index and related
models naturally extend to the uniform case. Apart from a unification, our theoretical
approachwill contribute to each of these research directions through newand improved
results.

On the conceptual side, we stick to themethodology suggested by the second branch
of the literature from Sect. 1.1, analyzing the performance of the generalized Lasso
(PK , y). Our main result, Theorem 2 in Sect. 2.3, establishes a uniform error bound
for (PK , y) under very general conditions, including all observation models mentioned
above. This finding implies that there exists a “universal” recovery strategy, which
often yields satisfactory outcomes. In this context, it is worth pointing out that we
have focused on (PK , y) mainly because of its simplicity and popularity, but similar
results could be shown for other reconstruction methods as well (cf. Remark 3(3)).
Therefore, the present paper is a contribution to Problem 1 in the first place, whereas
the estimator of choice plays a subordinate role.1

The recovery guarantee of Theorem2 is formulated in a quite abstract setting, which
requires some technical preparation. In order to familiarize the reader with the results
of this paper, we now state a special case for single-index models with a Lipschitz
continuous output function and Gaussian measurements (see Sect. 8.4 for a proof).
Note that parts of the notation from Sect. 1.4 is already used here; the complexity
parameters wt (·) and w(·) correspond to the common notion of (local) mean width,
which is formally introduced in Definition 2.

Theorem 1 There exist universal constants c,C > 0 for which the following holds.
Let a1, . . . , am ∈ R

p be independent copies of a standard Gaussian random vector
a ∼ N(0, I p). Let f : R→ R be γ -Lipschitz, and for g ∼ N(0, 1), we set

μ:=E[ f (g)g] and r :=‖ f (g)− μg‖ψ2 .

1 In particular, we will not discuss any details about possible algorithmic implementations of (PK , y), which
is an important subject in its own right.
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Moreover, let X ⊂ S
p−1 and let K ⊂ R

p be a convex set such that μX ⊂ K. For
u ≥ 1 and a desired reconstruction accuracy t ≥ 0, we assume that

m ≥ C ·
(
(1+ t−2r2) · (w2

t (K − μX )+ u2
)+ t−2(μ+ γ )2 · w2(X )

)
, (1.2)

where K − μX :={z − μx : z ∈ K , x ∈ X }. Then with probability at least 1 −
exp(−cu2) on the random draw of {ai }mi=1, the following holds uniformly for all
x ∈ X : Let y = (y1, . . . , ym) ∈ R

m be given by

yi = f (〈ai , x〉)+ νi , i = 1, . . . ,m,

such that
( 1
m

∑m
i=1 ν2i

)1/2 ≤ t
20 .

2 Then, every minimizer ẑ of (PK , y) satisfies
‖ ẑ − μx‖2 ≤ t .

Theorem 1 can be seen as a uniform version of Plan’s and Vershynin’s main result on
single-index models [51, Thm. 1.9]. Most notably, the sampling-rate condition (1.2)
implies that the dependence on the desired accuracy t is the same as in the non-uniform
case. For more details on the interplay between m, t , and the complexity parameters,
we refer to the discussion of Theorem 2 in Sect. 2.3. To the best of our knowledge,
Theorem 1 is a new result in its own right, and in particular, it is not a consequence
of the approaches outlined in the previous subsection. A novel argument is required
to prove such a type of recovery guarantee; see Sect. 1.3 for an overview of the major
technical challenge of our work.

The main result of Theorem 2 extends Theorem 1 by several important aspects,
being in line with our key achievements:

1. Discontinuous output functions. The Lipschitz assumption in Theorem 1 prohibits
popular models like quantized observations. It turns out that an extension in that
regard is subtle. To this end, we introduce an approximative increment condition
on the observation variable, which is satisfied for many discontinuous nonlineari-
ties; see Sect. 2.2 for more details and Sects. 4.1–4.4 for applications to nonlinear
compressed sensing.

2. Beyond Gaussian measurements. Compared to the previous point, it is relatively
straightforward to allow for i.i.d. sub-Gaussianmeasurement vectors in Theorem 1.
However, this relaxation leads to an additional constraint term, called the target
mismatch, whose size depends on the distribution of the measurements and the
output function; see Definition 1 in Sect. 2.1.

3. Beyond single-index models. In Sect. 2, we study the more general situation of
Problem 1, where yi is not necessarily representable in terms of the dot product
〈ai , x〉. While this requires an additional step of abstraction, it enables for more
complicated nonlinear models as well as refined recovery tasks, e.g., support esti-
mation (see Sect. 4.5). For this purpose, we introduce so-called target functions in

2 Here, the νi correspond to adversarial noise, i.e., as long as the �2-constraint is satisfied, they could be
arbitrary (even worst-case) perturbations. This model is very common in uniform recovery and compressed
sensing, cf. [21]. But note that compared to statistical noise, this comes at the price of consistent estimation,
i.e., the reconstruction error may not become arbitrarily small ifm →∞; see Remark 1 and 4(2) for further
discussion.
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Sect. 2.1, transforming a signal x ∈ X in such a way that it becomes compatible
with the solution vector of (PK , y) under observations of the form (1.1). Note that
in the setup of Theorem 1, this transformation simply corresponds to rescaling x
by the scalar factor μ.

4. Outlier robustness. The �2-noise constraint
( 1
m

∑m
i=1 ν2i

)1/2 ≤ t
20 in Theorem 1

is standard for linear models and also remains useful in the situation of Lipschitz
nonlinearities. However, such a condition is overly restrictive for quantized mea-
surement schemes, where the noise is due to (few) wrong bits instead of (small)
real-valued perturbations. Theorem 2 therefore involves an important relaxation in
this respect, permitting a portion of “gross” outliers in the observation vector.

Based on our findings in Theorem 2, we will also address two points of independent
interest:

5. Uniform vs. non-uniform recovery.Section 3 isolates characteristics that are specif-
ically attributable to uniformity. While the presence of nonlinear output functions
may only affect the oversampling rate (see also Sect. 4), our focus here is on the
quite implicit complexity parameter wt (K −X ), cf. (1.2). We show that it can be
always bounded by twomuchmore informative expressions, namely a “fully local-
ized” mean width and its global counterpart (see Proposition 1). This important
simplification enables us to reuse known (non-uniform) results from the literature.
We illustrate for two examples (�1-constraints and total variation) that there is no
considerable gap between the uniform and non-uniform regime.

6. Plug-and-play via embeddings. Section 5 demonstrates how to incorporate known
randomembedding results into our theoretical framework. In thisway, for instance,
it is possible to obtain near-optimal error decay rates for (PK , y) with quantized
measurements. This achievement is due to a more general guarantee stated in
Theorem 3.

The general purpose of our methodology is to enable a more systematic study
of Problem 1 than before, especially for nonlinear observation models. To a certain
degree, this paper promotes an alternative path to compressed sensing theory that can
dowithout common tools like the restricted isometry property or quantized embedding
results. Despite clear overlaps, each of these approaches comes along with its own
strengths and (in-)accessible regimes; see Sect. 6 for a more detailed discussion.

1.3 Technical Challenges

This subsection highlights themain technical achievements of this work. Our principal
procedure is in fact relatively standard: We decompose the excess loss associated with
the estimator (PK , y) into separate empirical processes and aim at suitable lower/upper
bounds for each (cf. [17, 23, 25, 41, 51]); see Sect. 2.2 for an overview of this argument.

However, the quest for uniform recovery as prescribed by Problem 1 makes this
approach a challenging endeavor. In a nutshell, the key difficulty is that the common
multiplier term turns into an empirical product process of the following type:
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1
m

m∑

i=1
ξi (x) · 〈ai , v〉, x ∈ X , v ∈ (K − T x) ∩ tSp−1, (1.3)

where the first factor takes the form ξi (x) = 〈ai , T x〉 − F(ai , x) and T : X → K
is a fixed function (think of a scalar multiplication for now). Since we require a uni-
form upper bound for (1.3) over both x and v, the regularity of the stochastic process
{ξi (x)}x∈X plays an important role, in the sense that it should fulfill a sub-Gaussian
increment condition (see (1.4)).3 Such a regularity assumption unfortunately does not
even hold for standardmodels like 1-bit quantization F(ai , x) = sign(〈ai , x〉). There-
fore, existing chaining-based results for product processes are not directly applicable
to our situation. This may also explain why there is no unified theory for nonlinear
observations available so far and known uniform recovery guarantees are restricted to
special cases (see Sect. 1.1).

The present article provides a general remedy for this foundational problem. Our
starting point is that a given output function F can be often approximated by a more
regular one, say Ft , where t > 0 controls the approximation accuracy. As such, this
strategy canyield amore benignmultiplier ξt,i (x) = 〈ai , T x〉−Ft (ai , x), but it simply
shifts the original problem to the resulting approximation error F(ai , x)− Ft (ai , x).
Hence, a fundamental insight in our proof (see Step 3 in Sect. 7) is that it suffices to
consider the absolute error εt,i = |F(ai , x)− Ft (ai , x)| instead. Indeed, the process
{εt,i (x)}x∈X fulfills an increment condition in all relevant model situations that we
are aware of; see Fig. 2 in Sect. 4 for an illustration of the above argument based on
the sign function. With this at hand, and apart from other technicalities, we can take
advantage of a recent concentration inequality due to Mendelson [42, Thm. 1.13].

The intuitive idea described in the previous paragraph is placed into a rigorous
framework by means of our central Assumption 2. In this context, it is worth noting
that the actual main result, Theorem 2, couples the approximation accuracy t with
the desired reconstruction error. This might appear somewhat peculiar at first sight
because the processes {ξt,i (x)}x∈X and {εt,i (x)}x∈X usually become less regular with
t decreasing. However, we demonstrate that this trade-off can be balanced out well
and only affects the achievable oversampling rate.

Finally, our general technique to control empirical product processes of the form
(1.3) may find application beyond signal recovery problems. For example, it could be
also used to derive a new generation of nonlinear embedding results. In fact, one of the
earliest works on binary random embeddings [50] has pointed out the usefulness of
approximating nonlinearities, though strongly tailored to 1-bit quantization. With our
systematic approach, their result could not only be reproduced but further improved
(cf. [58, Thm. 3.7]).

1.4 Overview and Notation

The rest of this article is organized as follows. Section 2 presents our findings in
full generality, where the proof of Theorem 2 is postponed to Sect. 7. In Sect. 3, we

3 This is an important difference to the non-uniform regime, where x is a fixed signal. In this case, it is
possible to apply known multiplier concentrations inequalities to control (1.3), e.g., see [42, Thm. 1.9].
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elaborate aspects that are specifically due to uniform recovery and highlight potential
gaps to the non-uniform regime. Sections 4 and 5 are then devoted to applications and
concrete examples, including a series of new guarantees for nonlinear compressed
sensing and high-dimensional estimation; the corresponding proofs are provided in
Sects. 8 and 9, respectively. Our concluding discussion can be found in Sect. 6.

Before proceeding, let us fix some standard notations and conventions that are
commonly used in this work. The letters c and C are reserved for (positive) constants,
whose values could change from time to time. We speak of a universal constant if its
value does not depend on any other involved parameter. If an inequality holds up to
a universal constant C , we usually write A � B instead of A ≤ C · B. The notation
A � B is a shortcut for A � B � A.

For p ∈ N, we set [p]:={1, . . . , p}. The cardinality of an index set S ⊂ [p] is
denoted by |S| and its set complement in [p] is Sc:=[p] \ S. Vectors and matrices
are denoted by lower- and uppercase boldface letters, respectively. The j-th entry of a
vector v ∈ R

p is denoted by (v) j , or simply by v j if there is no danger of confusion. The
support of v ∈ R

p is defined by supp(v):={ j ∈ [p] : v j �= 0} and ‖v‖0:=|supp(v)|
denotes its sparsity. We write I p ∈ R

p×p and 0 ∈ R
p for the identity matrix and

the zero vector in R
p, respectively. For 1 ≤ q ≤ ∞, we denote the �q -norm on R

p

by ‖ · ‖q and the associated unit ball by B
p
q . The Euclidean unit sphere is given by

S
p−1:={v ∈ R

p : ‖v‖2 = 1}. The spectral matrix norm is denoted by ‖ · ‖2→2.
Let H , H ′ ⊂ R

p and v ∈ R
p.Wewrite span(H) for the linear hull of H and the lin-

ear cone generated by H (not necessarily convex) is denoted by cone(H):={sṽ : ṽ ∈
H , s ≥ 0}. By PH : Rp → R

p, we denote the Euclidean projection onto the closure
of H if it is well defined, and we use the shortcut Pv:=Pspan({v}). We write H⊥ for the
orthogonal complement of H . TheMinkowski difference between H and H ′ is defined
by H − H ′:={v1−v2 : v1 ∈ H , v2 ∈ H ′}, and we use the shortcut H −v:=H −{v}.
For ε > 0, we denote the covering number of H at scale εwith respect to the Euclidean
norm by N (H , ε).

The Lq -norm of a real-valued random variable a is given by ‖a‖Lq :=(E[|a|q ])1/q .
We call a sub-Gaussian if

‖a‖ψ2 := inf
{
v > 0 : E[exp(|a|2/v2)] ≤ 2

}
<∞,

and ‖ · ‖ψ2 is called the sub-Gaussian norm. A random vector a in R
p is called

sub-Gaussian if ‖a‖ψ2 :=supv∈Sp−1‖〈a, v〉‖ψ2 < ∞. We say that a is centered if
E[a] = 0, and it is isotropic if E[aaT] = I p. We write a ∼ N(0, I p) if a is a standard
Gaussian random vector in R

p. For a more detailed introduction to sub-Gaussian
random variables and their properties, see [64, Chap. 2 & 3]. Now, let (H, d) be a
pseudo-metric space and consider a real-valued stochastic process {ah}h∈H on H.
Then, {ah}h∈H has sub-Gaussian increments with respect to d if

‖ah − ah′ ‖ψ2 ≤ d(h, h′) for all h, h′ ∈ H. (1.4)

We say that a function f : Rp → R
p′ is γ -Lipschitz if it is Lipschitz continuous

with respect to the Euclideanmetric and a Lipschitz constant γ ≥ 0. The sign of v ∈ R

is denoted by sign(v), with the convention that sign(0):=1. If sign(·) is applied to a
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vector, the operation is understood entrywise. The ceiling and floor function of v ∈ R

is denoted by �v� and �v�, respectively.

2 Main Result

As preliminary steps, we introduce the formal model setup in Sect. 2.1, followed by
our increment conditions on the observation variable in Sect. 2.2. The main result of
Theorem 2 is then stated and discussed in Sect. 2.3, while its proof can be found in
Sect. 7.

2.1 Model Setup

The following model assumption fixes the notation for the remainder of this section
and specifies the instance of Problem 1 that we will study from now on:

Assumption 1 (a) Components of the observation model:

– Measurement vector: a centered, isotropic, sub-Gaussian random vector a ∈
R

p such that ‖a‖ψ2 ≤ L for some L > 0.4

– Signal set: a set X (not necessarily a subset of Rp).
– Output function: a scalar function F : Rp ×X → R that may be random (not

necessarily independent of a).
– Observation variable: ỹ(x):=F(a, x) for x ∈ X .

(b) Components of the measurement process:

– Measurement ensemble: {(ai , Fi )}mi=1 are independent copies of the measure-
ment model (a, F).

– Observations: ỹi (x):=Fi (ai , x) for i = 1, . . . ,m and x ∈ X . The observation
vector of x is denoted by ỹ(x):=(ỹ1(x), . . . , ỹm(x)) ∈ R

m .

(c) Components of the recovery procedure:

– Constraint set: a convex subset K ⊂ R
p (not necessarily bounded).

– Target function: a map T : X → K , such that TX ⊂ K is bounded.

Part (a) of Assumption 1 establishes the statistical “template” of our measurement
model, from which i.i.d. observations are drawn according to part (b). Importantly,
this defines an entire class of observation variables {ỹ(x)}x∈X , which corresponds to
a real-valued stochastic process. Assumption 1(c) is arguably the most abstract part,
but forms a crucial ingredient of our main result: Theorem 2 states an error bound
for T x ∈ K instead of the actual signal x ∈ X (which might not even belong to
R

p). The basic linearization strategy behind (PK , y) typically calls for an appropriate
transformation of the signal domain. A good example is the special case of Theorem 1,
where T amounts to a rescaling of x by the model-dependent factor μ. Such a simple
correction is sufficient for most applications considered in Sect. 4; but there exist more
complicated situations, such as the variable selection problem in Sect. 4.5, where X
4 Note that we actually have that L ≥ √

1/ log(2) > 1 if a is isotropic, see [35].
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represents support sets on [p]. At the present level of abstraction, it is useful to think
of T x as a parameterized version of x ∈ X that is compatible with the estimation
procedure of (PK , y) and its constraint set K ⊂ R

p.5

In principle, T can be arbitrary in Assumption 1, but there often exists a canonical
choice that is driven by the size of the following model parameter:

Definition 1 Let Assumption 1 be satisfied. Then, we define the target mismatch of
x ∈ X by

ρ(x):=∥∥E[ỹ(x)a] − T x
∥∥
2.

The meaning of this definition becomes clearer when taking the perspective of statis-
tical learning for a moment. Assuming that yi = ỹi (x), the Lasso estimator (PK , y)
can be viewed as an empirical loss minimization problem with “data” {(ai , yi )}mi=1.
A central question is then under what conditions its solution can approximate (in
a proper sense) the associated expected loss minimization problem (obtained in the
infinite sample limit m →∞):

min
z∈K E[(ỹ(x)− 〈a, z〉)2]. (2.1)

It is not hard to see that the only critical point of the objective function in (2.1) is the
vector x∗:=E[ỹ(x)a], and if x∗ ∈ K , this is the global optimum. Therefore, and as
its name suggests, ρ(x) measures the mismatch between the target vector T x and the
(global) expected loss minimizer x∗.

In the context of Theorem 2, the target mismatch can be seen as an upper bound
for the asymptotic error of estimating T x via (PK , y). Consequently, a general rule of
thumb is to select T x such that ρ(x) vanishes or becomes sufficiently small. However,
simply setting T x:=E[ỹ(x)a] (if contained in K ) is not necessarily consistent with
our wish for signal recovery, e.g., in the application in Sect. 4.2. Therefore, we have
left T unspecified in Assumption 1, even though a proper choice will be obvious for
all considered examples.

We close this subsection with a short remark about the noise model considered in
this work:

Remark 1 (Noise model) We will adopt the adversarial (or worst-case) noise
model, which is the common setting in the field of compressed sensing, cf. [21].
More specifically, when interested in recovery of x ∈ X , the actual input y =
(y1, . . . , ym) for (PK , y) need not exactly correspond to the observation vector ỹ(x) =
(ỹ1(x), . . . , ỹm(x)) introduced in Assumption 1(b).6 Instead, arbitrary perturbations
are allowed as long as d( y, ỹ(x)) � t for an appropriate noise metric d(·, ·) and
a desired accuracy t . In Theorem 1, for instance, we have ỹi (x) = f (〈ai , x〉) and

5 One should bear in mind that the target function T is a purely theoretical object that does not affect the
solution of (PK , y) and may be (partially) unknown in practice. Nevertheless, it is an essential analysis tool
for Problem 1, relating the underlying observation model to the actual recovery method (PK , y), see also
Remark 2(1).
6 The use of the modifier ‘∼’ in Assumption 1 is also due to this fact and may help to distinguish between
our observation model and the actual input for (PK , y).

123



Foundations of Computational Mathematics (2023) 23:899–972 909

yi = ỹi (x)+ νi , while d(·, ·) corresponds to the normalized �2-norm. Thus, our over-
all goal is to show that, given {(ai , Fi )}mi=1, recovery is possible for any x ∈ X and
any moderate perturbation of its observation ỹ(x).

In this context, it is worth noting that Assumption 1(b) does not require the variables
ỹi (x) to be deterministic when conditioned on ai , since Fi itself may be random. For
example, one could model additive random noise in that way, as common in statistical
estimation theory. In principle, such a type of noise is also admissible in our main
result, Theorem 2, but it is not entirely compatible with the aforementioned goal of
uniform recovery. Indeed, the ensemble {(ai , Fi )}mi=1 is only drawn once, so that a
single noise realization has to be considered for all x ∈ X . We therefore mostly
stick to the adversarial perspective; see Remark 4(2) in Sect. 3 for a more detailed
comparison of both noise models in the situation of linear measurements. Finally, we
point out that randomized output functions are nevertheless very useful in the uniform
regime, such as in the design of dithering variables (see Sect. 4.2).

2.2 Analysis Strategy and Increment Conditions

From now on, let Assumption 1 be satisfied. In this subsection, we introduce the key
condition for our uniform recovery guarantee, namely that the class of observation
variables {ỹ(x)}x∈X , or at least an approximation thereof, has sub-Gaussian incre-
ments. To better understand the relevance of this condition, it is insightful to first take
a closer look at our basic analysis strategy for the generalized Lasso:

min
z∈K

1
m

m∑

i=1
(yi − 〈ai , z〉)2. (PK , y)

Note that we hide the dependency on the measurement vectors {ai }mi=1 when refer-
ring to (PK , y), as this will be always clear from the context. At the present stage, the
vector y = (y1, . . . , ym) ∈ R

m in (PK , y) is unspecified, but taking the viewpoint of
our main result, Theorem 2, is already useful: If x ∈ X is to be recovered, then y is
a noisy version of the observation vector ỹ(x) = (ỹ1(x), . . . , ỹm(x)) as defined in
Assumption 1(b); see also Remark 1.

Wenowderive a simple, yet important criterion for an error bound for a (fixed) signal
x ∈ X . To this end, let L̄x(v):= 1

m

∑m
i=1(yi−〈ai , v+T x〉)2 denote the empirical loss

of v ∈ R
p over x. For the sake of notational convenience, we have fixed the anchor

point T x here, so that (PK , y) is equivalent to minimizing L̄x(·) over K − T x. The
excess loss of v ∈ R

p over x is then defined by

Ex(v):=L̄x(v)− L̄x(0).

It measures how much the empirical loss is changing when traveling from T x in the
direction of v. The following fact is an immediate consequence of the convexity of K
and L̄x ; see Fig. 1 for an illustration.
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Fig. 1 Illustration of the localization argument behind Fact 1. We assume that Ex(v) > 0 for all v ∈ Kx,t ,
or equivalently, Ex(z − T x) > 0 for all z ∈ Kx,t + T x (see red arc). Since Ex(0) = 0, the convexity of
K and Ex(·) implies that a minimizer ẑ of (PK , y) must not lie outside the dark gray intersection. In other
words, we have that ‖ ẑ − T x‖2 ≤ t

Fact 1 For x ∈ X and a desired reconstruction accuracy t > 0, we set

Kx,t :={v ∈ K − T x : ‖v‖2 = t} = (K − T x) ∩ tSp−1.

If Ex(v) > 0 for all v ∈ Kx,t , then every minimizer ẑ of (PK , y) satisfies ‖ ẑ−T x‖2 ≤ t .

