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Abstract
Compressed sensing (CS) ensures the recovery of sparse vectors from a number of
randomized measurements proportional to their sparsity. The initial theory consid-
ers discretized domains, and the randomness makes the physical positions of the grid
nodes irrelevant. Most imaging devices, however, operate over some continuous phys-
ical domain, and it makes sense to consider Dirac masses with arbitrary positions. In
this article, we consider such a continuous setup and analyze the performance of
the BLASSO algorithm, which is the continuous extension of the celebrated LASSO
�1 regularization method. This approach is appealing from a numerical perspective
because it avoids to discretize the domain of interest. Previous works considered
translation-invariant measurements, such as randomized Fourier coefficients, in which
it makes clear that the discrete theory should be extended by imposing a minimum dis-
tance separation constraint (often called “Rayleigh limit”) between the Diracs. These
prior works, however, rule out many domains and sensing operators of interest, which
are not translation invariant. This includes, for instance, Laplace measurements over
the positive reals and Gaussian mixture models over the mean-covariance space. Our
theoretical advances crucially rely on the introduction of a canonical metric associated
with the measurement operator, which is the so-called Fisher geodesic distance. In the
case of Fourier measurements, one recovers the Euclidean metric, but this metric can
cope with arbitrary (possibly non-translation invariant) domains. Furthermore, it is
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naturally invariant under joint reparameterization of both the sensing operator and the
Dirac locations. Our second and main contribution shows that if the Fisher distance
between spikes is larger than a Rayleigh separation constant, then the BLASSO recov-
ers in a stable way a stream of Diracs, provided that the number of measurements is
proportional (up to log factors) to the number of Diracs.Wemeasure the stability using
an optimal transport distance constructed on top of the Fisher geodesic distance. Our
result is (up to log factor) sharp and does not require any randomness assumption on
the amplitudes of the underlying measure. Our proof technique relies on an infinite-
dimensional extension of the so-called golfing scheme which operates over the space
of measures and is of general interest.

Keywords Compressed sensing · Off the grid · LASSO · BLASSO · Fisher distance ·
Wasserstein distance

Mathematics Subject Classification 62J07 · 65K05 · 90C25 · 49Q22

1 Introduction

Sparse regularization, and in particular convex approaches based on �1 minimization,
is one of the workhorses to ill-posed linear inverse models. It finds numerous applica-
tions ranging from signal processing [19] to machine learning [56]. It is thus also the
method of choice to solve the compressed sensing (CS) problem [17,29], which is an
inverse problem where the linear operator is random. Randomness of the linear oper-
ator makes the recovery possible as soon as the number of observations is of the order
(up to log-factor) of the number of nonzero elements in the vector to recover. This
theory and the associated numerical solvers are fundamentally discrete, which does
not complain with most imaging scenarios where CS needs to be adapted to deal with
physical constraints. Purely discrete random operators are idealizations, and studying
random operators obtained by random sampling of continuous operators (e.g., Fourier
measurements) requires the study of the so-called Rayleigh limit. This is the minimum
separation distance between the individual elements forming the object of interest (in
the following, Dirac masses) required to ensure that a stable recovery is possible. Fur-
thermore, extending CS to continuous domains and sub-sampled continuous operators
is of both of practical and theoretical interests. It avoids gridding the parameter space,
thus enabling more efficient solvers and a sharper theoretical analysis.

The natural continuous extension of the �1 approach encodes the positions and
amplitudes of the sought after solution into a Radon measure. The �1 norm is then
replaced by the total variation (total mass) of the measure, and a measure is naturally
said to be “sparse” when it is a sum of Diracs at the desired positions and amplitudes.
The corresponding infinite dimensional optimization problem is called BLASSO in
[25] following theoretical works on spectral extrapolation [7]. This setting of optimiza-
tion on measures has also been considered in the inverse problems community [9].
Successful examples of applications of such “off-the-grid methods” include single-
molecule fluorescent imaging [8], spikes sorting in neurosciences [33], mixture model
estimation [37] and training shallow neural networks [5]. Existing previous theoret-
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ical works on “off-the-grid” CS are, however, focused on domains which are either
the whole space (Rd or the periodic torus Td ) and consider translation-invariant mea-
surements (such as random Fourier measurements or sub-sampled convolutions). In
this article, we provide a sharp analysis of a general class of operators over arbitrary
domains.

1.1 Sparse Spikes Recovery Using the BLASSO

1.1.1 Observation Model

We consider the general problem of estimating a complex-valued unknown Radon
measure μ0 ∈ M(X ) defined over some metric space X from a small number m of
randomized linear observations y ∈ C

m . In this paper, X will either be a connected
bounded open subset of Rd or the d-dimensional torus Td , even though some of our
results extend beyond this case. We define the inner product between a complex-
valued continuous function f ∈ C (X ) and complex-valued measure μ ∈ M(X ) as
〈 f , μ〉M def.= ∫

X f (x)dμ(x). The (forward)measurement operatorΦ : M(X ) �→ C
m

that we consider in this paper is of the form

Φμ
def.= 1√

m

(〈ϕωk , μ〉M
)m
k=1 (1)

where (ω1, . . . , ωm) are parameters identically and independently distributed accord-
ing to a probability distribution Λ(ω) over some space Ω , and ϕω : X → C are
smooth functions parameterized by ω. We further assume that ϕω is normalized, that
is Eω∼Λ[|ϕω(x)|2] = 1 for all x ∈ X . Our observations are of the form

y = Φ(μ0 + μ̃0) + w , (2)

whereμ0 = ∑s
i=1 aiδxi with (xi , ai ) ∈ X×C is the s-sparsemeasurewe are interested

in, μ̃0 ∈ M(X ) accounts for modeling error, and w ∈ C
m is measurement noise. In

the rest of the paper, we naturally assume that the support of μ̃0 does not include any
of the xi ’s.

1.1.2 BLASSO

An increasingly popular method to estimate such a sparse measure corresponds to
solving an infinite-dimensional analogue of the Lasso regression problem with regu-
larization parameter λ > 0,

min
μ∈M(X )

1

2
‖Φμ − y‖22 + λ|μ|(X ). (Pλ(y))

Following [25], we call this method the BLASSO (for Beurling-LASSO). Here,
|μ|(X ) is the so-called total variation (or total mass) of the measure μ and is defined
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as

|μ|(X )
def.= sup

{
Re (〈 f , μ〉M) ; f ∈ C (X ), ‖ f ‖∞ � 1

}
.

Note that on unboundedX , one needs to impose that f vanishes at infinity. IfX = {xi }i
is a finite space, then this would correspond to the classical finite-dimensional LASSO
problem [56], because |μ|(X ) = ‖a‖1 def.= ∑

i |ai | where ai = μ({xi }). Similarly,
when X is possibly infinite but μ = ∑

i aiδxi , one also has that |μ|(X ) = ‖a‖1. The
noiseless problem of (Pλ(y)) when λ → 0 is

min
μ∈M(X )

|μ| (X ) s.t. Φμ = y. (P0(y))

1.2 PreviousWorks

The initial development of CS [17,29] considered only discrete problems, which
corresponds to imposing that X is a fixed discrete space. The use of “structured”
measurements, typically random Fourier frequencies, requires this grid to be uni-
form [17]. This forbids the recovered Dirac’s to be closer than the grid resolution,
thus implicitly imposing a Rayleigh limit. These initial works have been extended
to “continuous” domains, typically making use of continuous Fourier measurements
up to frequency fc. Without random sub-sampling, the main result of Candès and
Fernandez-Granda [15] shows that in this noiseless setting with y = Φμ0, (P0(y))
exactly recovers μ0 under a so-called Rayleigh criterion, that the minimum distance
between two spikes mini �= j

∥
∥xi − x j

∥
∥ is at least O(1/ fc). Note that this limit is con-

sistent with the initial discrete analysis, since in this case 1/ fc is equal to the grid
spacing. This result has been extended to provide robustness to noise [4,14,30,35] and
to cope with more general measurement operators [6]. The CS setup is then obtained
by randomly sub-sampling the Fourier frequencies. The first work in this compressed
sensing direction is by Tang et al [55] where they showed that the recovery guarantees
of [15] remain valid with high probability when only a small number of (Fourier)
measurements are randomly selected, of the order (up to log factors) of the sparsity
of the underlying measure. All these previous theoretical works, however, strongly
rely on the translation invariance of the linear operator (Fourier measurements or con-
volutions) and the underlying domain (either Euclidean space or the periodic torus).
Applying directly these results to spatially varying operators (such as, for instance,
when imaging with non-stationary point spread functions) generally leads to overly
pessimistic minimum separation conditions. The goal of this paper is thus to study the
CS problem on arbitrary domains and with arbitrary operators, which necessitates to
replace the Euclidean distance by an intrinsic metric induced by the operator Φ: the
Fisher geodesic distance.

Note that this “Rayleigh criterion” is critical to the performance of (Pλ(y)): it is
shown in [30] that two spikes of opposite signs cannot be recovered if their separation
is smaller than 1/ fc. Although it is not the topic of this paper, let us note that lifting
the minimum separation condition requires to impose positivity of the spikes [25,51]
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and the price to pay is an explosion of the instabilities as spikes cluster together
[27]. Another point to note is that existing theoretical results on continuous CS are
only valid under a random signs assumption on the amplitudes of the sought-after
Dirac masses. This forbids in particular imposing positive signs on the solution. This
random sign hypothesis is a well-known assumption in classical discrete compressed
sensing [17,29] but appears somewhat unrealistic. Our analysis does not impose such
a random sign constraint, which requires to use different proof technics, in particular
extending the so-called golfing scheme method to this continuous setting.

1.2.1 Numerical Solvers and Alternative Approaches

The focus of this paper is on the theoretical analysis of the performance BLASSO
method, not on the development and analysis of efficient numerical solvers. Although
the BLASSO problem is infinite dimensional, there are efficient numerical solvers
that use the fact that the sought-after sparse solution is parameterized by a small
number of parameters (positions and amplitudes of the spikes). This open the door to
algorithms which do not scale with some grid size and hence can scale beyond 1-D and
2-D problems. Let us mention in particular: (i) discretization on a grid [31,54], (ii)
semi-definite programming (SDP) relaxation using Lasserre hierarchy [15,26], (iii)
Frank–Wolfe and its variants [8,9,37], (iv) non-convex particle flows [20].

1.2.2 Other Approaches

The BLASSO is by no means the only method for estimating sparse measures in an
off-the-grid setup. One of the first known methods for recovering a sum of Diracs
(from Fourier measurements) is Prony’s method [46], which aims to recover the Dirac
positions by finding the zeros of some polynomial, whose coefficients are derived
from the measurements y. This approach is non-variational and non-convex. Several
extensions (with improved robustness to noise) have also been proposed, such as
MUSICandESPRIT [48,52].We refer to [41] for theoretical analysis of thesemethods.
In practice, when the noise is small and the spikes tends to cluster so that the minimum
separation distance condition does not hold, thesemethods often surpassesBLASSO in
terms of performance. However, these methods are relevant only for spectral (Fourier)
type measurements and the extension to the multivariate setting is non-trivial, see, for
instance, [40,50] for extensions. A rule of thumb is that �1-regularization is, however,
a good baseline, which benefits from both efficient and stable numerical solvers and
an in-depth theoretical analysis which leverages the convexity of the problem.

1.3 Contributions

Our main result is informally stated in Theorem 1 and is stated in full details in
Theorem 3. It ensures sharp compressed recovery guarantees for a large class of
measurement operators over general domains. A salient feature of this statement is
that, contrary to previousworks such as [55], it does not require randomness of the signs
of the sought aftermeasure. This is achieved by extending the so-called golfing scheme
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[16,39] to the infinite-dimensional setting. At the heart of this result is the definition
of an intrinsic distance over the parameter domain, the so-called Fisher geodesic
distance. It is defined by the metric tensor associated with the covariance kernel of
the measurement operator. This definition is crucial both to define the Rayleigh limit
of the problem and to quantify the recovery error using the optimal transport distance
induced over the space of measures by the Fisher distance.

We now give a more precise exposition of these results. We define the limit covari-
ance kernel as

K (x, x ′) def.= Eωϕω(x)ϕω(x
′),

which measures how much two Diracs at x and x ′ interact with each other in the large
samples limit asm → ∞, and assume that K is real-valued (primary examples include
the Gaussian kernel, or the so-called Jackson kernel used in [15]). Define the metric
tensor gx

def.= ∇1∇2K (x, x) ∈ R
d×d , where∇i indicates the gradient with respect to the

i th variable, and assume that for all x ∈ X , it is a positive definitematrix. Finally, define

the associated geodesic distance dg(x, x ′) = infγ
∫ 1
0

√
γ ′(t)�gγ (t)γ ′(t)dt , where the

infimum is taken over all continuous path γ : [0, 1] → X such that γ (0) = x and
γ (1) = x ′. (More details about this geodesic distance are given in Sect. 3.1.) Denote
by Bdg(x; r) the ball of radius r centered on x , for the metric dg. The main result of
the paper, here stated in an informal way, is the following.

Theorem 1 (Main result, informal) Let RX
def.= supx,x ′∈X dg(x, x ′). Under some

assumptions on the kernel K (see Assumption 1 in Sect. 4) and features ϕω (see
Assumption 2 in Sect. 5), there are constants r ,Δ > 0 that only depend on K , and
C1,C2 > 0 which depend on K and the regularity of ϕωk (up to 2nd order), such that
the following holds. Suppose that y is of the form (2) withmini �= j dg(xi , x j ) � Δ and

m � C1 · s · log(s) log((C2RX )d/ρ). (3)

Then, with probability 1− ρ, when ‖w‖ � δ and λ ∼ δ√
s
, any solution μ̂ to (Pλ(y))

satisfies

T 2
dg

⎛

⎝
s∑

j=1

Â jδx j ,
∣
∣μ̂
∣
∣

⎞

⎠

�
√
sδ + |μ̃0| (X ) and

s
max
j=1

∣
∣â j − a j

∣
∣ �

√
sδ + |μ̃0| (X ), (4)

where Â j
def.= ∣

∣μ̂
∣
∣ (Bdg(x j ; r)), â j

def.= μ̂(Bdg(x j ; r)), and Tdg is the partial optimal
transport distance associated with dg (see Definition ’1).

Let us comment on this result. From an inverse problem perspective (i.e., when no
sub-sampling is used, or equivalently when letting m → +∞), Theorem 1 is already
informative, since it defines and proves a Rayleigh limit in term of a new intrinsic
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distance (the Fisher geodesic distance), which extends results only presented before
in the translation invariant case. From a compressed sensing perspective , the most
salient feature of Theorem 1 is that, up to log factors, the bound (3) is linear in the
sparsity of the underlying measure. This improves over the best known result of Tang
et al [55], since we do not require the random signs assumption.

The assumptions on the kernel K (x, x ′) mainly state that it must decrease suffi-
ciently when x and x ′ are far apart, or, in other words, that the coherence between
Φδx and Φδx ′ must be low. The main novelty of our approach is that we mea-
sure this separation in term of the geodesic metric dg, which allows to account for
non-translation-invariant kernels in an intrinsic and natural manner. The relationship
between the decay of the kernel and separation is made explicit in our kernel width
definition in Definition 3. As mentioned previously, separation is crucial for stability,
and our definition of kernel width can be seen as an extension of the Babel function
in compressed sensing [57] to the continuous setting, which links sparsity and sep-
aration to well conditioning of the corresponding covariance matrix. We refer to the
discussion following Theorem 2 for further details. The assumptions on the features
ϕω, which are more technical in nature, relate to their regularity and the boundedness
of their various derivatives.

Concerning the recovery bound (4), the first part states that the measure μ̂ concen-
trates around the true positions of the Diracs, while the second part guarantees that
the complex amplitudes of μ̂ around the Diracs are close to their true values. The dis-
crepancy in the first part is measured in terms of a partial optimal transport distance
associated with dg (Def. 1 in Sec. 3). Although our error bound is linear with respect
to the noise level δ, we do not expect the

√
s factor be sharp and is rather an artifact

of proof techniques. For instance, in [14], where sub-sampling is not considered, one
could also obtain bounds

∑s
j=1

∣
∣â j − a j

∣
∣ � δ. We refer to the discussion after Propo-

sition 1 for further remarks and links to previous works, but simply mention here that
the existing proof techniques which lead to sharper bounds cannot be readily extended
to the case of randomized measurements.

Finally, the constantsC1,C2 that appear in (3) can depend (generally polynomially)
on the dimension d but not on the sparsity s. As we will see in Sect. 5 and the detailed
version of Theorem 1 (Theorem 3), the bound (3) is actually valid when we suppose
the features ϕω and their derivatives to be uniformly bounded for all x and ω. When
this is not the case, we will be able to relax this assumption, similar to the notion of
stochastic incoherence [16] in compressed sensing. As a result, m can actually appear
in C1,C2, generally in a logarithmic form (see examples in Sect. 2), which only adds
logarithmic terms in s and d in the final number of measurements.

1.3.1 Outline of the Paper

The paper is organized as follows. In Sect. 2, we give example applications of Theo-
rem 1, including non-translation-invariant frameworks such as Laplace measurements
used in microscopy [28]. In Sect. 3, we introduce our Riemannian geometry frame-
work and prove intermediate recovery results based on the existence of a so-called
non-degenerate dual certificate, which is known in the literature to be the key object in
the analysis of the BLASSOmodel. In Sect. 4, we study in more detail the relationship
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between the minimal separation condition and the covariance kernel. We prove that,
under some conditions on K , in the limitm → ∞, one can indeed prove the existence
of a non-degenerate dual certificate when minimal separation is imposed with respect
to dg. Finally, in Sect. 5, we state our main result with finite number of measurements
m (Theorem 3, which is a detailed version of Theorem 1). Section 6 is dedicated to its
proof using an infinite-dimensional extension of the celebrated golfing scheme [16],
with technical computations in the appendix.

1.3.2 Relationship to Our Previous Work

[44] This article is a substantially extended version of the conference publication [44].
The results of Sect. 4 are inmost part already published (under slightlymore restrictive
assumptions) in this conference paper. The remainder of the paper is, however, entirely
novel.We remove the random signs assumption of [44] thanks to a newproof technique
with the golfing scheme. Furthermore, the results in [44] are restricted to the small noise
setting and focus on exact support stability, while we study here arbitrary noise levels
and establish more general stability bounds in terms of optimal transport distances.

1.3.3 Notations

Given n ∈ N, we denote by [n] def.= {1, 2, . . . , n} the first n integers. We write 1n to
denote the vector of length n whose entries are all 1’s, and 0n to denote the vector
of length n whose entries are all 0’s. Given two matrices A and B, we write A ≺ B
to mean that B − A is positive definite and A � B to mean that B − A is positive
semi-definite. Given two positive numbers a, b, we write a � b to mean that there
exists some universal constant C > 0 so that a � Cb. Given (X , d) a metric space,
x ∈ X and r > 0, we define Bd(x; r) def.= {z ∈ X ; d(x, z) < r} the ball centered on
x of radius r , or just B‖·‖(r) = {z ∈ X ; ‖z‖ < r} the ball centered on 0 for a norm
‖·‖.

We write ‖·‖p to denote the �p norm, and ‖·‖ without any subscript denotes the
spectral norm for matrices or �2 norm for vectors. For any norm ‖·‖X on vectors, the
corresponding matrix norm is ‖A‖X→Y = sup‖x‖X=1 ‖Ax‖Y and ‖A‖X = ‖A‖X→X
for short.

Given a vector x ∈ C
sd decomposed in blocks x = [x�1 , . . . , x�s ]� with

xi ∈ C
d , where s and d will always be defined without ambiguity, we define

the block norm ‖x‖block def.= max1�i�s ‖xi‖. Given a vector x ∈ C
s(d+1) decom-

posed as x = [x�0 , X�
1 , . . . , X�

s ]� where x0 ∈ C
s and X j ∈ C

d , we define

‖x‖Block def.= max
(
‖x0‖∞ ,maxsj=1

∥
∥X j

∥
∥
2

)
.

For a complex number a, its sign is denoted by sign(a) = a
|a| . Given a complex-

valued measure μ ∈ M(X ) and complex-valued continuous function f ∈ C (X ), we
recall that 〈 f , μ〉M def.= ∫

X f (x)dμ(x). For two complex vectors v and w, 〈v, w〉2 def.=
v∗w, where v∗ = v� denotes conjugate transpose.
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2 Examples

In this section, we illustrate Theorem 1 for some special cases of practical interest in
imaging and machine learning. The following statements are obtained by bounding
the constants in Theorem 3 in Sect. 5 (the detailed version of Theorem 1). These
computations, which can be somewhat verbose, are delayed to Appendices C, D and E.

2.1 Off-the-Grid Compressed Sensing

Off-the-gridCompressed sensing, initially introduced in the special case of 1-DFourier
measurements on X = T = R/Z by [55], corresponds to Fourier measurements of
the form (1). This is a “continuous” analogous of the celebrated compressed sensing
line of works [17,29]. We give a multi-dimensional version below.

Let fc ∈ Nwith fc � 128 (for simplicity) andX = T
d the d-dimensional torus. Let

ϕω(x)
def.= ei2πω�x , Ω

def.= {
ω ∈ Z

d ; ‖ω‖∞ � fc
}
, and Λ(ω) = ∏d

j=1 g(ω j ) where

g( j) = 1

fc

min( j+ fc, fc)∑

k=max( j− fc,− fc)

(1− |k/ fc|)(1− |( j − k)/ fc|).

The distribution Λ concentrates at lower frequencies, and the corresponding kernel
is the Jackson kernel (the Dirichlet kernel raised to the power of 4): K (x, x ′) =∏d

i=1 κ(xi − x ′i ), where

κ(x)
def.=
⎛

⎝
sin

((
fc
2 + 1

)
πx

)

(
fc
2 + 1

)
sin(πx)

⎞

⎠

4

.

Note that if Λ is chosen to be the uniform distribution, then the corresponding kernel
is the Dirichlet kernel. The choice of the Λ here is purely technical: the Jackson
kernel leads to easier analysis due to faster decay as

∥
∥x − x ′

∥
∥ increases and has been

considered in many previous works such as [14,55]. In this case, the Fisher metric
is, up to a constant C , the Euclidean metric dg(x, x ′) = C fc

∥
∥x − x ′

∥
∥. Provided that

mini �= j
∥
∥xi − x j

∥
∥ � d

1
2 s

1
4

fc
, stable recovery is guaranteed with

m � d2s

(

log(s) log

(
s

ρ

)

+ log

(
(s fcd)d

ρ

))

.

The bound onm directly extends the (univariate)main result of [55] to themultivari-
ate setting, whilst removing the unrealistic assumption that the signs of the underlying
amplitudes are i.i.d. in the uniform distribution. Note that, compared to the unidimen-
sional case in [55], the minimal separationΔ depends on s in general. However, as we
explain in the appendix, when the dimension is such that d < 4, this bound can effec-
tively be replaced by one that is exponential in d but does not depend on the sparsity
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s, and hence yields an extension of the result from [55]. Indeed, during the proof, one
must bound a quantity of the form

∑s
i=2 ‖x1 − xi‖−4, for Δ-separated Diracs. Since

in one dimension only 2 Diracs can be situated at distance kΔ from x1 for each integer
k > 0, this can be easily bounded by a global bound Δ−4∑∞

k=1 k
−4 that does not

depend on s. In the multidimensional case, however, O( jd) number of Diracs spaced
δ apart can be packed into the ball of radius jδ around x1, and this can be handled by
the polynomial decay of the kernel K (x, x ′) (which decays as

∥
∥x − x ′

∥
∥−4 when fc is

sufficiently large) only when d < 4.

2.2 Continuous Sampling Fourier Transform

For most imaging problems, imposing periodic boundary conditions on a square
domain is not satisfying. Considering instead Fourier frequencies over the whole
space Rd is more natural and can for instance cope with rotation-invariant sampling
strategies, such as, for instance, using a Gaussian distribution. Let X ⊂ R

d be a
bounded open subset of Rd . The space of frequencies is Ω = R

d , ϕω(x)
def.= eiω

�x ,
and Λ(ω) = N (0,Σ−1) for some known symmetric positive definite matrix Σ .
Note that, for simplicity, the frequencies are drawn according to a Gaussian with
precision matrix Σ (the inverse of the covariance matrix), such that the kernel K

is the classical Gaussian kernel K (x, x ′) = e
− 1

2

∥
∥
∥
∥Σ

− 1
2 (x−x ′)

∥
∥
∥
∥

2

. The Fisher metric is

dg(x, x ′) =
∥
∥
∥Σ− 1

2 (x − x ′)
∥
∥
∥. In this case, provided thatmini �= j dg(xi , x j ) �

√
log(s),

stable recovery is guaranteed with

m � s

(

L log(s) log

(
s

ρ

)

+ L2 log

(
(sLRX )d

ρ

))

.

where L = d+ log2
(
dm
ρ

)
. Note that log(m) appears in L in the r.h.s. of the expression

above, which only incurs additional logarithmic terms in the bound onm, asmentioned
in the introduction.

2.3 Learning of GaussianMixtures with Fixed Covariances

An original framework for continuous sparsity is sketched learning of mixture models
[37], and in particular Gaussian mixture models (GMM), for which we can exploit the
computations of the previous case of Fourier measurements sampled in accordance to
a Gaussian distribution. Assume that we have data samples z1, . . . , zn ∈ R

d drawn
i .i .d. from a mixture of Gaussians ξ

def.= ∑s
i=1 aiN (xi ,Σ) with known covariance

Σ . The means x1, . . . , xs ∈ X ⊂ R
d and weights a1, . . . , as > 0 are the objects

which we want to estimate. We then sample frequencies ω1, . . . , ωm ∈ R
d i .i .d. from

a Gaussian Λ = N (0,Σ−1/d) and construct the following linear sketch [22] of the
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data:

y = C

n

n∑

i=1

(e−iω�
k zi )mk=1 (5)

where the constant C = (1 + 2
d )

d
4 � e

1
2 is here for normalization purpose. Linear

sketches are mainly used for computational gain: they are easy to compute in a stream-
ing of distributed context and are much smaller to store in memory than the whole
database [22,37]. It is easy to see that the sketch can be reformulated as (1), by writing

y ≈ Ez(Ce−iω�
k z)mk=1 = Φμ0 (6)

where μ0 = ∑
i aiδxi , and Φ is defined using the feature functions

ϕω(x) = Ez∼N (x,Σ)Ceiω
�z = Ceiω

�x e−
1
2ω

�Σω.

The “noise” w
def.= y − Ez(Ce−iω�

k z)mk=1 is simply the difference between empirical
and true expectations, and using simple concentration inequalities that we skip here

for simplicity, it is possible to show that with high probability, ‖w‖ � O
(
n− 1

2

)
.

Applying the previous computations we obtain the following result: provided that

mini �= j

∥
∥
∥Σ− 1

2 (xi − x j )
∥
∥
∥
2

�
√
d log(s), stable recovery of μ0 is guaranteed when

m � s

(

d log(s) log

(
s

ρ

)

+ d2 log

(
(sdRX )d

ρ

))

and the concentration in the recovery bound (4) is given by δ = ‖w‖ = O
(
n− 1

2

)
.

2.4 GaussianMixtures with Varying Covariances

The case of simultaneously recovering both the means and covariance matrices is an
interesting venue for future research. We simply describe here the associated metric
and distance in the univariate case. The geodesic distance between univariate Gaussian
distributions is well known [23]: Given x = (m, u) and x ′ = (n, v) with m, n ∈ R

and u, v ∈ R+, let ϕ(x)
def.= 1

4√π
√
u
e−(m−·)/(2u2), then the covariance kernel is

K0(x, x
′) = 〈ϕ(x), ϕ(x ′)〉L2 =

√
2uv√

u2 + v2
e
− (m−n)2

2(u2+v2) .
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The associated metric at x = (m, u) is gx = 1
2u2

Id2, and the Fisher–Rao distance is
the Poincaré half-plane distance

d0(x, x
′) = 2arsinh

(∥
∥x − x ′

∥
∥

2
√
uv

)

, where arsinh(x)
def.= ln

(
x +

√
x2 − 1

)
. (7)

Consider now the case of Gaussian mixture ξ
def.= ∑s

i=1 aiN (xi , v2i ), where the
unknowns are ai > 0, xi ∈ R and vi > 0, and we are given data {zi }ni=1 drawn
i.i.d. from ξ and we construct the linear sketch (5) as before, where ωk ∈ R are i.i.d.
from N (0, σ 2). This corresponds to the normalized random features

ϕω(m, u) =
(
2u2σ 2 + 1

) 1
4
e−imωe−

1
2 u

2ω2
,

and

K ((m, u), (n, v)) =
√
2uσ vσ√

u2σ + vσ 2
e
− (m−n)2

2(u2σ+vσ 2) (8)

where u2σ = 1
2σ 2 + u2 and v2σ = 1

2σ 2 + v2. The metric at x = (m, u) is gx = 1
2u2σ

Id2.

Note that since (8) also corresponds to the kernel between Gaussian distributions
with mean and standard deviation as xσ

def.= (m, uσ ) and x ′σ
def.= (n, vσ ), the associated

geodesic distance is therefore d0(xσ , x ′σ ) where d0 is the Poincaré half-plane distance
described in (7). (As mentioned in (16), geodesic distances on random features and
parameter space are equivalent.)

2.5 Sampling the Laplace Transform

In some fluorescence microscopy applications (see [28] and the references therein),
depthmeasurements are obtained from the Laplace transform of the signal. Contrary to
Fourier measurements, this gives rise to a non-translation-invariant kernel K and was
therefore not covered by existing theory. Using the proposed Riemannian geometry
framework, we can cover this setting.

Let X = (0, 1)d ⊂ R
d+. Let Ω = R

d+. Define for x ∈ X and ω ∈ Ω ,

ϕω(x)
def.= exp

(
−x�ω

) d∏

i=1

√
xi + αi

αi
and Λ(ω) = exp(−2α�ω)

d∏

i=1

(2αi ).

where αi ∼ d are positive and distinct real numbers. The sampling of ω here typically
corresponds to observations at random discrete time-points.

The Fisher metric is

dg(x, x
′) =

√√
√
√

d∑

i=1

∣
∣
∣
∣log

(
xi + αi

x ′i + αi

)∣∣
∣
∣

2

,
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and provided that mini �= j dg(xi , x j ) � d + log(d3/2s), stable recovery is guaranteed
with

m � s

(

C log(s) log

(
s

ρ

)

+ C2 log

(
Cd

ρ

))

where C
def.= d2

(
d + log2(m) + log2

(
d
ρ

))
. Similar to the Gaussian example, log(m)

appears in C .

3 Stability and the Fisher InformationMetric

In this section, we introduce the proposed Riemannian geometry framework and give
intermediate recovery guarantees which constitute the first building block of our main
result. Namely, we introduce so-called dual certificates, which are known to be key
objects in the study of the BLASSO, and show how they lead to sparse recovery
guarantees in our Riemannian framework.

3.1 Fisher and Optimal Transport Distances

Let us first introduce the proposedRiemannian geometry framework and define objects
related to it.

3.1.1 The Covariance Kernel and the Fubini–Study Metric

A natural property to analyze in our problem is the way two Diracs interact with each
other, which is linked to the well-known notion of coherence (or, rather, incoherence)
between measurements in compressive sensing [36]. This is done through what we
refer to as the covariance kernel K̂ : X × X → C, defined as

K̂ (x, x ′) def.= 〈Φδx , Φδx ′ 〉2 = 1

m

m∑

j=1

ϕωk (x)ϕωk (x
′), ∀x, x ′ ∈ X . (9)

In the limit case m → ∞, the law of large number states that K̂ converges almost
surely to the limit covariance kernel:

K (x, x ′) def.= Eωϕω(x)ϕω(x
′) (10)

where we recall that ω ∼ Λ. This object naturally governs the geometry of the space,
and we use it to define our Riemannian metric, which as we will see is linked to a
notion of Fisher information metric. In the rest of the paper, we assume throughout
that K is real-valued, even though K̂ may be complex-valued.

Given the normalization Eω |ϕω(x)|2 = 1 for all x ∈ X , ϕω(x) can be interpreted
as a complex-valued probability amplitude with respect to ω (parameterized by x),

123



254 Foundations of Computational Mathematics (2023) 23:241–327

a classical notion in quantum mechanics (see [38]). When x varies, a natural metric
between probability amplitudes is the so-called Fubini–Study metric, which is the
complex equivalent of the well-known Fisher information metric. Writing ϕω(x) =√
p(ω, x)eiα(ω,x) where p(ω, x)

def.= |ϕω(x)|2 and α(ω, x)
def.= arg(ϕω(x)), the Fubini–

Study metric is defined by the following metric tensor in Cd×d [34]:

gx
def.= 1

4
Ep[∇x log(p)∇x log(p)

�] + Ep[∇xα∇xα
�] − Ep[∇xα]Ep[∇xα]�

− i

2
Ep[∇x log(p)∇xα −∇xα∇x log(p)

�].
(11)

where we use the notation Ep[ f ] =
∫

f (ω)p(ω, x)dΛ(ω). If ϕω is real-valued, then
α = 0 and this is indeed the Fisher metric up to a factor of 1

4 . The following simple
lemma shows the link between this metric and the derivatives of the covariance kernel
K .

Lemma 1 For any kernel K (x, x ′) def.= Eωϕω(x)ϕω(x ′), the Fubini–Study metric
defined in (11) satisfies

gx = ∇1∇2K (x, x) − Ep[∇xα]Ep[∇xα]� (12)

If furthermore K (x, x ′) is assumed real-valued, then Ep[∇xα] = 0, and gx =
∇1∇2K (x, x).

Proof Using p = |ϕω|2 and ∇ϕω =
(∇ p

2p + i∇α
)
ϕω, a direct computation shows

that

∇x log(p) = 2

p
Re (ϕω∇ϕω) and ∇xα = 1

p
Im (ϕω∇ϕω) (13)

Therefore,

1

4
Ep[∇x log(p)∇x log(p)

�] + Ep[∇xα∇xα
�]

=
∫

1

p2

(
Re (ϕω∇ϕω)Re (ϕω∇ϕω)

�

+Im (ϕω∇ϕω) Im (ϕω∇ϕω)
�) pdΛ

=
∫

1

p
Re

(
|ϕω|2 ∇ϕω∇ϕ�

ω

)
dΛ

=
∫

Re
(
∇ϕω∇ϕ�

ω

)
dΛ = Re (∇1∇2K (x, x))

Similarly,

− i

2
Ep[∇x log(p)∇xα −∇xα∇x log(p)

�]
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= −i
∫

1

p2

(
Re (ϕω∇ϕω) Im (ϕω∇ϕω)

�

+Im (ϕω∇ϕω)Re (ϕω∇ϕω)
�) pdΛ

= −i
∫

1

p
Im

(
|ϕω|2 ∇ϕω∇ϕ�

ω

)
dΛ

= i
∫

Im
(
∇ϕω∇ϕ�

ω

)
dΛ = i · Im (∇1∇2K (x, x))

which proves the first claim. The second claim is immediate by noticing from (13)
that ∇pα = Im (∇2K (x, x)), which cancels when K (x, x ′) is real (in particular in a
neighborhood around x = x ′). ��

Since in this paper the limit covariance kernel (10) is assumed real-valued, the
previous lemma justifies the definition gx = ∇1∇2K (x, x) that we adopt in the rest
of the paper. For two vectors u, v ∈ C

d , we define the corresponding inner product

〈u, v〉x def.= u∗gxv and ‖u‖x def.= √〈u, u〉x (14)

As described in the introduction, this induces a geodesic distance on X :

dg(x, x
′)

def.= inf

{∫ 1

0

∥
∥γ ′(t)

∥
∥
γ (t) dt ; γ : [0, 1] → X smooth, γ (0) = x, γ (1) = x ′

}

(15)

and in the case where ϕω(x) is real-valued, this coincides with the “Fisher-Rao”
geodesic distance [47] which is used extensively in information geometry for estima-
tion and learning problems on parametric families of distributions [3].

Remark 1 (As a distance on the feature space) The geodesic distance induced by g
is the natural distance between the random features ϕ·(x). Indeed, as discussed in
[11], the manifold (X , g) as an embedded sub-manifold of the sphere in Hilbert space
L2(dΛ) with embedding x �→ ϕ·(x), and given any x, x ′ ∈ X , we have

inf
γ∈Γx,x ′

∫ 1

0

∥
∥γ ′(t)

∥
∥
L2(dΛ)

dt = dg(x, x
′), (16)

where Γx,x ′ consists of all piecewise smooth paths γ : [0, 1] → {ϕ(x) ; x ∈ X } with
γ (0) = ϕ(x) and γ (1) = ϕ(x ′).

Remark 2 (Fisher metric and invariances) The Fisher–Rao metric dg is “canonical” in
the sense that it is the only (up to scalar multiples) geodesic distance which satisfies
the natural invariances of the BLASSO problem. Indeed, the solutions to (Pλ(y)),
in the large sample limit m → +∞, are (i) invariant by the multiplication of
ϕ(x)

def.= (ϕω(x))ω∈Ω by an arbitrary orthogonal transform U (orthogonality on

123



256 Foundations of Computational Mathematics (2023) 23:241–327

L2(dΛ)), i.e., invariance to ϕ(x) �→ Uϕ(x), (ii) covariance under any change of
variable ϕ �→ ϕ ◦h where h is a diffeomorphism between two d-dimensional parame-
ter spaces. The covariance (ii) means that ifμ = ∑

i aiδxi is a solution associated with

ϕ, then the push-forward measure (h−1)�μ
def.= ∑

i aiδh−1(xi ) is a solution associated
with ϕ ◦ h. Note that the invariance (i) is different from the usual invariance under
“Markov morphisms” considered in information theory [13,18]. When considering
dg = dgϕ as a Riemannian distance depending solely on ϕ, the invariance under any
diffeomorphism h reads

dgϕ (x, x
′) = dgϕ◦h (h

−1(x), h−1(x ′)). (17)

Assuming for simplicity that ϕ is injective, this invariance (17) is equivalent to the
fact that the formula

∀ (q, q ′) ∈ M2, dM(q, q ′) def.= dgϕ (ϕ
−1(q), ϕ−1(q ′))

defines a proper (i.e., parameterization-independent) Riemannian distance dM on the
embedded manifold M def.= (ϕ(x))x ⊂ L2(dΛ). Among all possible such Riemannian
metrics on M, the only ones being invariant by orthogonal transforms ϕ �→ Uϕ are
scalar multiples of the Hermitian positive tensor ∂ϕ(x)∗∂ϕ(x) ∈ C

d×d , which is equal
to gϕ (here ∂ϕ(x)∗ refers to the adjoint in L2(dΛ) for the inner product defined by the
measure Λ(ω)).

Remark 3 (Tangent spaces) Formally, in Riemannian geometry, one would use the
notion of tangent space Tx , and, for instance, the inner product 〈·, ·〉x would only be
defined between vectors belonging to Tx . However, in our case, since the considered
ambient “manifold” is just Rd , in the sense that X is not a low-dimensional sub-
manifold of Rd but an open set of Rd , each tangent space can be identified with R

d ,
and we extend the definitions to complex vectors for our needs.

3.1.2 Optimal Transport Metric

In order to state quantitative performance bounds, one needs to consider a geometric
distance between measures. The canonical way to “lift” a ground distance dg(x, x ′)
between parameter to a distance between measure is to use optimal transport distances
[49].

Definition 1 (Wasserstein distance) Given μ, ν ∈ M+(X ) with |μ| (X ) = |ν| (X ),
the Wasserstein distance between μ and ν relative to the metric d on X is defined by

W 2
d(μ, ν)

def.= inf
γ∈Π(μ,ν)

∫

X 2
d(x, x ′)dγ (x, x ′),

where Γ (μ, ν) ⊂ M+(X 2) is the set of all transport plans with marginals μ and
ν. Given μ, ν ∈ M+(X ) (not necessarily of equal total mass), the optimal partial
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distance between μ and ν is defined as

T 2
d (μ, ν)

def.= inf
μ̃,ν̃

{
W 2

d(μ̃, ν̃) + |μ − μ̃| (X ) + |ν̃ − ν| (X )
}
.

Note that the distanceWd(μ, ν) is actually anhybridation (an inf-convolution) between
the classicalWasserstein distance between probability distributions and the total varia-
tionnorm. It is often called “partial optimal transport” in the literature (see, for instance,
[12]) and belongs to the larger class of unbalanced optimal transport distances [21,42].

3.2 Non-degenerate Certificates, Uniqueness and Stability for Sparse Measures

We now introduce the notion of a dual certificate and prove recovery guarantees under
certain non-degeneracy conditions, which is the first step toward our main result.

3.2.1 Dual Certificates

The minimization problem (Pλ(y)) is a convex optimisation problem and a natural
way of studying their solutions are via their corresponding Fenchel-dual problems.
It is well known that, in the limit as λ → 0, its solutions cluster in a weak-* sense
around minimizers of

min
μ∈M(X )

|μ| (X ) subject to Φμ = y , (P0(y))

and that properties of the dual solutions to (P0(y)) with y = Φμ0 can be used to
derive stability estimates for (Pλ(y)) under noisy measurements. In this section, we
recall some of these results (see [9,30] for further details). The (pre)dual of (Pλ(y))
is

sup

{

〈p, y〉2 − λ

2
‖p‖22 ; p ∈ C

m,
∥
∥Φ∗ p

∥
∥∞ � 1

}

(Dλ(y))

where we remark that the adjoint operator Φ∗ : C
m → C (X ) is defined by

(Φ∗ p)(x) = 1√
m

∑m
i=1 piϕωi (x). Note that for λ > 0, this is the projection of y/λ

onto the closed convex set
{
p ; ‖Φ∗ p‖∞ � 1

}
and the solution pλ is hence unique.

The dual solution pλ is related to any primal solution μλ of (Pλ(y)) by the condition

Φ∗ pλ ∈ ∂ |μλ| (X ) and pλ = 1

λ
(y − Φμλ) . (18)

Conversely, any pair pλ and μλ which satisfy this equation (18) are necessarily dual
and primal solutions of (Dλ(y)) and (Pλ(y)), respectively. In the case where λ = 0,
a dual solution need not be unique, although existence is guaranteed (since in our
setting, the dual variable belongs to a finite dimensional space). In this case, p0 and
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μ0 solve (Dλ(y)) with λ = 0 and (P0(y)), respectively, if and only if

Φμ0 = y and Φ∗ p0 ∈ ∂ |μ0| (X ). (19)

Following the literature,we call any elementη ∈ Im(Φ∗)∩∂ |μ0| (X ) a dual certificate
for μ0. For μ0 = ∑s

j=1 a jδx j , the condition η ∈ ∂ |μ0| (X ) imposes that η(x j ) =
sign(a j ) and ‖η‖∞ � 1. Furthermore, it is known that in the noiseless case, μ0
is the unique solution to (P0(y)) if: the operator Φx : Cs → C

m defined by Φxb =∑s
j=1 b jΦδx j is injective, and there exists η ∈ Im(Φ∗)∩∂ |μ0| (X ) such that |η(x)| <

1 for all x /∈ {x j }. In order to quantify the latter constraint and provide quantitative
stability bounds, we impose even stronger conditions on η and make the following
definition.

Definition 2 (Non-degenerate dual certificate) Given (ai , xi )si=1, we say that η ∈
Im(Φ∗) is an (ε0, ε2, r)-non-degenerate dual certificate if:

(i) η(xi ) = sign(ai ) for all i = 1, . . . , s,
(ii) |η(x)| � 1− ε0 for all x ∈ X far,
(iii) |η(x)| � 1− ε2dg(x, xi )2 for all x ∈ X near

i ,

where X near
i

def.= Bdg(xi ; r) and X far def.= X \⋃i X near
i .

In other words, there are neighborhoods of the x j such that, outside of these neighbor-
hoods, η is strictly bounded away from 1, and inside, |η| has quadratic decay. In the
next section, we prove stable recovery results from the existence of non-degenerate
dual certificates.

3.2.2 Stable Recovery Bounds

The following twopropositions describe stability guarantees under the non-degeneracy
condition. Proposition 1 quantifies how the recovered measure is approximated by a
sparse measure supported on {x j } j , and Proposition 2 describes the error in measure
around small neighborhoods of the points {x j } j .
Proposition 1 (Stability away from the sparse support) Suppose that there exists
ε0, ε2 > 0, η

def.= Φ∗ p for some p ∈ C
m such that η is (ε0, ε2, r)-non-degenerate.

Assuming the measurement model (1), any minimizer μ̂ of (Pλ(y)), with ‖w‖ � δ

and λ ∼ δ/ ‖p‖ is approximately sparse: by defining Â j =
∣
∣μ̂
∣
∣ (X near

j ), we have

T 2
dg

⎛

⎝
∣
∣μ̂
∣
∣ ,

s∑

j=1

Â jδx j

⎞

⎠ � 1

min (ε0, ε2)
(|μ̃0| (X ) + δ ‖p‖) . (20)

Proof To prove this proposition, we first establish the following bound

ε0
∣
∣μ̂
∣
∣ (X far) + ε2

s∑

i=1

∫

X near
i

dg(x, xi )
2d

∣
∣μ̂
∣
∣ (x) � δ ‖p‖ + |μ̃0| (X ). (21)
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As we will see, the optimal partial transport bound above is then a consequence of this
bound.

For i = 1, . . . , s, let X near
i ⊂ X and X far = X \⋃s

j=1 X near
j be as in Definition 2.

Recall the measurement model y = Φ(μ0 + μ̃0) + w, and define μ̄0 = μ0 + μ̃0
for simplicity. We first adapt the proof of [10, Thm. 2] to derive an upper bound for∣
∣μ̂
∣
∣− |μ̄0| − Re

(〈η, μ̂ − μ̄0〉M
)
. By minimality of μ̂ and since ‖w‖ � δ,

λ
∣
∣μ̂
∣
∣ (X ) + 1

2

∥
∥Φμ̂ − y

∥
∥2 � λ |μ̄0| (X ) + 1

2
‖Φμ̄0 − y‖2 � λ |μ̄0| (X ) + δ2

2

Using η = Φ∗ p, and by adding and subtracting Re
(〈η, μ̂ − μ̄0〉M

) =
Re

(〈p, Φμ̂ − y〉2
)+ Re (〈p, w〉2), we obtain

λ
(∣∣μ̂

∣
∣ (X ) − |μ̄0| (X ) − Re

(〈η, μ̂ − μ̄0〉M
))+ Re

(〈λp, Φ(μ̂ − μ̄0)〉2
)

+ 1

2

∥
∥Φμ̂ − y

∥
∥2 � δ2

2

�⇒ λ
(∣
∣μ̂
∣
∣ (X ) − |μ̄0| (X ) − Re

(〈η, μ̂ − μ̄0〉M
))+ 1

2

∥
∥Φμ̂ − y + λp

∥
∥2

� δ2

2
+ λ2 ‖p‖2

2
− Re (〈λp, w〉2)

�⇒ ∣
∣μ̂
∣
∣ (X ) − |μ̄0| (X ) − Re

(〈η, μ̂ − μ̄0〉M
)

� 1

2λ
(δ + λ ‖p‖)2 � δ ‖p‖

(22)

using λ ∼ δ/ ‖p‖. We now derive a lower bound for
∣
∣μ̂
∣
∣−|μ0|−Re

(〈η, μ̂ − μ̄0〉M
)
.

Since η is a dual certificate, we have 〈η, μ̄0〉M = |μ0| (X ) and |〈η, μ〉M| � |μ| (X ).
By further exploiting the non-degeneracy assumptions (ii) and (iii) on η, we have

∣
∣μ̂
∣
∣ (X ) − |μ̄0| (X ) − Re

(〈η, μ̂ − μ̄0〉
)

�
∣
∣μ̂
∣
∣ (X ) − Re

(〈η, μ̂〉)− 2 |μ̃0| (X )

�
∣
∣μ̂
∣
∣ (X ) −

∑

i

∫

X near
i

|η| d ∣∣μ̂∣∣−
∫

X far
|η| d ∣∣μ̂∣∣− 2 |μ̃0| (X )

�
∣
∣μ̂
∣
∣ (X ) −

∑

i

∫

X near
i

(
1− ε2dg(x, xi )

2
)
d
∣
∣μ̂
∣
∣ (x) − (1− ε0)

∣
∣μ̂
∣
∣
(
X far

)

− 2 |μ̃0| (X )

= ε0
∣
∣μ̂
∣
∣
(
X far

)
+ ε2

∑

i

∫

X near
i

dg(x, xi )
2d

∣
∣μ̂
∣
∣ (x) − 2 |μ̃0| (X )

which proves (21). Note also that by combining this with (22), we obtain the following
bound that we will use later:

∥
∥Φμ̂ − y + λp

∥
∥2 � (δ + λ ‖p‖)2 + 4λ |μ̃0| (X ) �⇒ ∥

∥Φμ̂ − y
∥
∥

� δ + 2λ ‖p‖ + 2
√
λ |μ̃0| (X ) (23)
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It remains to show that the bound (21) yields an upper bound on the partial optimal
transport distance between the recovered measure

∣
∣μ̂
∣
∣ and ρ

def.= ∑
i

∣
∣μ̂
∣
∣ (X near

i )δxi , its
“projection" onto the positions {x j } j . To see this, first note that the Kantorovich dual
formulation [49] of the Wasserstein distance in Def. 1 is

sup

{∫

X
ϕdμ +

∫

X
ψdν ; ϕ,ψ ∈ Cb(X ), ∀x, y ∈ X , ϕ(x) + ψ(y) � dg(x, y)

2
}

Given any ϕ,ψ ∈ Cb(X ) satisfying ϕ(x) + ψ(y) � dg(x, y)2 for all x, y ∈ X , we
have

W 2
g(ρ,

∣
∣μ̂
∣
∣X near ) �

∫
ϕd

∣
∣μ̂
∣
∣X near +

∫
ψdρ

=
∑

j

(∫

X near
j

(ϕ(x) + ψ(x j ))d
∣
∣μ̂
∣
∣ (x) − ψ(x j )

∫

X near
j

d
∣
∣μ̂
∣
∣ (x) + ψ(x j )

∣
∣μ̂
∣
∣ (X near

j )

)

=
∑

j

∫

X near
j

(ϕ(x) + ψ(x j ))d
∣
∣μ̂
∣
∣ (x) �

∑

j

∫

X near
j

dg(x, x j )
2d

∣
∣μ̂
∣
∣ (x)

So,

ε2W
2
g(ρ,

∣
∣μ̂
∣
∣X near ) � |μ̃0| (X ) + δ ‖p‖

So, since ε0
∣
∣μ̂
∣
∣X far (X ) � |μ̃0| (X ) + δ ‖p‖, we have

T 2
g (
∣
∣μ̂
∣
∣ , ρ) � 1

min (ε0, ε2)
(|μ̃0| (X ) + δ ‖p‖) .

��
We now give stability bounds around the sparse support, under some additional

assumptions.

Proposition 2 (Stability around the sparse support) Under the assumptions of Propo-
sition 1, let μ̂ be a solution of (Pλ(y)), and let â = (μ̂(X near

j ))sj=1. Suppose in addition
that for j = 1, . . . , s, there exists η j = Φ∗ p j which satisfies

(i) η j (x j ) = 1 and η j (x�) = 0 for all � �= j
(ii)

∣
∣1− η j (x)

∣
∣ � ε2dg(x, x j )2 for all x ∈ X near

j ,

(iii)
∣
∣η j (x)

∣
∣ � ε2dg(x, x�)2 for all x ∈ X near

� and � �= j ,
(iv)

∣
∣η j (x)

∣
∣ � 1− ε0 for all x ∈ X far.

Then,

∀ j = 1, . . . , s,
∣
∣â j − a j

∣
∣ �

∥
∥p j

∥
∥ (δ + λ

∥
∥p j

∥
∥)+ ε−1

0 (δ ‖p‖ + |μ̃0| (X ))

(24)
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where p is as in Proposition 1.

Proof First observe that writing ν = μ̂ − μ0, we have

∣
∣â j − a j

∣
∣ =

∣
∣
∣
∣
∣

∫

X near
j

dν(x)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

∫

X
η j (x)dν(x) +

∫

X near
j

(1− η j (x))dν(x)

−
∑

� �= j

∫

X near
�

η j (x)dν(x) −
∫

X far
η j (x)dν(x)

∣
∣
∣
∣
∣
∣
�
∣
∣
∣
∣

∫

X
η j (x)dν(x)

∣
∣
∣
∣

+ ε2

s∑

j=1

∣
∣
∣
∣
∣

∫

X near
j

dg(x, x j )
2dν(x)

∣
∣
∣
∣
∣
+ (1− ε0) |ν| (X far).

Using (21), we have |ν| (X far) = ∣
∣μ̂
∣
∣ (X far) � ε−1

0 (δ ‖p‖ + |μ̃0| (X )) and

ε2

s∑

j=1

∣
∣
∣
∣
∣

∫

X near
j

dg(x, x j )
2dν(x)

∣
∣
∣
∣
∣
=ε2

s∑

j=1

∣
∣
∣
∣
∣

∫

X near
j

dg(x, x j )
2dμ̂(x)

∣
∣
∣
∣
∣
� δ ‖p‖+ |μ̃0| (X )

Finally, by (23),

∣
∣
∣
∣

∫

X
η j (x)dν(x)

∣
∣
∣
∣ �

∣
∣〈η j , μ̂ − μ̄0〉M

∣
∣+ |μ̃0| (X )

�
∥
∥p j

∥
∥
∥
∥Φ(μ̂ − μ̄0)

∥
∥+ |μ̃0| (X )

�
∥
∥p j

∥
∥ (δ + ∥

∥Φμ̂ − y
∥
∥) + |μ̃0| (X )

�
∥
∥p j

∥
∥
(
2δ + 2λ ‖p‖ + 2

√
λ |μ̃0| (X )

)

+ |μ̃0| (X )

� 2δ
∥
∥p j

∥
∥+ 2λ ‖p‖ ∥∥p j

∥
∥+ λ

∥
∥p j

∥
∥2 + 2 |μ̃0| (X )

using
√
ab � (a + b)/2. Therefore, we obtain

∣
∣â j − a j

∣
∣ �

∥
∥p j

∥
∥ (δ + λ

∥
∥p j

∥
∥)+ ε−1

0 (δ ‖p‖ + |μ̃0| (X ))

��
Additional Certificates Proposition 2 assumes the construction of additional functions
η j ∈ Im(Φ∗), which are essentially similar to non-degenerate certificates but with all
“signs” to interpolate put to 0 except for one. As we will see, they are even simpler to
construct than η: indeed, the reason one has to resort to the random signs assumption
(as in [55]) or to the golfing scheme (as in this paper) is that the Euclidean norm of
the vector of signs (sign(ai ))si=1 appears in the proof, which results in a spurious term√
s. When constructing the η j , this problem does not occur, since only one sign is

nonzero.
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Relation to Previous Works Note that (21) and (24), without the inexact sparsity term
|μ̃0| (X ), were previously presented in [35] in the context of sampling Fourier coef-
ficients and in a more general setting in [4]. However, the statement in [4] is given in
terms of orthonormal systems, and the so-called Bernstein Isolation Property which
imposes that

∣
∣P ′(x)

∣
∣ � Cm2 ‖P‖∞ for all P ∈ Im(Φ∗). These conditions can be

difficult to check in our setting of random sampling and were imposed only to ensure
the existence of non-degenerate dual certificates, and to have explicit control on the
constant C . For completeness, we still present the proof of (21) under non-degeneracy
assumptions, andwe later establish that these non-degeneracy assumptions hold, under
appropriate separation conditions imposed via dg.

In [14], one could also obtain bounds
∑s

j=1

∣
∣â j − a j

∣
∣ � δ in the case of Fourier

sampling; however, to prove such a statement, one is required to construct a trigono-
metric function (a dual certificate) which interpolates arbitrary sign patterns. In the
case of sub-sampling, such an approach cannot lead to sharp dependency on s, since in
the real setting, one is then required to show the existence of 2s random polynomials
corresponding to all possible sign patterns.We therefore settle for the bound (24) in this
paper. We remark that being able to construct dual functions which interpolate arbi-
trary signs patterns leads to Wasserstein-1 error bounds, as opposed to Wasserstein-2
error bounds presented here.

Finally, we mention the more recent work of [32] which presents stability bounds
for the sparse spikes problem where one restricts to positive measures and where the
sampling functions form a T-systems. Under a positivity constraint (rather than total
variation penalization), theyderive stability bounds in termsof optimal partial transport
distances. We stress that since we consider more general measurement operators than
T-systems in this work, we consider transport distances under the Fisher metric as
opposed to the Euclidean metric. Moreover, another difference is that our error bounds
use the Wasserstein-2 distance, whereas they use the Wasserstein-1 distance—the
reason is that since they do not consider random sub-sampling, their proofs in fact
follow the work of [14] to construct dual certificates which interpolate arbitrary sign
patterns.

4 Non-degenerate Limit Certificates

In this section, we provide the second building block of our main theorem: a generic
way to ensure the existence and construct non-degenerates dual certificates, when
m → ∞ and the sought-after Diracs satisfy a minimal separation condition with
respect to the metric dg.