For a fixed accuracy t > 0, Fact 1 implies uniform recovery for all those x ∈ X
satisfying infv∈Kx,t Ex(v) > 0. This motivates us to establish a uniform lower bound
for the excess loss for all x ∈ X and v ∈ Kx,t . In particular, such a task is considerably
more difficult than showing a bound on Kx,t for a fixed x ∈ X , which would be in
accordance with the non-uniform results discussed in the second part of Sect. 1.1. To
get a better sense of this challenge, let us consider the following basic decomposition
of the excess loss:

Ex(v) = 1
m

m∑

i=1
〈ai , v〉2

︸ ︷︷ ︸
=:Q(v)

− 2
m

m∑

i=1
(yi − ỹi (x))〈ai , v〉

︸ ︷︷ ︸
=:Nx(v)

+ 2
m

m∑

i=1
(〈ai , T x〉 − ỹi (x))〈ai , v〉

︸ ︷︷ ︸
=:Mx(v)

. (2.2)

The quadratic term Q(v) and noise term Nx(v) are rather unproblematic and can be
controlled by a recent matrix deviation inequality (see Step 1 and Step 2 in Sect. 7).
Much more intricate is the multiplier term Mx(v), since the underlying multiplier
variable ξ(x):=〈a, T x〉 − ỹ(x) depends on x, so that we actually have to deal with
an empirical product process. A major difficulty is that known concentration results
for such product processes do not apply directly, since the class {ξ(x)}x∈X need
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not have sub-Gaussian increments with respect to an appropriate (pseudo-)metric.
For example, this would happen if we would drop the Lipschitz assumption on f in
Theorem 1. The key idea of our approach is to approximate ỹ(x) by a more “regular”
observation variable ỹt (x) in such a way that the resulting multiplier variable and the
approximation error both have sub-Gaussian increments. This is made precise by the
following assumption:

Assumption 2 We define a pseudo-metric on X by dT (x, x′):=‖T x − T x′‖2 for
x, x′ ∈ X . For t ≥ 0, assume that there exists a class of observation variables
{ỹt (x)}x∈X such that the following properties hold:

(a) Approximation error: Setting εt (x):=|ỹ(x) − ỹt (x)|, we assume that E[εt (x) ·
|〈a, z〉|] ≤ t

64 for all x ∈ X and z ∈ S
p−1.

(b) Multiplier increments: Set ξt (x):=〈a, T x〉 − ỹt (x) for x ∈ X . We assume that
there exist r ≥ 0 and Lt ≥ 0 such that

‖ξt (x)− ξt (x′)‖ψ2 ≤ Lt · dT (x, x′) and ‖ξt (x)‖ψ2 ≤ r for all x, x′ ∈ X .

(c) Error increments: We assume that there exist r̂ ≥ 0 and L̂ t ≥ 0 such that

‖εt (x)− εt (x′)‖ψ2 ≤ L̂ t · dT (x, x′) and ‖εt (x)‖ψ2 ≤ r̂ for all x, x′ ∈ X .

Assumption 2(b) and (c) imply that {ξt (x)}x∈X and {εt (x)}x∈X have sub-Gaussian
increments with respect to Lt · dT and L̂ t · dT , respectively. Similarly, r and r̂ bound
the (sub-Gaussian) diameter of the respective classes. A convenient interpretation of
Assumption 2 is as follows: Choose an approximation ỹt (x) for every x ∈ X such that
the error does not become too large in the sense of part (a); at the same time, ensure
that the increment conditions of part (b) and (c) are satisfied such that the parameters
Lt and L̂ t do not grow too fast as t becomes smaller. A remarkable conclusion from
our applications to quantized compressed sensing in Sects. 4.1–4.3 is that this strategy
can even succeed for observation variables with discontinuous output functions.

Finally, we emphasize that the approximation error εt (x) includes taking the
absolute value, which is crucial to our proof (see Step 3 in Sect. 7). In particular,
Assumption 2 does not necessarily imply that the original class {ξ(x)}x∈X has sub-
Gaussian increments with respect to L̃ · dT for some L̃ ≥ 0. On the other hand, it
is certainly possible that {ξ(x)}x∈X already has sub-Gaussian increments, such as in
Theorem 1. In this case, we can simply choose ỹt (x):=ỹ(x), so that εt (x) = 0 and
Assumption 2(a) and (c) are trivially fulfilled.

2.3 Uniform Recovery Guarantee

In order to formulate the main result of this work, we require the notion of Gaussian
meanwidth. This geometric parameter has proven to be a useful complexitymeasure in
high-dimensional signal recovery, e.g., see [2, 12, 43, 54, 57] for pioneering works in
that direction. Our approach is no exception and makes use of the following localized
version.
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Definition 2 Let H ⊂ R
p and g ∼ N(0, I p). The (Gaussian) mean width of H is

given by

w(H):=E
[
sup
v∈H
〈g, v〉

]
.

For t ≥ 0, we define the local mean width of H (at scale t) by

wt (H):=
{

w( 1t H ∩ S
p−1), t > 0,

w(cone(H) ∩ S
p−1), t = 0.

As final preparatory step, we introduce two expressions that capture the size of mea-
surement noise: For m0 ∈ {0, 1, . . . ,m} and w = (w1, . . . , wm) ∈ R

m , let

‖w‖[m0]:=
( m0∑

i=1
|w∗i |2

)1/2
and σm0(w)2:=

( m∑

i=m0+1
|w∗i |2

)1/2
,

where (w∗1, . . . , w∗m) is the non-increasing rearrangement of (|w1|, . . . , |wm |). Obvi-
ously, we have that ‖w‖2[m0] + σm0(w)22 = ‖w‖22, and in particular, ‖w‖[0] = 0 and

σ0(w)2 = ‖w‖2. Moreover, note that ‖ · ‖[m0] simply corresponds to the �2-norm of
the m0-largest entries, while σm0(·)2 is commonly known as the �2-error of the best
m0-term approximation.

We are now ready to state our main recovery guarantee, which forms the basis of
all applications presented in Sect. 4; see Sect. 7 for a complete proof.

Theorem 2 There exist universal constants c,C > 0 for which the following holds.
Let Assumptions 1 and 2 be satisfied for a fixed accuracy t ≥ 0, and let m0 ∈

{0, 1, . . . ,m}. For Δ > 0, u ≥ 1, and u0 ≥
√
m0 log(em/m0), we assume that7 8

m ≥ C · L2 ·max
{
log L · (w2

t (K − TX )+ u2
)
,

L2Δ2 · (w2
t (K − TX )+ u20

)
,

t−2(r2 + r̂2) · (w2
t (K − TX )+ u2

)+ t−2(L2
t + L̂2

t ) · w2(TX )
}
. (2.3)

Then with probability at least 1 − exp(−cu2) − exp(−cu20) on the random draw of
{(ai , Fi )}mi=1, the following holds uniformly for every x ∈ X with ρ(x) ≤ t

32 : Let
y ∈ R

m be any input vector such that

1√
m
‖ y − ỹ(x)‖[m0] ≤ Δt and 1√

m
σm0( y − ỹ(x))2 ≤ t

20 . (2.4)

Then, every minimizer ẑ of (PK , y) satisfies ‖ ẑ − T x‖2 ≤ t .

7 The condition (2.3) is stated in such a way that it is convenient to handle in our specific applications (see
Sect. 4). However, for a basic understanding, the reader may simply set u = u0, so that the first and second
branch in (2.3) can be merged to m � L2(log L + L2Δ2) · (w2

t (K − TX )+ u2
)
.

8 In the case of exact recovery, i.e., t = 0, we follow the convention 0 · ∞:=0, so that the condition (2.3)
requires that r = r̂ = Lt = L̂ t = 0. Then, (2.3) is particularly fulfilled for m ≥ C · L2 log L · (w2

0(K −
TX )+ u2), where m0 = 0, Δ = L−1√log L , and u = u0.
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The constraints of (2.4) imply that the estimator (PK , y) is robust against (adversarial)
perturbations and outliers in the observation vector ỹ(x). Here, a central role is played
by the fine-tuning parameter m0, controlling which coefficients of the noise vector
y− ỹ(x) are captured by the first and second condition in (2.4), respectively. Enlarging
m0 helps to suppress “gross” outliers (that may appear in them0 largest coefficients of
y− ỹ(x) in magnitude). Indeed, by adjusting the free parameter Δ, the first condition
of (2.4) becomes less restrictive than the second one (which captures the remaining
coefficients of y− ỹ(x)). On the other hand, choosingm0 and/orΔ too large may have
a negative effect on the sample complexity in the second branch of (2.3). The benefit of
permitting outliers will become clearer in the context of quantization where the noise
is due to wrong bits in y instead of real-valued perturbations (see Sects. 4.1–4.3).
Note that the most common noise model is obtained for m0 = 0: (2.4) then simply
corresponds to the baseline condition 1√

m
‖ y− ỹ(x)‖2 ≤ t

20 , which is consistent with
standard noise bounds from the literature. We refer to Remark 4(2) in the next section
for a more detailed comparison of adversarial and statistical noise, as well as aspects
of optimality.

The second important constraint of Theorem 2 is that it does not apply to those
x ∈ X with ρ(x) > t

32 . Hence, the target mismatch ρ(x) can be seen as an upper
bound for the asymptotic error when estimating T x via (PK , y). In particular, the above
error bound does not allow for arbitrarily high precision unless ρ(x) = 0.

Let us now turn to the key assumption (2.3), which relates the number of measure-
ments m to the desired accuracy t . The above formulation views m as a function of t ,
specifying how fastm grows if t decreases. The inverse relationship is also of interest,
since it describes the reconstruction error as a function of m. However, this can only
be made explicit in specific situations where the parameters at the right-hand side of
(2.3) are known or can be well estimated. Of special importance in that respect are
the increment parameters Lt and L̂ t from Assumption 2, whose size has a signifi-
cant impact on the required (over-)sampling rate. For 1-bit observations as studied in
Sect. 4.1, for example, we achieve Lt , L̂ t � t−1, so that (2.3) would yield an error
decay rate of O(m−1/4)—or conversely, an oversampling rate of O(t−4). Remarkably,
we will derive a corollary of Theorem 2 in Sect. 5 that can bypass the restrictions of
Assumption 2 at the price of a stronger (local) stability condition on the observation
model. This allows us to combine our approach with known embedding results from
the literature and thereby to obtain near-optimal decay rates in special cases.

The dependence of (2.3) on the complexity parameters wt (K − TX ) and w(TX )

is quite natural. Similar expressions have already appeared in several of the articles
discussed in Sect. 1.1, e.g., see [17, 49, 52]. A detailed discussion, including concrete
examples and possible simplifications, can be found in Sect. 3. A distinctive feature of
Theorem 2 is that the considered version of localmeanwidthwt (K−TX ) “compares”
the parameter vectors in K only to those in the transformed signal set TX ⊂ K . This
refinement of the common quantity wt (K − K ) can lead to improved guarantees in
certain scenarios, namely when TX is much smaller than K (see Example 1 for an
illustration of this aspect).

Remark 2 (1) Inversion of T . In principle, the target function T neither has to be
injective nor does it have to be explicitly known to solve (PK , y). However, in order
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to obtain a practicable statement from Theorem 2, the actual signal x ∈ X should
be extractable from an approximation ẑ of T x. An appropriate implementation
of T can differ considerably from situation to situation. In the case of single-
index models (see Theorem 1), for example, this would involve a rescaling of ẑ,
which requires a (rough) knowledge of the nonlinearity f . In contrast, for variable
selection (see Sect. 4.5), it can be sufficient to perform a simple hard-thresholding
step on ẑ to obtain a good estimate of the underlying support.

(2) Optimality. The best possible error decay rate that can result from Theorem 2 is
O(m−1/2), supposed that we have Lt , L̂ t � 1.9 This rate cannot be improved in
general, or in other words, the exponent − 1

2 is not an artifact of our proof but
corresponds to a fundamental statistical barrier (see [52, Sec. 4]). However, it is
possible to break through this barrier in specific model setups, e.g., noiseless 1-bit
observations [34, 36]. Such superior rates are usually not achieved by (PK , y), but
may require a more sophisticated estimator instead.

Remark 3 (Possible extensions) For the sake of clarity, we did not present the most
general version of Theorem 2 that we could have derived. There are several variants
and generalizations that we expect to be practicable:

(1) Anisotropic measurements. Based on an observation from [51, Rmk. 1.7],
[22, Sec. II.D], the isotropy of the measurement vectors in Assumption 1(a) can
be relaxed to any positive definite covariance matrix Σ ∈ R

p×p. To see this, let
us assume that a is centered and sub-Gaussian with E[aaT] = Σ . Then, we may
write a = √Σ ā where ā is isotropic, centered, and sub-Gaussian. If ā1, . . . , ām
are i.i.d. copies of ā, a simple reformulation of (PK , y) yields

argmin
z∈K

1
m

m∑

i=1
(yi − 〈ai , z〉)2 =

√
Σ
−1 · argmin

z̄∈√ΣK

1
m

m∑

i=1
(yi − 〈āi , z̄〉)2.

In other words, (PK , y) is equivalent to a modified estimator that operates with an
isotropic measurement ensemble. Therefore, we may apply Theorem 2 directly to
the latter one, when replacing K and T (·) by√ΣK and

√
ΣT (·) in Assumption 1,

respectively. Note that these adaptions are of purely theoretical nature and in
practice, no explicit knowledge of Σ is required. In particular, this procedure still
implies an error bound for minimizers ẑ of (PK , y):

‖ ẑ − T x‖2 ≤ ‖
√

Σ
−1‖2→2 · ‖

√
Σ ẑ −√ΣT x‖2 ≤ ‖

√
Σ
−1‖2→2 · t .

Similarly, one can conveniently control the adapted complexity parameters (see
[51, Rmk. 1.7], [22, Sec. II.D]):

wt (
√

ΣK −√ΣTX ) ≤ max
{
1, ‖√Σ

−1‖2→2
} · ‖√Σ‖2→2 · w( 1t (K − TX ) ∩ B

p
2 ),

9 Note that the expression O(m−1/2) suppresses the dependence on wt (K − TX ). Although the latter can
be trivially bounded by w0(K − TX ), which is independent of t , such an estimate might not appropriately
capture the (low) complexity of K in certain cases.
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w(
√

ΣTX ) � ‖√Σ‖2→2 · w(TX ).

Overall, we can conclude that accurate (uniform) recovery is also possible with
anisotropic measurements, as long as the (unknown) covariance matrix is well
conditioned.

(2) Even output functions. There exist certain types of nonlinear models that are not
directly compatible with the estimator (PK , y). For example, if f : R → R is an
even function in Theorem 1, it turns out that μ = Eg∼N(0,1)[ f (g)g] = 0. In
other words, (PK , y) would simply approximate the zero vector, which is clearly
not what one is aiming at. Notably, this scenario includes the important phase-
retrieval problem f (·) = |·|. Fortunately, the linearization idea behind (PK , y) is
still applicable in these situations, when combined with the phase-lifting trick [9]:

min
X∈K

1
m

m∑

i=1

(
yi − 〈ai aTi − E[ai aTi ], X〉F

)2
, (PliftedK , y )

where 〈·, ·〉F denotes the Hilbert–Schmidt inner product and K ⊃ {xxT : x ∈
X } is a convex subset of the positive semi-definite cone in R

p×p. The recovery
performance of (PliftedK , y ) for even output functions has been recently analyzed by
the first author in [25, Sec. 3.5], inspired by earlier findings of Thrampoulidis
and Rawat [61]. A key challenge in this regard is that the lifted measurement
vectors/matrices ai aTi − E[ai aTi ] are heavier tailed than ai , which in turn has
required deeper insights from generic chaining theory. We expect that our results
are extendable into this direction, but with a technical effort that would go beyond
the scope of this work.

(3) Different metrics. An extension that is specific to uniform recovery concerns the
choice of pseudo-metric in Assumption 2. In principle, dT could be replaced by an
arbitrary pseudo-metric d on the signal set X . The claim and proof of Theorem 2
would still hold true if the (global) complexity ofX is captured by γ2(X , d) instead
ofw(TX ); see Step 3 in Sect. 7.While this wouldmake our approach slightlymore
flexible, we note that Talagrand’s γ2-functional is difficult to control in general.
Apart from that, the �2-norm as error metric in Theorem 2 could be replaced by
an arbitrary semi-norm ‖ · ‖. Specifically, this step would lead to an error bound in
terms of ‖·‖ in Fact 1, but it also entails an adaption of the spherical intersection in
the local mean width (see Definition 2). Finally, different convex loss functions are
feasible for (PK , y) as well [22], although such an extension would require several
additional technical assumptions.

3 (Non-)Uniformity and Signal Complexity

In this section, we highlight important aspects that are specifically attributable to
uniform recovery, compared to existing non-uniform results. This includes a more
detailed discussion of the local mean widthwt (K −TX ), which appears as the central
complexity parameter in our approach.
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Except for the inclusion TX ⊂ K , Theorem 2 does not impose any restrictions
on the signal set X . If T is the identity function, the choice of X may range from a
singletonX = {x} to the entire constraint setX = K . The latter scenario corresponds
to uniform recovery of all signals in K , while the former means that one is interested
in a specific x ∈ K—which is nothing else than non-uniform recovery. In particular,
due to w({x}) = 0, Theorem 2 is consistent with previously known non-uniform
guarantees, e.g., see [23, Thm. 3.6] and [51, Thm 1.9]. Our main result therefore also
indicates what additional expenses may come in the case of uniform recovery.

Let us first focus on the role of nonlinear observations, whose impact is reflected
by the third branch of (2.3) in Theorem 2. The key quantities in this respect are the
increment parameters Lt and L̂ t . Their size strongly depends on the type of output
function F considered in Assumption 1. For instance, a jump discontinuity in F
can cause a weaker oversampling rate, in the sense that Lt , L̂ t � t−1; we refer to
Sects. 4.1–4.4 for concrete examples and Sect. 5 for a possible improvement. In the
non-uniform case (X = {x}), on the other hand, this issue becomes irrelevant because
one can simply set Lt = L̂ t = 0 (since Assumption 2(b) and (c) need only be satisfied
for a single point). Thus, we can draw the following informal conclusion:

The transition to uniform recovery with nonlinear output functions may result
in a worse oversampling rate (with respect to t).

The second foundational aspect of uniformity concerns the geometric complexity of
the constraint set K and its interplaywith the actual signal setX . To keep our exposition
as clear as possible, we restrict ourselves to the situation of linear observations (though
most arguments naturally carry over to nonlinear models). Applying Theorem 2 to
this special case leads to the following recovery guarantee (see Sect. 10 for a proof).
Note that we intentionally allow for two different types of noise here, based on the
adversarial (∼ νi ) and statistical model (∼ τi ); see Remark 4(2) for further discussion.

Corollary 1 There exist universal constants c,C > 0 for which the following holds.
Let a1, . . . , am ∈ R

p be independent copies of a centered, isotropic, sub-Gaussian
random vector a ∈ R

p with ‖a‖ψ2 ≤ L. Let τ1, . . . , τm be independent copies of
τ ∼ N(0, σ 2) for some σ ≥ 0 (also independent of {ai }mi=1). Moreover, let X ⊂ R

p

be a bounded subset and let K ⊂ R
p be a convex set such that X ⊂ K. For u ≥ 1

and t ≥ 0, we assume that

m ≥ C · L2 · (log L + t−2σ 2) · (w2
t (K − X )+ u2

)
. (3.1)

Then with probability at least 1− exp(−cu2) on the random draw of {(ai , τi )}mi=1, the
following holds uniformly for all x ∈ X : Let y = (y1, . . . , ym) ∈ R

m be given by

yi = 〈ai , x〉 + τi + νi , i = 1, . . . ,m,

such that
( 1
m

∑m
i=1 ν2i

)1/2 ≤ t
20 . Then, everyminimizer ẑ of (PK , y) satisfies ‖ ẑ−x‖2 ≤

t .
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Except for the σ -depending summand in (3.1), the above statement does not involve
any oversampling factors and it turns into an exact recovery guarantee for t = 0 and
σ = 0.AlthoughCorollary 1bears resemblancewith standard results fromcompressed
sensing, it comes with a distinctive feature: The needed number of measurements
in (3.1) is determined by the local mean width wt (K −X ). As such, this parameter is
quite implicit, so that an informative (upper) bound is required for any specific choice
of K and X . The remainder of this section is devoted to this quest.

Arguably the most popular low-complexity model is sparsity in conjunction with
an �1-relaxation. In our context, this corresponds to the following scenario:

K = RBp
1 and X = {x ∈ R

p : ‖x‖0 ≤ s, ‖x‖1 = R}, (3.2)

where s ∈ [p] and R > 0; note that the constraint ‖x‖1 = R is a specific tuning
condition for the estimator (PK , y) that could be further relaxed (see Remark 4(1)). In
this special case, one can derive a convenient bound for the local mean width:

wt (K − X ) ≤ w0(K − X ) �
√
s · log(2p/s). (3.3)

Remarkably, this observation dates back to one of the earliest applications of Gor-
don’s escape through the mesh theorem [30] to signal recovery [54]; see Sect. 10 for
a proof of (3.3). A combination of (3.3) and Corollary 1 ensures that uniform (exact)
reconstruction is feasible with O(s · log(2p/s)) Gaussian measurements. Therefore,
our approach is indeed well in line with standard sparse recovery guarantees in com-
pressed sensing, which are typically based on restricted isometry (cf. [21]).

Beyond this classical example, the situation becomes considerably more challeng-
ing and forms an important research subject in its own right. A particular obstacle due
to uniformity is that wt (K − X ) heavily depends on the size and shape of the signal
set X . On a technical level, we have to deal with a (possibly uncountable) union of
spherical intersections:

wt (K − X ) = w(
⋃

x∈X [ 1t (K − x) ∩ S
p−1]).

Fortunately, this cumbersome expression can be controlled through a much more
convenient upper bound, as shown in the following proposition. To the best of our
knowledge, this is a new result, which could be of independent interest. Its proof can
be found in Sect. 10 and is based on a covering argument.

Proposition 1 Let K ,X ⊂ R
p and t > 0. Then,

wt (K − X ) � sup
x∈X

w( 1
2t (K − x) ∩ B

p
2 )

︸ ︷︷ ︸
=:w̃t (K−x)

+ t−1 · w(X ). (3.4)

Moreover, for x ∈ X and K convex, we have that w̃t (K − x) � w0(K − x̃)+ 1 for
every x̃ ∈ K with ‖x − x̃‖2 ≤ t .

The upper bound in (3.4) implies a significant simplification: The first term is fully
localized, measuring the complexity of K with respect to each individual point x ∈ X ,
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whereas the second term accounts for the global size of X (independently of the
constraint set K ). In other words, the effect of K and X is now decoupled. A second
notable fact is that the localmeanwidth w̃t (K−x) and its conic counterpartw0(K−x)

are well-known complexity parameters from non-uniform recovery results, e.g., see
[2, 12, 23, 51, 63]. Hence, Proposition 1 allows us to transfer any corresponding bound
from the literature to the uniform regime. The presence of the global meanwidthw(X )

as an additional expense for uniformity appears natural to us. However, this expression
also entails an oversampling factor of t−1,which prevents perfect reconstruction (when
applied to Corollary 1). Given the �1-special case in (3.3), we suspect that this is an
artifact of our proof, and it remains an open question whether such a factor could be
removed in general. Our overall conclusion is as follows:

Regarding signal complexity, the transition to uniform recovery requires control
over the total size of the set X , measured by w(X ). The constraint set K only
appears in terms of local complexity, precisely as in the non-uniform case.

As the above argumentation is fairly abstract, it is insightful to illustrate our approach
by a concrete example. In this context, we will also highlight the importance of care-
fully “designed” signal sets, in the sense that X (and even its convex hull) is much
smaller than K .

Example 1 (Total variation in 1D) We consider the situation of s-gradient-sparse sig-
nals in one spatial dimension, i.e., for s ∈ [p−1] fixed, it is assumed that ‖∇x‖0 ≤ s,
where

∇:=

⎡

⎢⎢⎢⎣

−1 1 0 . . . 0
0 −1 1 0
...

. . .
. . .

...

0 . . . 0 −1 1

⎤

⎥⎥⎥⎦ ∈ R
(p−1)×p

is a discrete gradient operator. Geometrically, this condition simply means that the
vector x is piecewise constant with at most s jump discontinuities. An �1-relaxation
of gradient sparsity then leads to the common total variation (TV) model [55], which
in our case corresponds to the constraint set K = {x ∈ R

p : ‖∇x‖1 ≤ R} for some
R > 0.

A recent work of the first author [27] has demonstrated that the reconstruction
capacity of the TVmodel does not only depend on the number of jump discontinuities
but also strongly on their position. More specifically, we say that an s-gradient-sparse
signal x is Δ-separated for some Δ ∈ (0, 1] if

min
j∈[s+1]

|ν j − ν j−1|
p

≥ Δ

s + 1
,

where supp(∇x) = {ν1, . . . , νs} with 0=:ν0 < ν1 < · · · < νs < νs+1:=p. Intu-
itively, the constant Δ measures how much the jump positions in x deviate from an
equidistant pattern (where one would have Δ = 1). Assuming that Δ ∈ (0, 1] is fixed
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(independently of n and s), we say that x is well separated; see [27, Sec. 2.1] for more
details. This motivates us to consider the following signal set:

X = {
x ∈ R

p : ‖∇x‖0 ≤ s, x is Δ-separated, ‖∇x‖1 = R
} ∩ B

p
2 . (3.5)

Similarly to (3.2), the constraint ‖∇x‖1 = R results from a tuning condition for (PK , y)
(see Remark 4(1)).

A deep result from [27, Thm. 2.10] now yields the following estimate for the conic
mean width:

w0(K − x) �
√

Δ−1 · s · log2(p) for all x ∈ X . (3.6)

For the global mean width, we can make use of a bound derived by Krahmer et al. [38,
Sec. 3.2]:

w(X ) �
√
s · log(ep/s). (3.7)

Note that (3.7) would also hold without theΔ-separation condition, but it exploits that
X ⊂ B

p
2 . Combining (3.6) and (3.7) with Proposition 1, we finally obtain

wt (K − X ) � (1+ t−1)
√
s · log2(p).

Therefore, according to Corollary 1, uniform recovery of well-separated s-gradient-
sparse signals becomes feasible with O(s · log2(p)) Gaussian measurements. In
particular, we have shown that there is no qualitative gap to the non-uniform guarantee
derived in [27].

Let us emphasize that, although the previous bounds look quite simple, their proofs
build on fundamental insights into the TV model. For example, relying only on the
basic estimate wt (K −X ) � t−1 ·w(K ) would not help much, since it is unclear how
w(K ) scales compared tow(X ), cf. [38, Sec. 3.3]. Evenmore notable is the fact that the
above argument would break down if the Δ-separation condition is omitted. Indeed,
Cai and Xu [8] have shown that uniform recovery of all s-gradient-sparse signals
(including pathological examples) via TV minimization is impossible with less than
Ω(
√
s · p)Gaussianmeasurements. Thus, a striking gap emerges between the uniform

and non-uniform regime in this scenario. Remarkably, the technical approach of [8] is
based on an adapted nullspace property, for which it is not obvious how to incorporate
additional signal structure such as Δ-separation. The presented example on the TV
model therefore also underscores the merits of a geometric complexity analysis as
proposed in our work. ��
While gradient sparsity seems to be only slightly more involved than standard sparsity
(with respect to an orthonormal basis), the above consideration has indicated many
subtleties. To a certain extent, Example 1 is just the “tip of the iceberg” and similar
phenomena apply in the more general context of the analysis- and synthesis-�1-model.
An in-depth discussion would go beyond the scope of the present paper, and we refer
the interested reader to the related works [26, 40]. The actual novelty of Proposition 1
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is that these previous findings may also extend to uniform recovery—a step that was
not addressed so far.

We close this section with a remark on stable and robust recovery:

Remark 4 (1) Tuning and stability. The equality constraint for X in (3.2) and (3.5)
ensures that every x ∈ X lies on the boundary of K . Such a technical step is
important for bounds that are based on the conic mean width, such as (3.3) and
(3.6); if x would lie in the interior of K , then cone(K − x) = R

p and therefore
w0(K − x) � √p. From an algorithmic perspective, this can be seen as a tuning
condition for the Lasso estimator (PK , y). The “moreover”-part of Proposition 1
presents a convenient relaxation in this respect: When interested in the local com-
plexity of some point x ∈ X ⊂ K , one may instead consider a nearby point x̃,
whose conic mean width w0(K − x̃) is smaller (non-trivial). The price for this
simplification is a recovery error in the order of ‖x− x̃‖2. This trade-off is closely
related to the idea of stability (or compressibility) in compressed sensing theory
[21].

(2) Robustness and optimality. The statement of Corollary 1 allows for a comparison
of the statistical and adversarial noise model (cf. Remark 1). In the absence of
worst-case perturbations (i.e., νi = 0), the condition (3.1) can be translated into an
error decay rate of O(σ ·m−1/2). Thus, (PK , y) becomes a consistent estimator of
x in the ordinary sense of statistics, i.e., ‖ ẑ− x‖2 → 0 in probability as m →∞.
Remarkably, the asymptotic error scaling with respect to the noise parameter σ

and sample size m cannot be further improved in general—it is minimax optimal
for linear observations, e.g., see [52, Sec. 4].
Compared to randomnoise, the adversarial model ismore general, since the νi may
encode any type of perturbation, even deterministic ones. Given the �2-constraint
in Corollary 1,

( 1
m

∑m
i=1 ν2i

)1/2 ≤ t
20 , (3.8)

it turns out that a recovery error in the order of O(t) is essentially optimal. Indeed,
there exist instances of Corollary 1 where the νi can be selected such that (3.8)
holds with high probability (over {ai }mi=1) and one has that ‖ ẑ − x‖2 � t .10 The
difference with the statistical regime becomes clearer when considering random
noise from an adversarial perspective, i.e., νi = τi ∼ N(0, σ 2). Then, it is not hard
to see that with high probability, the constraint (3.8) is only attainable with t � σ ,
which prevents arbitrarily high precision in terms of t . In particular, Corollary 1
would not certify the consistency of (PK , y) anymore, contrary to the argument in
the previous paragraph.
Let us emphasize that uniformity does not play a special role in these matters,
although the statistical noise model appears somewhat unnatural in this regime

10 A simple example is as follows: For a unit vector x ∈ S
p−1 to be reconstructed, set νi = c · t · 〈ai , x〉

for a constant c > 0 small enough. If m is sufficiently large, then (3.8) holds with high probability. At the
same time, we have that yi = 〈ai , x〉 + νi = 〈ai , (1+ ct)x〉. Hence, Corollary 1 can be also applied such
that it certifies exact recovery of the rescaled vector (1 + ct)x via (PK , y). In other words, we have that
‖ ẑ − x‖2 = ct · ‖x‖2 � t .
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(see Remark 1). In principle, our conclusions do also carry over to the abstract
setting of Theorem 2, but the interpretation of the term “noise” becomes more
subtle there. The reason is that the estimator (PK , y) basically treats nonlinear
distortions as if they would be uncorrelated statistical noise (cf. [51]), even if the
output function is completely deterministic. Seen from this angle, better decay
rates than O(σ · m−1/2) are possible, which however strongly depends on the
specific model and estimator (see Remark 2(2)).

4 Applications and Examples

This section demonstrates how to derive “out-of-the-box” guarantees from Theorem 2
for specific observationmodels. Sects. 4.1–4.3 are devoted to applications to quantized
compressed sensing. Sect. 4.4 then revisits the case of single-index models, including
new applications to modulo measurements and coordinate-wise distortions. Finally,
Sect. 4.5 is concernedwith a conceptually different example on the problem of variable
selection. Note that all proofs are deferred to Sect. 8.

4.1 1-Bit Observations

As already indicated in Sect. 1.1, the most basic version of 1-bit compressed sensing
asks for the reconstruction of signals x ∈ X ⊂ R

p from binary observations y ∈
{−1, 1}m of the form

yi = sign(〈ai , x〉)+ νi , i = 1, . . . ,m. (4.1)

Here, the noise variables ν:=(ν1, . . . , νm) may take values in {−2, 0, 2}, modeling
possible distortions of the linear measurement process before quantization and/or bit
flips during quantization. Importantly, the magnitude of x gets lost in (4.1) due to the
scaling invariance of the sign-function. Thus, the best one can hope for is to reconstruct
the direction of x.

Themodel of (4.1) is particularly compatiblewithGaussianmeasurement vectors—
a related result on sub-Gaussian measurements can be found in the next subsection.
Indeed, choosing the target function T x proportionally to x/‖x‖2, one can show that
the target mismatch ρ(x) vanishes for every x ∈ X . Hence, uniform recovery is
possible up to arbitrarily high precision. The following guarantee makes this claim
precise and is an application of Theorem 2 to Gaussian 1-bit observations. Its proof
in Sect. 8.1 will demonstrate the usefulness of the approximation condition from
Assumption 2, see also Fig. 2 for an illustration of the underlying argument.

Corollary 2 There exist universal constants c, c0,C ′ > 0 for which the following
holds.

Let a1, . . . , am ∈ R
p be independent copies of a standard Gaussian random vector

a ∼ N(0, I p). Let X ⊂ R
p and define T x:=

√
2
π

x
‖x‖2 for x ∈ X . Moreover, let

K ⊂ R
p be a convex set such that TX ⊂ K. For u ≥ 1 and t ∈ (0, 1], we assume
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Fig. 2 Illustration of the approximation strategy used in the proof of Corollary 2. The basic idea is to
approximate the jump discontinuity of sign(s) (plotted in black) by a linear segment whose slope is inverse
proportional to the accuracy t . The resulting function ψt (s) (plotted in blue) and the absolute value of the
error φt (s) = |ψt (s)− sign(s)| (plotted in dashed red) are then both 128

t -Lipschitz. This is already enough

to fulfill Assumption 2 with Lt � 1 + t−1 and L̂ t � t−1; note that the factor 128 is just an appropriate
constant for the proof (Color figure online)

that

m ≥ C ′ · t−2 ·
(
w2
t (K − TX )+ t−2 · w2(TX )+ u2

)
. (4.2)

Finally, let β ∈ [0, 1] be such that β
√
log(e/β) ≤ c0t . Then with probability at least

1− exp(−cu2) on the random draw of {ai }mi=1, the following holds uniformly for all
x ∈ X : Let y ∈ {−1, 1}m be given by (4.1) such that 1

2m ‖ν‖1 ≤ β. Then, every

minimizer ẑ of (PK , y) satisfies
∥∥ ẑ −

√
2
π

x
‖x‖2

∥∥
2 ≤ t .

Corollary 2 is in line with some of the early achievements in 1-bit compressed
sensing [48, 49]. Remarkably, the condition (4.2) translates into an error decay rate
of O(m−1/4) in the uniform case, which improves the original rate of O(m−1/12)
established by Plan and Vershynin in [49, Thm. 1.3]. In fact, we are not aware of any
result in the literature that implies the statement of Corollary 2. But we stress that the
above oversampling rate is still not optimal (see [34]) and can be further improved
with a more specialized argument relying on random hyperplane tessellations (see
Corollary 8 in Sect. 5). The noise constraint of Corollary 2 simply means that the
fraction of wrong input bits 1

2m ‖ν‖1 must not exceed β, while the latter may be
in the order of t (up to a log-factor). This condition again significantly improves
[49, Thm. 1.3] and is a particular consequence of the outlier robustness established
in Theorem 2; see also [17] for a similar achievement in the situation of dithered
observations.
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4.2 1-Bit Observations with Dithering

According to Ai et al. [1], the conclusion of Corollary 2 cannot be extended to
sub-Gaussian measurements in general, regardless of the considered reconstruction
method. A practicable remedy is the technique of dithering, which in its most basic
form, corresponds to a random shift of the quantization threshold. Originating from
quantized signal processing, e.g., see [13, 31, 32], its benefits recently also emerged in
compressed sensing theory [3, 17, 18, 37, 62, 65]. For more background information,
we refer to [14] and the references therein.

Extending the original 1-bit model (4.1) by an additional dithering step leads to
observations y ∈ {−1, 1}m of the following form:

yi = sign(〈ai , x〉 + τi )+ νi , i = 1, . . . ,m, (4.3)

where ν:=(ν1, . . . , νm) ∈ {−2, 0, 2}m again models noise. The dithering variables
τi are independent copies of a random variable τ that is uniformly distributed on an
interval [−λ, λ]. Note that a major difference between dithering and additive noise
is that the parameter λ > 0 is known and adjustable in practice (while the τi could
be in principle unknown). The following corollary of Theorem 2 is based on the fact
that a careful choice of λ allows us to control the size of the (non-vanishing) target
mismatch ρ(x), where T x:=λ−1x.

Corollary 3 There exist universal constants c, c0, C̃,C ′ > 0 for which the following
holds.

Let a1, . . . , am ∈ R
p be independent copies of a centered, isotropic, sub-Gaussian

random vector a ∈ R
p with ‖a‖ψ2 ≤ L. Let τ1, . . . , τm be independent copies of a

random variable τ that is uniformly distributed on [−λ, λ] for a parameter λ > 0. In
addition, suppose that {ai }mi=1 and {τi }mi=1 are independent. Let X ⊂ RBp

2 for some
R > 0, and let K ⊂ R

p be a convex set such that λ−1X ⊂ K. For u ≥ 1 and
t ∈ (0, 1], we assume that

λ ≥ C̃ · R · L ·√log(e/t),

m ≥ C ′ · L2 ·
(
(log L + t−2) · (w2

t (K − λ−1X )+ u2
)+ L2t−4λ−2 · w2(X )

)
.

(4.4)

Finally, let β ∈ [0, 1] be such that β
√
log(e/β) ≤ c0L−2t . Then with probability at

least 1−exp(−cu2) on the randomdraw of {(ai , τi )}mi=1, the following holds uniformly
for all x ∈ X : Let y ∈ {−1, 1}m be given by (4.3) such that 1

2m ‖ν‖1 ≤ β. Then, every
minimizer ẑ of (PK , y) satisfies ‖ ẑ − λ−1x‖2 ≤ t .

Corollary 3 exhibits many common features of known recovery guarantees based on
dithering. In particular, it can be seen as a uniform version of a recent result on the
generalized Lasso by Thrampoulidis and Rawat [62, Thm. IV.1]. The most notable
improvement over Corollary 2 is that it is now possible to recover the actual signal
x ∈ X up to arbitrarily high precision, and not only its direction vector x/‖x‖2.
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Similarly to Corollary 2, we are not aware of any result in the literature that implies
the statement of Corollary 3. Nevertheless, the oversampling rate of O(m−1/4) pro-
moted by (4.4) can be further improvedwith a proof strategy that is specifically tailored
to 1-bit observations with dithering (see Corollary 9 in Sect. 5).

4.3 Multi-Bit Observations

While 1-bit measurements are an important extreme case of quantized compressed
sensing, a considerable part of the literature deals with multi-bit observation models;
once again, see [6, 14] for a good introduction to this subject. In this subsection, we
illustrate our approach in the prototypical situation of uniform quantization: For a fixed
δ > 0, the goal is to reconstruct a signal x ∈ X ⊂ R

p from observations y ∈ δZm of
the form

yi = qδ(〈ai , x〉 + τi )+ νi , i = 1, . . . ,m, (4.5)

where qδ(v):=(2� v
2δ � − 1)δ is a uniform quantizer on the grid δ(2Z − 1)m with

resolution δ > 0. The dithering variables τi are independent copies of a random
variable τ that is uniformly distributed on [−δ, δ]. As before, ν:=(ν1, . . . , νm) can
describe any type of adversarial noise, but now takes values in δZm . Theorem 2 yields
the following uniform recovery guarantee formulti-bit observationswith sub-Gaussian
measurements and dithering.

Corollary 4 There exist universal constants c, c0,C ′ > 0 for which the following
holds.

Let a1, . . . , am ∈ R
p be independent copies of a centered, isotropic, sub-Gaussian

random vector a ∈ R
p with ‖a‖ψ2 ≤ L. Let τ1, . . . , τm be independent copies of

a random variable τ that is uniformly distributed on [−δ, δ] for a fixed parameter
δ > 0. In addition, suppose that {ai }mi=1 and {τi }mi=1 are independent. Let X ⊂ R

p be
a bounded subset, and let K ⊂ R

p be a convex set such that X ⊂ K. For u ≥ 1 and
t > 0, we assume that

m ≥ C ′ · L2 ·
(
(log L + t−2δ2) · (w2

t (K − X )+ u2
)+ L2t−4δ2 · w2(X )

)
. (4.6)

Then with probability at least 1− exp(−cu2) on the random draw of {(ai , τi )}mi=1, the
following holds uniformly for all x ∈ X : Let y ∈ δZm be given by (4.5) such that at
least one of the following conditions is fulfilled:

(a) 1√
m
‖ν‖2 ≤ t

40 or

(b) 1√
m
‖ν‖2 ≤ c0

√
δt

L2
√

max{1,log(δe/t)} and
1
m ‖ν‖0 ≤ t

δ
. (4.7)

Then, every minimizer ẑ of (PK , y) satisfies ‖ ẑ − x‖2 ≤ 2t .

Corollary 4 can be considered as a uniform version of a recent result by Thrampoulidis
and Rawat [62, Thm. III.1]. For a fixed quantizer resolution δ > 0, the condition (4.6)
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translates into an error decay rate of O(
√

δ ·m−1/4). On the other hand, if δ � t , then
(4.6) is satisfied as soon as m ≥ C · L2 log L · (w2

t (K − X ) + u2). In other words,
if the quantizer resolution is much higher than the desired reconstruction accuracy,
the performance of (PK , y) is the same as if the input vector would consist of linear
measurements (cf. Corollary 1). This behavior is perfectly consistent with the fact that
the uniformly quantized observations (4.5) become linear as δ → 0. It is also worth
pointing out that the constraint (b) in (4.7) implies a certain outlier robustness: If t < δ

and only a fraction of t/δ bits are corrupted, then the normalized �2-noise error may
scale in the order of

√
δt instead of t .

To the best of our knowledge, Corollary 4 is a new result. But we stress that there
exist uniform recovery guarantees for other programs than (PK , y) in the literature,
which imply better oversampling rates, e.g., see [36, Thm. 3] or [65] in the case
of structured signal sets. Nevertheless, we expect that Corollary 4 could be easily
improved in that regard, using the strategy of Sect. 5 in conjunction with known
uniform embedding results.

4.4 Single-IndexModels and Beyond

The situation of single-indexmodels was already considered in Theorem 1 in Sect. 1.2,
as an appetizer for our more general approach. As pointed out there, this guarantee
can be seen as an upgrade of an earlier non-uniform result by Plan and Vershynin
[51, Thm. 1.9], thereby demonstrating that uniform recovery is possible beyond quan-
tized measurement schemes. In view of Assumption 2, the Lipschitz continuity of f
in Theorem 1 is certainly not necessary. However, it verifies that a more “regular”
observation variable can lead to a near-optimal error decay rate (see Remark 2(2)).
Apart from that, we emphasize that (Lipschitz) continuous nonlinearities are not only
of academic interest but also appear in practical applications, for instance, as power
amplifiers in sensor networks [24].

The remainder of this subsection is devoted to two new applications of our general
framework, which extend Theorem 1 into different directions.
Modulo measurements. The first scenario is inspired by a recent work of Bhandari et
al. [4] on “unlimited sampling.” The practicalmotivation there is to prevent a saturation
of analog-to-digital converters by applying a modulo operator in the measurement
process. Tailored to the setup of the present article, we considermodulo measurements
of the form

yi = mλ(〈ai , x〉)+ νi , i = 1, . . . ,m, (4.8)

where the modulo function is given by mλ(v):=v − ⌊
v+λ
2λ

⌋ · 2λ for a fixed parameter
λ > 0, and ν:=(ν1, . . . , νm) ∈ R

m models noise. Clearly, the nonlinearity mλ nei-
ther corresponds to a quantization (cf. Sects. 4.1–4.3) nor is it Lipschitz continuous
(cf. Theorem 1). The following corollary of Theorem 2 provides a uniform recovery
guarantee for the observation model (4.8):

Corollary 5 There exist universal constants c,C,C ′ > 0 forwhich the following holds.
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Let a1, . . . , am ∈ R
p be independent copies of a standard Gaussian random vector

a ∼ N(0, I p). For λ > 0, we set μλ:=E[mλ(g)g] with g ∼ N(0, 1). Let X ⊂ S
p−1,

and let K ⊂ R
p be a convex set such that μλX ⊂ K. For u ≥ 1 and t ∈ (0, λ], we

assume that λ ≥ C and

m ≥ C ′ ·
(
(1+ t−2) · (w2

t (K − μλX )+ u2
)+ λ2t−4 · w2(X )

)
.

Then, μλ ∈ [ 12 , 1] and with probability at least 1 − exp(−cu2) on the random draw
of {ai }mi=1, the following holds uniformly for all x ∈ X : Let y ∈ R

m be given by

(4.8) such that
( 1
m

∑m
i=1 ν2i

)1/2 ≤ t
20 . Then, every minimizer ẑ of (PK , y) satisfies

‖ ẑ − μλx‖2 ≤ t .

Similar to our above applications to quantized compressed sensing, the (infinitely
many) discontinuities of the modulo function mλ imply an error decay rate of
O(m−1/4). To the best of our knowledge, Corollary 5 is a new result in its own right.
In particular, we are not aware of alternative proof techniques that would allow us to
derive a comparable statement. Finally, it is worth noting that the condition λ ≥ C in
Corollary 5 could be further relaxed to λ > 0. This would come at the cost of a lower
bound for μλ, since we have that μλ → 0 as λ → 0 (the nonlinearity mλ uniformly
converges to 0 as λ→ 0).

Coordinate-wise distortions. The common single-index model (see Theorem 1)
assumes that a nonlinear output function perturbs the linear observations 〈ai , x〉.
Instead, one can also imagine distortions that affect the computation of the dot product
〈ai , x〉 directly. More specifically, we are interested in observations of the form

yi = f (ai ◦ x)+ νi , i = 1, . . . ,m, (4.9)

where a ◦ b ∈ R
p denotes the coordinate-wise product of vectors a, b ∈ R

p and
f : Rp → R can be represented as

f (z):=
p∑

j=1
f j (z j ), z ∈ R

p.

Here, we assume that the functions f j : R → R are odd and γ -Lipschitz, while
satisfying the growth conditions

α(v − v′) ≤ f j (v)− f j (v
′), for all v, v′ ∈ R with v′ ≤ v, (4.10)

and

β1v ≤ f j (v) ≤ β2v, for all v ≥ 0, (4.11)

with parameters α > 0 and β2 ≥ β1 > 0. One can think of (4.9) as computing a
“nonlinear dot product” of ai and x. While models of this type are not covered by the
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original approach of [51], an application of Theorem 2 allows us to deal with them
under appropriate assumptions:

Corollary 6 There exist universal constants c,C > 0 for which the following holds.
Let a1, . . . , am ∈ R

p be independent copies of a centered, isotropic random vector
a = (a1, . . . , ap) which has independent, symmetric, and sub-Gaussian coordinates
such that max j∈[p] ‖a j‖ψ2 ≤ L for some L > 0. Let X ⊂ RBp

2 and define T : X →
R

p by T x:=E[ f (a◦ x)a]. Let K ⊂ R
p be a convex set such that TX ⊂ K. For u ≥ 1

and t ≥ 0, we assume that

m ≥ C · L4 ·
((
1+ t−2R2(β2

2 + γ 2)
) · (w2

t (K − TX )+ u2
)+ t−2( γ

α
)2 · w2(TX )

)
.