4.1 Notions of Differential Geometry

We start with additional definitions in differential Riemannian geometry. All these
notions can be found in the textbook [1], to which we refer the reader for further
details. In many instances, we extend classical definitions to the complex case in a
natural way.
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4.1.1 Riemannian Gradient and Hessian

Let f : Rd → C be a smooth function. The Riemannian gradient grad f (x) ∈ C
d

and Riemannian Hessian Hess f (x) : Cd → C
d , which is a linear mapping, can be

defined as:

grad f (x) = g−1
x ∇ f (x)

〈Hess f (x)[ei ], e j 〉x = ∂i∂ j f (x) − Γi j (x)
�∇ f (x)

where∇, ∂i are the classical Euclidean gradient and partial derivatives, and the {ei } are
the canonical basis of Rd . The Γi j (x) = [Γ k

i j (x)]k ∈ R
d are the Christoffel symbols,

here equal to:

Γ k
i j (x) =

1

2

∑

�

gk�(x)
(
∂i g� j (x) + ∂ j g�i (x) − ∂�gi j (x)

)
,

where gi j (x) = [gx ]i j and gi j (x) = [g−1
x ]i j . Finally, we denote by H f (x) ∈ C

d×d

the matrix that contains these terms: H f (x)
def.=
(
〈Hess f (x)[ei ], e j 〉x

)

i j
.

For r = 0, 1, 2, the “covariant derivative" Dr [ f ] (x) : (Cd)r → C are mappings
(or scalar in the case r = 0) defined as:

D0 [ f ] (x)
def.= f (x)

D1 [ f ] (x)[v] def.= 〈v, grad f (x)〉x = v∗∇ f (x)

D2 [ f ] (x)[v, v′] def.= 〈Hess f (x)[v], v′〉x = v∗H f (x)v′

We define associated operator norms

‖D1 [ f ] (x)‖x def.= sup
‖v‖x=1

D1 [ f ] (x)[v] =
∥
∥
∥
∥g

− 1
2

x ∇ f (x)

∥
∥
∥
∥
2

‖D2 [ f ] (x)‖x def.= sup
‖v‖x=1,‖v′‖x=1

D2 [ f ] (x)[v, v′] =
∥
∥
∥
∥g

− 1
2

x H f (x)g
− 1

2
x

∥
∥
∥
∥
2

where we recall that ‖·‖x is defined by (14).

4.1.2 Covariant Derivatives of the Kernel

Recall the definition of the limit covariance kernel (10). Given 0 � i, j � 2, let
K (i j)(x, x ′) be a “bi”-multilinear map, defined for Q ∈ (Cd)i and V ∈ (Cd) j as

[Q]K (i j)(x, x ′)[V ] def.= E[Di [ϕω] (x)[Q]D j [ϕω] (x
′)[V ]]. (25)

In the case i, j � 1, note that these admits simplified expressions: K (00)(x, x ′) =
K (x, x ′), [v]K (10)(x, x ′) = v�∇1K (x, x ′) and [v]K (11)(x, x ′)[v′] = v�∇1∇2
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K (x, x ′)v′. Define the operator norm of K (i j)(x, x ′) as

∥
∥
∥K (i j)(x, x ′)

∥
∥
∥
x,x ′

def.= sup
Q,V

∣
∣
∣[Q]K (i j)(x, x ′)[V ]

∣
∣
∣ (26)

where the supremum is over all V = [v1, . . . , vi ] with ‖v�‖x � 1 for all � ∈ [i], and
all Q = [q1, . . . , q j ] with ‖q�‖x ′ � 1 for all � ∈ [ j]. We will sometimes overload
the notations and write ‖·‖x when the dependence is only on x , i.e., for K (i j) where
j = 0. Note that, in particular,

∥
∥
∥K (10)(x, x ′)

∥
∥
∥
x
=
∥
∥
∥
∥g

− 1
2

x ∇1K (x, x ′)
∥
∥
∥
∥
2
,

∥
∥
∥K (11)(x, x ′)

∥
∥
∥
x,x ′

=
∥
∥
∥
∥g

− 1
2

x ∇1∇2K (x, x ′)g−
1
2

x ′

∥
∥
∥
∥
2

and
∥
∥
∥K (20)(x, x ′)

∥
∥
∥
x
=
∥
∥
∥
∥g

− 1
2

x H[K (·, x ′)](x)g−
1
2

x

∥
∥
∥
∥
2

(27)

All these definitions are naturally extended to the covariance kernel K̂ by replacing
the expectation E in (25) by an empirical expectation over ω1, . . . , ωm .

4.2 Non-Degenerate Dual Certificate withm → ∞

Recall the definition of the covariance kernel (9). Following [15], a natural approach
toward constructing a dual certificate is by interpolating the sign vector sign(a j ) using
the functions K̂ (x j , ·) and K̂ (10)(x j , ·), since we have
⎧
⎨

⎩
η

def.=
s∑

j=1

α1, j K̂ (x j , ·) +
s∑

j=1

[α2, j ]K̂ (10)(x j , ·) ; α1, j ∈ C, α2, j ∈ C
d

⎫
⎬

⎭
⊂ Im(Φ∗) .

Using the gradients of the kernel allows to additionally impose that ∇η(xi ) = 0,
which is a necessary (but not sufficient) condition for the dual certificate to reach its
maximum amplitude in xi . Usual proofs then show that, under minimal separation,
applying this strategy indeed yields a non-degenerate dual certificate.

We first consider the case where one has access to arbitrarily many measurements
(m → ∞), and to this end, we consider the limit covariance kernel K defined in (10).
Let us introduce some handy notations that will be particularly useful in later proofs
(Sect. 6). Our aim is to find coefficients (α1, j )sj=1 ∈ C

s and (α2, j )
s
j=1 ∈ (Cd)s such

that

η
def.=

s∑

j=1

α1, j K (x j , ·) +
s∑

j=1

[α2, j ]K (10)(x j , ·) (28)
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satisfies η(x j ) = sign(a j ) and ∇η(x j ) = 0 for all j = 1, . . . , s. Note that these
s(d + 1) constraints can be written as the linear system

Υ

(
α1

α2

)

=
(
(sign(ai ))si=1

0sd

)
def.= us , (29)

where Υ ∈ R
s(d+1)×s(d+1) is a real symmetric matrix defined as

Υ
def.= Eω[γ (ω)γ (ω)∗] ∈ C

s(d+1)×s(d+1), (30)

with the vector γ (ω) ∈ C
s(d+1) defined as

γ (ω)
def.=
(
(ϕω(xi ))

s
i=1 ,

(
∇ϕω(xi )

�)s
i=1

)�
. (31)

Assuming thatΥ is invertible, we can therefore rewrite (28) as η(x) = (Υ −1us)�f(x),
where

f(x) def.= Eω[γ (ω)ϕω(x)] =
(
(K (xi , x))

s
i=1 ,

(
∇1K (xi , x)

�)s
i=1

)� ∈ R
s(d+1) .

(32)

We also define the block diagonal normalization matrix Dg ∈ R
s(d+1)×s(d+1) as

Dg
def.=

⎛

⎜
⎜
⎜
⎜
⎝

Ids

g
− 1

2
x1

. . .

g
− 1

2
xs

⎞

⎟
⎟
⎟
⎟
⎠

(33)

so that Υ̃ = DgΥ Dg has constant value 1 along its diagonal.
We will prove in Theorem 2 that η of the form (28) is indeed non-degenerate,

provided that there is sufficient curvature on K (x, ·) in a small neighborhood around
x andmink �= j dg(x j , xk) � ΔwhereΔ is the distance atwhich the kernel and its partial
derivatives are sufficiently small (to allow for interpolationwith K (·, x j )withminimal
inference between the point sources). To do so, we need the following definition.

Definition 3 Given r > 0, the local curvature constants ε̄0(r) and ε̄2(r) of K are
defined as

ε̄0(r)
def.= sup

{
ε ; K (x, x ′) � 1− ε, ∀x, x ′ ∈ X s.t. dg(x, x

′) � r
}

ε̄2(r)
def.= sup

{
ε ; −K (02)(x ′, x)[v, v] � ε ‖v‖2x , ∀x, x ′ ∈ X s.t. dg(x, x

′) < r ,∀v ∈ R
d
}

Given h > 0 and s ∈ N, the kernel width of K is defined as
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Δ(h, s)
def.= inf

{

Δ ;
s∑

k=2

∥
∥
∥K (i j)(x1, xk)

∥
∥
∥
x1,xk

� h, (i, j) ∈ {0, 1} × {0, 2} , {xk}sk=1 ∈ SΔ

}

where SΔ
def.= {

(xk)sk=1 ∈ X s ; d(xk, x�) � Δ, ∀k �= �
}
is the set of k-tuples of Δ-

separated points. We define inf ∅ def.= +∞.

Intuitively, these notions are similar to those appearing in the definition of non-
degenerate dual certificates (and will ultimately serve in the proof of existence of
such certificates): r is a neighborhood size, ε̄0 represents the distance to 1 of the ker-
nel away from x = x ′, and ε̄2 is the “curvature” of the kernel when x ≈ x ′. Finally,Δ
is the “minimal separation” under which s Diracs have minimal interference between
them, or, in other words, the covariance kernel and its derivatives have low value. We
formalize this in the following assumption.

Assumption 1 (Assumptions on the kernel.) Suppose that K is a real-valued kernel.
For i, j � 2 and i + j � 3, assume that Bi j

def.= supx,x ′∈X
∥
∥K (i j)(x, x ′)

∥
∥
x,x ′ < ∞

and denote Bi
def.= B0i + B1i + 1. Assume that K has positive curvature constants ε̄0

and ε̄2 at radius 0 < rnear < B
− 1

2
02 . Let s ∈ N be such that Δ

def.= Δ(h, s) < ∞ with

h � 1
64 min

(
ε̄0
B0

, ε̄2
B2

)
.

Under this assumption, the following theorem, which is the main result of this
section, proves that a limit non-degenerate dual certificate can be constructed under
minimal separation.

Theorem 2 Under Assumption 1, for all {xk}sk=1 with mink �=� dg(xk, x�) � Δ, there

exists a unique function η of the form (28) which is ( ε̄02 , ε̄2
4 , rnear)-non-degenerate.

Moreover,

∥
∥
∥sign(a j )D2 [η] (x) − K (02)(x j , x)

∥
∥
∥
x

� ε̄2

16
∀x ∈ Bdg(x j ; rnear).

We delay the (slightly lengthy) proof of this result to the next subsection. Before that,
we make a few comments.

4.2.1 Dependency on

s As we have seen in the examples of Sect. 2, for a constant h we generally let the
minimal separation Δ = W (h, s) depend on s. Indeed, in dimension d, it is well
known one can pack Cd Δ-separated points in a ball of radius 2Δ for some constant
C . (This is known as the kissing number.) Hence, there exist s Δ-separated points
such that

s∑

k=2

∥
∥
∥K (i j)(x1, xk)

∥
∥
∥
x1,xk

� min
(
Cd , s

)
sup

d(x,x ′)�Δ

∥
∥
∥K (i j)(x, x ′)

∥
∥
∥
x,x ′

.
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Therefore, while the kernel width can be independent of s in low dimensions (and
the trick is then to upper bound this by a constant bound s → ∞, assuming the sum
on the l.h.s. converges), as d increases, the dependence on s will become inevitable;
otherwise, Δ generally depends exponentially on d.

4.2.2 Babel Function

The attentative reader might recognize the similarity of definition of kernel width
W (h, s) with the Babel function from compressed sensing [57], if we restrict the
definition to (i, j) = (0, 0) and recall that K (x, x ′) = Eω[ϕω(x)ϕω(x ′)]. The Babel
function of a m × N matrix A with columns a j is defined as

μ(s) = max
i∈[N ]max

⎧
⎨

⎩

∑

j∈S

∣
∣〈ai , a j 〉

∣
∣ ; S ⊂ [N ], |S| = s, i �= S

⎫
⎬

⎭
,

and small value of μ(s) ensures that the sub-matrix A∗
S AS , where AS is the matrix A

restricted to index set S with |S| � s, is well conditioned and invertible. Furthermore,
recovery guarantees for Basis Pursuit and Orthogonal Matching Pursuit can be stated
in terms of μ(s). In Theorem 2, sufficient kernel width also ensures thatΦ∗

xΦx is well
conditioned and thereby provide performance guarantees for the BLASSO.

4.3 Proof of Theorem 2

Before proving Theorem 2, we illustrate the link between curvature of the kernel as
represented by ε̄2 in Def. 3 and the quadratic decay condition |η| � 1 − εdg(xi , ·)2
that we used in the definition of non-degenerate certificates (Def. 2). The resulting
condition (35) is the one that we are actually going to prove in practice. The following
lemma is based on a generalized second-order Taylor expansion.

Lemma 2 Let x0 ∈ X and a ∈ C with |a| = 1. Suppose that for some ε > 0,
B > 0 and 0 < r � B− 1

2 we have: for all x ∈ Bdg(x0; r) and v ∈ C
d , it holds that

−K (02)(x0, x)[v, v] � ε ‖v‖2x and
∥
∥K (02)(x0, x)

∥
∥
x � B. Let η : X → C be a smooth

function.

(i) If η(x0) = 0,∇η(x0) = 0 and

‖D2 [η] (x)‖x � δ ∀x ∈ Bdg(x0; r) (34)

then |η(x)| � δdg(x0, x)2 for all x ∈ Bdg(x0; r).
(ii) If η(x0) = a, ∇η(x0) = 0 and

∥
∥
∥aD2 [η] (x) − K (02)(x0, x)

∥
∥
∥
x

� δ ∀x ∈ Bdg(x0; r) (35)

for some δ < ε
2 , then for all x ∈ Bdg(x0; r) we have |η(x)| � 1− ε′dg(x0, x)2

with ε′ = ε−2δ
2 .
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Proof We prove (i i), the proof for (i) is similar and simpler. Using (35) and the
assumption on K (02), we can deduce that for all v ∈ R

d we have

Re (aD2 [η] (x)[v, v]) � −(ε − δ) ‖v‖2x and |Im (aD2 [η] (x)[v, v])| � δ ‖v‖2x
Given a geodesic γ : [0, 1] → R

d , it is a well-known property that γ̈ +∑
i, j Γi j (γ )γ̇i γ̇ j = 0 where we recall that Γi j ∈ R

d are the Christoffel symbols.
Therefore, we have

d2

dt2
η(γ (t)) = γ̇ (t)�∇2η(γ (t))γ̇ (t) + ∇η(t)�γ̈ (t)

= γ̇ (t)�∇2η(γ (t))γ̇ (t) − ∇η(t)�
⎛

⎝
∑

i j

Γi j (γ (t))γ̇ j (t)γ̇k(t)

⎞

⎠

= γ̇ (t)�Hη(γ (t))γ̇ (t) = D2 [η] (γ (t))[γ̇ (t), γ̇ (t)]

So, given any geodesic path with γ (0) = x0 and γ (1) = x , since of course we have
dg(x0, γ (t)) � dg(x0, x) � r , by applying the inequalities above:

Re (aη(x)) = Re

(

a

(

η(x0) +∇η(x0)
�γ̇ (0) + 1

2

∫ 1

0
(1− t)

d2

dt2
η(γ (t))dt

))

= 1+ 1

2

∫ 1

0
(1− t)Re (aD2 [η] (γ (t))[γ̇ (t), γ̇ (t)]) dt

� 1− (ε − δ)

∫ 1

0
(1− t) ‖γ̇ (t)‖2γ (t) dt = 1− (ε − δ)

2
dg(x0, x)

2.

(36)

where the last line follows because ‖γ̇ (t)‖γ (t) is constant for all t ∈ [0, 1]. Sim-

ilarly, we can show that Re (aη(x)) � 1 − B+δ
2 dg(x0, x)2 � 0 since r � B− 1

2 ,
and |Im (aη(x))| � δ

2dg(x0, x)
2, from which we got |η(x)| � Re (aη(x)) +

|Im (aη(x))| � 1− ε−2δ
2 dg(x0, x)2. ��

We can now proceed with the proof of Theorem 2.

Proof of Theorem 2 Recall the block diagonal matric Dg from (33). The system (29)
is equivalent to

Υ̃

(
α̃1

α̃2

)

= us . (37)

where Υ̃ = DgΥ Dg and α̃ = D−1
g α. So, if Υ̃ is invertible, then we can write

η =
(
Υ̃ −1us

)�
Dgf = (

Υ −1us
)� f . Therefore, we will proceed as follows: First,

prove that Υ̃ is invertible. Second, bound the coefficients α1 and α2. Third, prove that
η is non-degenerate.
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We first prove that the matrix Υ̃ is invertible. To this end, we decompose it into
blocks

Υ̃ =
(
Υ0 Υ �

1
Υ1 Υ2

)

(38)

where Υ0 ∈ C
s×s , Υ1 ∈ C

sd×s and Υ2 ∈ C
sd×sd are defined as

Υ0
def.= (K (xi , x j ))

s
i, j=1, Υ1

def.= (g
− 1

2
xi ∇1K (xi , x j ))

s
i, j=1, Υ2

def.= (g
− 1

2
xi ∇1∇2K (xi , x j )g

− 1
2

x j )si, j=1.

To prove the invertibility of Υ̃ , it suffices to prove thatΥ2 and its Schur complement
ΥS

def.= Υ0 − Υ1Υ
−1
2 Υ �

1 are both invertible. To show that Υ2 is invertible, we define

Ai j = g
− 1

2
xi ∇1∇2K (xi , x j )g

− 1
2

x j , such that Υ2 has the form:

Υ2 =

⎛

⎜
⎜
⎜
⎜
⎝

Id A12 . . . A1s

A21 Id
. . .

...
...

. . .
. . .

...

As1 . . . . . . Id

⎞

⎟
⎟
⎟
⎟
⎠

and by Lemma 5 in Appendix A.1, Assumption 1 and (27), we have

‖Id − Υ2‖block � max
i

∑

j �=i

∥
∥Ai j

∥
∥
2 = max

i

∑

j �=i

∥
∥
∥K (11)(xi , x j )

∥
∥
∥
xi ,x j

� h � 1/32.

Since ‖Id − Υ2‖block < 1, Υ2 is invertible, and we have
∥
∥
∥Υ −1

2

∥
∥
∥
block

� 1
1−‖Id−Υ2‖block

� 4
3 . Next, again with Lemma 5, we can bound

‖Id − Υ0‖∞ = max
i

∑

j �=i

∣
∣K (xi , x j )

∣
∣ � h

‖Υ1‖∞→block � max
i

∑

j

∥
∥
∥
∥g

− 1
2

xi ∇1K (xi , x j )

∥
∥
∥
∥
2
= max

i

∑

j

∥
∥
∥K (10)(xi , x j )

∥
∥
∥
xi

� h

since K (10)(x, x) = 0. Hence, we have

‖Id − ΥS‖∞ � ‖Id − Υ0‖∞ +
∥
∥
∥Υ �

1

∥
∥
∥
block→∞

∥
∥
∥Υ −1

2

∥
∥
∥
block

‖Υ1‖∞→block � h + 4

3
h2 � 2h

def.= h′ < 1. (39)
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Therefore, the Schur complement of Υ̃ is invertible and so is Υ̃ .Moreover,
∥
∥
∥Υ −1

S

∥
∥
∥∞ �

1
1−h′ .

We can now define:

α̃ = Υ̃ −1us =
(
α̃1
α̃2

)

and, as described above, α = D−1
g α̃. The Schur’s complement of Υ̃ allows us to

express α1 and α2 as

(
α̃1

α̃2

)

=
(

Υ −1
S sign(a)

−Υ −1
2 Υ1Υ

−1
S sign(a)

)

(40)

, and therefore, we can bound

‖α1‖∞ �
∥
∥
∥Υ −1

S

∥
∥
∥∞ � 1

1− h′

max
i

∥
∥α2,i

∥
∥
xi

= ‖α̃2‖block �
∥
∥
∥Υ −1

2

∥
∥
∥
block

‖Υ1‖∞→block

∥
∥
∥Υ −1

S

∥
∥
∥∞ � 4h

Moreover, we have

‖α1 − sign(a)‖∞ �
∥
∥
∥Id − Υ −1

S

∥
∥
∥∞ �

∥
∥
∥Υ −1

S

∥
∥
∥∞ ‖Id − ΥS‖∞ � h′

1− h′ (41)

We can now prove that η is non-degenerate. For any x such that dg(x, xi ) � rnear
for all xi ’s, there exists at most one index i such that dg(x, xi ) < Δ/2 and so, for all
j �= i , we have dg(x, x j ) � Δ/2. Therefore,

|η(x)| =
∣
∣
∣
∣α1,i K (xi , x) +

∑

j �=i

α1, j K (x j , x)

+ [α2,i ]K (10)(xi , x) +
∑

j �=i

[α2, j ]K (10)(x j , x)

∣
∣
∣
∣

� ‖α1‖∞
⎛

⎝|K (xi , x)| +
∑

j �=i

∣
∣K (x j , x)

∣
∣

⎞

⎠+max
i

∥
∥α2,i

∥
∥
xi

(∥
∥
∥K (10)(xi , x)

∥
∥
∥
xi

+
∑

j �=i

∥
∥
∥K (10)(x j , x)

∥
∥
∥
x j

⎞

⎠

� 1

1− h′ (1− ε̄0 + h) + 4h (B10 + h) � 1− ε̄0

2
.

Now, let x be such that dg(xi , x) � rnear. Similarly, for all j �= i we have
dg(x, x j ) � Δ/2. Observe that
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sign(ai )D2 [η] (x) = K (02)(xi , x) +
(
sign(ai )α1,i − 1

)
K (02)(xi , x)

+ sign(ai )

[∑

j �=i

α1, j K
(02)(x j , x) + [α2,i ]K (12)(xi , x)

+
∑

j �=i

[α2, j ]K (12)(x j , x)

]

So,
∥
∥
∥sign(ai )D2 [η] (x) − K (02)(xi , x)

∥
∥
∥
x

�
∥
∥
∥
(
sign(ai )α1,i − 1

)
K (02)(xi , x)

+ sign(ai )

[∑

j �=i

α1, j K
(02)(x j , x) + [α2,i ]K (12)(xi , x)

+
∑

j �=i

[α2, j ]K (12)(x j , x)

]
∥
∥
∥
∥
∥
∥
x

� h′

1− h′ B02 + h ‖α1‖∞ +max
i

∥
∥α2,i

∥
∥
xi
(B12 + h)

� h′

1− h′ B02 + h

1− h′ + 4hB12 + 4h2 � ε̄2

16

We conclude using Lemma 2 and ε̄2−2ε̄2/16
2 � ε̄2/4. ��

5 Sparse Recovery

In this section, we formulate our main contribution, Theorem 3, which is a detailed
version of Theorem 1. In previous sections, we have shown that the existence of a
non-degenerate dual certificates implies sparse recovery guarantees, and that in the
limit case m → ∞, a minimal separation assumption implies the existence of a dual
certificate. Our main theorem is obtained by bounding the deviations from the limit
case whenm is finite. We do so by extending the celebrated golfing scheme [39] to the
infinite-dimensional case. We first begin by our assumptions on the feature functions
ϕω.

5.1 Almost Bounded Random Features

In order to bound the variation between K and K̂ , we would ideally like the features
ϕω and their derivatives to be uniformly bounded for all ω. However, this may not be
the case: think of eiω

�x , which does not have a uniformly bounded gradient when the
support of the distributionΛ is not bounded. On the other hand, ifΛ(ω) has sufficient
decay as ‖ω‖ increases, one could argue that the selected random features and their
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derivatives are uniformly bounded with high probability. For r ∈ {0, 1, 2}, we define
the random variables

Lr (ω)
def.= sup

x∈X
‖Dr [ϕω] (x)‖x . (42)

Note that Lr (ω) < ∞ for each ω since X is a bounded domain and ϕω is smooth.

Since
∣
∣ϕω(x) − ϕω(x ′)

∣
∣ =

∣
∣
∣
∫ 1
0

d
dt ϕω(γ (t))dt

∣
∣
∣ =

∣
∣
∣
∫ 1
0 D1 [ϕω] (γ (t))[γ̇ (t)]dt

∣
∣
∣ for a

smooth path from x to x ′, it is easy to see that

∣
∣ϕω(x) − ϕω(x

′)
∣
∣ � L1(ω)dg(x, x

′) (43)

We will also require D2 [ϕω] (x) to be Lipschitz; to this end, we assume that for all
x, x ′ ∈ X , there exists τx→x ′ : Cd → C

d an isometric isomorphism with respect to
gx , that is, such that 〈u, v〉x = 〈τx→x ′u, τx→x ′v〉x ′ , such that for all ω:

L3(ω)
def.= inf

{

L > 0 ; sup
dg(x,x ′)�rnear

∥
∥D2 [ϕω] (x) − D2 [ϕω] (x ′)[τx→x ′ ·, τx→x ′ ·]

∥
∥
x

dg(x, x ′)
� L

}

<∞.

where naturally

∥
∥D2 [ϕω] (x) − D2 [ϕω] (x

′)[τx→x ′ ·, τx→x ′ ·]
∥
∥
x

= sup
‖u‖x�1,‖v‖x�1

D2 [ϕω] (x)[u, v] − D2 [ϕω] (x
′)[τx→x ′u, τx→x ′v]

and rnear comes from Assumption 1. One possible choice of τx→x ′ is to choose the
parallel transport along the unique geodesic connecting x and x ′. Another possible
choice is to simply choose τx→x ′ : v �→ g

− 1
2

x ′ g
1
2
x v. The latter choice implies

∥
∥D2 [ϕω] (x) − D2 [ϕω] (x

′)[τx→x ′ ·, τx→x ′ ·]
∥
∥
x

=
∥
∥
∥
∥g

− 1
2

x ′ Hϕω(x
′)g−

1
2

x ′ − g
− 1

2
x Hϕω(x)g

− 1
2

x

∥
∥
∥
∥ . (44)

which is a more convenient expression that we will use in the examples.
Finally, we let Fr : [0,∞) → [0, 1] be decaying tail functions such that

Pω (Lr (ω) > t) � Fr (t). (45)

Our sampling complexity will depend on the decay of these tail distributions so that
the derivatives of the selected random features are bounded with high probability. A
similar idea of stochastic incoherence was exploited in [16] for deriving compressed
sensing bounds.
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5.2 Main Result

Our main result is valid under the following assumption, which links the tail proba-
bilities of the bounds on the feature functions and the final number of measurements
m.

Assumption 2 (Assumption on the features and the sample complexity) For ρ > 0,
suppose that m ∈ N and some constant {L̄i }3i=0 ∈ R

4+ are chosen such that

3∑

j=0

Fj (L̄ j ) � min(ε̄0, ε̄2, ρ)

m
and

3
max
j=0

(

L̄2
j

3∑

i=0

Fi (L̄i ) + 6
∫ ∞

L̄ j

t Fj (t)dt

)

� min (ε̄0, ε̄2)

m

(46)

and

m � s

(

C1 log(s) log

(
s

ρ

)

+ C2 log

(
(sN )d

ρ

))

(47)

where N
def.= RX L̄1

ε̄0
+ rnear L̄3 L̄0+L̄2

ε̄2
, C1

def.= (L̄2
0 + L̄2

1)
∑

r=0,2
B2
r

ε̄2r
, and C2

def.= B22 L̄2
01

B2
2

+
∑

r=0,2

(
L̄2
r

ε̄2r
+ L̄01 L̄r

ε̄r

)
with L̄i j =

√
L̄2
i + L̄2

j .

The constants L̄r play the role of “stochastic” Lipschitz constant: for r = 0, 1, 2,
with high probability on ω j , Dr [ϕω] (x)will be L̄r -bounded and L̄r+1-Lipschitz. The
condition (46) ensures that this is true with probability 1 − ρ, that is, with the same
desired probability of failure. Then, the entire proof is done conditionally on these
bounds to hold.

Note also that, generally, {L̄r }dependonm, through (46).However, all our examples
fall under two categories (see Sec. 2):

(i) either ‖Dr [ϕω] (x)‖x is already uniformly bounded, in which case L̄r can be
chosen independently of ρ andm, this is, for instance, the case of discrete Fourier
sampling;

(ii) or the Fr (t) are exponentially decaying, in which case we can show that L̄r =
O
(
log

(
m
ρ

)p)
for some p > 0, which only incurs additional logarithmic terms

in the bound (47). This occurs in the case of sampling the Laplace transform or
sampling the Fourier transform with respect to a Gaussian distribution.

We are now ready to state the detailed version of Theorem 1, which is the main
result of this paper.

Theorem 3 Suppose that Assumptions 1 and 2 hold. Let y be as in (2) with
mini �= j dg(xi , x j ) � Δ and ‖w‖ � δ. Then, with probability at least 1 − ρ, any
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solution μ̂ of (Pλ(y)) with λ ∼ δ√
s
satisfies

T 2
dg

⎛

⎝
∣
∣μ̂
∣
∣ ,

s∑

j=1

Âiδx j

⎞

⎠ � e and
s

max
i=1

∣
∣âi − ai

∣
∣ � e

where Âi =
∣
∣μ̂
∣
∣ (Bdg(xi ; rnear)

)
, âi = μ̂

(
Bdg(xi ; rnear)

)
ande � 1

min(ε̄0,ε̄2)
(|μ̃0| (X ))

+δ · √s.