Then with probability at least 1 − exp(−cu2) on the random draw of {ai }mi=1, the
following holds uniformly for all x ∈ X : Let y ∈ R

m be given by (4.9) such that( 1
m

∑m
i=1 ν2i

)1/2 ≤ t
20 . Then, every minimizer ẑ of (PK , y) satisfies ‖ ẑ − T x‖2 ≤ t .

Furthermore, for every j ∈ [p], we have that

β1x j ≤ (T x) j ≤ β2x j , for x j ≥ 0,

β2x j ≤ (T x) j ≤ β1x j , for x j < 0. (4.12)

The above result shows that estimation via (PK , y) is even possible in situations
where instead of linear measurements 〈ai , x〉 = ∑p

j=1(ai ) j x j one observes distorted
dot products f (ai ◦ x) = ∑p

j=1 f j ((ai ) j x j ). Note that the generalized Lasso may
not precisely recover a scalar multiple of x here, but rather a vector T x that lies in a
hyperrectangle defined by x and the parameters β1 and β2. The closer the functions f j
are to the identity, the closer β1 and β2 are to 1, which implies that T x ≈ x according
to (4.12).

4.5 Variable Selection

This subsection is devoted to an instance of Assumption 1 that is substantially different
from the previous ones: For a fixed integer s ≤ p and an output function f : Rp → R,
we ask for estimation of an index set S ⊂ [p]with |S| ≤ s from observations y ∈ R

m

of the form

yi = f (ai,S)+ νi , i = 1, . . . ,m. (4.13)

Here, ai,S ∈ R
p is the coordinate projection of ai onto S and νi ∈ Rmodels additive

noise. Most notably, the signals of interest are not parameters vectors in Rp anymore
but correspond to (small) index sets, specifying those coefficients of a measurement
vector that contribute to the observation. From a statistical perspective, this can be seen
as a variable selection model, where S ⊂ [p] determines the set of active variables
among all feature variables in ai . In the context of uniform recovery, this leads to the
following problem: Given a collection of sample data {ai }mi=1, can we retrieve any
possible index set S ⊂ [p] with |S| ≤ s from (nonlinear) observations of the form
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(4.13)? The following corollary of Theorem 2 provides a result in that direction under
natural conditions on the output function f .

Corollary 7 There exist universal constants c,C > 0 for which the following holds.
Let a1, . . . , am ∈ R

p be independent copies of a centered, isotropic random vec-
tor a = (a1, . . . , ap) which has independent sub-Gaussian coordinates such that
max j∈[p] ‖a j‖ψ2 ≤ L for some L > 0. For s ≤ p and an output function f : Rp → R,
let X ⊂ {S ⊂ [p] : |S| ≤ s} and define T : X → R

p by TS:=E[ f (aS)a], where
aS ∈ R

p denotes the coordinate projection of a onto S. Moreover, we assume that
there exist parameters α, β, γ, κ > 0 such that

α√
s
≤ |(TS) j | ≤ β√

s
for all S ∈ X and j ∈ S (4.14)

and

‖ f (aS)− f (aS ′)‖ψ2 ≤ γ

√ |S  S ′|
s

and ‖ f (aS)‖ψ2 ≤ κ for all S,S ′ ∈ X ,

(4.15)

where S S ′ ⊂ [p] denotes the symmetric difference between S and S ′. Let K ⊂ R
p

be a convex set such that TX ⊂ K. For u ≥ 1 and t ≥ 0, we assume that

m ≥ C · L2 ·
((

log L + t−2(L2β2 + κ2)
) · (w2

t (K − TX )+ u2
)

+t−2(L2 + γ 2α−2) · w2(TX )
)
. (4.16)

Then with probability at least 1 − exp(−cu2) on the random draw of {ai }mi=1, the
following holds uniformly for all S ∈ X : Let y ∈ R

m be given by (4.13) such that( 1
m

∑m
i=1 ν2i

)1/2 ≤ t
20 . Then, supp(TS) = S and every minimizer ẑ of (PK , y) satisfies

‖ ẑ − TS‖2 ≤ t .

The assumptions (4.14) and (4.15) can be seen as natural balancing properties of
the underlying observation model: (4.14) requires that the coefficients of each target
vector TS ∈ K are uniformly bounded below and above on S (and in particular
α ≤ ‖TS‖2 ≤ β). The increment condition (4.15) ensures that the distance between
two observation variables can be controlled in terms of the symmetric difference of
their associated index sets in X .

With this in mind, Corollary 7 suggests the following simple procedure for variable
selection: First perform a hard-thresholding step on ẑ to extract its largest entries in
magnitude; then use the corresponding indices to estimate the set of active variables
S = supp(TS). Note that this does not require explicit knowledge of the output
function f . However, the (guaranteed) success of such a strategy strongly depends on
the size of α and the accuracy t . In the worst case, t would have to be in the order
of α/

√
s for perfect recovery of S, which would lead to an undesirable factor of s in

(4.16). It is certainly possible to show refined versions of Corollary 7. We suspect that
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sharper error bounds could be obtained by considering a different error measure than
the �2-norm (see Remark 3(3)). Nevertheless, a detailed elaboration would go beyond
the scope of this article, and we confine ourselves with the above proof of concept.

5 Uniform RecoveryWithout Increment Conditions

We have seen in Sects. 4.1–4.3 that the increment conditions of Assumption 2 can
lead to inferior error decay rates for quantizing output functions, due to their points
of discontinuity. In this section, we present a workaround that can do without any
(sub-Gaussian) increment conditions and thereby enables significantly better rates.
The basic idea is to cover the signal set X by an ε-net Xε for some ε > 0 and to apply
the non-uniform version of Theorem 2 to each x ∈ Xε separately. Taking the union
bound then yields uniform recovery on Xε. The final, and most crucial, ingredient
that allows us to pass over to the entire signal set X is the following local stability
condition on the observation model. It is based on the (outlier) noise bounds in (2.4)
and essentially requires that close points in TX imply close observation vectors.

Assumption 3 Let Assumption 1 be satisfied, and let t > 0 and ε > 0. For m0 ∈
{0, 1, . . . , �m2 �}, Δ > 0, and η ∈ [0, 1], we assume that the following holds with
probability at least 1− η:

sup
x, x′∈X

‖T x−T x′‖2≤ε

1√
m
‖ ỹ(x)− ỹ(x′)‖[2m0] ≤ 1

2Δt and

sup
x, x′∈X

‖T x−T x′‖2≤ε

1√
m

σm0( ỹ(x)− ỹ(x′))2 ≤ t
40 . (5.1)

The above strategy leads to the following general uniform recovery guarantee; see
Sect. 9 for a detailed proof.

Theorem 3 There exist universal constants c,C,C0 > 0 forwhich the following holds.
Let Assumptions 1 and 3 be satisfied, let r :=supx∈X ‖〈a, T x〉 − ỹ(x)‖ψ2 , and

assume ρ(x) ≤ t
32 for every x ∈ X . For u ≥ 1 and u0 ≥

√
2m0 log(em/2m0), we

assume that

m ≥ C · L2 ·
(
(log L + t−2r2) · ( sup

x∈X
w2
t (K − T x)+ u2

)

+L2Δ2 · ( sup
x∈X

w2
t (K − T x)+ u20

))
(5.2)

and

min{u2, u20} ≥ C0 · logN (TX , ε). (5.3)

Then with probability at least 1− exp(−cu2)− exp(−cu20)− η on the random draw
of {(ai , Fi )}mi=1, the following holds uniformly for every x ∈ X : Let y ∈ R

m be any
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input vector such that

1√
m
‖ y − ỹ(x)‖[2m0] ≤ 1

2Δt and 1√
m

σm0( y − ỹ(x))2 ≤ t
40 .

Then, every minimizer ẑ of (PK , y) satisfies ‖ ẑ − T x‖2 ≤ t + ε.

The statement of Theorem 3 strongly resembles the one of Theorem 2 with the impor-
tant difference that the former does not rely on Assumption 2. In particular, the
condition (5.2) does not depend on the increment parameters Lt and L̂ t anymore,
making it less restrictive than (2.3). It is worth pointing out that the global complexity
of X is now measured in terms of the covering number N (TX , ε) in (5.3) instead
of the mean width w(TX ). Furthermore, (5.2) establishes a refined local complexity
measure, due to supx∈Xw2

t (K − T x) ≤ w2
t (K − TX ); see also Proposition 1. Never-

theless, the gain of Theorem 3 is obviously linked to the verification of Assumption 3,
which is usually a highly non-trivial task.

We now present two applications of Theorem 3 in the prototypical case of 1-bit
observations. In this specific situation, it turns out thatAssumption 3 is compatiblewith
uniform bounds for binary embeddings, which allows us to make use of related results
from the literature. Our first application is based on the following embedding guarantee
by Oymak and Recht [45] for noiseless, Gaussian 1-bit measurements (cf. Sect. 4.1).
Hereafter, we agree on the shortcut notation [H ]ε:=( 1

ε
H − 1

ε
H) ∩ B

p
2 for any subset

H ⊂ R
p and ε > 0; also note that the parameter w([H ]ε) is virtually the same as

the local mean width wε(H − H) except that the former intersects with Bp
2 instead of

S
p−1.

Theorem 4 ([45, Thm. 3.2]) There exist universal constants c, c̄,C > 0 for which the
following holds.

Let H ⊂ S
p−1, and let A ∈ R

m×p be a random matrix with independent standard
Gaussian row vectors a1, . . . , am ∈ R

p. For β ∈ (0, 1) and ε ≤ c̄β/
√
log(e/β), we

assume that

m ≥ C ·
(
ε2β−3 · w2([H ]ε)+ β−1 · logN (H , ε)

)
.

Then, the following holds with probability at least 1− exp(−cmβ):

sup
x, x′∈H
‖x−x′‖2≤ε

1
2m ‖ sign(Ax)− sign(Ax′)‖1 ≤ β.

Combining Theorem 4 with Theorem 3 yields an improved version of Corollary 2 (see
Sect. 9 for a proof):

Corollary 8 There exist universal constants c, c′, c0,C ′,C0 > 0 for which the follow-
ing holds.

Let a1, . . . , am ∈ R
p be independent copies of a standard Gaussian random vector

a ∼ N(0, I p). Let X ⊂ R
p and define T x:=

√
2
π

x
‖x‖2 for x ∈ X . Moreover, let
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K ⊂ R
p be a convex set such that TX ⊂ K. Fix t ∈ (0, 1) and ε ≤ c′t/ log(e/t). For

u2 ≥ max{1,C0 · logN (TX , ε)}, we assume that

m ≥ C ′ ·
(
t−2 · ( sup

x∈X
w2
t (K − T x)+ u2

)+ ε2t−3 log3/2(e/t) · w2([TX ]ε)
)
.

(5.4)

Finally, let β ∈ [0, 1] be such that β
√
log(e/β) ≤ c0t . Then with probability at least

1− exp(−cu2) on the random draw of {ai }mi=1, the following holds uniformly for all

x ∈ X : Let y ∈ {−1, 1}m be given by (4.1) such that 1
2m ‖ν‖1 ≤ β

2 . Then, every

minimizer ẑ of (PK , y) satisfies
∥∥ ẑ −

√
2
π

x
‖x‖2

∥∥
2 ≤ 2t .

To better understand the oversampling behavior of this result, let us consider the situa-
tionwhere ε � t/ log(e/t). Due to Sudakovminoration,we have that logN (TX , ε) �
ε−2 ·w2(TX ) (e.g., see [64, Thm. 7.4.1]). Hence, in theworst case, Corollary 8 would
imply an error decay rate of O(m−1/4) up to log factors. However, for many low-
dimensional signal sets, such as subspaces or sparse vectors, it is possible to establish
a much stronger bound of the form logN (TX , ε) � log(ε−1) · w2(TX ), e.g., see
[45, Sec. 2].11 In this case, Corollary 8 would yield an error decay rate of O(m−1/2)
up to log factors. This is superior to the achievement of Corollary 2 and matches the
best possible rate that can be expected for (PK , y) in general (see Remark 2(2)).

Our second application of Theorem 3 concerns the setup of sub-Gaussian 1-bit
observations with dithering, as considered in Sect. 4.2. In this case, the stability con-
dition of Assumption 3 can be related to a recent embedding result of Dirksen and
Mendelson [17], which is based on hyperplane tessellations for sub-Gaussian vectors.

Theorem 5 ([17, Thm. 2.9]) For every L > 0, there exist constants c, c̄,C, C̃ > 0
only depending on L for which the following holds.

Let X ⊂ RBp
2 for some R > 0, and let A ∈ R

m×p be a random matrix
with independent, isotropic, sub-Gaussian row vectors a1, . . . , am ∈ R

p. Moreover,
assume that maxi∈[m] ‖ai‖ψ2 ≤ L. Let τ :=(τ1, . . . , τm) ∈ R

m be a random vector
with independent entries that are uniformly distributed on [−λ, λ] for a parameter
λ ≥ C̃ · R. In addition, suppose that A and τ are independent. For β ∈ (0, 1] and
ε ≤ c̄β/

√
log(e/β), we assume that

m ≥ C ·
(
ε2β−3 · w2([(2λ)−1X ]ε)+ β−1 · logN (λ−1X , ε)

)
.

Then, the following holds with probability at least 1− exp(−cmβ):

sup
x, x′∈X

λ−1‖x−x′‖2≤ε

1
2m ‖ sign(Ax + τ )− sign(Ax′ + τ )‖1 ≤ β.

11 Here, it is important to note that, in contrast to K , the (transformed) signal set TX may be highly
non-convex.
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Combining Theorem 5with Theorem 3 now yields an improved version of Corollary 3
(see Sect. 9 for a proof):

Corollary 9 For every L > 0, there exist universal constants c0,C0 > 0 and constants
c, c′, C̃,C ′ > 0 only depending on L for which the following holds.

Let a1, . . . , am ∈ R
p be independent copies of a centered, isotropic, sub-Gaussian

random vector a ∈ R
p with ‖a‖ψ2 ≤ L. Let τ1, . . . , τm be independent copies of a

random variable τ that is uniformly distributed on [−λ, λ] for a parameter λ > 0. In
addition, suppose that {ai }mi=1 and {τi }mi=1 are independent. Let X ⊂ RBp

2 for some
R > 0, and let K ⊂ R

p be a convex set such that λ−1X ⊂ K. Fix t ∈ (0, 1] and
ε ≤ c′t/ log(e/t). For u2 ≥ max{1,C0 · logN (λ−1X , ε)}, we assume that

λ ≥ C̃ · R ·√log(e/t),

m ≥ C ′ ·
(
t−2 · ( sup

x∈X
w2
t (K − λ−1x)+ u2

)+ ε2t−3 log3/2(e/t) · w2([(2λ)−1X ]ε)
)
.

(5.5)

Finally, let β ∈ [0, 1] be such that β
√
log(e/β) ≤ c0L−2t . Then with probability at

least 1−exp(−cu2) on the randomdraw of {(ai , τi )}mi=1, the following holds uniformly
for all x ∈ X : Let y ∈ {−1, 1}m be given by (4.3) such that 1

2m ‖ν‖1 ≤ β
2 . Then, every

minimizer ẑ of (PK , y) satisfies ‖ ẑ − λ−1x‖2 ≤ 2t .

Analogously to noiseless 1-bit observations, Corollary 9 implies a decay rate of
O(m−1/4) up to log factors in the worst case, whichmay be improved to O(m−1/2) for
structured signal sets. This is in line with a recent finding of Dirksen and Mendelson
[17, Thm. 1.7], who have analyzed a different estimator.

We close this section by pointing out that the error bounds achieved by Corollary 8
and 9 do still not match the information-theoretic optimal rate of O(m−1), e.g., see
[18, 34]. We suspect that this gap is not an artifact of our proof, but rather due to a
fundamental performance limit of the generalized Lasso (PK , y). A potential remedy
is to consider a more specialized reconstruction method, e.g., see [36].

6 Conclusion

This section highlights several key aspects of this work and discusses them in the light
of our initial objectives as well as remaining challenges.

(1) Observation models. Probably the greatest benefit of our approach to Problem 1
is its flexibility. The setup of Assumption 1 allows us to implement and analyze
virtually every nonlinear observation model that is conceivable for the program
(PK , y). The examples that we have seen in Sect. 4 are only a selection of possible
applications. Importantly, each of these results is accompanied by a conceptually
simple proof that does not require any deeper insight into the underlying model
mechanisms; see also the proof template at the beginning of Sect. 8. Therefore, our
methodology may form a general path toward competitive benchmark guarantees.
However, the resulting oversampling rates do not always match the best possible
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rates from the literature, due to the increment condition of Assumption 2. In
Sect. 5, we have presented aworkaround for this issue, based on an additional local
stability assumption. This strategy can indeed lead to near-optimal error bounds,
but it relies on the availability of a strong embedding result in each considered
case.

(2) Non-Gaussian measurements.Ourmain result reveals the impact of non-Gaussian
measurements, in particular, when consistent recovery via (PK , y) can be expected
and when not. While relaxing the conditions on isotropy and sub-Gaussian tails
in Assumption 1 is certainly practicable (see Remark 3(1)), our analysis is inher-
ently limited to independent measurement vectors. This excludes more structured
measurement ensembles, such as partial random circulant matrices or lossless
expanders [21, Chap. 12 & 13]. On the other hand, such schemes typically satisfy
a variant of the restricted isometry property, which is the basis for some recent
advances in quantized compressed sensing, e.g., see [16, 20, 33, 65]. These find-
ings provide evidence that at least parts of our results remain valid for a much
larger family of measurement vectors. Thus, any guarantee with structured mea-
surements that meets the generality of Theorem 2 would be significant.

(3) Complexity parameters. The research on high-dimensional signal estimation has
shown that the (local) Gaussian mean width is a natural, yet accurate complexity
measure for convex programs such as (PK , y). A distinctive feature of our approach
is the role played by the (not necessarily convex) signal set X . As indicated in
Sect. 3, X can be viewed as a characteristic of the observation model that allows
us to study any situation between non-uniform and (fully) uniform recovery. Note
that this refinement is also a crucial ingredient of Proposition 1 and Theorem 3.
Nevertheless, it is important to bear in mind that the Gaussian mean width is not
trivial to estimate in specific situations, e.g., see (3.3) and Example 1.

(4) (Non-)convexity and data-driven priors. Remarkably, Fact 1 is the only argument
in our proof that relies on the convexity of the constraint set K . In principle, it
is possible to drop this assumption on K by investigating the projected gradient
descent method as an algorithmic implementation of (PK , y), e.g., see [46, 47,
56]. However, the feasibility of this approach depends on the existence of an
efficient projection onto K .12 A modern line of research on signal processing
with non-convex optimization advocates the use of data-driven priors—a natural
consequence of many recent advances on generative models in machine learning
research, e.g., see [5, 39] and the references therein. Although the algorithmic
strategy behind these methods bears resemblance to (PK , y), we believe that the
complexity of learned signal priors leads to amore difficultmathematical problem,
whose understanding is still in its infancy. This is particularly underpinned by the
fact that even the situation of convex priors is not sufficiently well understood yet
(see [26, 27, 40]).

12 The existence of an efficient projection and the (non-)convexity of K are not equivalent. There are
many examples of efficient projections onto non-convex sets, while the projection onto convex sets can be
NP-hard, e.g., see [53].
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7 Proof of theMain Result (Theorem 2)

Recall that according to Fact 1, it suffices to show that for all x ∈ X and y ∈ R
m

satisfying ρ(x) ≤ t
32 and (2.4), we have that

inf
v∈Kx,t

Ex(v) > 0.

To this end, we make use of the decomposition in (2.2), i.e.,

Ex(v) = Q(v)+Nx(v)+Mx(v),

and continue by showing separate bounds for all three terms, where each bound holds
uniformly for all x ∈ X and v ∈ Kx,t . Unless stated otherwise, we assume that the
hypotheses of Theorem 2 are fulfilled throughout this section and we have that t > 0;
the case of t = 0 is in fact much simpler, see Step 4b. Moreover, we will use the
notation KX ,t := ∪x∈X Kx,t = (K − TX ) ∩ tSp−1.
Step 1: Bounding the quadratic term. Let A ∈ R

m×p denote the matrix with row
vectors a1, . . . , am . In order to control the random variable

Q(v) = 1
m

m∑

i=1
〈ai , v〉2 =

∥∥ 1√
m
Av

∥∥2
2

uniformly for all v ∈ KX ,t , we make use of the following recent matrix deviation
inequality for sub-Gaussian matrices.

Theorem 6 ([35, Cor. 1.2]) There exists a universal constant CQ > 0 for which the
following holds.

Let H ⊂ R
p, and let A ∈ R

m×p be a random matrix with independent,
isotropic, sub-Gaussian row vectors a1, . . . , am ∈ R

p. Moreover, assume that
maxi∈[m] ‖ai‖ψ2 ≤ L for some L > 0. Then for every u > 0, we have the following
with probability at least 1− 3 exp(−u2):

sup
v∈H

∣∣∣
∥∥ 1√

m
Av

∥∥
2 − ‖v‖2

∣∣∣ ≤ CQ · L
√
log L · w(H)+ u · supv∈H‖v‖2√

m
.

We now apply this result to H :=KX ,t ⊂ tSp−1 within the setting of Theorem 2:
According to the first branch of the assumption (2.3), we have that m ≥ C · L2 log L ·(
w2
t (K − TX )+ u2

)
. Hence, by adjusting the universal constant C (only depending

on CQ), Theorem 6 implies that the following holds with probability at least 1 −
3 exp(−u2):

3t2
2 ≥ Q(v) ≥ t2

2 for all v ∈ KX ,t . (7.1)

Step 2: Bounding the noise term. In order to control the noise termNx(v), we require
the following uniform upper bound for subsums of the quadratic term.
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Theorem 7 ([17, Thm. 2.10]) There exist universal constants c,CN > 0 for which
the following holds.

Let H ⊂ R
p, and let a1, . . . , am ∈ R

p be independent, isotropic, sub-Gaussian
random vectors such thatmaxi∈[m] ‖ai‖ψ2 ≤ L for some L > 0. Then for every m0 ∈
{0, 1, . . . ,m} and u0 ≥

√
m0 log(em/m0), we have the following with probability at

least 1− 2 exp(−cu20):

sup
v∈H

max
I⊂[m]
|I|≤m0

(
1
m

∑

i∈I
|〈ai , v〉|2

)1/2 ≤ CN · L2 · w(H)+ u0 · supv∈H‖v‖2√
m

.

For w ∈ R
m , we denote by Im0(w) ⊂ [m] any (possibly non-unique) index set that

corresponds to the m0 largest entries of w in magnitude, i.e., for all i ∈ Im0(w) and
i ′ ∈ Im0(w)c, we have that |wi | ≥ |wi ′ |; note that for m0 = 0, we simply have
Im0(w) = ∅. With this notation at hand, observe that

‖w‖[m0] =
( ∑

i∈Im0 (w)

|wi |2
)1/2

and σm0(w)2 =
( ∑

i∈Im0 (w)c

|wi |2
)1/2

.

Now, consider the specific choicew:= y− ỹ(x). The Cauchy–Schwarz inequality then
implies

sup
v∈Kx,t

|Nx(v)| ≤ 2
m sup

v∈Kx,t

∑

i∈Im0 (w)

|wi | · |〈ai , v〉|

+ 2
m sup

v∈Kx,t

∑

i∈Im0 (w)c

|wi | · |〈ai , v〉|

≤ 2√
m
‖ y − ỹ(x)‖[m0] · sup

v∈KX ,t

max
I⊂[m]
|I|≤m0

(
1
m

∑

i∈I
|〈ai , v〉|2

)1/2

+ 2√
m

σm0( y − ỹ(x))2 · sup
v∈KX ,t

√
Q(v).

Let us now estimate the first summand of this bound. According to Theorem 7, there
exist universal constants c,CN > 0 such that for every u0 ≥

√
m0 log(em/m0), we

have the following with probability at least 1− 2 exp(−cu20):

sup
v∈KX ,t

max
I⊂[m]
|I|≤m0

(
1
m

∑

i∈I
|〈ai , v〉|2

)1/2 ≤ CN · L2 · w(KX ,t )+ u0 · t√
m

≤ 1
16Δ

−1t,

where the last inequality follows from the second branch of (2.3). Hence, taking a
union bound with the event of (7.1), it follows that with probability at least 1 −
3 exp(−u2)− 2 exp(−cu20), the following holds uniformly for every x ∈ X and every
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y ∈ R
m satisfying the condition (2.4):

sup
v∈Kx,t

|Nx(v)| ≤ 2 · t
16 · t + 2 ·

√
3
2 · t · t

20 ≤ t2
4 . (7.2)

Step 3: Bounding the multiplier term. Our goal is to bound the random variable

1
2Mx(v) = 1

m

m∑

i=1
(〈ai , T x〉 − ỹi (x))〈ai , v〉

uniformly from below for all v ∈ Kx,t and x ∈ X that satisfy ρ(x) ≤ t
32 . Let us begin

by adding and subtracting the expected value:

1
2Mx(v) ≥

(
inf

v∈Kx,t

1
2E[Mx(v)]

)
− 1

2

∣∣Mx(v)− E[Mx(v)]∣∣. (7.3)

Since a is isotropic, we observe that 1
2E[Mx(v)] = 〈T x −E[ỹ(x)a], v〉. Combining

this with Definition 1, we obtain a lower bound in terms of the target mismatch:

inf
v∈Kx,t

1
2E[Mx(v)] ≥ t · inf

v∈Sp−1
〈T x − E[ỹ(x)a], v〉

= −t · sup
v∈Sp−1

〈E[ỹ(x)a] − T x, v〉

= −t · ∥∥E[ỹ(x)a] − T x
∥∥
2 = −t · ρ(x). (7.4)

We now turn to the centered multiplier term in (7.3). To this end, recall Assumption 2
and let {ỹt,i (x)}x∈X be independent copies of the class {ỹt (x)}x∈X for i = 1, . . . ,m.13

Inserting these observation variables and applying the triangle inequality then yield

1
2 |Mx(v)− E[Mx(v)]|

≤ 1
m

∣∣∣
m∑

i=1
(〈ai , T x〉 − ỹt,i (x))︸ ︷︷ ︸

=:ξt,i (x)

〈ai , v〉 − E[(〈ai , T x〉 − ỹt,i (x))〈ai , v〉]
∣∣∣

+E[|ỹ(x)− ỹt (x)|︸ ︷︷ ︸
=εt (x)

· |〈a, v〉|] + 1
m

m∑

i=1
|ỹt,i (x)− ỹi (x)|︸ ︷︷ ︸

=:εt,i (x)

· |〈ai , v〉|. (7.5)

Note that the second empirical product process in (7.5) is not centered yet due to pulling
in the absolute values—a crucial step to ensure that the resulting factors have sub-
Gaussian increments. Adding and subtracting the expected value of the last summand

13 To be more precise, we assume that the tuples (ai , Fi , ỹt,i ) are independent copies of (a, F, ỹt ) for i =
1, . . . ,m. In particular, the respective conditions of Assumption 2(a)–(c) are also satisfied for {ỹt,i (x)}x∈X .
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in (7.5) and using Assumption 2(a), we obtain the following upper bound:

1
2 |Mx(v)− E[Mx(v)]| ≤ 1

m

∣∣∣
m∑

i=1
ξt,i (x)〈ai , v〉 − E[ξt,i (x)〈ai , v〉]

∣∣∣

+ 1
m

∣∣∣
m∑

i=1
εt,i (x) · |〈ai , v〉| − E[εt,i (x) · |〈ai , v〉|]

∣∣∣+ 2E[εt (x) · |〈a, v〉|]︸ ︷︷ ︸
≤ t2
32

.

This estimate in conjunction with (7.4) implies that the following holds uniformly for
all x ∈ X with ρ(x) ≤ t

32 :

inf
v∈Kx,t

Mx(v) ≥ − t2

8
− 2 sup

v∈Kx,t

1
m

∣∣∣
m∑

i=1
ξt,i (x)〈ai , v〉 − E[ξt,i (x)〈ai , v〉]

∣∣∣

−2 sup
v∈Kx,t

1
m

∣∣∣
m∑

i=1
εt,i (x) · |〈ai , v〉| − E[εt,i (x) · |〈ai , v〉|]

∣∣∣

≥ − t2

8
− 2 sup

x∈X
v∈KX ,t

1
m

∣∣∣
m∑

i=1
ξt,i (x)〈ai , v〉 − E[ξt,i (x)〈ai , v〉]

∣∣∣

−2 sup
x∈X

v∈KX ,t

1
m

∣∣∣
m∑

i=1
εt,i (x) · |〈ai , v〉| − E[εt,i (x) · |〈ai , v〉|]

∣∣∣. (7.6)

By Assumption 2(b) and (c), all factors of the product processes

{
1
m

m∑

i=1
ξt,i (x)〈ai , v〉

}

x∈X , v∈KX ,t

,

{
1
m

m∑

i=1
εt,i (x) · |〈ai , v〉|

}

x∈X , v∈KX ,t

(7.7)

have sub-Gaussian increments. A key ingredient for controlling these empirical pro-
cesses is a powerful concentration inequality due to Mendelson [42]. The following
result is adapted from [42, Thm. 1.13].

Theorem 8 There exist universal constants c,CM > 0 for which the following holds.
Let {ga}a∈A and {hb}b∈B be stochastic processes indexed by two sets A and B,

both defined on a common probability space (Ω,A,P). We assume that there exist
rA, rB ≥ 0 and pseudo-metrics dA on A and dB on B such that

‖ga − ga′‖ψ2 ≤ dA(a, a′) and ‖ga‖ψ2 ≤ rA for all a, a′ ∈ A,

‖hb − hb′ ‖ψ2 ≤ dB(b, b′) and ‖hb‖ψ2 ≤ rB for all b, b′ ∈ B.
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Finally, let X1, . . . , Xm be independent copies of a random variable X ∼ P. Then for
every u ≥ 1, we have the following with probability at least 1− 2 exp(−cu2):

sup
a∈A
b∈B

1
m

∣∣∣
m∑

i=1
ga(Xi )hb(Xi )− E[ga(Xi )hb(Xi )]

∣∣∣

≤ CM ·
((

γ2(A, dA)+ u · rA
) · (γ2(B, dB)+ u · rB

)

m

+rA · γ2(B, dB)+ rB · γ2(A, dA)+ u · rArB√
m

)
,

where γ2(·, ·) denotes Talagrand’s γ2-functional (e.g., see [42, Def. 1.2]).

Let us now apply Theorem 8 to the first product process in (7.7). To this end, we
observe that the class {〈a, v〉}v∈KX ,t has sub-Gaussian increments with respect to the
pseudo-metric induced by L‖ ·‖2, while Assumption 2(b) implies that {ξt (x)}x∈X has
sub-Gaussian increments with respect to Lt · dT . Hence, Theorem 8 implies that the
following holds with probability at least 1− 2 exp(−cu2):14

sup
x∈X

v∈KX ,t

1
m

∣∣∣
m∑

i=1
ξt,i (x)〈ai , v〉 − E[ξt,i (x)〈ai , v〉]

∣∣∣

≤ CM ·
((

Ltγ2(X , dT )+ u · r) · (Lγ2(KX ,t , ‖ · ‖2)+ u · Lt)
m

+r · Lγ2(KX ,t , ‖ · ‖2)+ Lt · Ltγ2(X , dT )+ u · r Lt√
m

)
.

According to Talagrand’s majorizing measure theorem [59, Thm. 2.4.1], we have that

w(H) � γ2(H , ‖ · ‖2) for every H ⊂ R
p.

Moreover, it is not hard to see that γ2(X , dT ) = γ2(TX , ‖ · ‖2). Consequently, the
following bound holds with probability at least 1− 2 exp(−cu2):

sup
x∈X

v∈KX ,t

1
m

∣∣∣
m∑

i=1
ξt,i (x)〈ai , v〉 − E[ξt,i (x)〈ai , v〉]

∣∣∣

≤ C ′M · t · L ·
((

Ltw(TX )+ u · r) · (wt (K − TX )+ u
)

m

+r · wt (K − TX )+ Ltw(TX )+ u · r√
m

)
. (7.8)

14 To be slightly more precise, we apply Theorem 8 to the index setsA:=X and B:=KX ,t , while X ∼ P

corresponds to the random tuple (a, F, ỹt ).
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The second product process in (7.7) can be treated similarly: The class {|〈a, v〉|}v∈KX ,t

has sub-Gaussian increments with respect to L‖ · ‖2, while Assumption 2(c) implies
that {εt (x)}x∈X has sub-Gaussian increments with respect to L̂ t · dT . An analogous
application of Theorem 8 shows that with probability at least 1 − 2 exp(−cu2), we
have that

sup
x∈X

v∈KX ,t

1
m

∣∣∣
m∑

i=1
εt,i (x) · |〈ai , v〉| − E[εt,i (x) · |〈ai , v〉|]

∣∣∣

≤ C ′M · t · L ·
((

L̂ tw(TX )+ u · r̂) · (wt (K − TX )+ u
)

m

+ r̂ · wt (K − TX )+ L̂ tw(TX )+ u · r̂√
m

)
. (7.9)

We are ready to prove our main result.
Step 4a: Proof of Theorem 2 (t > 0). We now assume that the events corresponding
to (7.1), (7.2), (7.8), and (7.9) have occurred jointly with probability at least 1 −
7 exp(−cu2) − 2 exp(−cu20) for an appropriate constant c > 0; note that the factors
7 and 2 can be removed by slightly adjusting c. Combining these bounds with (7.6),
the following holds uniformly for every x ∈ X with ρ(x) ≤ t

32 and every y ∈ R
m

satisfying the condition (2.4):

inf
v∈Kx,t

Ex(v) ≥ inf
v∈KX ,t

Q(v)− sup
v∈Kx,t

|Nx(v)| + inf
v∈Kx,t

Mx(v)

≥ t2
2 − t2

4 − t2
8

− C ′M · t · L ·
(

(r + r̂) · wt (K − TX )+ (Lt + L̂ t ) · w(TX )+ u · (r + r̂)√
m

)

− C ′M · t · L ·
((

(Lt + L̂ t ) · w(TX )+ u · (r + r̂)
) · (wt (K − TX )+ u

)

m

)
.

If we could show that this lower bound is strictly positive, the claim of Theorem 2
would follow directly from Fact 1. To conclude this argument, it is enough to have
that

m ≥ C ′ · L2t−2 ·
(
(r + r̂) · wt (K − TX )+ (Lt + L̂ t ) · w(TX )+ u · (r + r̂)

)2
,

(7.10)

m ≥ C ′ · Lt−1 · ((Lt + L̂ t ) · w(TX )+ u · (r + r̂)
) · (wt (K − TX )+ u

)
, (7.11)

where C ′ > 0 is an appropriate universal constant. Indeed, both (7.10) and (7.11) are
consequences of (2.3): The bound of (7.10) is equivalent to the third branch of (2.3),
while (7.11) follows from the multiplication of the first and third branch of (2.3) and
then taking the square root. Note that the previous argument also makes use of the
basic fact that (v + w)2 ≥ v2 + w2 ≥ 1

2 (v + w)2 for all v,w ≥ 0, and that L2 � L
due to the isotropy of a.
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Step 4b: Proof of Theorem 2 (t = 0). We may assume that r = r̂ = Lt = L̂ t = 0,
m0 = 0, Δ = L−1

√
log L , and u = u0, while only considering those x ∈ X and

y ∈ R
m with y = ỹ(x) and ρ(x) = 0. Consequently, we have a noiseless linear

model, i.e., y = ỹ(x) = 〈a, x〉. It follows that Nx(·) = Mx(·) = 0. Analogously
to (7.1), we can conclude that with probability at least 1− 3 exp(−u2), the quadratic
term satisfiesQ(v) ≥ 1

2 for all v ∈ KX ,0:= cone(K − TX )∩S
p−1. On this event, let

ẑ ∈ K be any minimizer of (PK , y) with input y = ỹ(x) for some x ∈ X . If we would
not have exact recovery, i.e., v̂:= ẑ − T x �= 0, then

Ex(v̂) = Q(v̂) = ‖v̂‖22 ·Q
( v̂

‖v̂‖2︸ ︷︷ ︸
∈KX ,0

)
≥ ‖v̂‖

2
2

2
> 0, (7.12)

which contradicts the fact that ẑ is a solution to (PK , y). ��

8 Proofs for Sect. 4

Each result in Sect. 4 is an application of Theorem 2 and follows the same proof
template:

Step 1. How the prerequisites of Theorem 2 are met:

Step 1a. Implementation of Assumption 1.
Step 1b. Controlling the target mismatch ρ(x) for every x ∈ X .
Step 1c. Controlling the increment parameters of Assumption 2.

Step 2. Proof of the actual statement via Theorem 2.
Step 3. Verification of Step 1b.
Step 4. Verification of Step 1c.

8.1 Proofs for Sect. 4.1

Proof of Corollary 2 We follow the proof template from the beginning of Sect. 8:

Step 1a. The model setup of Corollary 2 fits into Assumption 1 as follows:

– We have that a ∼ N(0, I p) and therefore ‖a‖ψ2 � 1. The signal set X is an
arbitrary subset of Rp. The output function F : Rp × X → R takes the form
F(a, x):= sign(〈a, x〉).

– The target function T : X → K corresponds to the (scaled) normalization

T x:=
√

2
π

x
‖x‖2 . In particular, we have that dT (x, x′) =

√
2
π

∥∥ x
‖x‖2 − x′

‖x′‖2
∥∥
2.

Step 1b. The target mismatch ρ(x) vanishes for every x ∈ X .
Step 1c. There exists an approximation ỹt (x) of the observation variable ỹ(x)

such that the conditions of Assumption 2 are fulfilled with

Lt � 1+ t−1, L̂ t � t−1, r � 1, r̂ � 1. (8.1)
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Step 2. The first and third branch of the condition (2.3) is implied by (4.2)
for a sufficiently large universal constant C ′ > 0. Since φ(β):=β

√
log(e/β)

defines a continuous and non-decreasing function on [0, 1] with φ(1) = 1 and
φ(0):=0 (by continuous extension), we may assume without loss of generality
that β

√
log(e/β) = c0t ∈ (0, 1]. Now, we set

Δ2:= 1

t
√
log(e/β)

, m0:=�βm�, u0:=
√
2mβ log(e/β),

implying that u0 ≥
√
m0 log(em/m0) and u20 ≥ 2c0tm. Combining the latter

inequality with (4.2) for C ′ sufficiently large particularly implies that u20 ≥ u2.
Furthermore, observe that Δ2u20 = 2c0m and Δ2 ·w2

t (K − TX ) ≤ t−1 ·w2
t (K −

TX ). Hence, the second branch of the condition (2.3) is satisfied if c0 is chosen
small enough and C ′ in (4.2) large enough.
Next, we show that every y ∈ {−1, 1}m given by (4.1) with 1

2m ‖ν‖1 ≤ β also
satisfies (2.4). Since ν = y − ỹ(x) ∈ {−2, 0, 2}m and 1

2‖ y − ỹ(x)‖1 ≤ βm, it
follows that |{i ∈ [m] : yi �= ỹi (x)}| ≤ �βm�. Consequently, σm0( y− ỹ(x))2 = 0
and

1√
m
‖ y − ỹ(x)‖[m0] = 1√

m
‖ y − ỹ(x)‖2 ≤ 2

√
β = 2

(
c0t√

log(e/β)

)1/2 ≤ Δt,

where the last inequality holds for c0 ≤ 1
4 . Theorem 2 now implies the claim of

Corollary 2.
Step 3. Let x ∈ X and consider the orthogonal decomposition of the standard
Gaussian random vector a along x:

a = 〈a, x̄〉x̄ + Px⊥(a),

where x̄:= x
‖x‖2 and Px⊥:=P{x}⊥ . Since sign(〈a, x〉) is centered and 〈a, x̄〉 ∼

N(0, 1) is independent of Px⊥(a), we have that

E[ỹ(x)a] = E[sign(〈a, x〉)(〈a, x̄〉x̄ + Px⊥(a))]
= E[|〈a, x̄〉|] · x̄ + E[sign(〈a, x〉)] · E[Px⊥(a)] =

√
2
π
· x̄ = T x,

which implies that ρ(x) = 0.
Step 4.Using the shortcut x̄:= x

‖x‖2 again, we approximate the observation variable
ỹ(x) = sign(〈a, x〉) by ỹt (x):=ψt (〈a, x̄〉) for t ∈ (0, 1] and x ∈ X where

ψt (s):=
{

128
t · s, |s| ≤ t

128 ,

sign(s), otherwise,
s ∈ R.
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See also Fig. 2 for an illustration. Since ỹ(x) = sign(〈a, x̄〉), the absolute value
of the approximation error then takes the form

εt (x) = |sign(〈a, x̄〉)− ψt (〈a, x̄〉)| · χ[0,t◦](|〈a, x̄〉|),

where we have used t◦:= t
128 for the sake of notational convenience. We now show

that for this choice of approximation, the conditions of Assumption 2 are indeed
fulfilled with (8.1):
On Assumption 2(a). Let x ∈ X , z ∈ S

p−1, and consider the orthogonal decom-
position

z = 〈z, x̄〉x̄ + Px⊥(z).

This implies

E[εt (x) · |〈a, z〉|] ≤ E[χ[0,t◦](|〈a, x̄〉|) · |〈a, z〉|]
≤ |〈z, x̄〉| · E[χ[0,t◦](|〈a, x̄〉|) · |〈a, x̄〉|]
+ E[χ[0,t◦](|〈a, x̄〉|) · |〈a, Px⊥(z)〉|].

Clearly, |〈z, x̄〉| ≤ 1 and E[χ[0,t◦](|〈a, x̄〉|) · |〈a, x̄〉|] ≤ t◦. Since the random
variables 〈a, x̄〉 and 〈a, Px⊥(z)〉 are independent, and 〈a, x̄〉 is standard Gaussian,
we obtain

E[χ[0,t◦](|〈a, x̄〉|) · |〈a, Px⊥(z)〉|] = P(|〈a, x̄〉| ≤ t◦) · E[|〈a, Px⊥(z)〉|]
≤ t◦ · E[|〈a, Px⊥(z)〉|].

Moreover, by Jensen’s inequality and the isotropy of a, it follows that

E[|〈a, Px⊥(z)〉|] ≤ (E[|〈a, Px⊥(z)〉|2])1/2 = ‖Px⊥(z)‖2 ≤ 1.

Putting everything together, this shows that Assumption 2(a) is satisfied.
On Assumption 2(b). Since ψt is 128

t -Lipschitz, the following holds for every

x, x′ ∈ X (with x̄′:= x′
‖x′‖2 ):

‖ξt (x)− ξt (x′)‖ψ2 ≤
√

2
π
‖〈a, x̄ − x̄′〉‖ψ2 + ‖ψt (〈a, x̄〉)− ψt (〈a, x̄′〉)‖ψ2

≤ (√ 2
π
+ 128

t

) · ‖〈a, x̄ − x̄′〉‖ψ2 � (1+ t−1) · dT (x, x′).

This implies Lt � 1+ t−1. Furthermore, observe that |ỹt (x)| ≤ 1, so that

‖ξt (x)‖ψ2 ≤
√

2
π
‖〈a, x̄〉‖ψ2 + ‖ỹt (x)‖ψ2 � 1

for every x ∈ X . This shows r � 1.
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On Assumption 2(c). We observe that the function s #→ φt (s):=|sign(s)− ψt (s)|
is 128

t -Lipschitz. Therefore, for every x, x′ ∈ X , we obtain

‖εt (x)− εt (x′)‖ψ2 ≤ 128
t · ‖〈a, x̄ − x̄′〉‖ψ2 � t−1 · dT (x, x′),

which implies L̂ t � t−1. Finally, since |εt (x)| ≤ 1 for every x ∈ X , it follows
that r̂ � 1.

��

8.2 Proofs for Sect. 4.2

Proof of Corollary 3 We follow the proof template from the beginning of Sect. 8:

Step 1a. The model setup of Corollary 3 fits into Assumption 1 as follows:

– The measurement vector a ∈ R
p is centered, isotropic, and sub-Gaussian

with ‖a‖ψ2 ≤ L . The signal set X satisfies X ⊂ RBp
2 . The output function

F : Rp × X → R takes the form F(a, x):= sign(〈a, x〉 + τ), where τ is
uniformly distributed on [−λ, λ] and independent of a. In particular, F is a
random function.

– The target function T : X → K corresponds to rescaling by a factor of λ−1,
i.e., T x:=λ−1x. In particular, we have that dT (x, x′) = λ−1‖x − x′‖2.

Step 1b. There exists an absolute constant C̃ ≥ e such that if

λ ≥ C̃ · R · L ·√log(e/t), (8.2)

the target mismatch satisfies ρ(x) ≤ t
32 for every x ∈ X .

Step 1c. There exists an approximation ỹt (x) of the observation variable ỹ(x)

such that the conditions of Assumption 2 are fulfilled with

Lt ≤ L · (1+ 64t−1), L̂ t ≤ 64Lt−1, r � RLλ−1 + 1, r̂ � 1. (8.3)

Step 2. The first and third branch of the condition (2.3) is implied by (4.4)
for a sufficiently large universal constant C ′ > 0. Since φ(β):=β

√
log(e/β)

defines a continuous and non-decreasing function on [0, 1] with φ(1) = 1 and
φ(0):=0 (by continuous extension), we may assume without loss of generality
that β

√
log(e/β) = c0L−2t ∈ (0, 1]. Now, we set

Δ2:= 1

t L2
√
log(e/β)

, m0:=�βm�, u0:=
√
2mβ log(e/β),

implying that u0 ≥
√
m0 log(em/m0) and u20 ≥ 2c0mL−2t . Combining the latter

inequality with (4.4) for C ′ sufficiently large particularly implies that u20 ≥ u2.
Furthermore, we may assume that c0 ≤ 1

4C
−1 and that (4.4) holds with C ′ ≥ 2C ,
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where C > 0 denotes the universal constant from (2.3). Then, the second branch
of the condition (2.3) is satisfied, since

CL4Δ2u20 =
CL2

t
√
log(e/β)

· 2βm log(e/β) = 2c0C · m ≤ m
2

and

CL4Δ2 · w2
t (K − λ−1X ) = CL2

t
√
log(e/β)

· w2
t (K − λ−1X )

≤ 1
2C

′ · L2t−1 · w2
t (K − λ−1X ) ≤ m

2 .