Thenext section is dedicated to the proof ofTheorem3using an infinite-dimensional
golfing scheme. Appendix A is dedicated to the proof of some technical Lemmas.
AppendixBgathers all the concentration inequalities thatwe use in the golfing scheme,
which are essentiallymany variants ofBernstein’s inequality. Finally,AppendicesC,D
and E are dedicated to the computation of all the constants in Assumptions 1 and 2
for the examples described in Sect. 2, which can be quite verbose.

6 Proof of Theorem 3

The main step toward proving Theorem 3 is to prove the existence of a dual certificate
satisfying the properties described in Proposition 1. More precisely, we are going to
prove the following theorem.

Theorem 4 Suppose that Assumptions 1 and 2 hold. Let
{
x j
}s
j=1 be such that

mini �= j dg(xi , x j ) � Δ. Then, with probability at least 1 − ρ, there exists p ∈ C
m

with ‖p‖ � √
s such that η̂ = Φ∗ p is ( ε̄08 , 3ε̄2

8 , rnear)-non-degenerate.

6.1 Outline of the Proof

The construction of the non-degenerate certificate includes several intermediate steps.
As usual in this type of proof, we will first prove these properties on a finite ε-net
that covers X , then extend them to the whole space by regularity. Here we work with
several nets Gnear

j ⊂ X near
j and Gfar ⊂ X far whose precision will be adjusted later. The

principle of the golfing scheme is to work with an “approximate” dual certificate ηapp

(which is actually not a dual certificate at all); then, “correct” it to obtain the desired
true certificate. In details, we will go through the following steps:

1. First, show that with probability at least 1− ρ, there is an approximate certificate
ηapp ∈ Im(Φ∗) such that for some constant c0 that will be adjusted later,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑s
j=1

∣
∣ηapp(x j ) − sign(a j )

∣
∣2 + ∥

∥D1
[
ηapp

]
(x j )

∥
∥2
x j

� c20 for all j = 1, . . . , s
∣
∣ηapp(x)

∣
∣ � 1− ε̄0

4 for all x ∈ Gfar
∥
∥
∥sign(a j )D2

[
ηapp

]
(x) − K (02)(x j , x)

∥
∥
∥
x

� 7ε̄2
64 for all j = 1, . . . , s, x ∈ Gnear

j

(48)

In other words, we relax the condition η(x j ) = sign(a j ), ∇η(x j ) = 0, and replace
it with the first equation above.
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2. Second, correct the approximate certificate to obtain a function1 η̂ ∈ Im(Φ∗) such
that:
⎧
⎪⎪⎨

⎪⎪⎩

η̂(x j ) = sign(a j ) and ∇η̂(x j ) = 0 for all j = 1, . . . , s
∣
∣η̂(x)

∣
∣ � 1− 3ε̄0

16 for all x ∈ Gfar
∥
∥
∥sign(a j )D2

[
η̂
]
(x) − K (02)(x j , x)

∥
∥
∥
x

� 15ε̄2
128 for all j = 1, . . . , s, x ∈ Gnear

j

(49)

That is, η̂ satisfy all the properties we want, but on the finite nets Gfar,Gnear
j .

3. Third, bound the norm of the p ∈ C
m corresponding to η̂ = Φ∗ p.

4. Then, use Assumption 2 on the feature functions and the bound on ‖p‖ to show
that actually, the η̂ constructed above satisfy:

⎧
⎪⎪⎨

⎪⎪⎩

η̂(x j ) = sign(a j ) and ∇η̂(x j ) = 0 for all j = 1, . . . , s
∣
∣η̂(x)

∣
∣ � 1− ε̄0

8 for all x ∈ X far
∥
∥
∥sign(a j )D2

[
η̂
]
(x) − K (02)(x j , x)

∥
∥
∥
x

� ε̄2
8 for all j = 1, . . . , s, x ∈ X near

j

(50)

which, by Lemma 2, will imply that η̂ is non-degenerate with the desired constants
and conclude the proof of Theorem 4.

5. In a fifth and final step, prove the existence of s additional certificates η̂ j as appear
in Proposition 2. Combined with the existence of η̂ and Propositions 1 and 2, it
concludes the proof of Theorem 3.

We dedicate a subsection to each step of the proof. Before that, we start in the next
subsection with some technical preliminaries and notations.

6.2 Preliminaries

Let us introduce some notations and show some technical bounds that will be handy.
Recall the definitions of the sign vector us from (29), γ , Υ and f from (31), (30) and
(32), and Dg from (33). We have the following additional bounds, whose proof, in
Appendix A.2, follows similar arguments to that of Theorem 2.

Lemma 3 Under Assumption 1, Υ and f defined as in (30) and (32) satisfy the follow-
ing.

(i) Υ is invertible and satisfies

∥
∥Id − DgΥ Dg

∥
∥
2 � 1

2
and

∥
∥Id − DgΥ Dg

∥
∥
Block � 1

2
. (51)

(ii) For any vector q ∈ C
s(d+1) and any x ∈ X far, we have

∥
∥Dgf(x)

∥
∥
2 � B0 and

∣
∣
∣q�f(x)

∣
∣
∣ � B0

∥
∥
∥D−1

g q
∥
∥
∥
Block

(52)

1 Here, we write η̂ to distinguish from the “limit” certificate η that we built in the case m → ∞.
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(iii) For any vector q ∈ C
s(d+1) and any x ∈ X near we have the bound:

∥
∥
∥D2

[
q�f(.)

]
(x)

∥
∥
∥
x

�
∥
∥
∥D−1

g q
∥
∥
∥ B2

and
∥
∥
∥D2

[
q�f(.)

]
(x)

∥
∥
∥
x

�
∥
∥
∥D−1

g q
∥
∥
∥
Block

B2 (53)

Now, for ω1, . . . , ωm , denote the empirical versions of Υ and f by:

Υ̂
def.= 1

m

m∑

k=1

γ (ωk)γ (ωk)
∗ and f̂(x) def.= 1

m

m∑

k=1

γ (ωk)ϕωk (x). (54)

Recall the definition of L j (ω) and L̄ j in Assumption 2. Let the event Ē be defined by

Ē
def.=

m⋂

k=1

Eωk where Eω
def.= {

L j (ω) � L̄ j ; j = 0, 1, 2, 3
}
. (55)

Since byAssumption 2, Eq. (46),we haveP(Ēc) � ρ, a non-degenerate dual certificate
can be constructedwith probability at least (1−ρ)2 � 1−2ρ provided that, conditional
on event Ē , a non-degenerate dual certificate can be constructed with probability at
least 1− ρ.

We therefore assume for the rest of this proof that event Ē holds and establish the
probability conditional on Ē that a non-degenerate dual certificate exists. To control
this probability, we will need to control the deviation of f̂ and Υ̂ from their conditional
expectations fĒ = EĒ [f̂] and ΥĒ

def.= EĒ [Υ̂ ], where we denote EĒ [·] def.= E[·|Ē]. The
following lemma, proved in Appendix A.3, bounds the deviations between these.

Lemma 4 Under Assumptions 1 and 2, we have:

(i)
∥
∥Dg(Υ − ΥĒ )Dg

∥
∥
2 � 4 (s+1)min(ε̄0,ε̄2)

m and
∥
∥Dg(Υ − ΥĒ )Dg

∥
∥
Block

� 8 (s+1)min(ε̄0,ε̄2)
m

(ii) for all x ∈ X far,
∥
∥Dg(f(x) − fĒ (x))

∥
∥
2 � (B0+2

√
s)min(ε̄0,ε̄2)
m

(iii) for all x ∈ X near, sup‖q‖2�1

∥
∥D2

[
(f − fĒ )

�Dgq
]
(x)

∥
∥
x � (B2+2

√
s)min(ε̄0,ε̄2)
m

6.3 Step 1: Construction of an Approximate Certificate with the Golfing Scheme

The first step is to construct an approximate certificate ηapp using the so-called golfing
scheme. The golfing scheme was introduced in [39] and successfully used in com-
pressed sensing, for instance, in [16]. It can be intuitively explained as follows. Recall
that the certificate constructed in Theorem 2 in the case m → ∞ is of the form
η = (Υ −1u)�f . It is therefore natural to try to show directly that η̂

def.= (Υ̂ −1u)� f̂ is
also non-degenerate by bounding the variation between η and η̂. This is the strategy
adopted by Tang et al [55] and in our previous work [44]. However, as mentioned
before, this proof technique requires the random signs assumption; otherwise, a sub-
optimal bound on m is obtained. To solve this, the golfing scheme starts by writing
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the following Neumann expansion: assuming that Υ̂ is invertible, we have

η̂ = (Υ̂ −1u)� f̂ = (Υ −1(Υ̂ Υ −1)−1u)� f̂

=
∞∑

�=1

(

Υ −1
(
Id − Υ̂ Υ −1

)�−1
u
)�

f̂ =
∞∑

�=1

(Υ −1q�−1)
� f̂

(56)

where q�
def.=
(
Id − Υ̂ Υ −1

)
q�−1, q0

def.= u. By cutting the sum above to a finite number

of terms, one effectively obtains an approximate certificate that must be later cor-
rected. However, there is an additional difficulty in analyzing the sum, which comes
from the fact that for each summand, f̂ and Υ −1q�−1 are random variables which
are not mutually independent. The idea of [16,39] is to decouple the random vari-
ables by partitioning the indices {1, . . . ,m} into J disjoint blocks B� of size m� with∑J

�=1m� = m, for some J and m� that are adjusted below. Denote by Υ̂� and f̂� the
empirical versions of Υ and f over the m� random variables included in B�, that is:

Υ̂�
def.= 1

m�

∑

k∈B�

γ (ωk)γ (ωk)
∗ and f̂�(x)

def.= 1

m�

∑

k∈B�

γ (ωk)ϕωk (x).

Then, instead of (56), we consider

ηapp =
J∑

�=1

(Υ −1q�−1)
�f̂�

where q�
def.=
(
Id − Υ̂�Υ

−1
)
q�−1, q0

def.= u. Note that this can be rewritten as:

q� = us −
�∑

p=1

Υ̂pΥ
−1qp−1 (57)

Now, the idea is that one can control each term q�
�−1 f̂� conditional on q�−1 and for

appropriate choices of the blocksizesm�, ηapp can be shown to be approximately non-
degenerate with high probability. Each additional term in the sum brings the certificate
“closer” to its desired properties, hence the term “golfing” scheme.

6.3.1 Parameters and Intermediate Assumptions

We set the error c0 that appears in (48) as

c0 = C0 min

(
ε̄0

B0
,
ε̄2

B2
, 1

)
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for some universal constant C0. We define the parameters of our golfing scheme as
follows:

J = �log(s) + 2 ,

c1 = c2 = c0

4
√
log(s)

and ∀� = 3, . . . , J , c� = c0 ,

t1 = 1− ε̄0

2
+ ε̄0

8
t2 = 4B0

√
log(s), and ∀� = 3, . . . , J , t� = 4B0 log(s) ,

b1 = 3ε̄2
32

, b2 = 4B2
√
log(s), and ∀� = 3, . . . , J , b� = 4B2 log(s) .

We now formulate an intermediate set of assumptions, and proceed to show that:
first, they imply the desired properties on ηapp, and second, they are valid with high
probability. For 1 � � � J , we define:

(I�)
∥
∥Dgq�

∥
∥
Block � c�

∥
∥Dgq�−1

∥
∥
Block,

(II�) For all x ∈ Gfar,
∣
∣
∣(Υ −1q�−1)

�f̂�(x)
∣
∣
∣ � t�

∥
∥Dgq�−1

∥
∥
Block,

(III�) If � = 1: for all j = 1, . . . , s, x ∈ Gnear
j ,

∥
∥
∥sign(a j )D2

[
(Υ −1us)� f̂1

]
(x) − K (02)(x j , x)

∥
∥
∥
x

� b1; and if � � 2: for all

x ∈ Gnear,
∥
∥
∥D2

[
(Υ −1q�−1)

�f̂�
]
(x)

∥
∥
∥
x

� b�
∥
∥Dgq�−1

∥
∥
Block.

Let us now assume that (I�), (II�) and (III�) are true for all � and show that ηapp satisfy
the desired properties. We define Ψ : C (X ) → C

s(d+1) by

Ψ f
def.=
[
f (x1), . . . , f (xs),∇ f (x1)

�, . . . ,∇ f (xs)
�]� . (58)

In words, Ψ evaluates a function and its first derivative at the points {x j }sj=1. Note

that for any vector v ∈ C
s(d+1), by definition we have Ψ (v� f̂�) = Υ̂�v. Using this,

we have

√√
√
√

s∑

j=1

∣
∣ηapp(x j ) − sign(a j )

∣
∣2 + ∥

∥D1 [ηapp] (x j )
∥
∥2
x j

= ∥
∥us − DgΨηapp

∥
∥ �

√
2s

∥
∥Dg

(
us − Ψηapp

)∥
∥
Block

= √
2s

∥
∥
∥
∥
∥
Dg

(

us − Ψ

(
J∑

�=1

(Υ −1q�−1)
� f̂�

))∥∥
∥
∥
∥
Block

= √
2s

∥
∥
∥
∥
∥
Dg

(

us −
J∑

�=1

Υ̂�Υ
−1q�−1

)∥
∥
∥
∥
∥
Block

(57)= √
2s

∥
∥DgqJ

∥
∥
Block �

√
s

J∏

�=1

c�
(I)
�

√
2scJ0

16 log(s)
� c0 ,
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since by adjusting C0 we can have c0 �
(

1√
6

) 1
log(3)−1 �

(
1√
2s

) 1
log(s)−1

where the last

inequality is valid for all s and results from a simple function study. It proves the first
part of (48). Next, for all x ∈ Gfar,

∣
∣ηapp(x)

∣
∣ �

J∑

�=1

∣
∣
∣(Υ −1q�−1)

� f̂�(x)
∣
∣
∣
(II)
�

J∑

�=1

t�
∥
∥Dgq�−1

∥
∥
Block

(I)
�

J∑

�=1

t�

�−1∏

p=1

cp

� 1− ε̄0

2
+ ε̄0

8
+ B0c0 + B0

4

J−1∑

�=2

c�0 � 1− ε̄0

2

+ ε̄0

8
+ B0c0 + B0c20

4(1− c0)
� 1− ε̄0

4
.

since by our choice of c0 and adjusting C0, B0c0 + B0c20
4(1−c0)

� ε̄0
8 . Similarly, for all

x ∈ Gnear
j ,

∥
∥
∥sign(a j )D2

[
ηapp

]
(x) − K (02)(x j , x)

∥
∥
∥
x

�
∥
∥
∥sign(a j )D2

[
(Υ −1us)� f̂1

]
(x) − K (02)(x j , x)

∥
∥
∥
x

+
J∑

�=1

∥
∥
∥D2

[
(Υ −1q�−1)

� f̂�
]
(x)

∥
∥
∥
x

� 3ε̄2
32

+
J∑

�=2

b�

�−1∏

p=1

cp = 3ε̄2
32

+ B2c0 + B2

4

J−1∑

�=2

c�0

� 3ε̄2
32

+ B2c0 + B2c20
4(1− c0)

� 7ε̄2
64

since similarly, B2c0 + B2c20
4(1−c0)

� ε̄2
64 . Hence, (I�), (II�), (III�) indeed implies (48).

Next, we derive a condition on m under which they are true with probability 1 − ρ

(conditional on event Ē).

6.3.2 Probability of Successful Construction

Let us now prove that (I�), (II�) and (III�) are indeed valid with the desired probability.
Let p1(�), p2(�) and p3(�)be the probabilities conditional on event Ē that (I�), (II�) and
(III�) fail, respectively. By a union bound, our goal is to derive a bound onm such that∑3

k=1
∑J

�=1 pk(�) � ρ. We do so by applying variants of Bernstein’s concentration
inequality that are all detailed in Appendix B. As we mentioned before, a crucial
construction of the golfing scheme is that, at each step, q�−1 and f̂� are mutually
independent, such that we can reason conditionally on q�−1 and treat it as a fixed
vector when bounding the probabilities w.r.t. f̂� and Υ̂�.
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We define q̄�
def.= D−1

g Υ −1q� for short. To bound p1(�), we first observe the recur-

rence relation Dgq� = Dg(Id − Υ̂�Υ
−1)q�−1 = Dg(Υ − Υ̂�)Dgq̄�−1. Moreover,

by Lemma 3 we have
∥
∥D−1

g Υ −1D−1
g

∥
∥
Block

� 1
1−‖DgΥ Dg‖Block

� 2, and there-

fore
∥
∥Dgq�−1

∥
∥
Block � 1∥

∥
∥D−1

g Υ −1D−1
g

∥
∥
∥
Block

‖q̄�−1‖Block � 1
2 ‖q̄�−1‖Block. Finally, by

Lemma 4 and our assumptions we have in particular that
∥
∥Dg(ΥĒ − Υ )Dg

∥
∥
Block �

min� c�/4. Therefore,

p1(�) = PĒ

(∥∥Dgq�
∥
∥
Block � c�

∥
∥Dgq�−1

∥
∥
Block

)
� PĒ

(∥∥
∥Dg(Υ − Υ̂�)Dgq̄�−1

∥
∥
∥
Block

� c�
2

‖q̄�−1‖Block
)

� PĒ

(∥
∥
∥Dg(ΥĒ − Υ̂�)Dgq̄�−1

∥
∥
∥
Block

� c�
4

‖q̄�−1‖Block
)

Finally, applying Lemma 14, for some ρ� that we adjust later we obtain that

PĒ

(∥∥
∥Dg(ΥĒ − Υ̂�)Dgq̄�−1

∥
∥
∥
Block

� c�
4

‖q̄�−1‖Block
)

� ρ�

if m� � s L̄2
01

c2�
log

(
s
ρ�

)
.

For p2(�), we have
∣
∣
∣(Υ −1q�−1)

� f̂�(x)
∣
∣
∣ =

∣
∣
∣(q̄�−1)

�Dgf̂�(x)
∣
∣
∣ �

∣
∣
∣(q̄�−1)

�Dg(f̂�(x) − f(x))
∣
∣
∣

+
∣
∣
∣(q̄�−1)

�Dgf(x)
∣
∣
∣

�
∣
∣
∣(q̄�−1)

�Dg(f̂�(x) − f(x))
∣
∣
∣

+
{
B0 ‖q̄�−1‖Block � � 2

1− ε̄0
2 � = 1

by Lemma 3 for the case � � 2 and Theorem 2 for the case � = 1. Hence,

p2(�) = PĒ

(
∃x ∈ Gfar,

∣
∣
∣(Υ −1q�−1)

�f̂�(x)
∣
∣
∣ > t�

∥
∥Dgq�−1

∥
∥
Block

)

� PĒ

(

∃x ∈ Gfar,

∣
∣
∣(Υ −1q�−1)

� f̂�(x)
∣
∣
∣ >

t�
2
‖q̄�−1‖Block

)

� PĒ

(
∃x ∈ Gfar,

∣
∣
∣(q̄�−1)

�Dg(f̂�(x) − f(x))
∣
∣
∣ > t̃� ‖q̄�−1‖Block

)

where t̃�
def.=
{( t�

2 − B0
)

� � 2
ε̄0
16 � = 1

.

Since by Lemma 4 we have in particular
∣
∣
∣(q̄�−1)

�Dg(fĒ (x) − f(x))
∣
∣
∣

�
√
2s ‖q̄�−1‖Block

∥
∥Dg(fĒ (x) − f(x))

∥
∥ � t̃�

2
‖q̄�−1‖Block ,
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by Lemma 8 and a union bound we have

p2(�) � PĒ

(

∃x ∈ Gfar,

∣
∣
∣(q̄�−1)

�Dg(f̂�(x) − fĒ (x))
∣
∣
∣ >

t̃�
2
‖q̄�−1‖Block

)

� ρ�

provided that m� � s

(
L̄2
0

t̃2�
+ L̄01 L̄0

t̃�

)

log

(∣
∣Gfar

∣
∣

ρ�

)

.

For p3(�), fix j , for any x ∈ Gnear
j : in the case � � 2, by Lemma 3,

∥
∥
∥D2

[
(Dgq̄�−1)

� f̂�
]
(x)

∥
∥
∥
x

�
∥
∥
∥
(
D2

[
(Dgq̄�−1)

�(f̂� − f)
]
(x)

)∥∥
∥
x
+
∥
∥
∥D2

[
(Dgq̄�−1)

�f
]
(x)

∥
∥
∥
x

�
∥
∥
∥D2

[
(Dgq̄�−1)

�(f̂� − f)
]
(x)

∥
∥
∥
x
+ B2 ‖q̄�−1‖Block

and for � = 1, by Theorem 2,

∥
∥
∥sign(a j )D2

[
(Dgq̄0)

� f̂1
]
(x) − K (02)(x j , x)

∥
∥
∥
x

�
∥
∥
∥sign(a j )D2

[
(Dgq̄0)

�f
]
(x) − K (02)(x j , x)

∥
∥
∥
x
+
∥
∥
∥D2

[
(Dgq̄0)

�(f̂1 − f)
]
(x)

∥
∥
∥
x

� ε̄2

16
+
∥
∥
∥D2

[
(Dgq̄0)

�(f̂1 − f)
]
(x)

∥
∥
∥
x
.

Therefore, by the same computation as before,

p3(�) � PĒ

(
∃x ∈ Gnear,

∥
∥
∥D2

[
(Dgq̄�−1)

�(f̂� − f)
]
(x)

∥
∥
∥
x
> b̃� ‖q̄�−1‖Block

)
,

where b̃�
def.=
{(

b�
2 − B2

)
� � 2

ε̄2
64 � = 1.

Again using Lemma 4, we bound
∥
∥D2

[
(Dgq̄�−1)

�(fĒ − f)
]
(x)

∥
∥
x � b̃�

2 ‖q̄�−1‖Block
and

p3(�) � PĒ

(

∃x ∈ Gnear,
∥
∥
∥D2

[
(Dgq̄�−1)

�(f̂� − fĒ )
]
(x)

∥
∥
∥
x
>

b̃�
2

∥
∥q̄�−1

∥
∥
Block

)

� ρ�

by Lemma 10 and a union bound, provided that m� � s

(
L̄2
2

b̃2�
+ L̄2 L̄01

b̃�

)

log
( |Gnear |

ρ�

)
.

Choosing ρ1 = ρ2 = ρ/9 and ρ� = ρ/(9J ) for � � 3, recalling that obviously
ε̄r � Br for r = 1, 2 and denoting N0 = ∣

∣Gfar
∣
∣ and N2 = |Gnear| for short, we have

∑3
k=1

∑J
�=1 pk(�) � ρ provided that

m1 = m2 � s
∑

r=0,2

(

L̄201
B2
r

ε̄2r
log(s) log

(
s

ρ

)

+
(
L̄2r
ε̄2r

+ L̄01 L̄r
ε̄r

)

log

(
Nr

ρ

))
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and for � � 3,

m� � s
∑

r=0,2

(

L̄201
B2
r

ε̄2r
log

(
s log(s)

ρ

)

+
(

L̄2r
B2
r log2(s)

+ L̄01 L̄r
Br log(s)

)

log

(
Nr log(s)

ρ

))

Therefore, conditionally on Ē , ηapp can be constructed with probability at least 1− ρ

if m � m1 + m2 + Jm3, for which it is sufficient that

m � s
∑

r=0,2

(

L̄2
01

B2
r

ε̄2r
log(s) log

(
s

ρ

)

+
(
L̄2
r

ε̄2r
+ L̄01 L̄r

ε̄r

)

log

(
Nr log(s)

ρ

))

(59)

6.4 Step 2: Correcting the Approximate Certificate

The second step of our proof is to “correct” the previously constructed approximate
certificate ηapp to obtain a certificate η ∈ Im(Φ∗) satisfying (49). Recalling the defi-
nition (58) of Ψ , let e

def.= Ψηapp − us be the error made by ηapp and define

η̂
def.= ηapp − ηe, where ηe

def.= (Υ̂ −1e)� f̂ .

Then,

Ψ η̂ = Ψηapp − e = us ,

and we have indeed that η̂(xi ) = sign(ai ) and ∇η̂(xi ) = 0. We will now bound the
deviations of η̂ on the grids Gfar and Gnear, using the fact that e has a small norm. Note
that there is a subtlety here: e itself is random, and not independent of f̂ or Υ̂ . So we
must use “uniform” concentration bounds.

Using Lemma 3 in combination with Lemma 4 and Lemma 12, we have that with
probability at least 1− ρ:

∥
∥
∥Id − DgΥ̂ Dg

∥
∥
∥ �

∥
∥Id − DgΥ Dg

∥
∥+ ∥

∥Dg(Υ − ΥĒ )Dg

∥
∥

+
∥
∥
∥Dg(ΥĒ − Υ̂ )Dg

∥
∥
∥ � 1

2
+ 1

8
+ 1

8
= 3

4
(60)

and therefore
∥
∥
∥D−1

g Υ̂ −1D−1
g

∥
∥
∥ � 4 . (61)

By Lemma 3, 4, 9 and a union bound to, respectively, bound each term in the following
triangular inequality, with probability 1− ρ we have

∀x ∈ Gfar,
∥
∥
∥Dg f̂(x)

∥
∥
∥ �

∥
∥Dgf(x)

∥
∥+ ∥

∥Dg(fĒ (x) − f(x))
∥
∥+

∥
∥
∥Dg(f̂(x) − fĒ (x))

∥
∥
∥ � 2B0
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ifm � B−2
0 log

(∣
∣Gfar

∣
∣

ρ

)

(s L̄2
01+

√
s L̄01 L̄0). Then, for all x ∈ Gfar, since by adjusting

C0 we can have in particular
∥
∥Dge

∥
∥ � c0√

s
� c0 � 1

128 min
(

ε̄2
B2

, ε̄0
B0

)
, we have

∣
∣η̂(x)

∣
∣ �

∣
∣ηapp(x)

∣
∣+

∥
∥
∥Dgf̂(x)

∥
∥
∥
∥
∥
∥D−1

g Υ̂ −1D−1
g

∥
∥
∥
∥
∥Dge

∥
∥ � 1− 3ε̄0

16
,

Similarly, by Lemma 3, 4, with probability 1 − ρ we have for all x ∈ Gnear and
q ∈ C

s(d+1),

∥
∥
∥D2

[
f̂�Dgq

]
(x)

∥
∥
∥
x

�
∥
∥
∥D2

[
f�Dgq

]
(x)

∥
∥
∥
x
+
∥
∥
∥D2

[
(fĒ − f)�Dgq

]
(x)

∥
∥
∥
x

+
∥
∥
∥D2

[
(fĒ − f̂)�Dgq

]
(x)

∥
∥
∥
x

� (B2 + B2/2) ‖q‖ + ‖q‖ sup
‖v‖x�1

∥
∥
∥
∥
∥
1

m

m∑

k=1

Dgγ (ωk)gωk (v)

−EĒ Dgγ (ω)gω(v)
∥
∥
∥

where gω(v)
def.= D2 [ϕω] (x)[v, v]. By Lemma 11 and a union bound, for all x ∈ Gnear,

sup
‖v‖x�1

∥
∥
∥
∥
∥
1

m

m∑

k=1

Dgγ (ωk)gωk (v) − EĒ Dgγ (ω)gω(v)

∥
∥
∥
∥
∥

� B2

if m � sB22 L̄2
01+

√
s L̄01 L̄2B2

B2
2

(
log

( |Gnear |
ρ

)
+ d log

(
s L̄01 L̄2

B2

))
. Using this property with

q
def.= D−1

g Υ̂ −1e such that ‖q‖ � 4c0, and by adjustingC0, we obtain: for all x ∈ Gnear
j ,

∥
∥
∥sign(a j )D2

[
η̂
]
(x) − K (02)(x j , x)

∥
∥
∥
x

�
∥
∥
∥sign(a j )D2

[
ηapp

]
(x) − K (02)(x j , x)

∥
∥
∥
x

+
∥
∥
∥D2

[
f̂�Dgq

]
(x)

∥
∥
∥
x

� 7ε̄2
64

+ ε̄2

128
= 15ε̄2

128

which concludes the second step of our proof. By combining the bounds on m that we
obtained with (59), after simplification we still obtain

m � s
∑

r=0,2

(

L̄201
B2
r

ε̄2r
log(s) log

(
s

ρ

)

+
(
L̄2r
ε̄2r

+ L̄01 L̄r
ε̄r

+ B22
B2
2

L̄201

)

log

(
N ′
r log(s)

ρ

))

(62)

with N ′
0 = N0 = ∣

∣Gfar
∣
∣ but N ′

2 = |Gnear| + (s L̄01 L̄2/B2)
d .
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6.5 Step 3: Bounding the Norm
∥
∥p

∥
∥

In this section,we upper bound ‖p‖whereΦ∗ p = η̂, for the η̂ thatwe have constructed
in the previous section. We recall that Φ∗ p = 1√

m

∑m
k=1 pkϕωk (·), and

ηapp =
J∑

�=1

(Υ −1q�−1)
�f̂� = 1√

m

∑

�

√
m

m�

∑

k∈B�

(Υ −1q�−1)
�γ (ωk)ϕωk = Φ∗ papp,

where papp
def.= (p�)J�=1 ∈ C

m and p�
def.=

√
m

m�

(
γ (ωk)

∗Υ −1q�−1
)
k∈B j

∈ C
m� . So,

‖papp‖2 = ∑J
�=1 ‖p�‖22. To upper bound this, for each � = 1, . . . , J ,

m�

m
‖p�‖22 = 1

m�

∑

k∈B�

q∗�−1Υ
−1γ (ωk)γ (ωk)

∗Υ−1q�−1 = q∗�−1Υ
−1Υ̂�Υ

−1q�−1

= q∗�−1Υ
−1(Υ̂�Υ

−1 − Id)q�−1 + q∗�−1Υ
−1q�−1 = q∗�−1Υ

−1q� + q∗�−1Υ
−1q�−1

�
∥
∥
∥D−1

g Υ−1D−1
g

∥
∥
∥
∥
∥Dgq�−1

∥
∥ (

∥
∥Dgq�−1

∥
∥+ ∥

∥Dgq�
∥
∥)

� 4s
∥
∥Dgq�−1

∥
∥
Block

(∥∥Dgq�
∥
∥
Block + ∥

∥Dgq�−1
∥
∥
Block

)
� 4s (c� + 1)

�−1∏

i=1

c2i .

where we have used
∥
∥D−1

g Υ −1D−1
g

∥
∥ � 2 by Lemma 3, ‖·‖ �

√
2s ‖·‖Block, and

the computation that precedes for
∥
∥Dgq�

∥
∥
Block. For � = 1, 2 m

m�
= O(1) and m

m3
=

O(log(s)). Also, for � � 3,

(c� + 1)
�−1∏

i=1

c2i = (1+ c0)
c�−1
0

16 log(s)

Therefore,

∥
∥papp

∥
∥2 � 4s

(

1+ c0

4
√
log(s)

+ c20
16 log(s)

+ (1+ c0)
c20

16(1− c0)

)

� s.