Next, we show that every y ∈ {−1, 1}m given by (4.3) with 1
2m ‖ν‖1 ≤ β also

satisfies (2.4). Since ν = y − ỹ(x) ∈ {−2, 0, 2}m and 1
2‖ y − ỹ(x)‖1 ≤ βm, it

follows that |{i ∈ [m] : yi �= ỹi (x)}| ≤ �βm�. Consequently, σm0( y− ỹ(x))2 = 0
and

1√
m
‖ y − ỹ(x)‖[m0] = 1√

m
‖ y − ỹ(x)‖2 ≤ 2

√
β = 2

(
c0t

L2
√

log(e/β)

)1/2 ≤ Δt,

where the last inequality holds for c0 ≤ 1
4 . Theorem 2 now implies the claim of

Corollary 3.
Step 3. Since a is isotropic, we have that

ρ(x) = ∥∥E[ỹ(x)a] − λ−1x
∥∥
2 ≤

∥∥E
[(
sign(〈a, x〉 + τ)− 〈a, λ−1x〉)a]∥∥2.

Therefore, it suffices to show that the following holds for all x ∈ X and z ∈ S
p−1:

E
[(
sign(〈a, x〉 + τ)− 〈a, λ−1x〉)〈a, z〉] ≤ t

32 .

The following identity explains why adding a uniformly distributed dither τ ∈
[−λ, λ] before quantization is useful:

Eτ [sign(s + τ)] = λ−1s · χ[−λ,λ](s)+ sign(s) · χR\[−λ,λ](s), s ∈ R.

In other words, for s small enough, integrating over the dithering variable τ allows
us to “smooth out” the discontinuity of the sign function. As τ and a are indepen-
dent, we can apply the above identity as follows:

E
[(
sign(〈a, x〉 + τ)− 〈a, λ−1x〉)〈a, z〉]

= EaEτ

[(
sign(〈a, x〉 + τ)− 〈a, λ−1x〉)〈a, z〉]

= E
[(

λ−1〈a, x〉 · χ[−λ,λ](〈a, x〉)
+ sign(〈a, x〉) · χR\[−λ,λ](〈a, x〉)− λ−1〈a, x〉)〈a, z〉]

= E
[(
sign(〈a, x〉)− λ−1〈a, x〉) · χR\[−λ,λ](〈a, x〉) · 〈a, z〉

]
.
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Using the Cauchy–Schwarz inequality twice, the isotropy of a, and the triangle
inequality, we now obtain

E
[(
sign(〈a, x〉)− λ−1〈a, x〉) · χR\[−λ,λ](〈a, x〉) · 〈a, z〉

]

≤
(
E

[(
sign(〈a, x〉)− λ−1〈a, x〉)2 · χR\[−λ,λ](〈a, x〉)

])1/2 · (E[〈a, z〉2])1/2

=
(
E

[(
sign(〈a, x〉)− λ−1〈a, x〉)2 · χR\[−λ,λ](〈a, x〉)

])1/2

≤ ‖ sign(〈a, x〉)− λ−1〈a, x〉‖L4 · (P(|〈a, x〉| > λ)
)1/4

≤ (
1+ λ−1‖〈a, x〉‖L4

) · (P(|〈a, x〉| > λ)
)1/4

.

Since a is sub-Gaussian with ‖a‖ψ2 ≤ L , there exist absolute constants C ′′ ≥ 1,
c′′ > 0 such that ‖〈a, x〉‖L4 ≤ C ′′ · ‖〈a, x〉‖ψ2 ≤ C ′′ · L · ‖x‖2 and P(|〈a, x〉| >
λ) ≤ 2 exp

(− c′′λ2(L‖x‖2)−2
)
. Finally, using that every x ∈ X satisfies ‖x‖2 ≤

R, we can conclude that

E
[(
sign(〈a, x〉 + τ)− 〈a, λ−1x〉)〈a, z〉] ≤ C ′′ · (1+ RLλ−1) · exp (− c′′λ2(RL)−2

)

≤ t
32 ,

where the last estimate is due to (8.2) for C̃ ≥ e large enough.
Step 4. We approximate the observation variable ỹ(x) = sign(〈a, x〉 + τ) by
ỹt (x):=ψt (〈a, x〉 + τ) for t ∈ (0, 1] and x ∈ X where

ψt (s) =
{

64
t · λ−1s, |s| ≤ t

64 · λ,

sign(s), otherwise,
s ∈ R.

The absolute value of the approximation error then takes the form

εt (x) = |sign(〈a, x〉 + τ)− ψt (〈a, x〉 + τ)| · χ[0,t◦λ](|〈a, x〉 + τ |),

where we have used t◦:= t
64 for the sake of notational convenience. We now show

that for this choice of approximation, the conditions of Assumption 2 are indeed
fulfilled with (8.3):
On Assumption 2(a). For x ∈ X and z ∈ S

p−1, we have that

E[εt (x) · |〈a, z〉|] ≤ E[χ[0,t◦λ](|〈a, x〉 + τ |) · |〈a, z〉|]
≤ Ea

[|〈a, z〉| · Eτ [χ[0,t◦λ](|〈a, x〉 + τ |)]].

Since Eτ [χ[0,t◦λ](|〈a, x〉 + τ |)] ≤ t◦, it follows that

E[εt (x) · |〈a, z〉|] ≤ t◦ · E[|〈a, z〉|] ≤ t◦ · (E[|〈a, z〉|2])1/2 = t◦,

implying the condition of Assumption 2(a).
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OnAssumption 2(b). Sinceψt is 64
tλ -Lipschitz, the following holds for every x, x′ ∈

X :

‖ξt (x)− ξt (x′)‖ψ2 ≤ λ−1‖〈a, x − x′〉‖ψ2 + ‖ψt (〈a, x〉 + τ)− ψt (〈a, x′〉 + τ)‖ψ2

≤ (
λ−1 + 64

tλ

) · ‖〈a, x − x′〉‖ψ2 ≤ λ−1 · (1+ 64
t ) · L · ‖x − x′‖2

= L · (1+ 64t−1) · dT (x, x′).

This implies Lt ≤ L · (1+ 64t−1). Furthermore, observe that |ỹt (x)| ≤ 1, so that

‖ξt (x)‖ψ2 ≤ λ−1‖〈a, x〉‖ψ2 + ‖ỹt (x)‖ψ2 � RLλ−1 + 1

for every x ∈ X . This shows r � RLλ−1 + 1.
On Assumption 2(c). We observe that the function s #→ φt (s):=|sign(s)− ψt (s)|
is 64

tλ -Lipschitz. Therefore, for every x, x′ ∈ X , we obtain

‖εt (x)− εt (x′)‖ψ2 ≤ 64
tλ · ‖〈a, x − x′〉‖ψ2 ≤ 64Lt−1 · dT (x, x′).

Hence, L̂ t ≤ 64Lt−1. Finally, since |εt (x)| ≤ 1 for every x ∈ X , it follows that
r̂ � 1.

��

8.3 Proofs for Sect. 4.3

Proof of Corollary 4 We follow the proof template from the beginning of Sect. 8:

Step 1a. The model setup of Corollary 4 fits into Assumption 1 as follows:

– The measurement vector a ∈ R
p is centered, isotropic, and sub-Gaussian

with ‖a‖ψ2 ≤ L . The signal set X is a bounded subset of Rp. The output
function F : Rp × X → R takes the form F(a, x):=qδ(〈a, x〉 + τ), where τ

is uniformly distributed on [−δ, δ] and independent of a. In particular, F is a
random function. Moreover, the observation vector of x is given by ỹ(x) =
qδ(Ax + τ ), where A ∈ R

m×p denotes the sub-Gaussian random matrix with
row vectors a1, . . . , am ∈ R

p and τ :=(τ1, . . . , τm).
– The target function T : X → K is the canonical embedding into K , i.e.,

T x:=x. In particular, we have that dT (x, x′) = ‖x − x′‖2.
Step 1b. The target mismatch ρ(x) vanishes for every x ∈ X .
Step 1c. If t ≤ 128δ, there exists an approximation ỹt (x) of the observation
variable ỹ(x) such that the conditions of Assumption 2 are fulfilled with

Lt � Lδt−1, L̂ t � Lδt−1, r � δ, r̂ � δ. (8.4)

If t > 128δ, we choose any maximal t
256 -packingXt forX (i.e., a maximal subset

of X such that ‖x − x′‖2 > t
256 for all x, x′ ∈ Xt with x �= x′) and show that for
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the trivial choice ỹt (x):=ỹ(x), the conditions of Assumption 2 are fulfilled on Xt

with

Lt � δt−1, L̂ t = 0, r � δ, r̂ = 0. (8.5)

Step2.Wefirst note that for t ≥ δ, the inequality c0L−2
√

δt/
√
max{1, log(δe/t)} ≤

t
40 holds if c0 ≤ 1

40 . Furthermore, the condition 1
m ‖ν‖0 ≤ tδ−1 is trivially fulfilled.

Consequently, it suffices to prove the statement of Corollary 4 for all those input
vectors y ∈ δZm that satisfy the condition (a) in (4.7), and all those y ∈ δZm that
satisfy condition (b) in (4.7) in the case t ≤ δ. We now distinguish between the
two cases t ≤ 128δ and t > 128δ:
The case t ≤ 128δ. From (8.4), it follows that the first and third branch of the
condition (2.3) is implied by (4.6) for a sufficiently large universal constantC ′ > 0.
For the choice Δ:=L−1

√
log L , m0:=0, and u:=u0, we observe that the second

branch of (2.3) follows from the first one. Therefore, the claim of Corollary 4
follows from Theorem 2 for all those input vectors y ∈ δZm that satisfy the
condition (a) in (4.7).
Next, let us assume that t ≤ δ and consider the choice

Δ2:= δ

4CtL4 log(δe/t)
, m0:=�mtδ−1�, u0:=

√
2mtδ−1 log(δe/t),

where C > 0 denotes the universal constant from (2.3). This implies u0 ≥√
m0 log(em/m0) as well as u20 ≥ u2 if the universal constant C ′ in (4.6) is

large enough. Furthermore, the second branch of (2.3) is satisfied: We have that
CL4Δ2u20 = m

2 , and assuming that (4.6) holds with C ′ ≥ 1
2 , it follows that

CL4Δ2 · w2
t (K − TX ) ≤ 1

4δt
−1 · w2

t (K − X ) ≤ 1
4 L

2δ2t−2 · w2
t (K − X ) ≤ m

2 .

It remains to show that every y ∈ δZm given by (4.5) such that

1√
m
‖ν‖2 ≤ c0

√
δt

L2
√

log(δe/t)
and 1

m ‖ν‖0 ≤ t
δ

also satisfies the condition (2.4). Indeed, since ν = y − ỹ(x) ∈ δZm and
‖ν‖0 ≤ mtδ−1, it follows that |{i ∈ [m] : yi �= ỹi (x)}| ≤ �mtδ−1�. Conse-
quently, σm0( y − ỹ(x))2 = 0 and

1√
m
‖ y − ỹ(x)‖[m0] = 1√

m
‖ y − ỹ(x)‖2 ≤ c0

√
δt

L2
√

log(δe/t)
≤ Δt,

where the last inequality holds for c0 > 0 sufficiently small. Theorem 2 now
implies the claim of Corollary 4 for all those input vectors y ∈ δZm that satisfy
the condition (b) in (4.7).
The case t > 128δ. Setting m0:=0, Δ:=L−1

√
log L , and u:=u0, the second

branch of (2.3) is implied by the first one. Due to (8.5), Theorem 2 applied to the
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signal set Xt now implies that there exist universal constants c1,C1 > 0 such that
if

m ≥ C1 · L2 ·
(
(log L + t−2δ2) · (w2

t (K − Xt )+ u2
)+ t−4δ2 · w2(Xt )

)
,

(8.6)

the following eventA1 occurs with probability at least 1− exp(−c1u2): For every
x′ ∈ Xt and y ∈ δZm such that 1√

m
‖ y− qδ(Ax′ + τ )‖2 ≤ t

20 , every minimizer ẑ

of (PK , y) satisfies ‖ ẑ − x′‖2 ≤ t .
Moreover, according to Theorem 6, there exists a universal constant C2 > 0 such
that if

m ≥ C2 · L2 log L · (w2
t (X − X )+ u2

)
, (8.7)

the following event A2 occurs with probability at least 1− 3 exp(−u2):

sup
x∈X , x′∈Xt

‖x−x′‖2≤ t
256

∥∥ 1√
m
A(x − x′)

∥∥
2 ≤ t

128 .

We claim that Corollary 4 holds on the intersection of the eventsA1 andA2. To this
end, let x ∈ X be arbitrary and assume that y ∈ δZm satisfies 1√

m
‖ y − qδ(Ax +

τ )‖2 ≤ t
40 . Since Xt is a maximal t

256 -packing for X , there exists x′ ∈ Xt with
‖x − x′‖2 ≤ t

256 (otherwise Xt would not be maximal). On the event A2 and by
the triangle inequality, we obtain

1√
m

∥∥ y − qδ(Ax′ + τ )
∥∥
2 ≤ 1√

m

∥∥ y − qδ(Ax + τ )
∥∥
2

+ 1√
m

∥∥qδ(Ax + τ )− qδ(Ax′ + τ )
∥∥
2

≤ t
40 + 1√

m

∥∥(Ax + τ )− (Ax′ + τ )
∥∥
2

+ 1√
m

∥∥qδ(Ax + τ )− (Ax + τ )
∥∥
2

+ 1√
m

∥∥qδ(Ax′ + τ )− (Ax′ + τ )
∥∥
2

≤ t
40 + t

128 + 2δ ≤ t
20 .

On the eventA1, everyminimizer ẑ of (PK , y) satisfies ‖ ẑ−x′‖2 ≤ t , and therefore

‖ ẑ − x‖2 ≤ ‖ ẑ − x′‖2 + ‖x′ − x‖2 ≤ t + t
256 ≤ 2t .

Finally, for C ′ > 0 sufficiently large, we conclude that the condition (4.6) implies
both (8.6) and (8.7). Hence, the events A1 and A2 occur jointly with probability
at least 1− exp(−cu2), provided that c > 0 is chosen small enough.
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Step 3. Let x ∈ X . Since a is isotropic, we have that

ρ(x) = ∥∥E[ỹ(x)a] − x
∥∥
2 ≤

∥∥E
[(
qδ(〈a, x〉 + τ)− 〈a, x〉)a]∥∥2,

so that it suffices to show that

E
[(
qδ(〈a, x〉 + τ)− 〈a, x〉)〈a, z〉] = 0 for all z ∈ S

p−1.

It is straightforward to check that

E[qδ(s + τ)] = s for all s ∈ R. (8.8)

In other words, integrating over the dithering variable τ allows us to “eliminate”
the quantizer. For the sake of completeness, we show the identity (8.8) for s =
k · (2δ)+ s′ where k ∈ Z and s′ ∈ [0, δ]; the case s = k · (2δ)+ s′ where k ∈ Z

and s′ ∈ (δ, 2δ) can be treated analogously. First, observe that

qδ(s + τ) = (2� s+τ
2δ � − 1)δ = (2�k + s′+τ

2δ � − 1)δ.

Since s′+τ
2δ ∈ [− 1

2 , 1], it follows that qδ(s+ τ) ∈ {(2k− 1)δ, (2k+ 1)δ} and more
precisely,

τ ∈ [−δ − s′,−s′] ⇒ qδ(s + τ) = (2k − 1)δ,

τ ∈ (−s′, 2δ − s′] ⇒ qδ(s + τ) = (2k + 1)δ.

Therefore, we obtain

E[qδ(s + τ)] = P(τ ∈ [−δ − s′,−s′]) · (2k − 1)δ

+ P(τ ∈ (−s′, 2δ − s′]) · (2k + 1)δ

= P(τ ∈ [−δ,−s′]) · (2k − 1)δ + P(τ ∈ (−s′, δ]) · (2k + 1)δ

= (−s′+δ
2δ

) · (2k − 1)δ + (
δ+s′
2δ

) · (2k + 1)δ

= s′
2 + 1

2 (2k − 1)δ + s′
2 + 1

2 (2k + 1)δ = 2kδ + s′ = s.

Since τ and a are independent, we can apply (8.8) as follows:

E
[(
qδ(〈a, x〉 + τ)− 〈a, x〉)〈a, z〉] = EaEτ

[(
qδ(〈a, x〉 + τ)− 〈a, x〉)〈a, z〉]

= E
[(〈a, x〉 − 〈a, x〉)〈a, z〉] = 0.

Step 4.Before distinguishing between the cases t ≤ 128δ and t > 128δ according
to Step 1b, let us analyze the action of the quantizer qδ in more detail. To this
end, we partition the real axis R into half-open intervals Ik of length 2δ given by
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Ik :=(ek−1, ek] for k ∈ Zwith ek :=k ·2δ. Then, qδ maps every point in the interval
Ik to its center point:

qδ(s) = ek−1 + ek
2

, s ∈ Ik .

In particular, qδ(s) is discontinuous exactly at the points {ek : k ∈ Z}. The basic
idea is now to approximate the quantizer qδ by a Lipschitz continuous function by
“cutting out” intervals of a certain radius t◦ > 0 around each point ek and inserting
a straight line that connects both quantization values. Assuming that t◦ ≤ δ, the
resulting function takes the form

ψt◦(s):=
{

δ
t◦ · s + ek(1− δ

t◦ ), if ∃k ∈ Z : s ∈ Ek,t◦ ,
qδ(s), otherwise,

s ∈ R,

where Ek,t◦ :=[ek − t◦, ek + t◦]; note that if t◦ = δ, then ψt◦ is just the identity
function. We also define

φt◦(s):=|qδ(s)− ψt◦(s)|, s ∈ R.

Let us now show that ψt◦ and φt◦ are both δ
t◦ -Lipschitz.

Since qδ is locally constant onR\{ek : k ∈ Z} and s #→ δ
t◦ ·s+ek(1− δ

t◦ ) is clearly
δ
t◦ -Lipschitz, it is sufficient to show thatψt◦ is continuous, i.e., δ

t◦ ·s+ek(1− δ
t◦ ) =

qδ(s) for s ∈ R with |s − ek | = t◦ for some k ∈ Z. If s = ek − t◦, then
δ
t◦ · s + ek(1− δ

t◦ ) = ek − δ, and we also have that

qδ(s) =
(
2
⌈ k·(2δ)−t◦

2δ

⌉− 1
)
δ = (2�k − t◦

2δ � − 1)δ.

Since t◦ ∈ (0, δ], it follows that �k− t◦
2δ � = k, and therefore, qδ(s) = (2k−1)δ =

ek − δ. The case s = ek + t◦ works analogously. Thus, ψt◦ is indeed δ
t◦ -Lipschitz.

For φt◦ , it is clearly sufficient to show δ
t◦ -Lipschitz continuity on Ek,t◦ for every

k ∈ Z. In the case s ∈ [ek − t◦, ek], we observe that qδ(s) = ek − δ and δ
t◦ · s +

ek(1− δ
t◦ ) ≥ ek − δ, implying that

φt◦(s) = δ
t◦ · s + ek(1− δ

t◦ )− (ek − δ) = δ − δ
t◦ (ek − s).

Thus, φt◦ is δ
t◦ -Lipschitz continuous on [ek − t◦, ek]. On the other hand, if s ∈

(ek, ek+ t◦], we have that qδ(s) = ek+δ and ek+δ ≥ δ
t◦ ·s+ek(1− δ

t◦ ), implying
that

φt◦(s) = ek + δ − (
δ
t◦ · s + ek(1− δ

t◦ )
) = δ − δ

t◦ (s − ek).

Thus, φt◦ is δ
t◦ -Lipschitz continuous on (ek, ek + t◦]. Moreover, lims→ek φt◦(s) =

δ = φt◦(ek), which shows that φt◦ is indeed δ
t◦ -Lipschitz continuous on Ek,t◦ . Note
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that the above calculations also allow us to write

φt◦(s) =
{

δ − δ
t◦ |s − ek |, if ∃k ∈ Z : s ∈ [ek − t◦, ek + t◦],

0, otherwise,
s ∈ R.

In particular, we have that 0 ≤ φt◦(s) ≤ δ · χEt◦ (s), where Et◦ := ∪k∈Z Ek,t◦ .
We now distinguish between the two cases t ≤ 128δ and t > 128δ:
The case t ≤ 128δ. Using the above notation, we choose t◦:= t

128 and approximate
ỹ(x) = qδ(〈a, x〉 + τ) by ỹt (x):=ψt◦(〈a, x〉 + τ). The absolute value of the
approximation error is then given by εt (x) = φt◦(〈a, x〉 + τ). We now show
that for this choice of approximation, the conditions of Assumption 2 are indeed
fulfilled with (8.4):
OnAssumption 2(a).We first observe that the indicator functionχEt◦ is 2δ-periodic
on R. Since the random variable s + τ is uniformly distributed on [s − δ, s + δ]
for every s ∈ R, this implies

Eτ [χEt◦ (s + τ)] = Eτ [χEt◦ (τ )] = Eτ [χE0,t◦ (τ )] = Eτ [χ[−t◦,t◦](τ )] = t◦δ−1.(8.9)

Now, let x ∈ X and z ∈ S
p−1. Using the independence of a and τ in conjunction

with the inequality (8.9), we obtain

E[εt (x) · |〈a, z〉|] = E[φt◦(〈a, x〉 + τ) · |〈a, z〉|]
≤ δ · E[χEt◦ (〈a, x〉 + τ) · |〈a, z〉|]
≤ δ · Ea

[|〈a, z〉| · Eτ [χEt◦ (〈a, x〉 + τ)]]
≤ t◦ · E[|〈a, z〉|] ≤ t

64 · E[|〈a, z〉|].

From Jensen’s inequality and the isotropy of a, it follows that

E[|〈a, z〉|] ≤ (E[|〈a, z〉|2])1/2 = ‖z‖2 = 1,

which shows that Assumption 2(a) is satisfied.
On Assumption 2(b). Since ψt◦ is δ

t◦ -Lipschitz, the following holds for every
x, x′ ∈ X :

‖ξt (x)− ξt (x′)‖ψ2 ≤ ‖〈a, x − x′〉‖ψ2 + ‖ψt◦(〈a, x〉 + τ)− ψt◦(〈a, x′〉 + τ)‖ψ2

≤ (1+ δ
t◦ ) · ‖〈a, x − x′〉‖ψ2 ≤ (1+ δ

t◦ ) · L · ‖x − x′‖2
= L · (1+ 128δ

t ) · dT (x, x′).