On the other hand, ηe = Φ∗ pe where pe = (
γ (ωk)

∗Υ −1e
)m
k=1. So,

∥
∥pe

∥
∥2 = e∗Υ −1Υ̂ Υ −1e � 8

∥
∥Dge

∥
∥2 � 1.

Therefore, η̂ = Φ∗ p with ‖p‖2 � s.
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6.6 Step 4: Non-degeneracy on the Entire Domain

We conclude by showing that the η̂ constructed in the previous sections is indeed
non-degenerate on the entire domain. For this, we simply need to control the Lipschitz
constants of η̂ and its Hessian, which are in fact directly related to ‖p‖. Let any
x ∈ X far and x ′ ∈ Gfar be the point in the grid closest to it. Under Ē , we have

∣
∣η̂(x)

∣
∣ � 1− 3ε̄0

16
+ ∣
∣η̂(x) − η̂(x ′)

∣
∣ = 1− 3ε̄0

16
+ ∣
∣(Φ∗ p)(x) − (Φ∗ p)(x ′)

∣
∣

� 1− 3ε̄0
16

+ ‖p‖
√√
√
√ 1

m

m∑

k=1

∣
∣ϕωk (x) − ϕωk (x

′)
∣
∣2 � 1− 3ε̄0

16
+ L̄1 ‖p‖ dg(x, x ′)

Hence,weprove thefirst part of (50) by choosingGfar such thatdg(x, x ′) � ε̄0
16L̄1‖p‖ ,

which results in

∣
∣
∣Gfar

∣
∣
∣ =

(
CRX L̄1 ‖p‖

ε̄0

)d

for an appropriate constant C .
Now, for any x ∈ X near

j , and x ′ ∈ Gnear
j closest to it, we write

∥
∥
∥sign(a j )D2

[
η̂
]
(x) − K (02)(x j , x)

∥
∥
∥
x

�
∥
∥D2

[
η̂
]
(x) − D2

[
η̂
]
(x ′)[τx→x ′ ·, τx→x ′ ·]

∥
∥
x

+
∥
∥
∥sign(a j )D2

[
η̂
]
(x ′)[τx→x ′ ·, τx→x ′ ·] − K (02)(x j , x

′)[τx→x ′ ·, τx→x ′ ·]
∥
∥
∥
x

+
∥
∥
∥K (02)(x j , x

′)[τx→x ′ ·, τx→x ′ ·] − K (02)(x j , x)
∥
∥
∥
x

(63)

We bound each of these terms. For the first, under Ē we have

∥
∥D2

[
η̂
]
(x) − D2

[
η̂
]
(x ′)[τx→x ′ ·, τx→x ′ ·]

∥
∥
x � ‖p‖

√√
√
√ 1

m

m∑

k=1

∥
∥D2

[
ϕωk

]
(x) − D2

[
ϕωk

]
(x ′)[τx→x ′ ·, τx→x ′ ·]

∥
∥2
x � L̄3 ‖p‖ dg(x, x ′)

For the second term in (63), we have

∥
∥
∥sign(a j )D2

[
η̂
]
(x ′)[τx→x ′ ·, τx→x ′ ·] − K (02)(x j , x

′)[τx→x ′ ·, τx→x ′ ·]
∥
∥
∥
x

=
∥
∥
∥sign(a j )D2

[
η̂
]
(x ′) − K (02)(x j , x

′)
∥
∥
∥
x ′

� 15ε̄2
128

from what we have proved in the previous section.
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Finally, for the third term in (63) we naturally introduce K (i j)
Ē

defined as K (i j)

in (25), but by replacing E with the conditional EĒ . From Lemma 4, the deviation

between K (02) and K (02)
Ē

can be bounded by

∀x ∈ X near,

∥
∥
∥K (02)

Ē
(x j , x) − K (02)(x j , x)

∥
∥
∥
x
=
∥
∥
∥D2

[
(fĒ − f)�Dgu j

]
(x)

∥
∥
∥
x

� ε̄2

512

where u j is the jth canonical vector of Cs(d+1). Moreover, by Assumption 2 it is easy
to see that

∥
∥
∥K (02)

Ē
(x j , x

′)[τx→x ′ ·, τx→x ′ ·] − K (02)
Ē

(x j , x)
∥
∥
∥
x

� L̄0 L̄3dg(x, x
′)

Hence, by a triangular inequality we have

∥
∥
∥K (02)(x j , x

′)[τx→x ′ ·, τx→x ′ ·] − K (02)(x j , x)
∥
∥
∥
x

�
∥
∥
∥K (02)(x j , x

′)[τx→x ′ ·, τx→x ′ ·] − K (02)
Ē

(x j , x
′)[τx→x ′ ·, τx→x ′ ·]

∥
∥
∥
x

+
∥
∥
∥K (02)

Ē
(x j , x

′)[τx→x ′ ·, τx→x ′ ·] − K (02)
Ē

(x j , x)
∥
∥
∥
x

+
∥
∥
∥K (02)

Ē
(x j , x) − K (02)(x j , x)

∥
∥
∥
x

� ε̄2

256
+ L̄0 L̄3dg(x, x

′)

Therefore, (63) becomes

∥
∥
∥sign(a j )D2

[
η̂
]
(x) − K (02)(x j , x)

∥
∥
∥
x

� L̄3(L̄0 + ‖p‖)dg(x, x ′) + 15ε̄2
128

+ ε̄2

256
(64)

We prove the desired property on D2
[
η̂
]
by choosing dg(x, x ′) � ε̄2

256L̄3(L̄0+‖p‖) ,
which yields

∣
∣Gnear

∣
∣ = s

∣
∣
∣Gnear

j

∣
∣
∣ = s

(
Crnear L̄0 L̄3 ‖p‖

ε̄2

)d

for an appropriate constant C . Gathering everything with (62), we finally obtain

m � s
∑

r=0,2

(

L̄2
01

B2
r

ε̄2r
log(s) log

(
s

ρ

)

+
(
L̄2
r

ε̄2r
+ L̄01 L̄r

ε̄r

)

log

(
N̄ d
r

ρ

))

(65)
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with N̄0 = sRX L̄1
ε̄0

, N̄2 = s(rnear L̄0 L̄3+L̄2)
ε̄2

.

6.7 Step 5: Additional Certificates

Non-degeneracy of η̂ directly allows us to apply Proposition 1 to deduce stability away
from the sparse support in the reconstructed measure. In order to apply Proposition 2,
we need to construct an additional s certificates η j , which are, however, “simpler”
to construct since they need to interpolate a “sign vector” that has only one nonzero
coordinate and do not require the golfing scheme to do so.

For each j = 1, . . . , s, let u j be the vector of length s(d + 1) whose j th entry is
one and all other entries are zero. Define the functions

η+
j

def.=
(

Υ −1
(
1s
0sd

))�
f(x) and η−

j
def.=
(

Υ −1
(

2u j −
(
1s
0sd

)))�
f(x),

and

η j
def.= 1

2
(η+

j + η−
j ) =

(
Υ −1u j

)�
f(x).

By Theorem 2, η+
j and η−

j are non-degenerate (limit) dual certificates with respect to
signs 1s and −1s + 2u j , respectively, and η j satisfies, for all � �= j :

η j (x j ) = 1, ∇η j (x j ) = 0 and η j (x�) = 0, ∇η j (x�) = 0
∣
∣η j (x)

∣
∣ � 1

2

(∣∣
∣η+

j (x)
∣
∣
∣+

∣
∣
∣η−

j (x)
∣
∣
∣
)

� 1− ε̄0

4
, ∀x ∈ X far

∥
∥
∥D2

[
η j
]
(x) − K (02)(x j , x)

∥
∥
∥
x

� ε̄2

16
, ∀x ∈ X near

j
∥
∥D2

[
η j
]
(x)

∥
∥
x

� 1

2

(∥∥
∥D2

[
η+
j

]
(x) − K (02)(x�, x)

∥
∥
∥
x
+
∥
∥
∥−D2

[
η−
j

]
(x) − K (02)(x�, x)

∥
∥
∥
x

)

� ε̄2

16
, ∀x ∈ X near

�

(66)

Thus, using Lemma 2 to translate the last two conditions into quadratic decay, we
conclude that η j satisfies the conditions of Proposition 2.

To conclude, we will show that

η̂ j
def.=
(
Υ̂ −1u j

)�
f̂ ∈ ImΦ∗

does not deviate too much from η j and satisfies the conditions of Proposition 2. Note
that by construction, η̂ j (x j ) = 1, η̂ j (x�) = 0 for all � �= j , and ∇η̂ j (x�) = 0 for all �.
It therefore remains to control the deviation of η̂ j from η j on X far and D2

[
η̂ j
]
from

D2
[
η j
]
on X near.
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Proposition 3 Under Assumptions 1 and 2, suppose that mini �= j dg(xi , x j ) � Δ.
Then, with probability at least 1 − ρ, for all j = 1, . . . , s, there exists η̂ j = Φ∗ p j

where
∥
∥p j

∥
∥ � 4 which satisfies, for all � �= j :

η̂ j (x j ) = 1, ∇η̂ j (x j ) = 0 and η̂ j (x�) = 0, ∇η̂ j (x�) = 0
∣
∣η̂ j (x)

∣
∣ � 1− ε̄0

8
, ∀x ∈ X far

∥
∥
∥D2

[
η j
]
(x) − K (02)(x j , x)

∥
∥
∥
x

� ε̄2

8
, ∀x ∈ X near

j ,
∥
∥D2

[
η j
]
(x)

∥
∥
x � ε̄2

8
, ∀x ∈ X near

�

(67)

The proof controls the deviation between η̂ j and η j on a fine grid using Bernstein’s
concentration inequalities and extends the bound to the entire domain using Lipschitz
properties of η̂ j . As we mentioned above, the proof of this result is conceptually
simpler than the deviation bounds on ηapp since

∥
∥u j

∥
∥ = 1. We therefore defer its

proof to Appendix B.5. Using Lemma 2, we have therefore constructed the additional
certificates to apply Proposition 2 and conclude the proof of Theorem 3.

7 Conclusion and Outlooks

In this paper, we have presented a unifying geometric view on the problem of sparse
measures recovery from random measurements. This theoretical analysis highlights
the key role played by the invariant Fisher metric to define a precise notion of Rayleigh
limit in the case of possibly non-translation-invariant measurement kernels. We ana-
lyzed several examples including Laplace measurements in imaging and left partially
open some other important examples such as one-hidden-layer neural networks. Ana-
lyzing the super-resolution regime (going below the Rayleigh limit) requires stringent
assumptions, such as positivity of the measures. Beyond the 1-D case, this is still
mostly an open question, and we refer to [45] for some partial results.
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A Preliminaries

In this Appendix, we provide the proofs to some technical lemmas in the paper, and
give useful tools.

A.1 Linear Algebra Tools

We give the following simple lemma.

Lemma 5 For 1 � i, j � s, take any scalars ai j ∈ C, vectors Qi j , Ri j ∈ C
d and

square matrices Ai j ∈ C
d×d .
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(i) For q ∈ C
sd and M ∈ C

sd×sd , we have ‖q‖block � ‖q‖ � √
s ‖q‖block , and as a

consequence ‖M‖ � √
s ‖M‖block and ‖M‖block � √

s ‖M‖. Similarly, for q ∈
C
s(d+1) and M ∈ C

s(d+1)×s(d+1), we have ‖q‖Block � ‖q‖ �
√
2s ‖q‖Block ,

and as a consequence ‖M‖ �
√
2s ‖M‖Block and ‖M‖Block �

√
2s ‖M‖.

(ii) Let M ∈ C
sd×sd be a matrix formed by blocks:

M =
⎛

⎜
⎝

A11 . . . A1s
...

. . .
...

As1 . . . Ass

⎞

⎟
⎠

Then, we have

‖M‖block = sup
‖x‖block=1

‖Mx‖block � max
1�i�s

s∑

j=1

∥
∥Ai j

∥
∥ (68)

Now, let M ∈ R
sd×s be a rectangular matrix formed by stacking vectors Qi j ∈

R
d :

M =
⎛

⎜
⎝

Q11 . . . Q1s
...

. . .
...

Qs1 . . . Qss

⎞

⎟
⎠

Then,

‖M‖∞→block � max
1�i�s

s∑

j=1

∥
∥Qi j

∥
∥
2 ,

∥
∥
∥M�

∥
∥
∥
block→∞ � max

1�i�s

s∑

j=1

∥
∥Q ji

∥
∥
2

(69)

(iii) Consider M ∈ C
s(d+1)×s(d+1) decomposed as

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a11 . . . a1s Q�
11 . . . Q�

1s
...

. . .
...

...
. . .

...

as1 . . . ass Q�
s1 . . . Q�

ss
R11 . . . R1s A11 . . . A1s
...

. . .
...

...
. . .

...

Rs1 . . . Rss As1 . . . Ass

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then,

‖M‖2 � max
i

⎛

⎝
s∑

j=1

∣
∣ai j

∣
∣+ ∥

∥Qi j
∥
∥

⎞

⎠ ·max
j

(
s∑

i=1

∣
∣ai j

∣
∣+ ∥

∥Qi j
∥
∥

)

+max
i

⎛

⎝
s∑

j=1

∥
∥Ri j

∥
∥+ ∥

∥Ai j
∥
∥

⎞

⎠ · s
max
j=1

(
s∑

i=1

∥
∥Ri j

∥
∥+ ∥

∥Ai j
∥
∥

)

.
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and

‖M‖Block � max
i

{
∑

j

∣
∣ai j

∣
∣+ ∥

∥Qi j
∥
∥,

∑

j

∥
∥Ri j

∥
∥+ ∥

∥Ai j
∥
∥}

Proof The proof is simple linear algebra.

(i) This is immediate by writing the definitions.
(ii) Let x be a vector with ‖x‖block � 1 decomposed into blocks x = [x1, . . . , xs]

with xi ∈ C
d , we have

‖Mx‖block = max
1�i�s

∥
∥
∥
∥
∥
∥

s∑

j=1

Ai j x j

∥
∥
∥
∥
∥
∥

� max
i

∑

j

∥
∥Ai j

∥
∥
∥
∥x j

∥
∥ � max

i

∑

j

∥
∥Ai j

∥
∥

Similarly,

∥
∥
∥M�x

∥
∥
∥∞ = max

1�i�s

∥
∥
∥
∥
∥
∥

s∑

j=1

Q�
j i x j

∥
∥
∥
∥
∥
∥

� max
i

∑

j

∥
∥Q ji

∥
∥
∥
∥x j

∥
∥ � max

i

∑

j

∥
∥Q ji

∥
∥

Then, taking x ∈ C
s such that ‖x‖∞ � 1, we have

‖Mx‖block = max
1�i�s

∥
∥
∥
∥
∥
∥

s∑

j=1

x j Qi j

∥
∥
∥
∥
∥
∥

� max
i

∑

j

∥
∥Qi j

∥
∥

(iii) Taking x = [x1, . . . , xs, X1, . . . , Xs] ∈ C
s(d+1) with ‖x‖ = 1, we have

‖Mx‖2 =
s∑

i=1

⎛

⎝
s∑

j=1

ai j x j + Q�
i j X j

⎞

⎠

2

+
∥
∥
∥
∥
∥
∥

s∑

j=1

Ri j x j + Ai j X j

∥
∥
∥
∥
∥
∥

2

�
s∑

i=1

⎛

⎝
s∑

j=1

∣
∣ai j

∣
∣ x2j +

∥
∥Qi j

∥
∥
∥
∥X j

∥
∥2

⎞

⎠

⎛

⎝
s∑

j=1

∣
∣ai j

∣
∣+ ∥

∥Qi j
∥
∥

⎞

⎠

+
s∑

i=1

⎛

⎝
s∑

j=1

∥
∥Ri j

∥
∥ x2j +

∥
∥Ai j

∥
∥
∥
∥X j

∥
∥2

⎞

⎠

⎛

⎝
s∑

j=1

∥
∥Ri j

∥
∥+ ∥

∥Ai j
∥
∥

⎞

⎠

= max
i

⎛

⎝
s∑

j=1

∣
∣ai j

∣
∣+ ∥

∥Qi j
∥
∥

⎞

⎠ ·max

(

max
j

s∑

i=1

∣
∣ai j

∣
∣ ,max

j

s∑

i=1

∥
∥Qi j

∥
∥

)

‖x‖2

+max
i

⎛

⎝
s∑

j=1

∥
∥Ri j

∥
∥+ ∥

∥Ai j
∥
∥

⎞

⎠ ·max

(
s

max
j=1

s∑

i=1

∥
∥Ri j

∥
∥ ,max

j

s∑

i=1

∥
∥Ai j

∥
∥

)

‖x‖2 .
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Now, if ‖x‖Block = 1, we have

‖Mx‖Block = max
i

⎛

⎝

∣
∣
∣
∣
∣
∣

s∑

j=1

ai j x j + Q�
i j X j

∣
∣
∣
∣
∣
∣
,

∥
∥
∥
∥
∥
∥

s∑

j=1

Ri j x j + Ai j X j

∥
∥
∥
∥
∥
∥

⎞

⎠

� max
i

⎛

⎝
s∑

j=1

∣
∣ai j

∣
∣+ ∥

∥Qi j
∥
∥ ,

s∑

j=1

∥
∥Ri j

∥
∥+ ∥

∥Ai j
∥
∥

⎞

⎠

��

A.2 Proof of Lemma 3

The proof is similar to that of Theorem 2.

(i) We bound the spectral norm of Id − DgΥ Dg. By Lemma 5,

∥
∥(Id − DgΥ Dg)

∥
∥2 � max

i

⎛

⎜
⎜
⎝

s∑

j=1
j �=i

∣
∣K (xi , x j )

∣
∣+

s∑

j=1

∥
∥
∥K (10)(xi , x j )

∥
∥
∥
xi

⎞

⎟
⎟
⎠

2

+max
i

⎛

⎝
s∑

j=1 j �=i

∥
∥
∥K (10)(x j , xi )

∥
∥
∥
x j

+
s∑

j=1

∥
∥
∥K (11)(xi , x j )

∥
∥
∥
xi ,x j

⎞

⎠

2

� 8h2

by assumption on the kernel widths. Hence, Υ is invertible. Similarly, by again
applying Lemma 5,

∥
∥DgΥ Dg − Id

∥
∥
Block � 2h.

(ii) Let x ∈ X far, then we have

∥
∥Dgf(x)

∥
∥ �

(
s∑

i=1

|K (xi , x)|2 +
∥
∥
∥K (10)(xi , x)

∥
∥
∥
2

xi

) 1
2

� B00 + B10 + 2h � B0

for which, similar to the proof above, we have used the fact that x is Δ/2-
separated from at least s − 1 points xi . Similarly, for any vector q =
[q1, . . . , qs, Q1, . . . , Qs] ∈ C

s(d+1) and any x ∈ X far, we have

∥
∥
∥q�f(x)

∥
∥
∥ �

s∑

i=1

|qi | |K (xi , x)| + ‖Qi‖xi
∥
∥
∥K (10)(xi , x)

∥
∥
∥
xi

�
∥
∥
∥D−1

g q
∥
∥
∥
Block

(B00 + B10 + 2h) � B0

∥
∥
∥D−1

g q
∥
∥
∥
Block

.
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(iii) For any x ∈ X near, we have the bound:

∥
∥
∥D2

[
q�f

]
(x)

∥
∥
∥
x
=
∥
∥
∥
∥
∥

s∑

i=1

qi K
(02)(xi , x) + [Qi ]K (12)(xi , x)

∥
∥
∥
∥
∥
x

�
∥
∥
∥D−1

g q
∥
∥
∥

(
s∑

i=1

∥
∥
∥K (02)(xi , x)

∥
∥
∥
2

x

+
∥
∥
∥K (12)(xi , x)

∥
∥
∥
2

xi ,x

) 1
2

�
∥
∥
∥D−1

g q
∥
∥
∥ B2

and

∥
∥
∥D2

[
q�f

]
(x)

∥
∥
∥
x
=
∥
∥
∥
∥
∥

s∑

i=1

qi K
(02)(xi , x) + [Qi ]K (12)(xi , x)

∥
∥
∥
∥
∥
x

�
∥
∥
∥D−1

g q
∥
∥
∥
Block

(
s∑

i=1

∥
∥
∥K (02)(xi , x)

∥
∥
∥
x
+
∥
∥
∥K (12)(xi , x)

∥
∥
∥
xi ,x

)

�
∥
∥
∥D−1

g q
∥
∥
∥
Block

B2

which concludes the proof.

A.3 Proof of Lemma 4

First note that, for X = n−1∑m
k=1 f (ωk) any empirical average, since theωk are i.i.d.,

we have EĒ [X ] = EEω [ f (ω)], and therefore fĒ = EEω [γ (ω)γ (ω)∗], and so on.
We now prove a general bound that we then implement for each item. Let A = Aω

be a random matrix that depends on ω, such that ‖E[A]‖ � B and ‖A‖ � L(ω), for
any matrix norm ‖·‖. We have

E[A] = E[A1Eω ] + E[A1Ec
ω
] = EĒ [A]P(Eω) + E[A1Ec

ω
]

by Bayes’ rule, and therefore,

∥
∥E[A] − EĒ [A]

∥
∥ �

‖E[A]‖P(Ec
ω) + E[‖A‖ 1Ec

ω
]

P(Eω)

�
BP(Ec

ω) + E[L(ω)1Ec
ω
]

P(Eω)
(70)

Then, if we let Eω,q be the event that Lq(ω) � L̄q , so Eω = ∩3
q=0Eω,q , by the

union bound we get P(Ec
ω) �

∑
q P(E

c
ω,q) �

∑
q Fq(L̄q) � min(ε̄0,ε̄2)

mmax j (L̄2
j )

� 1
2 , and in

particular P(Eω) � 1
2 . In the following, L(ω) will be a sum of some of the Lq(ω)2,
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so we bound E[Lq(ω)21Ec
ω
] �

∑
j E[Lq(ω)21Ec

ω, j
] and we have

E[Lq(ω)21Ec
ω, j

] =
∫ ∞

0
P(Lq(ω)21Ec

ω, j
� t)dt

=
∫ ∞

0
P

(
(Lq(ω)2 � t) ∩ (L j (ω) � L̄ j )

)
dt

� L̄2
q Fj (L̄ j ) +

∫ ∞

L̄2
q

Fq(
√
t)dt = L̄2

q Fj (L̄ j )

+ 2
∫ ∞

L̄q

t Fq(t)dt

where we have bounded P
(
(Lq(ω)2 � t) ∩ (L j (ω) � L̄ j )

)
by, respectively,

P(L j (ω) � L̄ j ) � Fj (L̄ j ) in the first term and by P(Lq(ω)2 � t) � Fq(
√
t) in

the second term. Hence, by Assumption 2 we have

E[Lq(ω)21Ec
ω
] � min(ε̄0, ε̄2)

m
(71)

We can now obtain the desired results by combining (70) and (71) each time:

(i) we let A = Dgγ (ω)γ (ω)∗Dg. We have ‖E[A]‖ � 2 by Lemma 3, and
‖γ (ω)γ (ω)∗‖ � sL2

01(ω). When applied with the norm ‖·‖Block, we get
‖E[A]‖Block � 2, and ‖γ (ω)γ (ω)∗‖Block � 2sL2

01(ω) by Lemma 5 (i i i).
(ii) we let A = Dgγ (ω)ϕω(x). We have ‖E[A]‖ � B0 by Lemma 3, and ‖A‖ �√

sL01(ω)L0(ω) � 1
2

√
s(L01(ω)1 + L0(ω)2).

(iii) we let A = (γ̃ (ω)�q)g−
1
2

x (Hϕω)(x)g
− 1

2
x . We have ‖E[A]‖ � B2 ‖q‖ by

Lemma 3, and ‖A‖ � √
sL01(ω)L2(ω).

B Concentration Bounds

In this section, we detail the various Bernstein concentration inequalities that we
used in the golfing scheme. More precisely, we present some probabilistic bounds on
deviation of f̂ and Υ̂ from their deterministic counterparts f and Υ , conditional on
event Ē (recall their definitions in (30), (54) and (55)). Define the shorthands

Li j (ω)
def.=
√
Li (ω)2 + L j (ω)2 and L̄i j

def.=
√
L̄2
i + L̄2

j .

Observe that conditional on Ē , we have

∥
∥Dgγ (ω)

∥
∥ �

√
s(L̄2

0 + L̄2
1) =

√
s L̄01 (72)
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All this section is done under the assumptions of Theorem 3, andwewill use several
times the following from Lemmas 3 and 4:

∥
∥DgΥĒ Dg

∥
∥ � 1+ ∥

∥Id − DgΥ Dg

∥
∥+ ∥

∥Dg(Υ − ΥĒ )Dg

∥
∥ � 2 (73)

B.1 Elementary Concentration Inequalities

To begin, we first recall some elementary concentration inequalities.

Lemma 6 (Matrix Bernstein for complex matrices) Let Y1, . . . ,YM be a sequence of
d1×d2 complex randommatrices withE[Y�] = 0, ‖Y�‖2→2 � K for all � = 1, . . . ,M
and set

σ 2 def.= max

{∥∥
∥
∥
∥

M∑

�=1

E(Y�Y
∗
� )

∥
∥
∥
∥
∥
2→2

,

∥
∥
∥
∥
∥

M∑

�=1

E(Y ∗
� Y�)

∥
∥
∥
∥
∥
2→2

}

.

Then,

P

(∥
∥
∥
∥
∥
1

M

M∑

�=1

Y�

∥
∥
∥
∥
∥
2→2

� t

)

� 2(d1 + d2) exp

(

− Mt2/2

σ 2/M + Kt/3

)

.

Lemma 7 (Vector Bernstein for complex vectors [43]) Let Y1, . . . ,YM ∈ C
d be

a sequence of independent random vectors such that E[Yi ] = 0, ‖Yi‖2 � K for
i = 1, . . . ,M and set

σ 2 def.=
M∑

i=1

E ‖Yi‖22 .

Then, for all t � (2K + 6σ)/M,

P

(∥∥
∥
∥
∥
1

M

M∑

i=1

Yi

∥
∥
∥
∥
∥
2

� t

)

� 28 exp

(

− Mt2/2

σ 2/M + t K/3

)

B.2 Deviation Between fĒ and f̂

Lemma 8 (Bound against a fixed vector) Let q ∈ C
s(d+1) and x ∈ X . For all u > 0,

we have

PĒ

(∣∣
∣(fĒ (x) − f̂(x))�Dgq

∣
∣
∣ � u ‖q‖

)
� 4 exp

(
−mu2

2L̄2
0 + 2

√
s L̄01 L̄0u/3)

)

.
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As a corollary,

PĒ

(∣
∣
∣(fĒ (x) − f̂(x))�Dgq

∣
∣
∣ � u ‖q‖Block

)
� 4 exp

(
−mu2

4s(2L̄2
0 +√

2L̄01 L̄0u/3)

)

.