This implies Lt � Lδt−1. Furthermore, we clearly have that sups∈R|s − ψt◦(s +
τ)| � δ, and therefore

‖ξt (x)‖ψ2 = ‖〈a, x〉 − ψt◦(〈a, x〉 + τ)‖ψ2 � δ

for every x ∈ X . This shows r � δ.
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OnAssumption 2(c). Sinceφt◦ is δ
t◦ -Lipschitz, the following holds for every x, x′ ∈

X :

‖εt (x)− εt (x′)‖ψ2 = ‖φt◦(〈a, x〉 + τ)− φt◦(〈a, x′〉 + τ)‖ψ2

≤ δ
t◦ ‖〈a, x − x′〉‖ψ2 ≤ L · 128δt · dT (x, x′),

and therefore, L̂ t � Lδt−1. Finally, since 0 ≤ φt◦(s) ≤ δ for every s ∈ R, it
follows that r̂ � δ.
The case t > 128δ. LetXt ⊂ X be any maximal t

256 -packing forX . We show that
for the choice ỹt (x):=ỹ(x), the conditions of Assumption 2 are fulfilled onXt with
(8.5). Since εt (x) = 0 for all x ∈ Xt , Assumption 2(a) and (c) are trivially fulfilled
with L̂ t = r̂ = 0. Furthermore, observing that ξt (x) = 〈a, x〉 − qδ(〈a, x〉 + τ)

and sups∈R|s−qδ(s+τ)| ≤ 2δ, we conclude that supx∈Xt
‖ξt (x)‖ψ2 � δ. Finally,

using that ‖x − x′‖2 > t
256 for all x, x′ ∈ Xt with x �= x′, we can bound the

sub-Gaussian norm of the multiplier increments as follows:

‖ξt (x)− ξt (x′)‖ψ2 ≤ ‖ξt (x)‖ψ2 + ‖ξt (x′)‖ψ2 � δ < 256δ
t ‖x − x′‖2

= 256δ
t · dT (x, x′).

This shows that Assumption 2(b) is satisfied on Xt with Lt � δt−1 and r � δ.

��

8.4 Proofs for Sect. 4.4

Proof of Theorem 1 We follow the proof template from the beginning of Sect. 8:

Step 1a. The model setup of Theorem 1 fits into Assumption 1 as follows:

– We have that a ∼ N(0, I p) and therefore ‖a‖ψ2 � 1. The signal set X is an
arbitrary subset of Sp−1. The output function F : Rp×X → R takes the form
F(a, x):= f (〈a, x〉).

– The target function T : X → K corresponds to rescaling by a factor of
μ = E[ f (g)g] with g ∼ N(0, 1), i.e., T x:=μx. In particular, we have that
dT (x, x′) = μ‖x − x′‖2.

Step 1b. The target mismatch ρ(x) vanishes for every x ∈ X .
Step 1c. Let g ∼ N(0, 1). For the trivial choice ỹt (x):=ỹ(x), the conditions of
Assumption 2 are fulfilled with

Lt � 1+ γμ−1, L̂ t = 0, r = ‖ f (g)− μg‖ψ2 , r̂ = 0.

Step 2. Settingm0:=0,Δ:=1, and u0:=u, the claim of Theorem 1 follows directly
from Theorem 2.
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Step 3. Let x ∈ X ⊂ S
p−1 and consider the orthogonal decomposition of the

standard Gaussian random vector a along x:

a = 〈a, x〉x + Px⊥(a),

where Px⊥:=P{x}⊥ . Since Px⊥(a) is centered and 〈a, x〉 ∼ N(0, 1) is independent
of Px⊥(a), we have that

E[ỹ(x)a] = E[ f (〈a, x〉)(〈a, x〉x + Px⊥(a))]
= μx + E[ f (〈a, x〉)] · E[Px⊥(a)] = μx = T x,

which implies that ρ(x) = 0.
Step 4. We simply set ỹt (x):=ỹ(x). Then, εt (x) = 0, implying that Assump-
tion 2(a) and (c) are trivially fulfilled with L̂ t = r̂ = 0. Furthermore, the following
holds for every x, x′ ∈ X :

‖ξt (x)− ξt (x′)‖ψ2 ≤ μ‖〈a, x − x′〉‖ψ2 + ‖ f (〈a, x〉)− f (〈a, x′〉)‖ψ2

� μ‖x − x′‖2 + γ ‖〈a, x − x′〉‖ψ2

� (μ+ γ ) · ‖x − x′‖2 = (1+ γμ−1) · dT (x, x′).

This implies Lt � 1 + γμ−1. Since 〈a, x〉 ∼ N(0, 1) for every x ∈ X ⊂ S
p−1,

we can also conclude that

‖ξt (x)‖ψ2 = ‖μ〈a, x〉 − f (〈a, x〉)‖ψ2 = ‖ f (g)− μg‖ψ2 , g ∼ N(0, 1),

which shows that r :=‖ f (g) − μg‖ψ2 is a valid choice. Hence, Assumption 2(b)
is satisfied as well.

��
Proof of Corollary 5 We follow the proof template from the beginning of Sect. 8:

Step 1a. The model setup of Corollary 5 fits into Assumption 1 as follows:

– We have that a ∼ N(0, I p) and therefore ‖a‖ψ2 � 1. The signal set X is an
arbitrary subset of Sp−1. The output function F : Rp×X → R takes the form
F(a, x):=mλ(〈a, x〉).

– The target function T : X → K corresponds to rescaling by a factor of
μλ = E[mλ(g)g] with g ∼ N(0, 1), i.e., T x:=μλx. In particular, we have
that dT (x, x′) = μλ‖x − x′‖2.

Step 1b. The target mismatch ρ(x) vanishes for every x ∈ X .
Step 1c. There exists an approximation ỹt (x) of the observation variable ỹ(x)

such that the conditions of Assumption 2 are fulfilled with

Lt � λ
t , L̂ t � λ

t , r � 1, r̂ � 1. (8.10)
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Step 2.Webegin by showing that if λ ≥ C for a sufficiently large absolute constant
C > 0, then μλ ≥ 1

2 . Indeed, for g ∼ N(0, 1), we have that

μλ = E[mλ(g)g] = E[χ[−λ,λ)(g)g
2] + E[χR\[−λ,λ)(g)mλ(g)g]

≥ E[χ[−λ,λ)(g)g
2] − E[χR\[−λ,λ)(g)g

2]
= E[g2] − 2E[χR\[−λ,λ)(g)g

2]
= 1− 2E[χR\[−λ,λ)(g)g

2].

The claim now follows by observing that E[g2] < ∞, which implies
limλ→∞ E[χR\[−λ,λ)(g)g2] = 0. Moreover,

μλ = E[χ[−λ,λ)(g)g
2] + E[χR\[−λ,λ)(g)mλ(g)g]

≤ E[χ[−λ,λ)(g)g
2] + E[χR\[−λ,λ)(g)λ|g|] ≤ E[g2] = 1.

Setting m0:=0, Δ:=1, and u0:=u, the claim of Corollary 5 follows directly from
Theorem 2.
Step 3. Let x ∈ X ⊂ S

p−1 and consider the orthogonal decomposition of the
standard Gaussian random vector a along x:

a = 〈a, x〉x + Px⊥(a),

where Px⊥:=P{x}⊥ . Since Px⊥(a) is centered and 〈a, x〉 ∼ N(0, 1) is independent
of Px⊥(a), we have that

E[ỹ(x)a] = E[mλ(〈a, x〉)(〈a, x〉x + Px⊥(a))]
= μλx + E[mλ(〈a, x〉)] · E[Px⊥(a)] = μλx = T x,

which implies that ρ(x) = 0.
Step 4.
Let t ∈ (0, λ). We define the half-open intervals Ik,t :=[kλ− (λ− t), kλ+ (λ− t))
for k ∈ Z even and Ik,t :=[kλ− t, kλ+ t) for k ∈ Z odd. Moreover, we set

Ieven,t :=
⋃

k∈Z
k even

Ik,t , Iodd,t :=
⋃

k∈Z
k odd

Ik,t

and observe that the intervals Ik,t , k ∈ Z, form a partition of R. Finally, we
introduce the functions

gt (s):= −
(

λ−t
t

) · s, s ∈ R,

and

ψt (s):=
{
mλ(s), s ∈ Ik,t , k even,

gt (s − kλ), s ∈ Ik,t , k odd,
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and

φt (s):=|mλ(s)− ψt (s)|, s ∈ R.

Let us show that bothψt and φt are λ
t -Lipschitz continuous.We begin by verifying

that ψt is continuous. Clearly, ψt is continuous on Ik,t for every odd integer
k. Let k be an even integer. Then, s ∈ Ik,t = [kλ − (λ − t), kλ + (λ − t)),
which implies

⌊ s+λ
2λ

⌋ = k
2 . Therefore, mλ(s) = s − kλ if s ∈ Ik,t for k an even

integer. This shows that ψt is continuous on every interval Ik,t . Let us now write
Ik,t = [uk, vk) for k ∈ Z. To show that ψt is continuous, it remains to check that
lims↑vk ψt (s) = ψt (uk+1) for every k ∈ Z. For k even, we have that

lim
s↑vk

ψt (s) = lim
s↑vk

mλ(s) = lim
s↑vk

s − kλ = vk − kλ = λ− t .

Furthermore, it holds that uk+1 = (k + 1)λ− t ∈ Ik+1,t , which implies

ψt (uk+1) = gt (uk+1 − (k + 1)λ) = gt (−t) = λ− t .

On the other hand, for k odd, we have that

lim
s↑vk

ψt (s) = lim
s↑vk

gt (s − kλ) = lim
s↑vk

−(
λ−t
t

)
(s − kλ) = −(

λ−t
t

)
(vk − kλ) = −(λ− t).

Furthermore, it holds that uk+1 = kλ+ t ∈ Ik+1,t , which implies

ψt (uk+1) = mλ(uk+1) = uk+1 − (k + 1)λ = −(λ− t).

This shows that ψt is continuous. Since ψt is continuous and piecewise linear, it
is max{1, λ−t

t }-Lipschitz. Therefore, ψt is also λ
t -Lipschitz.

Next, we show that φt is λ
t -Lipschitz as well. First note that

φt (s) = |mλ(s)− ψt (s)| · χIodd,t (s), s ∈ R.

Let s ∈ Ik,t = [kλ− t, kλ+ t) for k an odd integer. Let us show that

|mλ(s)− ψt (s)| = λ− λ
t |kλ− s|.

To this end, we distinguish the cases s ∈ [kλ− t, kλ) and s ∈ [kλ, kλ+ t). First,
let s ∈ [kλ− t, kλ). It follows

⌊ s+λ
2λ

⌋ = k−1
2 , which impliesmλ(s) = s − kλ+ λ.

Furthermore, gt (s−kλ) = s−kλ+ λ
t (kλ− s). It follows thatmλ(s) ≥ gt (s−kλ)

and

|mλ(s)− ψt (s)| = mλ(s)− gt (s − kλ) = λ− λ
t |kλ− s|.
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The case s ∈ [kλ, kλ+ t) can be treated analogously. All together, this shows that
for any s ∈ R, we have that

φt (s) =
∑

k∈Z
k odd

χIk,t (s) · (λ− λ
t |kλ− s|).

In particular, φt is λ
t -Lipschitz.

We approximate the observation variable ỹ(x) = mλ(〈a, x〉) by ỹt (x) =
ψt◦(〈a, x〉) for t◦:= t

56·64 . Observe that t
◦ < λ

2 . Let us show that the conditions of
Assumption 2 are indeed fulfilled with (8.10):
On Assumption 2(a). Let x ∈ X and z ∈ S

p−1, and consider the orthogonal
decomposition

z = 〈z, x〉x + Px⊥(z).

This implies

E[εt (x) · |〈a, z〉|] ≤ |〈z, x〉| · E[εt (x) · |〈a, x〉|] + E[εt (x) · |〈a, Px⊥(z)〉|].

Clearly, |〈z, x〉| ≤ 1 and εt (x) = φt◦(〈a, x〉) ≤ λ ·χIodd,t◦ (〈a, x〉), which implies

E[εt (x) · |〈a, z〉|] ≤ λ · E[χIodd,t◦ (〈a, x〉) · |〈a, x〉|]︸ ︷︷ ︸
=:S1

+ λ · E[χIodd,t◦ (〈a, x〉) · |〈a, Px⊥(z)〉|]
︸ ︷︷ ︸

=:S2

.

Let us estimate S1 and S2 separately, starting with S2. Since 〈a, x〉 and 〈a, Px⊥(z)〉
are independent, we observe that

E[χIodd,t◦ (〈a, x〉) · |〈a, Px⊥(z)〉|] = E[χIodd,t◦ (〈a, x〉)] · E[|〈a, Px⊥(z)〉|].

Using Jensen’s inequality, we obtain

E[|〈a, Px⊥(z)〉|] ≤
(
E[|〈a, Px⊥(z)〉|2]

)1/2 = ‖Px⊥(z)‖2 ≤ ‖z‖2 = 1.

Therefore, it follows that S2 ≤ λ · P(〈a, x〉 ∈ Iodd,t◦). Since 〈a, x〉 ∼ N(0, 1), it
holds that

1
2P(〈a, x〉 ∈ Iodd,t◦) = 1√

2π

∑

k∈N
k odd

∫ kλ+t◦

kλ−t◦
e−x2/2 dx ≤ 2t◦√

2π

∑

k∈N
k odd

e−(kλ−t◦)2/2.
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For every k ∈ N,

2λe−((k+2)λ−t◦)2/2 ≤
∫ (k+2)λ−t◦

kλ−t◦
e−x2/2 dx .

Therefore,

∑

k∈N
k odd

e−(kλ−t◦)2/2 = e−(λ−t◦)2/2 +
∑

k∈N
k odd

e−((k+2)λ−t◦)2/2

≤ 1
λ−t◦

∫ λ−t◦

0
e−x2/2 dx + 1

2λ

∑

k∈N
k odd

∫ (k+2)λ−t◦

kλ−t◦
e−x2/2 dx

≤ 1
λ−t◦

∫ ∞

0
e−x2/2 dx .

Using the identity 1√
2π

∫∞
0 e−x2/2 dx = 1

2 , we obtain

S2 ≤ 2t◦λ
λ−t◦ ≤ 4t◦,

where the last inequality follows from t◦ < λ
2 .

Let us now estimate S1. Since 〈a, x〉 ∼ N(0, 1), we have that

E[χIodd,t◦ (〈a, x〉) · |〈a, x〉|] = 1√
2π

∑

k∈N
k odd

∫ kλ+t◦

kλ−t◦
xe−x2/2 dx .

It holds that

∑

k∈N
k odd

∫ kλ+t◦

kλ−t◦
xe−x2/2 dx

≤ 2t◦
∑

k∈N
k odd

(kλ+ t◦)e−(kλ−t◦)2/2

= 2t◦
(
(λ+ t◦) · e−(λ−t◦)2/2 +

∑

k∈N
k odd

((k + 2)λ+ t◦)e−((k+2)λ−t◦)2/2 dx
)

≤ 2t◦
(

1
λ−t◦

∫ λ−t◦

0
(x + λ+ t◦) · e−x2/2 dx

+ 1
2λ

∑

k∈N
k odd

∫ (k+2)λ−t◦

kλ−t◦
(x + 2λ+ 2t◦) · e−x2/2 dx

)

≤ 4t◦
λ

∫ ∞

0
(x + 3λ) · e−x2/2 dx
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= 4t◦
λ
· (1+ 3λ

√
π
2 ).

Therefore, if λ ≤ 2, then

∑

k∈N
k odd

∫ kλ+t◦

kλ−t◦
xe−x2/2 dx ≤ 4t◦

λ
· (1+ 6

√
π
2 ) ≤ 52t◦

λ
.

If λ > 2, then λ− t◦ > 1. Since the function x #→ x exp(−x2/2) is monotonically
decreasing for x ∈ [1,∞), we obtain

∑

k∈N
k odd

∫ kλ+t◦

kλ−t◦
xe−x2/2 dx

≤ 2t◦ ·
∑

k∈N
k odd

(kλ− t◦) · e−(kλ−t◦)2/2

= 2t◦ ·
(
(λ− t◦) · exp(−(λ− t◦)2/2)+

∑

k∈N
k odd

((k + 2)λ− t◦) · e−((k+2)λ−t◦)2/2).

Since λ− t◦ > 1, it follows (λ− t◦) · exp(−(λ− t◦)2/2) ≤ 1
λ−t◦ . Furthermore,

∑

k∈N
k odd

((k + 2)λ− t◦) · e−((k+2)λ−t◦)2/2 ≤ 1
2λ

∑

k∈N
k odd

∫ (k+2)λ−t◦

kλ−t◦
xe−x2/2 dx ≤ 1

2λ .

Therefore, if λ > 2, then

∑

k∈N
k odd

∫ kλ+t◦

kλ−t◦
xe−x2/2 dx ≤ 8t◦

λ
.

This shows S1 ≤ 52t◦. Putting everything together, we obtain

E[εt (x) · |〈a, z〉|] ≤ S1 + S2 ≤ 56t◦ = t
64 ,

which implies that Assumption 2(a) is satisfied.
On Assumption 2(b). For x, x′ ∈ X , we have that

‖ξt (x)− ξt (x′)‖ψ2 ≤ μλ · ‖〈a, x − x′〉‖ψ2 + ‖ψt◦(〈a, x〉)− ψt◦(〈a, x′〉)‖ψ2

� μλ · ‖x − x′‖2 + λ
t◦ · ‖x − x′‖2,
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where we have used that ψt◦ is λ
t◦ -Lipschitz. Since μλ ≥ 1

2 , t ≤ λ, and t◦ = t
56·64 ,

it follows that

‖ξt (x)− ξt (x′)‖ψ2 � λ
t · dT (x, x′).

Let x ∈ X ⊂ S
p−1. Since μλ ≤ 1 and |ψt◦(s)| ≤ |s| for all s ∈ R, we observe

that

‖ξt (x)‖ψ2 ≤ μλ · ‖〈a, x〉‖ψ2 + ‖ψt◦(〈a, x〉)‖ψ2 � 1.

Therefore, Assumption 2(b) is satisfied with Lt � λ
t and r � 1.

On Assumption 2(c). For x, x′ ∈ X ,

‖εt (x)− εt (x′)‖ψ2 = ‖φt◦(〈a, x〉)− φt◦(〈a, x′〉)‖ψ2 � λ
t◦ · ‖x − x′‖2,

where we have used that φt◦ is λ
t◦ -Lipschitz. Since μλ ≥ 1

2 and t◦ = t
56·64 , it

follows that

‖εt (x)− εt (x′)‖ψ2 � λ
t · dT (x, x′).

Let x ∈ X ⊂ S
p−1. Since |φt◦(s)| ≤ |s| for all s ∈ R, we observe that

‖εt (x)‖ψ2 = ‖φt◦(〈a, x〉)‖ψ2 � 1.

Therefore, Assumption 2(c) is satisfied with L̂ t � λ
t and r̂ � 1.

��
Proof of Corollary 6 We follow the proof template from the beginning of Sect. 8:

Step 1a. The model setup of Corollary 6 fits into Assumption 1 as follows:

– The measurement vector a ∈ R
p is centered, isotropic, and it has independent,

symmetric, and sub-Gaussian coordinates with max j∈[p] ‖a j‖ψ2 ≤ L; in par-
ticular, we have that ‖a‖ψ2 � L (e.g., see [64, Lem. 3.4.2]). The signal set
X is a subset of RBp

2 . The output function F : Rp × X → R takes the form
F(a, x):= f (a ◦ x), where f : Rp → R is given by f (z):=∑p

j=1 f j (z j ),
with f j : R → R odd, γ -Lipschitz, and satisfying the conditions (4.10) and
(4.11).

– The target function T : X → R
p is defined by T x:=E[ f (a ◦ x)a].

Step 1b. The target mismatch ρ(x) vanishes for every x ∈ X .
Step 1c. For the trivial choice ỹt (x):=ỹ(x), the conditions of Assumption 2 are
fulfilled with

Lt � L · γ
α
, L̂ t = 0, r � L(β2 + γ )R, r̂ = 0.
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Step 2. We begin by showing that

(T x) j = E[ f j (a j x j )a j ], for all j ∈ [p],

where a j is the j-th coordinate of the measurement vector a ∈ R
p. Indeed, we

have that

(T x) j = (E[ f (a ◦ x)a]) j = E[ f (a ◦ x)a j ]

=
p∑

j ′=1
E[ f j ′(a j ′x j ′)a j ] = E[ f j (a j x j )a j ],

where for the last equality we have used the independence of the random variables
a1, . . . , ap and E[a j ] = 0.
Next, let us show that (T x) j ∈ [β1x j , β2x j ] for x j ≥ 0 and (T x) j ∈
[β2x j , β1x j ] for x j < 0. Let us first assume that x j ≥ 0. Then, clearly
E[ f j (a j x j )a jχ[0,∞)(a j )] ≤ β2x jE[a2jχ[0,∞)(a j )]. Furthermore,

E[ f j (a j x j )a jχ(−∞,0)(a j )] = E[ f j (−a j x j )(−a j )χ(−∞,0)(a j )]
≤ β2x jE[a2jχ(−∞,0)(a j )],

where we have used that f j is an odd function for the first equality. Therefore,

E[ f j (a j x j )a j ] = E[ f j (a j x j )a jχ[0,∞)(a j )] + E[ f j (a j x j )a jχ(−∞,0)(a j )]
≤ β2x jE[a2j ] = β2x j ,

where E[a2j ] = 1 follows from the assumption that a is isotropic. Similarly, we
observe that

E[ f j (a j x j )a jχ[0,∞)(a j )] ≥ β1x jE[a2jχ[0,∞)(a j )]

and

E[ f j (a j x j )a jχ(−∞,0)(a j )] = E[ f j (−a j x j )(−a j )χ(−∞,0)(a j )]
≥ β1x jE[a2jχ(−∞,0)(a j )],

which implies

E[ f j (a j x j )a j ] ≥ β1x jE[a2j ] = β1x j .

This shows thatβ1x j ≤ (T x) j ≤ β2x j for x j ≥ 0.Analogously, one can show that
β2x j ≤ (T x) j ≤ β1x j for x j < 0. Therefore, |(T x) j | ≤ β2|x j |, which implies
‖T x‖2 ≤ β2‖x‖2 for every x ∈ X . As a consequence, it holds that TX ⊂ β2RB

p
2 .

Setting m0:=0, Δ:=1, and u0:=u, the claim of Corollary 6 follows directly from
Theorem 2.
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Step 3.
By definition of the target function it follows that ρ(x) = 0 for every x ∈ X .
Step 4. We simply set ỹt (x):=ỹ(x). Then, εt (x) = 0, implying that Assump-
tion 2(a) and (c) are trivially fulfilled with L̂ t = r̂ = 0. Since ξt (x) =
〈a, T x〉 − f (a ◦ x), the following holds for every x, x′ ∈ X :

‖ξt (x)− ξt (x′)‖ψ2 ≤ ‖〈a, T x − T x′〉‖ψ2 + ‖ f (a ◦ x)− f (a ◦ x′)‖ψ2 .

Clearly, we have that ‖〈a, T x − T x′〉‖ψ2 � L · dT (x, x′) and

‖ f (a ◦ x)− f (a ◦ x′)‖ψ2 = ‖
p∑

j=1
f j (a j x j )− f j (a j x

′
j )‖ψ2 .

Let j ∈ [p]. Using that f j is γ -Lipschitz, we obtain

‖ f j (a j x j )− f j (a j x
′
j )‖ψ2 � γ · ‖a j x j − a j x

′
j‖ψ2 ≤ L · γ · |x j − x ′j |.