Proof Assume ‖q‖2 = 1 without loss of generality. We apply the classical (scalar)
Bernstein inequality. By defining Yk

def.= ϕωk (x)γ (ωk)
∗Dgq − EE [ϕω(x)γ (ω)�Dgq],

we have (f̂(x)− fĒ (x))
�Dgq = 1

m

∑m
k=1 Yk . To apply Bernstein’s inequality, observe

that for each k = 1, . . . ,m, EĒ [Yk] = 0, and conditional on event Ē , we have |Yk | �
2
√
s L̄01 L̄0 and EE |Yk |2 = EE

∣
∣ϕωk (x)

∣
∣2
∣
∣γ (ωk)

∗Dgq
∣
∣2 � L̄2

0

∥
∥DgΥĒ Dg

∥
∥ � 2L̄2

0
by (73). Therefore,

P

(∣∣
∣
∣
∣
1

m

m∑

k=1

Yk

∣
∣
∣
∣
∣
� u

)

� 4 exp

(
−mu2

2L̄2
0 + 2

√
s L̄01 L̄0u/3)

)

.

The last inequality follows because ‖q‖Block � ‖q‖2 /
√
2s. ��

Lemma 9 (Uniform bound) Fix x ∈ X . For all u >
4
√
s L̄01 L̄0
m + 6

√
s L̄01√
m

we have

PĒ

(∥∥
∥Dg(fĒ (x) − f̂(x))

∥
∥
∥ � u

)
� 4 exp

(
−mu2

s L̄2
01 + 2

√
s L̄01 L̄0u/3)

)

.

Proof We apply the vector Bernstein inequality (Lemma 7). By defining Yk
def.=

Dgγ (ωk)ϕωk (x) − EE [Dgγ (ωk)ϕωk (x)], we have Dg(f̂(x) − fĒ (x)) = 1
m

∑m
k=1 Yk .

Observe that for each k = 1, . . . ,m,EĒ [Yk] = 0, and conditional on event Ē , we have

|Yk | � 2
√
s L̄01 L̄0 and EE ‖Yk‖2 = EE

∣
∣ϕωk (x)

∣
∣2
∥
∥Dgγ (ωk)

∥
∥2 � s L̄2

01. Therefore,

for all u � 4
√
s L̄01 L̄0
m + 6

√
s L̄01√
m

,

P

(∥
∥
∥
∥
∥
1

m

m∑

k=1

Yk

∥
∥
∥
∥
∥

� u

)

� 4 exp

(
−mu2

s L̄2
01 + 2

√
s L̄01 L̄0u/3)

)

.

The last inequality follows because ‖q‖Block � ‖q‖2 /
√
2s. ��

B.3 Deviation Between D2
[

fĒ
]

and D2

[

f̂
]

Lemma 10 (Bound against a fixed vector) Let q ∈ C
s(d+1) and x ∈ X . For all u > 0

we have

PĒ

(∥∥
∥D2

[
(fĒ − f̂)�Dgq

]
(x)

∥
∥
∥
x

� u ‖q‖
)

� 4d exp

(
−mu2

2L̄2
2 + 2

√
s L̄01 L̄2u/3)

)

.

(74)
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as a corollary

PĒ

(∥∥
∥D2

[
(fĒ−f̂)�Dgq

]
(x)

∥
∥
∥
x

� u ‖q‖Block
)

�4d exp

(
−mu2

4s(2L̄22 +√
2L̄01 L̄2u/3)

)

.

(75)

Proof Assume ‖q‖ = 1without loss of generality. Recalling the definitions of Sec. 4.1,
we have

∥
∥
∥D2

[
(fĒ − f̂)�Dgq

]
(x)

∥
∥
∥
x
=
∥
∥
∥
∥g

− 1
2

x H
(
(fĒ − f̂)�Dgq

)
(x)g

− 1
2

x

∥
∥
∥
∥

We now apply Lemma 6. Define

Yk = (q�Dgγ (ωk))g
− 1

2
x H

(
ϕωk

)
(x)g

− 1
2

x − EĒ (q
�Dgγ (ω))g

− 1
2

x H (ϕω) (x)g
− 1

2
x .

which are indeed symmetric matrices. We have EEYk = 0 and conditional on event
E ,

‖Yk‖ � 2
√
s L̄01 L̄2.

Furthermore, defining A = (q�Dgγ (ωk))g
− 1

2
x H

(
ϕωk

)
(x)g

− 1
2

x (which is symmetric),
we have

0 � EĒ [Y jY
∗
j ] � EĒ

(
AA∗)− EĒ AEĒ A

∗ � EĒ

(
AA∗)

� L̄2
2EĒ

∣
∣
∣q�Dgγ (ω)

∣
∣
∣
2
Id

� L̄2
2

∥
∥DgΥĒ Dg

∥
∥ Id � 2L̄2

2Id

and thus
∥
∥
∥EĒ [Y jY ∗

j ]
∥
∥
∥ � 2L̄2

2. Therefore, the matrix Bernstein’s inequality yields

P

(∥∥
∥
∥
∥
1

m

m∑

�=1

Y�

∥
∥
∥
∥
∥
2

� u

)

� 4d exp

(
−mu2

2L̄2
2 + 2

√
s L̄01 L̄2u/3

)

.

The last inequality follows because ‖q‖Block � ‖q‖2 /
√
2s. ��

Lemma 11 (Uniform bound) Let x ∈ X . Let Bx
def.= {

v ∈ C
d ; ‖v‖x � 1

}
and given

v ∈ Bx , let gω(v)
def.= D2 [ϕω] (x)[v, v] ∈ C. Then, for all u >

4
√
s L̄01 L̄2
m + 6

√
2L̄2

2√
m

,

P

(

sup
v∈Bx

∥
∥
∥
∥
∥
1

m

m∑

k=1

Dgγ (ωk)gωk (v) − EĒ Dgγ (ω)gω(v)

∥
∥
∥
∥
∥

� u

)
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� exp

(

Cd log

(
s L̄01 L̄2

u

)

− mu2

s L̄2
01B22 + 2

√
s L̄01 L̄2u/3)

)

for some constant C.

Proof We use a covering net strategy: let V = {v1, . . . , vN } be a covering ε-net of Bx ,
for ε > 0 that we will adjust later. Fix v ∈ V , and define Yk = Dgγ (ωk)gωk (v) −
EĒ Dgγ (ωk)gωk (v) ∈ C

s(d+1) centered i .i .d. variables. We have EĒ Yk = 0, |Yk | �
2
√
s L̄01 L̄2 and EĒ ‖Yk‖2 � EĒ |gω(v)|2

∥
∥Dgγ (ω)

∥
∥2 � s L̄2

01B22. Hence applying

Lemma 7: for all u � 4
√
s L̄01 L̄2
m + 6

√
B22s L̄01√

m
,

PĒ

(∥
∥
∥
∥
∥
1

m

m∑

k=1

Yk

∥
∥
∥
∥
∥

� u

)

� 4 exp

(
−mu2

s L̄2
01B22 + 2

√
s L̄01 L̄2u/3)

)

.

Next, we use the fact that for all ω

∣
∣
∣Dgγ (ω)gω(v) − Dgγ (ω)gω(v

′)
∣
∣
∣ � 2

√
s L̄01 L̄2

∥
∥v − v′

∥
∥
x

Hence by choosing

|V| ∼
(√

s L̄01 L̄2

u

)d

and using a union bound on |V|, we conclude the proof. ��

B.4 Deviation Between7Ē and 7̂

Lemma 12 (Bound in spectral norm) For all u > 0, it holds that,

PĒ

(∥∥
∥Dg(ΥĒ − Υ̂ )Dg

∥
∥
∥ � u

)
� 4(d + 1)s exp

(

− mu2

2s L̄2
01 + 2s L̄2

01u/3

)

. (76)

Proof To bound this probability, we apply Lemma 6 with
Yk

def.= (Dgγ (ωk))(Dgγ (ωk))
∗ − ΥĒ . We have, conditional on event E :

EĒ [Yk] = 0, ‖Yk‖
(72)
� 2s L̄2

01.

Also,

0 � EĒ [YkY ∗
k ] = EĒ [Y ∗

k Yk] = EĒ [
∥
∥Dgγ (ωk)

∥
∥2 (Dgγ (ωk))(Dgγ (ωk))

∗]
− (DgΥĒ Dg)

2
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� EĒ [
∥
∥Dgγ (ωk)

∥
∥2 (Dgγ (ωk))(Dgγ (ωk))

∗]
� s L̄2

01

∥
∥DgΥĒ Dg

∥
∥ Id

So,
∥
∥E[Y ∗

k Yk]
∥
∥ = ∥

∥E[YkY ∗
k ]
∥
∥ � s L̄2

01

∥
∥DgΥĒ Dg

∥
∥ � 2s L̄2

01 by (73). By choosing
K = 2s L̄2

01 and σ 2 = msL̄2
01

∥
∥DgΥĒ Dg

∥
∥ in Lemma 6, we obtain

PĒ

(∥∥
∥Dg(ΥĒ − Υ̂ )Dg

∥
∥
∥ � u

)
� 4(d + 1)s exp

(

− mu2

2s L̄2
01 + 2s L̄2

01t/3

)

.

��

Lemma 13 For i = 1, . . . , s, let Si = {s + (i − 1)d + 1, . . . , s + id}, q ∈ C
s(d+1).

Then, for all u � 4
√
s L̄01 L̄1
m + 6

√
2L̄1√
m

,

PĒ

(∥∥
∥(Dg(ΥĒ − Υ̂ )Dgq)Si

∥
∥
∥
2
> u ‖q‖2

)
� 28 exp

(
−mu2/2

2L̄2
1 + 2u

√
s L̄01 L̄1/3

)

.

As a corollary, for all u � 4
√
2s L̄01 L̄1
m + 12

√
s L̄1√
m

, we have

PĒ

(∥∥
∥(Dg(ΥĒ − Υ̂ )Dgq)Si

∥
∥
∥
2
> u ‖q‖Block

)
� 28 exp

⎛

⎝ −mu2

4s
(
2L̄21 + √

2uL̄01 L̄1/3
)

⎞

⎠ .

Proof Fix i ∈ {1, . . . , s}. Without loss of generality, assume that ‖q‖2 = 1. The claim
of this lemma follows by applying Lemma 7. Let

Yk = g
− 1

2
xi ∇ϕωk (xi )(γ (ωk)

∗Dgq) − EĒ

(

g
− 1

2
xi ∇ϕωk (xi )(γ (ωk)

∗Dgq)

)

∈ C
d ,

and observe that (Dg(Υ̂ −ΥĒ )Dgq)Si = 1
m

∑
k Yk . We apply Lemma 7. Observe that

conditional on event Ē , we have

‖Yk‖2 � 2 ‖q‖2
∥
∥Dgγ (ωk)

∥
∥
2

∥
∥D1

[
ϕωk

]
(xi )

∥
∥
xi

� 2
√
s L̄01 L̄1

and

EĒ ‖Yk‖2 � EĒ

∣
∣γ (ωk)

∗Dgq
∣
∣2
∥
∥
∥
∥g

− 1
2

xi ∇ϕωk (xi )

∥
∥
∥
∥

2

2

� L̄2
1q

∗DgΥĒ Dgq � L̄2
1

∥
∥DgΥĒ Dg

∥
∥
2 � 2L̄2

1
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by (73). Therefore, for all u � 4
√
s L̄01 L̄1
m + 6

√
2L̄1√
m

,

PĒ

(∥
∥
∥
∥
∥
1

m

m∑

i=1

Yi

∥
∥
∥
∥
∥
2

� u

)

� 28 exp

(

− mu2/2

2L̄2
1 + 2u

√
s L̄01 L̄1/3

)

The last inequality follows because ‖q‖Block � ‖q‖2 /
√
2s. ��

Lemma 14 (Bound in block norm) Let q ∈ C
s(d+1) be any vector. For all u �

4
√
2s L̄01 L̄1
m + 12

√
s L̄1√
m

, we have

PĒ

(∥∥
∥Dg(ΥĒ − Υ̂ )Dgq

∥
∥
∥
Block

� u ‖q‖Block
)

� 32s exp

⎛

⎝ −mu2

4s
(
2L̄201 + √

2uL̄01 L̄1/3
)

⎞

⎠(77)

Proof Let S0
def.= {1, . . . , s} and S j

def.= {s+ ( j −1)d+1, . . . , s+ jd} for j = 1, . . . , s.
By the union bound

PĒ

(∥
∥
∥Dg(ΥĒ − Υ̂ )Dgq

∥
∥
∥
Block

� u ‖q‖Block
)

�
s∑

j=1

PĒ

(∣∣
∣(Dg(ΥĒ − Υ̂ )Dgq) j

∣
∣
∣ � u ‖q‖Block

)

+
s∑

j=1

PĒ

(∥
∥
∥(Dg(ΥĒ − Υ̂ )Dgq)S j

∥
∥
∥
2

� u ‖q‖Block
)

(78)

To bound the first sum, observe that for j = 1, . . . , s, (Dg(Υ − Υ̂ )Dgq) j =
(Dg(f(x j ) − f̂(x j )))�q and apply Lemma 8. The second sum can be bounded by
applying Lemma 13.

��

B.5 Proof of Proposition 3

We fix a particular j = 1, . . . , s, do the proof for η̂ j and then use a union bound
to conclude. As before, it is enough to establish the probability that η̂ j satisfies the
properties of Proposition 3 conditional on event Ē . We proceed in the same way as
in the main proof of the golfing scheme: first we show that η̂ j satisfies the desired
property on a finite grid, then we bound

∥
∥p j

∥
∥, and finally we use the latter to extend

the non-degeneracy to the whole space. As mentioned in the paper, the first step is
considerably simpler and more direct than the golfing scheme, since the “sign” vector
u j is of norm 1.

Deviation Bounds on a Grid Similar to our previous argument, we will bound the
deviation between η̂ j and η j on a finite grid Gfar ⊂ X far whose precision we will later
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adjust, and between D2
[
η̂ j
]
and D2

[
η j
]
on Gnear ⊂ X near. We will show that

∀x ∈ Gfar,
∣
∣η j (x) − η̂ j (x)

∣
∣ � ε̄0

16

∀x ∈ Gnear,
∥
∥D2

[
η j
]
(x) − D2

[
η̂ j
]
(x)

∥
∥
x � ε̄2

32
.

Let q̂ j
def.= D−1

g Υ̂ −1u j and q j
def.= D−1

g Υ −1u j . Note that q j is deterministic and
∥
∥q j

∥
∥ � 2 for all j . Recall also that η j = q�

j Dgf(x) and η̂ j = q̂�
j Dgf̂(x). For

x ∈ Gfar,

∣
∣η j (x) − η̂ j (x)

∣
∣ �

∣
∣
∣q�

j Dg(f(x) − f̂(x))
∣
∣
∣+

∥
∥
∥D−1

g (Υ −1 − Υ̂ −1)D−1
g

∥
∥
∥
∥
∥
∥Dg f̂(x)

∥
∥
∥

�
∣
∣
∣q�

j Dg(f(x) − f̂(x))
∣
∣
∣+ 8

∥
∥
∥Dg(Υ − Υ̂ )

∥
∥
∥
∥
∥
∥Dg f̂(x)

∥
∥
∥

where the last line is valid with probability 1− ρ by Lemma 3 and (61). Similarly,

∥
∥D2

[
η j
]
(x) − D2

[
η̂ j
]
(x)

∥
∥
x

�
∥
∥
∥D2

[
q�
j Dg(f − f̂)

]
(x)

∥
∥
∥
x
+
∥
∥
∥D−1

g (Υ −1 − Υ̂ −1)D−1
g

∥
∥
∥

sup
‖v‖x�1

∥
∥
∥
∥
∥
1

m

m∑

k=1

Dgγ (ωk)D2
[
ϕωk

]
(x)[v, v]

∥
∥
∥
∥
∥

�
∥
∥
∥D2

[
q�
j Dg(f − f̂)

]
(x)

∥
∥
∥
x
+ 8

∥
∥
∥Dg(Υ − Υ̂ )

∥
∥
∥

sup
‖v‖x�1

∥
∥
∥
∥
∥
1

m

m∑

k=1

Dgγ (ωk)D2
[
ϕωk

]
(x)[v, v]

∥
∥
∥
∥
∥

where again, the last line is valid with probability 1 − ρ by Lemma 3 and (61).
Therefore, we simply have to show that with probability at least 1− ρ,

(i) For j = 1, . . . , s,
∣
∣
∣q�

j Dg(fĒ (x) − f̂(x))
∣
∣
∣ � ε̄0/32 for all x ∈ Gfar.

(ii) For j = 1, . . . , s,
∥
∥
∥D2

[
q�
j Dg(f − f̂)

]
(x)

∥
∥
∥
x

� ε̄2/64 for all x ∈ Gnear.

(iii)
∥
∥
∥Dg f̂(x)

∥
∥
∥ � 2B0 for all x ∈ Gfar.

(iv) sup‖v‖x�1

∥
∥
∥ 1
m

∑m
k=1 Dgγ (ωk)D2

[
ϕωk

]
(x)[v, v]

∥
∥
∥ � 2B2 for all x ∈ Gnear.

(v)
∥
∥
∥Dg(Υ − Υ̂ )Dg

∥
∥
∥ � min

(
ε̄0

512B0
, ε̄2
1024B2

)
.

By applying Lemma 4 and recalling our choice of m, (i) follows by Lemma 8, (ii)
follows by Lemma 10, (iii) follows by Lemma 9, (iv) follows by Lemma 11, and (v)
follows by Lemma 12.
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Bound on p j By the same computations as in Sect. 6.6, we have η̂ j (x) =
(Υ̂ −1u j )

�f̂(x) = Φ∗ p j with p j = 1√
m

(
γ (ωi )

∗Υ̂ −1u j

)m

i=1
. Therefore,

∥
∥p j

∥
∥2
2 = 1

m

m∑

i=1

u∗
j Υ̂

−1γ (ωi )γ (ωi )
∗Υ̂ −1u j = u∗

j Υ̂
−1u j

�
∥
∥
∥DgΥ̂

−1D−1
g

∥
∥
∥ � 4

with probability 1− ρ, by (61).
Extension to theWhole DomainWe proceed as in Sect. 6.5. By the same computations,
we obtain: for any x ∈ X far and x ′ ∈ Gfar,

∣
∣η̂ j (x)

∣
∣ �

∣
∣η j (x ′)

∣
∣+ ∣

∣η̂ j (x ′) − η j (x ′)
∣
∣+ ∣

∣η̂ j (x) − η̂ j (x ′)
∣
∣

� 1− ε̄0
4 + ε̄0

16 + L̄1
∥
∥p j

∥
∥ δg(x, x ′)

, and therefore, we choose

∣
∣
∣Gfar

∣
∣
∣ ∼

(RX L̄1

ε̄0

)d

For the second covariant derivative, as in Sect. 6.5 we get: for all x ∈ X near
j and

x ′ ∈ Gnear
j ,

∥
∥
∥sign(a j )D2

[
η̂ j
]
(x) − K (02)(x j , x)

∥
∥
∥
x

�
∥
∥D2

[
η̂ j
]
(x) − D2

[
η̂ j
]
(x ′)[τx→x ′ ·, τx→x ′ ·]

∥
∥
x

+ ∥
∥D2

[
η̂ j
]
(x ′)[τx→x ′ ·, τx→x ′ ·] − D2

[
η j
]
(x ′)[τx→x ′ ·, τx→x ′ ·]

∥
∥
x

+
∥
∥
∥sign(a j )D2

[
η j
]
(x ′)[τx→x ′ ·, τx→x ′ ·] − K (02)(x j , x

′)[τx→x ′ ·, τx→x ′ ·]
∥
∥
∥
x

+
∥
∥
∥K (02)(x j , x

′)[τx→x ′ ·, τx→x ′ ·] − K (02)(x j , x)
∥
∥
∥
x

� ε̄2

32
+ ε̄2

16
+ ε̄2

64
+ L̄3(L̄0 + ∥

∥p j
∥
∥)dg(x, x

′)

and similarly for � �= j , for all x ∈ X near
� and x ′ ∈ Gnear

� ,

∥
∥D2

[
η̂ j
]
(x)

∥
∥
x �

∥
∥D2

[
η̂ j
]
(x) − D2

[
η̂ j
]
(x ′)[τx→x ′ ·, τx→x ′ ·]

∥
∥
x

+ ∥
∥D2

[
η̂ j
]
(x ′)[τx→x ′ ·, τx→x ′ ·] − D2

[
η j
]
(x ′)[τx→x ′ ·, τx→x ′ ·]

∥
∥
x

+ ∥
∥D2

[
η j
]
(x ′)[τx→x ′ ·, τx→x ′ ·]

∥
∥
x

� ε̄2

32
+ ε̄2

16
+ L̄3

∥
∥p j

∥
∥ dg(x, x

′)
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and therefore we conclude by setting

∣
∣Gnear

∣
∣ ∼ s

(
rnear L̄3 L̄0

ε̄2

)d

The final bound on m is satisfied with the one we obtained previously (65).

C Application: Discrete Fourier Sampling

In this section, we consider the case of sampling Fourier coefficients as described in
[15]. Let f ∈N and X∈Td the d-dimensional torus. Let Ω= {

ω ∈ Z
d ; ‖ω‖∞ � f

}
,

ϕω(x)
def.= ei2πω�x , and Λ(ω) = ∏d

j=1 g(ω j ) where g( j) = 1
f

∑min( j+ f , f )
k=max( j− f ,− f )(1 −

|k/ f |)(1− |( j − k)/ f |).
The Kernel and Fisher Metric The associated kernel is the multivariate Jackson kernel
K (x, x ′) = ∏d

i=1 κ(xi − x ′i ), where

κ(x)
def.=
⎛

⎝
sin

((
f
2 + 1

)
πx

)

(
f
2 + 1

)
sin(πx)

⎞

⎠

4

,

with constant metric tensor

gx = C f Id and dg(x, x
′) = C

1
2
f

∥
∥x − x ′

∥
∥
2 .

where C f
def.= −κ ′′(0) = π2

3 f ( f + 4) ∼ f 2. Note that K (i j) = ∇ i
1∇ j

2 K and
∥
∥K (i j)

∥
∥
x,x ′ = C−(i+ j)/2

f

∥
∥
∥∇ i

1∇ j
2 K

∥
∥
∥. Moreover, since the metric is constant, we have

‖·‖x = C
1
2
f ‖·‖ for all x . The domain diameter isRX = C

1
2
f d

1
2 .

Sampling Bounds Suppose that f � 128. The rest of this section consists of Lemmas
which bound the parameters in Theorem 3: We show in Lemma 15 that by choosing
rnear = 1

8
√
2
, for all dg(x, x ′) � rnear, we can set ε̄2 = (1− 6rnear2)/(1− rnear2/(2−

rnear2) − rnear2) � 0.941. In Lemma 16, we show that for all dg(x, x ′) � rnear,∣
∣K (x, x ′)

∣
∣ � 1 − 1/(83 · 2), so we can set ε̄0

def.= 0.00097. Moreover, the uniform
bounds given in Lemma 18 imply that

min(ε̄0, ε̄2)

32maxi, j Bi j
= O(d− 1

2 ).

So, for h = O(d− 1
2 ), by Lemma 17, we have W (h, s) = O(s

1
4 d

1
2 ). and in the case

of d < 4, this can be replaced by W (h, s) = O(2d). Gradient bounds are computed
in Sect. C.6.

To summarize, Theorem 3 is applicable with:
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(i) B00 = B02 = B12 = O(1), B01 = O(d
1
2 ), B22 = O(d) and Cg = 0.

(ii) rnear = 1/(8
√
2), ε̄0 = 0.00097, ε̄2 = 0.941.

(iii) Δ = O(d
1
2 s

1
4
max).

(iv) L̄i = O(di/2).

and

m � d2s

(

log(s) log

(
s

ρ

)

+ log

(
( f d)d

ρ

))

.

C.1 Preliminaries: Properties of the Univariate Kernel

We first summarize in Sect. C.1 some key properties of the univariate Jackson kernel
κ when f � 128 which were derived in [15].

From [15, Equations (2.20)-(2.24) and (2.29)], for all t ∈ [−1/2, 1/2] and � =
0, 1, 2, 3:

1− C f

2
t2 � κ(t) � 1− C f

2
t2 + 8

(
1+ 2/ f

1+ 2/(2+ f )

)2

C2
f t

4 � 1− C f

2
t2 + 8C2

f t
4

∣
∣κ ′(t)

∣
∣ � C f t,

∣
∣κ ′′(t)

∣
∣ � C f ,

∣
∣κ ′′′(t)

∣
∣ � 3

(
1+ 2/ f

1+ 2/(2+ f )

)2

C2
f t � 12C2

f t

κ ′′ � −C f + 3

2

(
1+ 2/ f

1+ 2/(2+ f )

)2

C2
f t

2 � −C f + 6C2
f t

2. (79)

By [15, Lemma 2.6],

∣
∣
∣κ(�)(t)

∣
∣
∣ �

⎧
⎨

⎩

π�H�(t)
( f+2)4−�t4

, t ∈ [ 1
2 f ,

√
2

π
]

π�H∞
�

( f+2)4−�t4
, t ∈ [

√
2

π
, 1
2 ),

where H∞
0

def.= 1, H∞
1

def.= 4, H∞
2

def.= 18 and H∞
3

def.= 77, and H�(t)
def.= α4(t)β�(t), with

α(t)
def.= 2

π(1− π2t2
6 )

, β̄(t)
def.= α(t)

f t
= 2

f tπ(1− π2t2/6)

and β0(t)
def.= 1, β1(t)

def.= 2 + 2β̄(t), β2
def.= 4 + 7β̄(t) + 6β̄(t)2 and β3(t)

def.= 8 +
24β̄ + 30β̄(t)2 + 15β̄(t)3. Let us first remark that β̄ is decreasing on I

def.= [ 1
2 f ,

√
2

π
],

so
∣
∣β̄(t)

∣
∣ �

∣
∣β̄(1/(2 f ))

∣
∣ ≈ 1.2733, and a(t) � a(

√
2/π) = 3

π
on I . Therefore, on I ,

H0(t) � 3
π
, H1(t) � 3.79, H2(t) � 18.83 and H3(t) � 98.26, and we can conclude

that on [ 1
2 f ,

1
2 ), we have

∣
∣
∣κ(�)(t)

∣
∣
∣ �

π�H∞
�

( f + 2)4−�t4
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where H∞
0 = 1, H∞

1
def.= 4, H∞

2
def.= 19, H∞

3
def.= 99. Combining with (79), we have

∥
∥
∥κ(�)

∥
∥
∥∞ � κ∞

� (80)

where κ∞
0

def.= 1, κ∞
2

def.= C f ,

κ∞
1

def.= √
C f max

(
2π4

( 12 + 1
f )

3

f
√
C f

,

√
C f

2 f

)

= O(
√
C f )

κ∞
3

def.= (C f )
3/2 max

⎛

⎝ 99π3

( 12 + 1
f )

(
2 f
√
C f

)4

,
6
√
C f

f

⎞

⎠ = O((C f )
3/2).

Finally, given p ∈ (0, 1),

( f + 2)4t4 � (1+ p( f + 2)2t2)2, ∀ t � 1√
(1− p)( f + 2)

.

Choosing p = 1
2 and using ( f + 2)2 = ( 3

π2C f + 4) � 3
π2C f , we have

∣
∣
∣κ(�)(t)

∣
∣
∣ �

κ∞
�

(1+ 3
2π2C f t2)2

, ∀ t2 � 2π2

3C f
, (81)

In the following sections, we will repeatedly make use of (79), (80) and (81).

C.2 Notation

For notational convenience, write ti
def.= xi − x ′i , κi

def.= κ(ti ), κ ′
i

def.= κ ′(ti ), and so on. Let

Ki
def.=

d∏

k=1
k �=i

κk, Ki j
def.=

d∏

k=1
k �=i, j

κk and Ki j�
def.=

d∏

k=1
k �=i, j,�

κk .

With this, we have:

∂1,i K (x, x ′) = κ ′
i Ki

∂1,i∂2,i K (x, x ′) = −κ ′′
i Ki , and ∀i �= j, ∂1,i∂2, j K (x, x ′) = −κ ′

iκ
′
j Ki j .