Furthermore, since a j is a symmetric random variable and f j is odd, it holds
E[ f j (a j x)] = 0 for every x ∈ R. In particular, the random variable f j (a j x j ) −
f j (a j x ′j ) is centered. Since the random variables a1, . . . , ap are independent,
Hoeffding’s inequality yields

‖
p∑

j=1
f j (a j x j )− f j (a j x

′
j )‖2ψ2

�
p∑

j=1
‖ f j (a j x j )− f j (a j x

′
j )‖2ψ2

� L2 · γ 2 · ∥∥x − x′
∥∥2
2.

Therefore,

‖ξt (x)− ξt (x′)‖ψ2 � L · dT (x, x′)+ L · γ · ‖x − x′‖2.

We now show that dT (x, x′) ≥ α‖x − x′‖2. For j ∈ [p], we have that

|(T x) j − (T x′) j | = |E[( f j (a j x j )− f j (a j x
′
j ))a j ]|

= |E[( f j (a j x j )− f j (a j x
′
j ))a jχ[0,∞)(a j )]

+ E[( f j (a j x j )− f j (a j x
′
j ))a jχ(−∞,0)(a j )]|.

We may assume that x j ≥ x ′j . If a j ≥ 0, then a j x j ≥ a j x ′j , which implies
f j (a j x j )− f j (a j x ′j ) ≥ α(a j x j − a j x ′j ). Therefore, ( f j (a j x j )− f j (a j x ′j ))a j ≥
α(a j x j − a j x ′j )a j , which implies

E[( f j (a j x j )− f j (a j x
′
j ))a jχ[0,∞)(a j )] ≥ E[α(a j x j − a j x

′
j )a jχ[0,∞)(a j )]

= α(x j − x ′j )E[a2jχ[0,∞)(a j )] ≥ 0.
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If a j < 0, then a j x j ≤ a j x ′j , which implies f j (a j x ′j ) − f j (a j x j ) ≥ α(a j x ′j −
a j x j ). Therefore, f j (a j x j ) − f j (a j x ′j ) ≤ α(a j x j − a j x ′j ), which implies
( f j (a j x j )− f j (a j x ′j ))a j ≥ α(a j x j − a j x ′j )a j . This shows

E[( f j (a j x j )− f j (a j x
′
j ))a jχ(−∞,0)(a j )] ≥ E[α(a j x j − a j x

′
j )a jχ(−∞,0)(a j )]

= α(x j − x ′j )E[a2jχ(−∞,0)(a j )] ≥ 0.

It follows that |(T x) j − (T x′) j | ≥ α(x j − x ′j ) = α|x j − x ′j |, and therefore
dT (x, x′) ≥ α‖x − x′‖2. Due to this inequality, we obtain

‖ξt (x)− ξt (x′)‖ψ2 � L · dT (x, x′)+ L · γ · ‖x − x′‖2
≤ L · dT (x, x′)+ L · γ

α
· dT (x, x′)

≤ 2 · L · γ
α
· dT (x, x′),

where the last inequality follows from α ≤ γ .
Now, let x ∈ X . It holds that

‖ξt (x)‖ψ2 = ‖〈a, T x〉 − f (a ◦ x)‖ψ2 ≤ ‖〈a, T x〉‖ψ2 + ‖ f (a ◦ x)‖ψ2

� L · ‖T x‖2 + ‖ f (a ◦ x)‖ψ2 ≤ L · β2 · R + ‖ f (a ◦ x)‖ψ2 .

Since f j is γ -Lipschitz and odd for every j ∈ [p], we obtain

‖ f j (a j x j )‖ψ2 = ‖ f j (a j x j )− f j (0)‖ψ2 � γ · ‖a j x j‖ψ2 ≤ L · γ · |x j |.

Using Hoeffding’s inequality, we conclude that

‖ f (a ◦ x)‖ψ2 = ‖
p∑

j=1
f j (a j x j )‖ψ2 �

( p∑

j=1
‖ f j (a j x j )‖2ψ2

)1/2 ≤ L · γ · ‖x‖2.

Hence, Assumption 2(b) is satisfied with Lt � L · γ
α
and r � L(β2 + γ )R.

��

8.5 Proofs for Sect. 4.5

Proof of Corollary 7 We follow the proof template from the beginning of Sect. 8:

Step 1a. The model setup of Corollary 7 fits into Assumption 1 as follows:

– The measurement vector a ∈ R
p is centered, isotropic, and has independent

sub-Gaussian coordinates with max j∈[p] ‖a j‖ψ2 ≤ L; in particular, we have
that ‖a‖ψ2 � L (e.g., see [64, Lem. 3.4.2]). The signal set X is an arbitrary
subset of {S ⊂ [p] : |S| ≤ s}. The output function F : Rp × X → R takes
the form F(a,S):= f (aS), where (aS) j = a j for j ∈ S and (aS) j = 0 for
j ∈ Sc.
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– The target function T : X → K is defined by TS:=E[ f (aS)a].
Step 1b. The target mismatch ρ(S) vanishes for every S ∈ X .
Step 1c. For the trivial choice ỹt (S):=ỹ(S), the conditions of Assumption 2 are
fulfilled with

Lt ≤ L + γα−1, L̂ t = 0, r ≤ Lβ + κ, r̂ = 0.

Step 2. Setting m0:=0, Δ:=L−1
√
log L , and u:=u0, the claim of Corollary 7

follows directly from Theorem 2.
Step 3. This is clear by the definition of the target function.
Step 4. We simply set ỹt (S):=ỹ(S). Then, εt (S) = 0, implying that Assump-
tion 2(a) and (c) are trivially fulfilledwith L̂ t = r̂ = 0. To see thatAssumption 2(b)
holds as well, we first recall that the coordinates of a are centered and independent,
so that

(TS) j = E[ f (aS)a j ] = E[ f (aS)] · E[a j ] = 0 for all S ∈ X and j ∈ Sc.

Together with the lower bound in (4.14), it follows that supp(TS) = S for all
S ∈ X . Using the lower bound in (4.14) again, we obtain the following estimate
for all S,S ′ ∈ X :

dT (S,S ′) = ‖TS − TS ′‖2 ≥
( ∑

j∈S\S ′
(TS)2j +

∑

j∈S ′\S
(TS ′)2j

)1/2 ≥ α√
s

√
|S  S ′|.

Combining this with the assumption (4.15), it follows that

‖ξt (S)− ξt (S ′)‖ψ2 ≤ ‖〈a, TS − TS ′〉‖ψ2 + ‖ f (aS )− f (aS ′)‖ψ2

≤ L · dT (S,S ′)+ γα−1 · dT (S,S ′) = (L + γα−1) · dT (S,S ′).

This implies Lt ≤ L + γα−1. Since supp(TS) = S and |S| ≤ s for S ∈ X ,
we also have that |supp(TS)| ≤ s. The upper bound in (4.14) therefore yields
‖TS‖2 ≤ β for every S ∈ X . Combining this estimate with (4.15), we obtain the
following upper bound for the sub-Gaussian norm of ξt (S):

‖ξt (S)‖ψ2 = ‖〈a, TS〉 − f (aS)‖ψ2 ≤ L‖TS‖2 + ‖ f (aS)‖ψ2 ≤ Lβ + κ.

Hence, r :=Lβ + κ is a valid choice for Assumption 2(b).

��
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9 Proofs for Sect. 5

Proof of Theorem 3 LetXε be a minimal subset ofX such that TXε is a minimal ε-net
for TX ; in particular, we have that |Xε| = |TXε| = N (TX , ε). The assumptions of
(5.2) and (5.3) allow us to first apply Theorem 2 to every x′ ∈ Xε as a singleton signal
set (Assumption 2 is trivially fulfilled here), and then to take a union bound over Xε.
Consequently, there exist universal constants c,C > 0 such that the following event
A1 holds with probability at least 1 − exp(−cu2) − exp(−cu20): For every x′ ∈ Xε

with ρ(x′) ≤ t
32 and every y ∈ R

m such that

1√
m
‖ y − ỹ(x′)‖[2m0] ≤ Δt and 1√

m
σ2m0( y − ỹ(x′))2 ≤ t

20 ,

any minimizer ẑ of (PK , y) satisfies ‖ ẑ − T x′‖2 ≤ t . Note that we have applied the
robustness conditions of (2.4) for 2m0 instead of m0 here, which is possible due to
2m0 ≤ m.

Let A2 denote the event of (5.1) in Assumption 3. We now show that on the event
A1 ∩ A2, which occurs with probability at least 1 − exp(−cu2) − exp(−cu20) − η,
the conclusion of Theorem 3 holds: Let x ∈ X be fixed and consider any input vector
y ∈ R

m satisfying

1√
m
‖ y − ỹ(x)‖[2m0] ≤ 1

2Δt and 1√
m

σm0( y − ỹ(x))2 ≤ t
40 .

By the definition of Xε, there exists x′ ∈ Xε such that ‖T x − T x′‖2 ≤ ε. According
to the event A2, we conclude that

1√
m
‖ y − ỹ(x′)‖[2m0] ≤ 1√

m
‖ y − ỹ(x)‖[2m0] + 1√

m
‖ ỹ(x)− ỹ(x′)‖[2m0] ≤ Δt

and

1√
m

σ2m0( y − ỹ(x′))2 ≤ 1√
m

σm0( y − ỹ(x))2 + 1√
m

σm0( ỹ(x)− ỹ(x′))2 ≤ t
20 .

Finally, according to the eventA1, everyminimizer ẑ of (PK , y) satisfies ‖ ẑ−T x′‖2 ≤ t
and therefore ‖ ẑ − T x‖2 ≤ ‖ ẑ − T x′‖2 + ‖T x′ − T x‖2 ≤ t + ε. ��

Proof of Corollary 8 Analogously to Corollary 2, the model setup of Corollary 8 fits
into Assumption 1 as follows:

– We have that a ∼ N(0, I p) and therefore ‖a‖ψ2 � 1. The signal set X is an
arbitrary subset of Rp. The output function F : Rp × X → R takes the form
F(a, x):= sign(〈a, x〉). In particular, the resulting observation vector of x is given
by ỹ(x) = sign(Ax)where A ∈ R

m×p is a standard Gaussian randommatrix with
row vectors a1, . . . , am ∈ R

p.
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– The target function T : X → K corresponds to the (scaled) normalization

T x:=
√

2
π

x
‖x‖2 .

As already shown in Sect. 8.1 (Step 3), the target mismatch ρ(x) vanishes for every
x ∈ X . Moreover, we clearly have that r = supx∈X ‖〈a, T x〉 − ỹ(x)‖ψ2 � 1. Since
φ(β):=β

√
log(e/β) defines a continuous and non-decreasing function on [0, 1] with

φ(1) = 1 and φ(0):=0 (by continuous extension), we may assume without loss of
generality that

β
√
log(e/β) = c0t ∈ (0, 1]. (9.1)

Now, we set

Δ2:= 1

t
√
log(e/β)

, m0:=
⌊β
2m

⌋
, u0:=

√
2mβ log(e/β),

implying that u0 ≥
√
2m0 log(em/2m0), m0 ∈ {0, 1, . . . , �m2 �}, and u20 ≥ 2c0tm.

The latter inequality again implies that u20 ≥ u2, and since u2 ≥ C0 · logN (TX , ε),
the condition of (5.3) is fulfilled. Similarly, it is not hard to see that the condition of
(5.2) follows from (5.4) for C ′ sufficiently large (cf. Sect. 8.1 (Step 2)).

According to Theorem 4 with H :=
√

π
2 TX ⊂ S

p−1, there exist universal constants
c, c̄,C > 0 (possibly slightly different from those in Theorem 4) such that if

m ≥ C ·
(
ε2β−3 · w2([TX ]ε)+ β−1 · logN (TX , ε)

)
(9.2)

for ε ≤ c̄β/
√
log(e/β), the following holds with probability at least 1−exp(−cmβ):

sup
x, x′∈X

‖T x−T x′‖2≤ε

1
2m ‖ sign(Ax)− sign(Ax′)‖1 ≤ β

2 .

On this event and by the above choice of m0, we have that

sup
x, x′∈X

‖T x−T x′‖2≤ε

1√
m

σm0( ỹ(x)− ỹ(x′))2 = 0

and

sup
x, x′∈X

‖T x−T x′‖2≤ε

1√
m
‖ ỹ(x)− ỹ(x′)‖[2m0] ≤

√
2β =

(
2c0t√
log(e/β)

)1/2 ≤ 1
2Δt,

where the last inequality holds for c0 > 0 small enough. Consequently, Assump-
tion 3 would hold for η:= exp(−cmβ) if we can show that (9.2) is satisfied under
the hypotheses of Corollary 8. To this end, we first note that the relationship (9.1)
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implies that there exists a universal constant c′0 > 0 such that β ≥ c′0t/
√
log(e/t).

This particularly leads to the following estimates:

β ≥ c′0t2 and
β√

log(e/β)
≥ (c′0)2t

c0 log(e/t)
.

Combining the first one with (5.4), it follows thatmβ ≥ c′0mt2 � u2, while the second
one yields

ε ≤ c′t
log(e/t)

≤ c̄β√
log(e/β)

if c′ is chosen sufficiently small. Hence, (9.2) is a consequence of (5.4) and the assump-
tion u2 ≥ C0 · logN (TX , ε).

Since all assumptions of Theorem 3 are satisfied, the following holds with proba-
bility at least 1− exp(−cu2) uniformly for every x ∈ X : For any input vector y ∈ R

m

such that

1√
m
‖ y − ỹ(x)‖[2m0] ≤ 1

2Δt and 1√
m

σm0( y − ỹ(x))2 ≤ t
40 , (9.3)

everyminimizer ẑ of (PK , y) satisfies ‖ ẑ−T x‖2 ≤ t+ε ≤ 2t . The claim of Corollary 8
now follows from the fact that any input vector y ∈ {−1, 1}m given by (4.1) with
1
2m ‖ν‖1 ≤ β

2 satisfies (9.3). ��
Proof of Corollary 9 Analogously to Corollary 3, the model setup of Corollary 9 fits
into Assumption 1 as follows:

– The measurement vector a ∈ R
p is centered, isotropic, and sub-Gaussian

with ‖a‖ψ2 ≤ L . The signal set X satisfies X ⊂ RBp
2 . The output function

F : Rp × X → R takes the form F(a, x) = sign(〈a, x〉 + τ), where τ is uni-
formly distributed on [−λ, λ] and independent of a. In particular, F is a random
function. Moreover, the observation vector of x is given by ỹ(x) = sign(Ax+τ ),
where A ∈ R

m×p denotes the sub-Gaussian random matrix with row vectors
a1, . . . , am ∈ R

p and τ :=(τ1, . . . , τm).
– The target function T : X → K corresponds to rescaling by a factor of λ−1, i.e.,

T x:=λ−1x.

As already shown in Sect. 8.2 (Step 3), there exists a universal constant C̃ ′ ≥ e such
that if

λ ≥ C̃ ′ · R · L ·√log(e/t), (9.4)

the target mismatch satisfies ρ(x) ≤ t
32 for every x ∈ X . Moreover, we clearly have

that

‖〈a, λ−1x〉 − ỹ(x)‖ψ2 � λ−1‖〈a, x〉‖ψ2 + 1 � RLλ−1 + 1
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for every x ∈ X , and together with (9.4), it follows that r = supx∈X ‖〈a, λ−1x〉 −
ỹ(x)‖ψ2 � 1. Since φ(β):=β

√
log(e/β) defines a continuous and non-decreasing

function on [0, 1] with φ(1) = 1 and φ(0):=0 (by continuous extension), we may
assume without loss of generality that

β
√
log(e/β) = c0L

−2t ∈ (0, 1]. (9.5)

Now, we set

Δ2:= 1

t L2
√
log(e/β)

, m0:=
⌊β
2m

⌋
, u0:=

√
2mβ log(e/β),

implying that u0 ≥
√
2m0 log(em/2m0),m0 ∈ {0, 1, . . . , �m2 �}, and u20 ≥ 2c0mL−2t .

Combining the latter inequality with (5.5) for C ′ � L2 sufficiently large implies that
u20 ≥ u2, and since u2 ≥ C0 · logN (λ−1X , ε), the condition of (5.3) is fulfilled.
Similarly, it is not hard to see that the condition of (5.2) follows from (5.5) for C ′ �
L2 log L sufficiently large (cf. Sect. 8.2 (Step 2)).

According to Theorem 5, there exist constants c, c̄,C, C̃ > 0 only depending on
L (possibly slightly different from those in Theorem 5) such that if λ ≥ C̃ · R and

m ≥ C ·
(
ε2β−3 · w2([(2λ)−1X ]ε)+ β−1 · logN (λ−1X , ε)

)
(9.6)

for ε ≤ c̄β/
√
log(e/β), the following holds with probability at least 1−exp(−cmβ):

sup
x, x′∈X

λ−1‖x−x′‖2≤ε

1
2m ‖ sign(Ax + τ )− sign(Ax′ + τ )‖1 ≤ β

2 .

On this event and by the above choice of m0, we have that

sup
x, x′∈X

λ−1‖x−x′‖2≤ε

1√
m

σm0( ỹ(x)− ỹ(x′))2 = 0

and

sup
x, x′∈X

λ−1‖x−x′‖2≤ε

1√
m
‖ ỹ(x)− ỹ(x′)‖[2m0] ≤

√
2β =

(
2c0t

L2
√

log(e/β)

)1/2 ≤ 1
2Δt,

where the last inequality holds for c0 > 0 small enough. Consequently, Assump-
tion 3 would hold for η:= exp(−cmβ) if we can show that (9.6) is satisfied under the
hypotheses of Corollary 9. To this end, we first note that the relationship (9.5) implies
that there exists a universal constant c′0 > 0 such that β ≥ c′0t L−2/

√
log(eL2/t). This
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particularly leads to the following estimates:

β ≥ c′0t2L−2 and
β√

log(e/β)
≥ (c′0)2t

c0L2 log(eL2/t)
.

Combining the first one with (5.5), it follows thatmβ ≥ c′0mt2L−2 � u2 for C ′ � L2

sufficiently large, while the second one yields

ε ≤ c′t
log(e/t)

≤ c̄β√
log(e/β)

if c′ is chosen sufficiently small (depending on L). Hence, (9.6) is a consequence of
(5.5) and the assumption u2 ≥ C0 · logN (λ−1X , ε).

Since all assumptions of Theorem 3 are satisfied, the following holds with proba-
bility at least 1− exp(−cu2) uniformly for every x ∈ X : For any input vector y ∈ R

m

such that

1√
m
‖ y − ỹ(x)‖[2m0] ≤ 1

2Δt and 1√
m

σm0( y − ỹ(x))2 ≤ t
40 , (9.7)

every minimizer ẑ of (PK , y) satisfies ‖ ẑ − λ−1x‖2 ≤ t + ε ≤ 2t . The claim of
Corollary 9 now follows from the fact that any input vector y ∈ {−1, 1}m given by
(4.3) with 1

2m ‖ν‖1 ≤ β
2 satisfies (9.7). ��

10 Proofs for Sect. 3

Proof of Corollary 1 We follow the proof template from the beginning of Sect. 8:

Step 1a. The model setup of Corollary 1 fits into Assumption 1 as follows:

– The measurement vector a ∈ R
p is centered, isotropic, and sub-Gaussian with

‖a‖ψ2 ≤ L . The signal set X is a bounded subset of Rp. The output function
F : Rp × X → R takes the form F(a, x):=〈a, x〉 + τ , where τ ∼ N(0, σ 2).

– The target function T : X → K is the canonical embedding into K , i.e.,
T x:=x. In particular, we have that dT (x, x′) = ‖x − x′‖2.

Step 1b. The target mismatch ρ(x) vanishes for every x ∈ X .
Step 1c. For the trivial choice ỹt (x):=ỹ(x), the conditions of Assumption 2 are
fulfilled with

Lt = 0, L̂ t = 0, r � σ, r̂ = 0.

Step 2. Setting m0:=0, Δ:=L−1
√
log L , and u:=u0, the claim of Corollary 1

follows directly from Theorem 2.
Step 3. Let x ∈ X . By the isotropy of a, we have that E[ỹ(x)a] = E[〈a, x〉a] =
x = T x, and therefore ρ(x) = 0.
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Step 4. We simply set ỹt (x):=ỹ(x). Then, εt (x) = 0, implying that Assump-
tion 2(a) and (c) are trivially fulfilled with L̂ t = r̂ = 0. Furthermore, since
ξt (x) = 〈a, x〉 − ỹt (x) = −τ , Assumption 2(b) holds with Lt = 0 and
r :=‖τ‖ψ2 � σ , since τ ∼ N(0, σ 2).

��
Proof of Inequality (3.3) Since ‖x‖1 = R for every x ∈ X , we may use [54, Lem. 4.5]
to observe that

cone(RBp
1 − x) ∩ S

p−1 ⊂ H :=2 conv(v ∈ S
p−1 : ‖v‖0 ≤ s),

where conv(·) denotes the convex hull. Moreover, [49, Lem. 2.3] yields w(H) �√
s · log(2p/s). Therefore, we obtain

wt (K − X ) ≤ w0(K − X )

= w(cone(K − X ) ∩ S
p−1)

= w(
⋃

x∈X cone(RBp
1 − x) ∩ S

p−1)
≤ w(H) �

√
s · log(2p/s),

as claimed in (3.3). ��
Proof of Proposition 1 We begin with writing out the definition of the local mean width
as follows:

wt (K − X ) ≤ 1
t · w((K − X ) ∩ tBp

2 ) = 1
t · E

[
sup

z∈K ,x∈X
‖z−x‖2≤t

〈g, z − x〉
]
,

where g ∼ N(0, I p). Now, let Xt be a minimal t-net for X ; in particular, we have that
|Xt | = N (X , t). Hence, for every z ∈ K and x ∈ X with ‖z − x‖2 ≤ t , there exists
vx ∈ Xt such that ‖vx − x‖2 ≤ t and ‖vx − z‖2 ≤ 2t . Therefore, we obtain

E

[
sup

z∈K ,x∈X
‖z−x‖2≤t

〈g, z − x〉
]
= E

[
sup

z∈K ,x∈X
‖z−x‖2≤t

〈g, z − vx〉 + 〈g, vx − x〉
]

≤ E

[
sup

z∈K ,v∈Xt‖z−v‖2≤2t
〈g, z − v〉 + sup

x∈X ,v∈Xt‖x−v‖2≤t
〈g, v − x〉

]

= w((K − Xt ) ∩ 2tBp
2 )+ w((Xt − X ) ∩ tBp

2 )

= w(
⋃

v∈Xt
(K − v) ∩ 2tBp

2 )+ w((Xt − X ) ∩ tBp
2 )

︸ ︷︷ ︸
≤w(Xt−X )≤2·w(X )

.

Next, we make use of the fact that Xt is a finite set. Indeed, applying [15, Lem. 6.1],
this allows us to “pull out” the union over Xt in the following way:

w(
⋃

v∈Xt
(K − v) ∩ 2tBp

2 ) � sup
v∈Xt

w((K − v) ∩ 2tBp
2 )+ t ·√logN (X , t).
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By Sudakov minoration (e.g., see [64, Thm. 7.4.1]), we have that t ·√logN (X , t) �
w(X ). Hence, overall, we have that

wt (K − X ) � sup
v∈Xt

w( 1
2t (K − v) ∩ B

p
2 )

︸ ︷︷ ︸
=w̃t (K−v)

+ t−1 · w(X )

� sup
x∈X

w̃t (K − x)+ t−1 · w(X ).

The “moreover”-part of Proposition 1 follows directly from a stability bound derived
in [23, Prop. 2.6]. ��
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