Where convenient, we sometimes write K (t) = K (x − x ′) def.= K (x, x ′). Given a
symmetric matrix M , we write λmin(M) to denote the smallest eigenvalue of M .
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C.3 BoundsWhen
∥
∥t

∥
∥ is Small

Lemma 15 Suppose that C f
∥
∥x − x ′

∥
∥2
2 � c with c > 0 such that

ε
def.= (1− 6c)

(

1− c

2− c

)

− c > 0

Then, −〈K (02)(x − x ′)q, q〉 � ε ‖q‖x .
Proof Let q ∈ R

d , and note that

−〈∇2
2Kq, q〉 = −

∑

i

⎛

⎝qiκ
′′
i Ki − κ ′

i

∑

j �=i

q jκ
′
j Ki j

⎞

⎠ qi

= −
⎛

⎝
∑

i

q2i κ
′′
i Ki −

∑

i

qiκi
∑

j �=i

q jκ j Ki j

⎞

⎠

� ‖q‖2x
1

C f

⎛

⎝−max
i

{
κ ′′
i Ki

}−
∑

j

∣
∣
∣κ ′

j

∣
∣
∣
2

⎞

⎠ .

(82)

We first consider κ ′′
i Ki : By applying (79), we obtain

κ ′′
i � −C f + 6C2

f t
2
i ,

Ki �
∏

j �=i

(

1− C f

2
t2i

)

� 1− C f

2
‖t‖22 −

(
C f

2
‖t‖22

)3

−
(
C f

2
‖t‖22

)5

− · · ·

� 1− C f ‖t‖22
2(1− C f

2 ‖t‖22)
,

and hence,

κ ′′
i Ki �

(
−C f + 6C2

f ‖t‖22
)
(

1− C f ‖t‖22
2(1− C f

2 ‖t‖22)

)

For the second term in (82), again, by applying (79), we obtain
∑

j

∣
∣
∣κ ′

j

∣
∣
∣
2

� C2
f ‖t‖22 .

Therefore, for ‖q‖x = 1, we have

−〈K (02)(x − x ′)q, q〉 �
(
1− 6C f ‖t‖22

)
(

1− C f ‖t‖22
2(1− C f

2 ‖t‖22)

)

− C f ‖t‖22

��
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Lemma 16 Assume that 1
8
√

C f
� ‖t‖2 Then,

K (t) � 1− C f

4
‖t‖22 + 16C2

f ‖t‖42 .

Consequently, for all

0 < c � 1

8
√
2C f

,

and all t such that ‖t‖2 � c,

|K (t)| � 1− C f

8
c2.

Proof First note that by (79),

|κ(u)| � 1− C f

2
u2 + 32C2

f u
4 = 1− u2g(u)

where

g(u)
def.= C f

(
1

2
− 32C f u

2
)

,

and note that g(u) ∈ (0,
C f
2 ) for u ∈ (0, 1/(8

√
C f ). So, writing t = (ti )di=1 and

g j
def.= g(t j ), we have

K (t) =
d∏

j=1

κ(ti ) �
d∏

j=1

(
1− t2j · g(t j )

)

= 1−
d∑

j=1

t2j g j +
∑

j �=k

t2j t
2
k g j gk −

∑

j �=k �=�

t2j t
2
k t

2
� g j gkg� + · · ·

= 1+
d∑

�=1

∑

j∈J�

(−1)�
�∏

i=1

(t2ji g ji ),

whereJ�
def.= {

j ∈ N
d ; j � d, all entries of j are distinct

}
.Note that for odd integers

�,

−
∑

j∈J�

�∏

i=1

(t2ji g
2
ji ) +

∑

j∈J�+1

�+1∏

i=1

(t2ji g ji )
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� −
∑

j∈J�

�∏

i=1

(t2ji g ji ) +
⎛

⎝
∑

j∈J�

�∏

i=1

(t2ji g
2
ji )

⎞

⎠

(
d∑

k=1

t2k gk

)

� −
⎛

⎝
∑

j∈J�

�∏

i=1

(t2ji g
2
ji )

⎞

⎠
(

1− C f

2
‖t‖22

)

< 0

since
(
1− C f

2 ‖t‖22
)
> 0. Also,

d∑

j=1

t2j g j � C f

2

d∑

j=1

t2j < 1,

by assumption. So,

K (t) � 1−
d∑

j=1

t2j g j +
∑

j �=k

t2j t
2
k g j gk

� 1−
d∑

j=1

t2j g j + 1

2

⎛

⎝
∑

j

t2j g j

⎞

⎠

2

� 1− 1

2

d∑

j=1

t2j g j

� 1− C f

2

⎛

⎝1

2

d∑

j=1

t2j − 32C f

d∑

j=1

t4j

⎞

⎠ � 1− C f

4
‖t‖22 + 16C2

f ‖t‖42 .

Finally, observe that the function

q(z)
def.= C f

4
z2 − 16C2

f z
4

is positive and increasing on the interval [0, 1
8
√

2C f
]. So, for t satisfying

c � ‖t‖2 � 1

8
√
2C f

, (83)

we have |K (t)| � 1 − q(c) � 1 − C f
8 c2. Finally, since |K (t)| is decreasing as t

increases, we trivially have that |K (t)| � 1− q(c) for all t with ‖t‖2 � c.
��

C.4 BoundsWhen
∥
∥t

∥
∥ is Large

Lemma 17 Let i, j ∈ {0, 1, 2} with i + j � 3. Let Ā �
√

4π2

3 and ‖t‖2 �
Ā
√
ds1/4max/

√
C f . Then, we have

∥
∥K (i j)(t)

∥
∥
x,x ′ � d

i+ j−4
2 ( Ā4smax)

−1.
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To see that this implies that for h = O(d− 1
2 ), W (h, s) = O

(
s
1
4 d

1
2

)
, first note that if

min� �=k ‖x� − xk‖2 � Ā
√
ds1/4max/

√
C f , then

s∑

k=2

∥
∥
∥K (i j)(x1, xk)

∥
∥
∥
x1,xk

�
s∑

k=2

d
i+ j−4

2 ( Ā4s)−1 = d− 1
2 Ā−4 � h

by choosing Ā to be a sufficiently large constant.
For the case of d < 4, note that if ‖t‖2 � Ā/

√
C f , we have

∥
∥K (i j)(t)

∥
∥
x,x ′ �

d
3
2 Ā−4. If min� �=k ‖x� − xk‖2 � Ā/

√
C f , then for each n ∈ N, there are at most

O(d3d−1(n + 1)d−1) points for which ‖x − x1‖ ∈ C
− 1

2
f [n Ā, (n + 1) Ā]. To see this,

we simply need to upper bound the number of points P spaced δ = Ā/
√
C f apart

which canfit into the tube B(n+1)δ(0)\Bnδ(0). By comparingvolumes, this corresponds
to fitting balls of radius δ/2 into B(n+1)δ+δ/2(0) \ Bnδ−δ/2(0),

P(δ/2)dvol(B1(0)) � ((n + 1)δ + δ/2)d vol(B1(0)) − (nδ − δ/2)d vol(B1(0)).

So, P � (2(n + 1) + 1)d − (2(n − 1) + 1)d � d (2n + 3)d−1 � d(n + 1)d−13d−1,
where the 2nd inequality is obtained by the mean value theorem. Therefore,

s∑

k=2

∥
∥
∥K (i j)(x1, xk)

∥
∥
∥
x1,xk

� 3d−1d
5
2 Ā−4

∑

n∈N
nd−5 � h,

by choosing Ā � 2d and provided that d < 4.

Proof of Lemma 17 Write t = (t j )dj=1. To bound K (t) = ∏d
j=1 κ(t j ), wewant tomake

use of the bounds on κ∞
j from (81). We can do this for each t j such that

∣
∣t j
∣
∣ �

√
2π2

3C f
.

Note that there exists at least one such t j since ‖t‖∞ � ‖t‖2 /
√
d � Ās1/4max/

√
C f �√

2π2

3C f
. If {∣∣t j

∣
∣}kj=1 ⊂ [0,

√
2π2

3C f
) for k � d − 1, then

k
2π2

3C f
+

d∑

j=k+1

t2j � ‖t‖22 � Ā2ds1/2max

C f
,

which implies that
∑d

j=k+1 t
2
j � 1

C f

(
Ā2ds1/2max − 2π2(d−1)

3

)
� Ā2ds1/2max

2C f
, by our

assumptions on Ā. Therefore, we may assume that we have some d � p � 1 such

that {b j }pj=1 ⊆ {t j } with
∣
∣b j

∣
∣ �

√
2π2

3C f
and ‖b‖2 � Ā

√
d 4√smax√
2C f

. Observe that

p∏

j=1

(1+ 3C f

2π2 b
2
j ) � 1+ 3C f

2π2

p∑

j=1

b2j = 1+ 3C f

2π2
‖b‖22 � 1+ 3

4π2 Ā
2d

√
smax.
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So, by applying the fact that |κ| � 1, κ∞
0 = 1 and (81), we have

|K (t)| �
p∏

j=1

∣
∣κ(b j )

∣
∣ �

p∏

j=1

1
(
1+ 3C f

2π2 b
2
j

)2 � 1
(
1+ 3

4π2 Ā2d
√
smax

)2 .

For
∣
∣κ ′

i Ki
∣
∣, if i /∈

{
j ; ∣

∣t j
∣
∣ >

√
2π2

3C f

}
, then

∣
∣κ ′

i Ki
∣
∣ �

∥
∥κ ′

i

∥
∥∞

p∏

j=1

∣
∣κ(b j )

∣
∣ �

∥
∥κ ′

i

∥
∥∞

(
1+ 3

4π2 Ā2d
√
smax

)2 ,

and otherwise, we have
∣
∣κ ′

i Ki
∣
∣ �

∣
∣κ ′(ti )

∣
∣∏

j �=i

∣
∣κ(b j )

∣
∣ � κ∞

1(
1+ 3

4π2
Ā2d

√
smax

)2 , In a

similar manner, writing V
def.=
(
1+ 3

4π2 Ā
2d

√
smax

)−2
, we can deduce that

∣
∣κ ′

i Ki
∣
∣ � κmax

1 V ,
∣
∣κ ′′

i Ki
∣
∣ � κ∞

2 V ,

∣
∣
∣κ ′

iκ
′
j Ki j

∣
∣
∣
2

� (κ∞
1 )2V

∣
∣κ ′′′

i Ki
∣
∣3 � κ∞

3 V ,

∣
∣
∣κ ′′

i κ
′
j Ki j

∣
∣
∣
3

� κ∞
2 κmax

1 V ,

∣
∣
∣κ ′

iκ
′
jκ

′
�Ki j�

∣
∣
∣ � (κmax

1 )3V .

Therefore,

∥
∥
∥K (10)

∥
∥
∥
x,x ′

= 1
√
C f

‖∇1K‖ � 1
√
C f

√√
√
√

d∑

j=1

∣
∣
∣κ ′

j K j

∣
∣
∣
2

� κ∞
1√
C f

V
√
d � 1

Ā4d3/2smax
.

Using Gershgorin theorem, we have

∥
∥
∥∇2

2K (x, x ′)
∥
∥
∥ � max

1�i�d

⎧
⎨

⎩

∣
∣κ ′′

i Ki
∣
∣+ ∣

∣κ ′
i

∣
∣
∑

j �=i

∣
∣
∣κ ′

j

∣
∣
∣
∣
∣Ki j

∣
∣

⎫
⎬

⎭
,

and hence,

∥
∥
∥K (02)

∥
∥
∥
x ′

= 1

C f

∥
∥
∥∇2

2K
∥
∥
∥ � 1

C f

d
max
i=1

⎧
⎨

⎩

∣
∣κ ′′

i Ki
∣
∣+ ∣

∣κ ′
i

∣
∣
∑

j �=i

∣
∣
∣κ ′

j Ki j

∣
∣
∣

⎫
⎬

⎭

� 1

C f
V
(
κ∞
2 + (κ∞

1 )2(d − 1)
)

� max{κ∞
2 , (κ∞

1 )2}
C f

Vd � 1

Ā4dsmax
.
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Note also that
∥
∥K (11)

∥
∥
x,x ′ =

∥
∥K (02)

∥
∥
x ′ . Finally, since

∥
∥
∥∂1,i∇2

2K (x, x ′)
∥
∥
∥ � max

{ ∣
∣κ ′′′

i Ki
∣
∣+ ∣

∣κ ′′
i

∣
∣
∑

j �=i

∣
∣
∣κ ′

j

∣
∣
∣
∣
∣Ki j

∣
∣ ,

max
j �=i

⎧
⎨

⎩

∣
∣
∣κ ′′

j κ
′
i Ki j

∣
∣
∣+

∣
∣
∣κ ′

jκ
′′
i Ki j

∣
∣
∣+ ∣

∣κ ′
i

∣
∣
∣
∣
∣κ ′

j

∣
∣
∣
∑

l �=i, j

∣
∣κ ′

l

∣
∣
∣
∣Ki j�

∣
∣

⎫
⎬

⎭

}

,

we have

∥
∥
∥K (12)

∥
∥
∥
x,x ′

= 1

C3/2
f

∥
∥
∥∇1∇2

2K
∥
∥
∥

� 1

C3/2
f

√
dV max

(
κ∞
3 + κ∞

2 κ∞
1 (d − 1), 2κ∞

2 κ∞
1 + (d − 1)(κ∞

1 )3
)

� d3/2 max{κ∞
3 , κ∞

1 κ∞
2 , (κ∞

1 )3} 1

C3/2
f

V � 1

Ā4d1/2smax

��

C.5 Uniform Bounds

Lemma 18 If rnear ∼ 1/
√
C f , then B0 = O(1), B01 = O(

√
d), B02 = B12 = O(1)

and B22 = O(d).

Proof We have |K | � 1, and

‖∇K‖2 �
∑

i

|κi |2 |Ki |2 � d(κ∞
1 )2 � C f d,

so B01 = O(
√
d).

From (82), for all ‖q‖ = 1,

〈∇2
2K (t)q, q〉 � max

i

∣
∣κ ′′

i

∣
∣ ‖q‖22 + ‖q‖22

∑

i

|κi |2 � C f + C2
f ‖t‖2 = O(C f ),

for ‖t‖ � 1/
√
C f . So, since rnear � 2/

√
C f ,

∥
∥K 02(t)

∥
∥ � 2

def.= B02. For the bound on
B12:

∥
∥
∥K (12)

∥
∥
∥
x,x ′

= sup
‖q‖=‖p‖=1

1

C3/2
f

(∑

k

∑

k �=i

∂1,i

(
∂22,k K piq

2
k + ∂1,i∂2,i∂2,k K piqiqk

)

+
∑

i

∑

k

∑

j

∂1,i∂2, j∂2,k pi p j pk +
∑

i

∑

j �=i

∂1,i∂2,i∂2, j K piqiq j
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+
∑

i

∂1,i∂
2
2, j K piq

2
i

)

= sup
‖q‖=‖p‖=1

1

C3/2
f

(∑

k

∑

k �=i

κ ′
iκ

′′
k Kik piq

2
k + κ ′′

i κ
′
k Kik piqiqk

+
∑

i

∑

k

∑

j

κ ′
iκ

′
kκ

′
j Ki jk pi p j pk +

∑

i

∑

j �=i

κ ′′
i κ

′
j Ki j piqiq j

+
∑

i

κ ′
iκ

′′
j Ki j piq

2
i

)

� 1

C3/2
f

(

3
∥
∥κ ′′∥∥∞

√∑

i

∣
∣κ ′

k

∣
∣2

+
(
∑

i

∣
∣κ ′

k

∣
∣2
)3/2

+ ∥
∥κ ′∥∥∞

∥
∥κ ′′∥∥∞

)

� 1

C3/2
f

(
3C2

f ‖t‖ + C3
f ‖t‖3 +O(C3/2

f )
)
= O(1)

for ‖t‖ � 1/C1/2
f .

��

C.6 Gradient Bounds

The derivatives of the random features are uniformly bounded with

∥
∥
∥∇ jϕω(x)

∥
∥
∥ = ‖ω‖ j � f j d j/2 ∼ C j/2

f d j/2 (84)

So, we can set L̄i = O(di/2) for i = 0, 1, 2. For L̄3, the condition (44) is simply

C−1
f

∥
∥
∥∇2ϕω(x) −∇2ϕω(x

′)
∥
∥
∥ � L̄3C

1
2
f

∥
∥x − x ′

∥
∥ ,

so L̄3 = O(d3/2) by (84).

D Application: Continuous Fourier Sampling with the Gaussian
Kernel

In this section, we consider the case of continuous Fourier sampling with Gaussian
frequencies, which may appear, for instance, in sketched Gaussian mixture learning
[37]. Let X ⊂ R

d be any bounded subset of Rd . Let Ω = R
d , ϕω(x)

def.= eiω
�x , and

Λ(ω) = N (0,Σ−1), for a known covariance matrix Σ .
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The Kernel and Fisher Metric The associated kernel is the Gaussian kernel

K (x, x ′) = exp

(

−1

2

∥
∥x − x ′

∥
∥2
Σ−1

)

with constant metric tensor

gx = Σ−1 and d(x, x ′) = ∥
∥x − x ′

∥
∥
Σ−1 =

∥
∥
∥Σ− 1

2 (x − x ′)
∥
∥
∥

Sampling Bounds The rest of this section consists of Lemmas which bound the param-
eters in Assumptions 1 and 2. We show that by choosing rnear = 1√

2
, we obtain

ε̄2 = 1
2e

− 1
4 and ε̄0

def.= 1 − e− 1
4 . Moreover, Lemma 21 gives uniform bounds in

Bi j = O(1) and, for h = O(1), W (h, s) = O(
√
log s + 1). Gradient bounds are

computed in Sect. D.5.

D.1 Properties of the Kernel

Notations For simplicity, define t = x − x ′, b an abuse of notations KΣ(t) =
exp

(− 1
2 ‖t‖2

Σ−1

)
and for u ∈ R, κ(u) = exp

(− 1
2u

2
)
. Denote by {ei } the canoni-

cal basis of Rd , and by fi = Σ−1ei the i th row of Σ−1.

Gradients of the Kernel We have the following:

∇KΣ(t) = − Σ−1t KΣ(t)

∇2KΣ(t) =
(
−Σ−1 + Σ−1t t�Σ−1

)
KΣ(t)

∂i∇2KΣ(t) =
(
Σ−1t f �i + fi t

�Σ−1
)
KΣ(t) − (t� fi )∇2KΣ(t)

∂i j∇2KΣ(t)=
(
−Σ−1((t� f j )t f

�
i + (t� fi )t f

�
j ) + ( fi f

�
j + f j f

�
i )

)
KΣ(t) − fi j∇2

KΣ(t) − (t� fi )∂ j∇2KΣ(t)

Then, we observe that for any q � 1, the function fq(r) = rqe− 1
2 r

2
defined on R+

is increasing on [0,√q] and decreasing after, and its maximum value is fq(
√
q) =

( q
e

)q/2. Furthermore, it is easy to see that we have fq(r) = rqe−r2/2 �
(
2q
2

) q
2
e−r2/4

and therefore f (r) � ε if r � 2
(
log

( 1
ε

)+ q
2 log

(
2q
e

))
.

D.2 BoundsWhen
∥
∥t

∥
∥ is Small

Lemma 19 For all dg(x, x ′) � rnear
def.= 1√

2
and all v ∈ TxM, we have

−K (02)(x, x ′)[v, v] � ε̄2 ‖v‖2x where ε̄2 = 1
2e

− 1
4 .

Proof From the derivations above, we have K (02)(x, x ′)[v, v] = v�∇2
2KΣ(t)v =

(−1+ dg(x, x ′)2)κ(dg(x, x ′)) ‖v‖2x � (rnear2 − 1)κ(rnear) ‖v‖x . ��
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D.3 BoundsWhen
∥
∥t

∥
∥ is Large

Lemma 20 Foralldg(x, x ′) � rnear, we have
∣
∣K (x, x ′)

∣
∣ � 1−ε̄0, where ε̄0

def.= 1−e− 1
4 ,

and for h = O(1), W (h, s) = O(
√
log s + 1).

Proof For the first inequality we have |K | � κ(rnear) = 1− (1− e− 1
4 ).

Then, from (27), the fact that the metric tensor is constant, and the expressions for
the derivatives of the kernel above, is immediate that

∥
∥
∥K (10)(x, x ′)

∥
∥
∥
x,x ′

=
∥
∥
∥K (01)(x, x ′)

∥
∥
∥
x,x ′

=
∥
∥
∥Σ

1
2∇KΣ(t)

∥
∥
∥
1

= d(x, x ′)κ(d(x, x ′)) = f1(d(x, x
′))

∥
∥
∥K (02)(x, x ′)

∥
∥
∥
x,x ′

=
∥
∥
∥K (11)(x, x ′)

∥
∥
∥
x,x ′

=
∥
∥
∥Σ

1
2∇2KΣ(t)Σ

1
2

∥
∥
∥
2

= (d(x, x ′)2 + 1)κ(d(x, x ′)) = f2(d(x, x
′)) + f0(d(x, x

′))

For K (12), again since the metric tensor g is constant, we observe that

[q]K (12)(x, x ′)[v1, v2] = v�1

(
d∑

i=1

qi
(
∂i∇2KΣ(t)

)
)

v2

and

∥
∥
∥K (12)(x, x ′)

∥
∥
∥ = sup∥

∥
∥
∥Σ

− 1
2 q

∥
∥
∥
∥
2
�1,

∥
∥
∥
∥Σ

− 1
2 vi

∥
∥
∥
∥
2
�1

∣
∣
∣
∣
∣
v�1

(
d∑

i=1

qi
(
∂i∇2KΣ(t)

)
)

v2

∣
∣
∣
∣
∣

= sup
‖q‖2�1,‖vi‖2�1

∣
∣
∣
∣
∣
v�1

(
d∑

i=1

(Σ
1
2 q)iΣ

1
2

(
∂i∇2KΣ(t)

)
Σ

1
2

)

v2

∣
∣
∣
∣
∣

= sup
‖q‖=1

∥
∥
∥
∥
∥
Σ

1
2

(
d∑

i=1

(Σ
1
2 q)i∂i∇2KΣ(t)

)

Σ
1
2

∥
∥
∥
∥
∥
2

.

Using,
∑

i (Σ
1
2 q)i fi = Σ− 1

2 q, we observe that

Σ
1
2

(
∑

i

(Σ
1
2 q)iΣ

−1t f �i

)

Σ
1
2 = Σ− 1

2 t

(
∑

i

q�Σ
1
2 ei e

�
i Σ− 1

2

)

= Σ− 1
2 tq�

Σ
1
2
∑

i

(Σ
1
2 q)i (t

� fi )∇2KΣ(t)Σ
1
2 = (q�Σ− 1

2 t)

(
Σ

1
2∇2

2K (x, x ′)Σ
1
2

)
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Hence at the end of the day

∥
∥
∥K (12)(x, x ′)

∥
∥
∥ � (3d(x, x ′) + d(x, x ′)3)κ(d(x, x ′)) = 3 f1(d(x, x

′)) + f3(d(x, x
′))

Therefore, for h = O(1), using the properties of the functions fq it is immediate that
W (h, s) = O(

√
log s + 1). ��

D.4 Uniform Bounds

Lemma 21 For (i, j) ∈ {0, 1, 2}, we have Bi j = O(1).

Proof The bounds for i + j � 3 are immediate using the identities in the proof of
Lemma 20 and the properties of the functions fq .

By the same reasoning, we have

∥
∥
∥K (22)(x, x ′)

∥
∥
∥ = sup

‖q1‖=1,‖q2‖=1

∥
∥
∥
∥
∥
∥
Σ

1
2
∑

i j

(Σ
1
2 q1)i (Σ

1
2 q2) j∂i j∇2KΣ(t)Σ

1
2

∥
∥
∥
∥
∥
∥

and we have

Σ
1
2

⎛

⎝
∑

i j

(Σ
1
2 q1)i (Σ

1
2 q2) jΣ

−1(t� f j )(t f
�
i )

⎞

⎠Σ
1
2 = (q�

2 Σ− 1
2 t)Σ− 1

2 tq�
1

Σ
1
2

⎛

⎝
∑

i j

(Σ
1
2 q1)i (Σ

1
2 q2) j fi f

�
j

⎞

⎠Σ
1
2 = q1q

�
2

Σ
1
2

⎛

⎝
∑

i j

(Σ
1
2 q1)i (Σ

1
2 q2) j fi j

⎞

⎠Σ
1
2 = q1q

�
2

v1Σ
1
2

⎛

⎝
∑

i j

(Σ
1
2 q1)i (Σ

1
2 q2) j (t

� fi )∂ j∇2KΣ(t)

⎞

⎠Σ
1
2 v2 = (q�

1 Σ− 1
2 t)[q2]K (12)(x, x ′)[v1, v2]

Hence,
∥
∥
∥K (22)(x, x ′)

∥
∥
∥ � [3 f0 + 6 f2 + f4](d(x, x ′))

and B22 = O(1). ��

D.5 Gradient Bounds

For j = {0, 1, 2}, we have D j [ϕω] (x)[q1, . . . , q j ] =
(∏

i ω
�qi

)
ϕω(x) and therefore

∥
∥D j [ϕω] (x)

∥
∥
x �

∥
∥
∥Σ

1
2ω

∥
∥
∥
j

2
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And then, from (44), using τx→x ′ = Id,

∥
∥D2 [ϕω] (x) − D2 [ϕω] (x

′)[τx→x ′ ·, τx→x ′ ·]
∥
∥
x

=
∥
∥
∥Σ

1
2

(
∇2
2ϕ(x

′) −∇2
2ϕ(x)

)
Σ

1
2

∥
∥
∥
2

=
∥
∥
∥Σ

1
2ω

∥
∥
∥
2

2

∣
∣ϕω(x) − ϕω(x

′)
∣
∣

=
∥
∥
∥Σ

1
2ω

∥
∥
∥
2

2

∣
∣
∣ω�(x − x ′)

∣
∣
∣ �

∥
∥
∥Σ

1
2ω

∥
∥
∥
3

2
dg(x, x

′)

Since ω ∼ N (0,Σ−1),
∥
∥
∥Σ

1
2ω

∥
∥
∥
j = W

j
2 where W is a χ2 variable with d degrees

of freedom. Then, we use the following Chernoff bound [24]: for x � d, we have

P(W � x) �
(ex

d
e−

x
d

) d
2 �

(

e

(√
x

d

)2

e
− 1

2 ·
(√

x
d

)2

e−
x
2d

) d
2

� 2
d
2 e−

x
4

by using x2e− x2
2 � 2

e .
Hence, we can define the Fj such that, for all t � d j/2, P(L j (ω) � t) � Fj (t) =

2
d
2 exp

(

− t
2
j

4

)

, and Fj (L̄ j ) is smaller than some δ if L̄ j ∝
(
d + log 1

δ

) j
2 . Then, we

must choose the L j such that
∫
L̄ j

t Fj (t)dt is bounded by some δ. Taking L̄ j � d j/2

in any case, we have

∫

L̄ j

t Fj (t)dt = 2
d
2

∫

L̄ j

t exp

(

− t
2
j

4

)

dt = 2
d
2

∫

L̄
2
j
j

( j/2)t j−1 exp

(

− t

4

)

dt

= 2
d
2 ( j/2)

∫

L̄
2
j
j

(

t j−1 exp

(

− t

8

))

exp

(

− t

8

)

dt

� 2
d
2 ( j/2)

(
8( j − 1)

e

) j−1 ∫

L̄
2
j
j

exp

(

− t

8

)

dt

= 2
d
2 j

(
8( j − 1)

e

) j−1

8 exp

(

−L̄
2
j
j /8

)

Hence, this quantity is bounded by δ if L̄ j ∝ (
d + log

( 1
δ

)) j
2 . Then, we have

L̄2
j Fi (L̄i ) = L̄2

j2
d
2 exp

(

− L̄
2
i
i
4

)

which is also bounded by δ if L̄ j ∝
(
d + (

log d
δ

)2)
j
2
.

At the end of the day, our assumptions are satisfied for
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L̄ j ∝
(

d +
(

log
dm

ρ

)2
) j

2

D.5.1 Gaussian Mixture Model Learning

We apply the mixture model framework with the base distribution:

Pθ = N (θ,Σ)

The random features on the data space are ϕ′
ω(x) = Ceiω

�x with Gaussian distribution
ω ∼ Λ = N (0, A) for some constant C and matrix A that we will choose later. Then,
the features on the parameter space are ϕω(θ) = Ex∼Pθ ϕ

′
ω(x) = Ceiω

�θe− 1
2 ‖ω‖2Σ

(that is, the characteristic function of Gaussians). Then, it is possible to show [37] that
the kernel is

K (θ, θ ′) = C2

∣
∣A−1

∣
∣
1
2

∣
∣2Σ + A−1

∣
∣
1
2

e−
1
2‖θ−θ ′‖2

(2Σ+A−1)−1

Hence, we choose A = cΣ−1, C = (1 + 2c)
d
4 , and we come back to the previous

case K (θ, θ ′) = e−
1
2‖θ−θ ′‖2

Σ̃−1 with covariance Σ̃ = (2+1/c)Σ . Hence, ε̄i = O (1),
Bi j = O (1), d(θ, θ ′) = ∥

∥θ − θ ′∥∥
Σ̃−1 = 1√

2+1/c

∥
∥θ − θ ′∥∥

Σ−1 .

Admissible Features Unlike the previous case, the features are directly bounded and
Lipschitz. We have

|ϕω(θ)| � C
def.= L0,

∥
∥D j [ϕω(θ)]

∥
∥ = C

∥
∥
∥Σ̃

1
2ω

∥
∥
∥
j
e−

‖ω‖2
Σ

2 = C (2+ 1/c)
j
2

∥
∥
∥Σ

1
2ω

∥
∥
∥
j
e−

‖ω‖2
Σ

2

� C (2+ 1/c)
j
2

(
j

e

) j
2

def.= L j

Hence, all constants L j are in O
(
C(2+ 1/c)

j
2

)
by choosing c = 1

d they are in

O
(
d

j
2

)
.

E Application: Sampling the Laplace Transform

Let α ∈ R
d+, and let X = (0, R]d ⊂ R

d+ for some R > 0. Let Ω = R
d+. Define for

x ∈ X and ω ∈ Ω ,

ϕω(x)
def.= exp (−〈x, ω〉)

d∏

i=1

√
xi + αi

αi
and Λ(ω) = exp(−〈2α, ω〉)

d∏

i=1

(2αi ).
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The Kernel and Fisher Metric The associated kernel is K (x, x ′) = ∏d
i=1 κ(xi +

αi , x ′i + αi ) where

κ(u, v)
def.= 2

√
uv

u + v
.

The associated metric gx ∈ R
d×d is the diagonal matrix with diagonal (hxi+αi )

d
i=1

where given x ∈ R+,hx
def.= ∂x∂x ′κ(x, x) = (2x)−2. The induceddistance in dimension

one is

∫ max{s,t}

min{s,t}
(2x + 2α)−1dx =

∣
∣
∣
∣log

(
t + α

s + α

)∣∣
∣
∣ (85)

, and hence,

dg(x, x
′) =

√√
√
√

d∑

i=1

∣
∣
∣
∣log

(
xi + αi

x ′i + αi

)∣∣
∣
∣

2

is theFisher distance between exponential distributions. Thedomain diameter isRX =√
∑

i

∣
∣
∣log

(
R+αi
αi

)∣
∣
∣.

The Christoffel symbol is Γ i
jk = −(xi + αi )

−1 when i = j = k and 0 otherwise,
so the Riemannian Hessian of f at x is

H f (x) = ∇2 f (x) + diag(g
1
2
x ∇ f (x)).

Sampling Bounds Assuming that the αi ∼ d and are all distinct, Theorem 3 is appli-
cable with:

(i) B00 = B01 = B02 = O(1), B12 = O(
√
d), B22 = O(d).

(ii) rnear = 0.2, ε̄0 = 0.005, ε̄2 = 0.7960.
(iii) Δ = O(d + log(d3/2smax))

(iv) L̄ j ∝ d j
(√

d +
(
log(m) + log

(
d
ρ

))) j

and

m � s

(

C log(s) log

(
s

ρ

)

+ C2 log

(
Cd

ρ

))

(86)

whereC
def.= d2

(
d + log2(m) + log2

(
d
ρ

))
. In the above, the implicit constant depends

on R.
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E.1 Preliminaries: Properties of the Univariate Kernel

We first provide bounds for κ and its derivatives. In the following, let

κ(i j)(u, v)
def.= h−i/2

u h− j/2
v ∂ iu∂

j
v κ(u, v).

We denote dκ(u, v)
def.= |log(u/v)|. Recall also the hyperbolic functions

sinh(u)
def.= eu − e−u

2
, cosh(u)

def.= eu + e−u

2
, tanh(u)

def.= sinh(u)

cosh(u)
,

sech(u)
def.= 1

cosh(u)
.

Lemma 22 We have

(i) κ(u, v) = sech
(
dκ (u,v)

2

)
� 2e− 1

2dκ (u,v).

(ii)
∣
∣κ(10)(u, v)

∣
∣ = 2

∣
∣
∣tanh

(
dκ (u,v)

2

)
κ(u, v)

∣
∣
∣ , and

∣
∣κ(10)(u, v)

∣
∣ � 2 |κ(u, v)|.

(iii)
∣
∣κ(11)(u, v)

∣
∣ � |κ(u, v)|3 + 4 |κ(u, v)|

(iv)
∣
∣κ(20)(u, v)

∣
∣ � 5 |κ(u, v)| and−κ(20)(u, v) � κ(u, v)

(
1− 4 tanh

(
dκ (u,v)

2

))
.

(v)
∣
∣κ(12)(u, v)

∣
∣ � 49 |κ(u, v)|.

Proof We first state the partial derivatives of κ:

κ(u, v) = 2
√
uv

u + v
,

∂uκ(u, v) = v(v − u)√
uv(u + v)2

∂u∂vκ(u, v) = −u2 + 6uv − (v)2

2
√
uv(u + v)3

∂2uκ(u, v) = − (v)2
(
(u + v)2 + 4u(v − u)

)

2 (uv)3/2 (u + v)3

= − (v)2

2 (uv)3/2 (u + v)
− 2v(v − u)

(uv)1/2 (u + v)3

∂u∂
2
v κ(u, v) =

u3 + 13u2v − 33u(v)2 + 3(v)3)

4v(uv)1/2(u + v)4We also make use of the following fact: For u > v,

v − u

u + v
=
(

1
u
v
+ 1

− 1

1+ v
u

)

=
(

1

1+ exp(dκ(u, v))
− 1

1+ exp(−dκ(u, v))

)

=
(

exp(−dκ(u, v)) − exp(dκ(u, v))

2+ exp(dκ(u, v)) + exp(dκ(u, v))

)
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= − sinh(dκ(u, v))

1+ cosh(dκ(u, v))
= − tanh(dκ(u, v)/2).

(i)
κ(u, v) = 2

(√
u

v
+
√

v

u

)−1

= 2

e−
dκ (u,v)

2 + e
dκ (u,v)

2

= 1

cosh(dκ (u,v)
2 )

� 2e−
1
2dκ (u,v),

(ii) We have, assuming that u > v,

κ(10)(u, v) = 2u∂uκ(u, v) = 2
v − u

u + v
κ(u, v) = −2 tanh(dκ(u, v)/2)κ(u, v).

(iii)
κ(11)(u, v) = 4uv∂v∂uκ(u, v) = 4uv

4uv − (u − v)2

2
√
uv(u + v)3

= κ(u, v)

(

κ(u, v)2 − (u − v)2

(u + v)2

)

= κ(u, v)
(
κ(u, v)2 − 4 tanh2(dκ(u, v)/2)

)

so
∣
∣κ(11)

∣
∣ � |κ|3 + 4 |κ|.

(iv)
κ(20)(u, v) = 4u2∂2uκ(u, v) = −4 (uv)1/2

(
(u + v)2 + 4u(v − u)

)

2(u + v)3

= −κ(u, v)

(

1+ 4u(v − u)

(u + v)2

)

so
∣
∣κ(20)

∣
∣ � 5 |κ|. Also,

−κ(20) � κ(u, v) (1− 4 tanh(dκ(u, v)/2))

(v) κ(12)(u, v) = 2u(2v)2∂u∂
2
v κ(u, v)

= κ(u, v)

(

1+ 2v(5u2 − 18uv + (v)2)

(u + v)3

)

so
∣
∣κ(12)

∣
∣ � 49 |κ|.

��E.2 Kernel Bounds

Theorem 5 (Kernel bounds) The following hold:

1. 1− 1
8d(x, x

′)2 �
∣
∣K (x, x ′)

∣
∣ � min

{
2de− 1

2d(x,x
′), 8

8+d(x,x ′)2
}
.

2.
∥
∥K (10)(x, x ′)

∥
∥ � min{2√d |K | ,√2}.

3.
∥
∥K (11)

∥
∥ � min{9d |K | , 8}
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4.
∥
∥K (20)

∥
∥ � min{9d |K | , 8} and λmin(−K (20)) �

(
1− 5d(x, x ′)2

)
K when

d(x, x ′) � 1.
5.

∥
∥K (12)

∥
∥ � min{66 |K | d3/2, 16√d+49} and ∥∥K (12)(x, x ′)

∥
∥ � 34 if d(x, x ′) � 1.

In particular, for d(x, x ′) � 2d log(2)+ 2 log
(
52d3/2smax

h

)
, we have

∥
∥K (i j)(x, x ′)

∥
∥ �

h
smax

.

Proof Let d�
def.= dκ(x� + α�, x ′� + α�) and note that dg(x, x ′) =

√∑
� d

2
� . Define

g =
(
2 tanh( d�2 )

)d

�=1
. We first prove that

(i)
∣
∣K (x, x ′)

∣
∣ �

∏d
�=1 sech(d�/2) �

∏d
�=1

1
1+d2�/8

� 1
1+ 1

8d(x,x
′)2 .

(ii)
∥
∥K (10)(x, x ′)

∥
∥ � ‖g‖2 |K |.

(iii)
∥
∥K (11)

∥
∥ � |K | (‖g‖22 + 5

)

(iv)
∥
∥K (20)

∥
∥ � |K | (‖g‖22 + 5

)
and λmin

(−K (20)
)

� K
(
1− 5 ‖g‖22

)
.

(v)
∥
∥K (12)

∥
∥ � |K | (‖g‖32 + 16 ‖g‖2 + 49

)

The result would then follow because |tanh(x)| � min{x, 1}, so ‖g‖ �
min{d(x, x ′), 2√d}. For example,

∥
∥K (12)

∥
∥

� 1
1+ 1

8d(x,x
′)2

(
d(x, x ′)3 + 16d(x, x ′) + 24

)
� 8d(x, x ′) +

√
8
2 + 24 � 34 when

d(x, x ′) � 1.
In the following, we write

κ
(i j)
�

def.= κ(i j)(x� + α�, x
′
� + α�)

and κ�
def.= κ

(00)
� and Ki

def.= ∏
j �=i κ j . Moreover, we will make use of the inequalities

for κ(i j) derived in Lemma 22.

(i) Note that sech(x) � 2e−x and sech(x) � (1+ x2/2)−1. So,

∣
∣K (x, x ′)

∣
∣ �

d∏

�=1

sech

(
d�
2

)

�
d∏

�=1

(

1+ d2�
2

)−1

� 1

1+ d(x, x ′)2
.

Also, since sech(x) � 1 − x2
2 , we also have K (x, x ′) �

∏d
�=1

(
1− 1

8d
2
�

)
�

1− 1
8d(x, x

′)2.

(ii) Note that
∥
∥K (10)(x, x ′)

∥
∥ =

∥
∥
∥
∥

(
κ
(10)
� K�

)d

�=1

∥
∥
∥
∥ , so by Lemma 22 (ii),

∥
∥
∥K (10)(x, x ′)

∥
∥
∥ � ‖g‖2 |K | .

(iii) For i �= j

∣
∣
∣κ(10)

i κ
(01)
j Ki j

∣
∣
∣ � 4 tanh

(
di
2

)

tanh

(
d j

2

)

|K | ,
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and
∣
∣
∣κ(11)

i Ki

∣
∣
∣ � 5 |K |. So, given p ∈ R

d of unit norm,

∥
∥
∥K (11)

∥
∥
∥ = sup

‖p‖=1

d∑

i=1

∑

j �=i

κ
(10)
i κ

(01)
j Ki j pi p j +

d∑

i=1

p2i κ
(11)
i Ki

� sup
‖p‖=1

|K |
⎛

⎝
d∑

i=1

∑

j �=i

4 tanh(di/2) tanh(d j/2)pi p j + 5
d∑

i=1

p2i

⎞

⎠

� |K |
(
‖g‖22 + 5

)
.

(iv) Note that

∥
∥
∥K (20)

∥
∥
∥ = sup

‖p‖=1

∣
∣
∣
∣
∣
∣

d∑

i=1

∑

j �=i

κ
(10)
i κ

(10)
j Ki j pi p j +

d∑

i=1

p2i κ
(20)
i Ki +

d∑

i=1

κ
(10)
i Ki p

2
i

∣
∣
∣
∣
∣
∣
.

Observe that
∣
∣
∣κ(20)

i Ki

∣
∣
∣ � 5 |K | and −κ

(20)
i Ki � K

(
1− 4 tanh

(
di
2

))
.

∥
∥
∥K (20)

∥
∥
∥ � sup

‖p‖�1

∣
∣
∣
∣
∣
∣

d∑

i=1

∑

j �=i

κ
(10)
i κ

(10)
j Ki j pi p j +

d∑

i=1

p2i κ
(20)
i Ki

∣
∣
∣
∣
∣
∣
+ ‖g‖2 |K |

� |K | sup
‖p‖�1

⎛

⎝
d∑

i=1

∑

j �=i

4 tanh(di/2) tanh(d j/2)pi p j + 5
d∑

i=1

p2i

⎞

⎠+ ‖g‖2 |K |

� |K |
(
2 ‖g‖22 + 5

)
,

and given any p with ‖p‖x = 1,

〈−K (20) p, p〉 � K
(
1− 4 ‖g‖∞

)

(v) Note that
∥
∥K 12

∥
∥
x,x ′ = ‖A‖, where A = (Ai j�)

d
i, j,�=1 is defined as follows: For

i, j, � all distinct,

Ai j� = κ
(10)
i κ

(01)
j κ

(01)
� Ki j� � 8 tanh

(
di
2

)

tanh

(
d j

2

)

tanh

(
d�
2

)

K ,

for all i, � distinct,

Aii� = 8κ(11)
i κ

(01)
� Ki� � 10 tanh

(
d�
2

)

K ,

Ai�i = κ
(11)
i κ

(01)
� Ki j � 10 tanh

(
d j

2

)

K ,
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and for i �= j , Ai j j = κ
(10)
i κ

(02)
j Ki j � 12 tanh

(
di
2

)
K ,

Ai j j = κ
(10)
i κ

(02)
j Ki j + κ

(10)
i κ

(01)
j Ki j � 10 tanh

(
di
2

)

K + 2 tanh

(
di
2

)

K

and Aiii = (κ
(12)
i + κ

(02)
i )Ki � 54K . So, for p, q ∈ R

d of unit norm,

∑

i

∑

j

∑

�

Ai j� p j p�qi =
∑

i

⎛

⎝
∑

j �=i

∑

�

Ai j� p j p�qi +
∑

�

Aii� pi p�qi

⎞

⎠

=
∑

i

∑

j �=i

⎛

⎝
∑

�/∈{i, j}
Ai j� p j p�qi + Ai ji p j piqi + K (12)

i j j p2j qi

⎞

⎠

+
∑

i

∑

� �=i

Aii� pi p�qi +
∑

i

Aiii p
2
i qi

� |K |
(
‖g‖32 + 16 ‖g‖2 + 49

)
.

��

E.3 Gradient Bounds

Theorem 6 (Stochastic gradient bounds) Assume that the αi ’s are all distinct. Then,

L̄0(ω) � L̄0
def.=
(
1+ R

mini αi

)d
and

P(L j (ω) � t) � Fj (t)
def.=

d∑

i=1

βi exp

(

−αi

(
1

2(R + ‖α‖∞)

(
t

L̄0

)1/ j

−√
d

))

,

j ∈ {1, 2, 3}

and we have that
∑

i Fj (L̄ j ) � δ and L̄2
j

∑
i Fi (L̄i ) + 2

∫ ∞̄
L j

t Fj (t)dt � δ provided
that

L̄ j ∝ L̄0(R + ‖α‖∞) j
(√

d +max
i

1

αi
log

(
dβi L̄0(R + ‖α‖∞)

δαi

)) j

, j ∈ {1, 2, 3}

where βi = ∏
j �=i

α j
α j−αi

. Note that αi ∼ d implies that L̄0 ∼ (1+ R/d)d ∼ eR.

Proof Let Vx
def.= (1− 2(xi + αi )ωi )

d
i=1 ∈ R

d . Then,

‖Vx‖ =
√∑

i

(1− 2(xi + αi )ωi )2
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�
√∑

i

1+ 4(xi + αi )2ω
2
i �

√
d + 4(R + ‖α‖∞)2 ‖w‖2

�
√
d + 2(R + ‖α‖∞) ‖w‖ def.= V̄

We have the following bounds:

|ϕω(x)| �
d∏

i=1

√

1+ xi
αi

�
(

1+ R

mini αi

)d
def.= L̄0

g
− 1

2
x ∇ϕω(x) = ϕω(x)Vx �⇒ ‖D1 [ϕω] (x)‖x � L̄0V̄

and

g
− 1

2
x Hϕω(x)g

− 1
2

x = g
− 1

2
x ∇2ϕω(x)g

− 1
2

x + diag

(

g
− 1

2
x ϕω(x)

)

= ϕω(x)(VxV
�
x − 2Id) + ϕω(x) diag(Vx ).

which yields ‖D2 [ϕω] (x)‖x � L̄0(2+ V̄ 2).
Note that by the mean value theorem,

∣
∣xi − x ′i

∣
∣

� (R + αi )
∣
∣log(xi + αi ) − log(x ′i + αi )

∣
∣ and hence,

‖Vx − Vx ′ ‖2 � 2 ‖ω‖2
∥
∥x − x ′

∥
∥
2 � 2 ‖ω‖2 (R + ‖α‖∞)dg(x, x

′).

Also,
∣
∣ϕω(x) − ϕω(x ′)

∣
∣ � supx ‖D1 [ϕω] (x)‖ dg(x, x ′) � L̄0V̄ dg(x, x ′). Therefore,

∥
∥
∥
∥g

− 1
2

x Hϕω(x)g
− 1

2
x − g

− 1
2

x ′ Hϕω(x
′)g−

1
2

x ′

∥
∥
∥
∥

�
∣
∣ϕω(x) − ϕω(x

′)
∣
∣
(
2+ V̄ + V̄ 2

)
+ ∣
∣ϕω(x

′)
∣
∣ ‖Vx − Vx ′ ‖

+ ∣
∣ϕω(x

′)
∣
∣
∥
∥
∥VxV

�
x − Vx ′V

�
x ′
∥
∥
∥

� L̄0V̄
(
2+ V̄ + V̄ 2

)
dg(x, x

′) + (L̄0 + 2L̄0V̄ )2 ‖ω‖2 (R + ‖α‖∞)dg(x, x
′)

Define for j = 0, 1, 2, 3

G j (ω)
def.= L̄0

(√
d + 2(R + ‖α‖∞) ‖w‖

) j
,

then, for j = 0, 1, 2, L j (ω)
def.= supx

∥
∥D j [ϕω] (x)

∥
∥
x � G j (ω) and

L3(ω)
def.= sup

x,x ′

∥
∥
∥
∥g

− 1
2

x Hϕω(x)g
− 1

2
x − g

− 1
2

x ′ Hϕω(x ′)g
− 1

2
x ′

∥
∥
∥
∥

dg(x, x ′)
� G3(ω).
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When all α j are distinct, we have [2]:

P(‖ω‖ � t) � P(‖ω‖1 � t) =
d∑

i=1

βi e
−αi t

where βi = ∏
j �=i

α j
α j−αi

, using the fact that ‖ω‖1 is a sum of independent exponential
random variable.

Hence, for all 1 � j � 3 and t � d
j
2 we have

P(L j (ω) � t) � P

(

‖w‖ � 1

2(R + ‖α‖∞)

(
t

L̄0

)1/ j

−√
d

)

� Fj (t)
def.=

d∑

i=1

βi exp

(

−αi

(
1

2(R + ‖α‖∞)

(
t

L̄0

)1/ j

− √
d

))

� δ

and Fj (L̄ j ) � δ if

L̄ j � L̄0

(

2 j (R + ‖α‖∞) j
(√

d +max
i

1

αi
log

(
dβi
δ

)) j
)

Next, we compute

∫ ∞

L̄ j

t Fj (t)dt =
d∑

i=1

βi

∫ ∞

L̄ j

t exp

(

−αi

(
1

2(R + ‖α‖∞)

(
t

L̄0

)1/ j

−√
d

))

dt

= L̄2
0 j

d∑

i=1

eαi
√
dβi

∫ ∞

(L̄ j /L̄0)1/ j
exp

( −αi u

2(R + ‖α‖∞)

)

u2 j−1du

�
(
(2 j − 1)4(R + ‖α‖∞)

eαi

)2 j−1

L̄2
0 j

d∑

i=1

eαi
√
dβi

∫ ∞

(L̄ j /L̄0)1/ j

exp

( −αi u

4(R + ‖α‖∞)

)

du

�
(
4(R + ‖α‖∞)

αi

)2 j (2 j − 1

e

)2 j−1

L̄2
0 j

d∑

i=1

eαi
√
dβi

exp

(
−αi (L̄ j/L̄0)

1/ j

4(R + ‖α‖∞)

)

.

This is bounded from above by δ if for all i = 1, . . . , d,
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4(R + ‖α‖∞)

αi

(

2 j log

(
4(2 j − 1)(R + ‖α‖∞)

eαi

)

+ log(L̄2
0 j) + αi

√
d + log

(
dβi
δ

))

�
(
L̄ j

L̄0

)1/ j

, that is,

L̄ j � L̄0

(

2 j (R + ‖α‖∞) j
(√

d +max
i

1

αi
log

(
dβi
δ

)) j
)

.

It remains to bound L̄ j F�(L̄�) with �, j ∈ {0, 1, 2, 3}: Let L̄� � L̄0M� for some M
to be determined. Then,

L̄ j F�(L̄�) � L̄0M
j

d∑

i=1

βi exp

( −αi

2(R + ‖α‖∞)
M + αi

√
d

)

= L̄0

d∑

i=1

βi M
j exp

( −αi

4(R + ‖α‖∞)
M

)

exp

( −αi

4(R + ‖α‖∞)
M

)

eαi
√
d

� L̄0e
− j

d∑

i=1

(
4 j(R + ‖α‖∞)

αi

) j

βi exp

( −αi

4(R + ‖α‖∞)
M

)

eαi
√
d

� L̄0e
−3

d∑

i=1

(
12(R + ‖α‖∞)

αi

)3

βi exp

( −αi

4(R + ‖α‖∞)
M

)

eαi
√
d � δ

if for each i = 1, . . . , d

M � 4(R + ‖α‖∞)

(√
d +max

i

1

αi
log

(
L̄0dβi
δe3

(
12(R + ‖α‖∞)

αi

)3
))

.

Therefore, the conclusion follows for L̄0 =
(
1+ R

mini αi

)d
, and for j = 1, 2, 3,

L̄ j ∝ L̄0(R + ‖α‖∞) j
(√

d +max
i

1

αi
log

(
dβi L̄0(R + ‖α‖∞)

δαi

)) j

.

��
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13. Campbell, L.L.: An extended čencov characterization of the information metric. Proceedings of the

American Mathematical Society 98(1), 135–141 (1986)
14. Candès, E.J., Fernandez-Granda, C.: Super-resolution from noisy data. Journal of Fourier Analysis

and Applications 19(6), 1229–1254 (2013). https://doi.org/10.1007/s00041-013-9292-3
15. Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Communi-

cations on Pure and Applied Mathematics 67(6), 906–956 (2014). https://doi.org/10.1002/cpa.21455
16. Candes, E.J., Plan, Y.: A probabilistic and RIPless theory of compressed sensing. IEEE Transactions

on Information Theory 57(11), 7235–7254 (2011)
17. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from

highly incomplete frequency information. IEEE Transactions on information theory 52(2), 489–509
(2006)

18. Cencov, N.N.: Statistical decision rules and optimal inference. 53. AmericanMathematical Soc. (1982)
19. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM review

43(1), 129–159 (2001)
20. Chizat, L., Bach, F.:On the global convergence of gradient descent for over-parameterizedmodels using

optimal transport. In: Advances in neural information processing systems, pp. 3036–3046 (2018)
21. Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.X.: Unbalanced optimal transport: Dynamic and kan-

torovich formulations. Journal of Functional Analysis 274(11), 3090–3123 (2018)
22. Cormode, G., Garofalakis, M., Haas, P.J., Jermaine, C.: Synopses for Massive Data: Samples, His-

tograms, Wavelets, Sketches. Foundations and Trends in Databases 4, 1–294 (2011). https://doi.org/
10.1561/1900000004

23. Costa, S.I., Santos, S.A., Strapasson, J.E.: Fisher information distance: a geometrical reading. Discrete
Applied Mathematics 197, 59–69 (2015)

24. Dasgupta, S., Gupta, A.: An Elementary Proof of a Theorem of Johnson and Lindenstrauss. Random
Structures and Algorithms 22(1), 60–65 (2003). https://doi.org/10.1002/rsa.10073

25. De Castro, Y., Gamboa, F.: Exact reconstruction using Beurling minimal extrapolation. Journal of
Mathematical Analysis and applications 395(1), 336–354 (2012)

26. De Castro, Y., Gamboa, F., Henrion, D., Lasserre, J.B.: Exact solutions to super resolution on semi-
algebraic domains in higher dimensions. IEEE Transactions on Information Theory 63(1), 621–630
(2016)

27. Denoyelle, Q., Duval, V., Peyré, G.: Support recovery for sparse super-resolution of positive measures.
Journal of Fourier Analysis and Applications 23(5), 1153–1194 (2017)

28. Denoyelle,Q.,Duval,V., Peyre,G., Soubies, E.: TheSlidingFrank-WolfeAlgorithmand itsApplication
to Super-ResolutionMicroscopy. Inverse Problems (2019). https://doi.org/10.1088/1361-6420/ab2a29

29. Donoho, D.L.: Compressed sensing. IEEE Transactions on information theory 52(4), 1289–1306
(2006)

30. Duval, V., Peyré, G.: Exact support recovery for sparse spikes deconvolution. Foundations of Compu-
tational Mathematics 15(5), 1315–1355 (2015)

31. Duval, V., Peyré, G.: Sparse spikes super-resolution on thin grids I: the LASSO. Inverse Problems
33(5), 055008 (2017). https://doi.org/10.1088/1361-6420/aa5e12

123

https://doi.org/10.1007/s00041-013-9292-3
https://doi.org/10.1002/cpa.21455
https://doi.org/10.1561/1900000004
https://doi.org/10.1561/1900000004
https://doi.org/10.1002/rsa.10073
https://doi.org/10.1088/1361-6420/ab2a29
https://doi.org/10.1088/1361-6420/aa5e12


Foundations of Computational Mathematics (2023) 23:241–327 327

32. Eftekhari, A., Tanner, J., Thompson, A., Toader, B., Tyagi, H.: Sparse non-negative super-resolution-
simplified and stabilised. arXiv preprint arxiv:1804.01490 (2018)

33. Ekanadham, C., Tranchina, D., Simoncelli, E.P.: A unified framework andmethod for automatic neural
spike identification. Journal of neuroscience methods 222, 47–55 (2014)

34. Facchi, P., Kulkarni, R., Man’ko, V.I., Marmo, G., Sudarshan, E.C., Ventriglia, F.: Classical and quan-
tum Fisher information in the geometrical formulation of quantummechanics. Physics Letters, Section
A: General, Atomic and Solid State Physics 374(48), 4801–4803 (2010). https://doi.org/10.1016/j.
physleta.2010.10.005

35. Fernandez-Granda, C.: Support detection in super-resolution. Proc. Proceedings of the 10th Interna-
tional Conference on Sampling Theory and Applications pp. 145–148 (2013)

36. Foucart, S., Rauhut, H.: A mathematical introduction to compressive sensing, vol. 1. Birkhäuser Basel
(2013)

37. Gribonval, R., Blanchard,G.,Keriven,N., Traonmilin,Y.: Compressive statistical learningwith random
feature moments. arXiv preprint arxiv:1706.07180 (2017)

38. Griffiths, D.: Introduction to Quantum Mechanics. Pearson Education, Inc. (2004). https://doi.org/10.
1063/1.2958160

39. Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions on
Information Theory 57(3), 1548–1566 (2011)

40. Kunis, S., Peter, T., Römer, T., von der Ohe, U.: A multivariate generalization of Prony’s method.
Linear Algebra and its Applications 490, 31–47 (2016)

41. Liao,W., Fannjiang, A.:MUSIC for single-snapshot spectral estimation: Stability and super-resolution.
Applied and Computational Harmonic Analysis 40(1), 33–67 (2016)

42. Liero,M.,Mielke,A., Savaré,G.:Optimal entropy-transport problems and a newhellinger–kantorovich
distance between positive measures. Inventiones mathematicae 211(3), 969–1117 (2018)

43. Minsker, S.: On some extensions of bernstein’s inequality for self-adjoint operators. Statistics & Prob-
ability Letters 127, 111–119 (2017)

44. Poon, C., Keriven, N., Peyré, G.: Support localization and the fisher metric for off-the-grid sparse
regularization. In: Proc. AISTATS’19 (2019). arxiv:1810.03340

45. Poon, C., Peyré, G.: Multi-dimensional sparse super-resolution. SIAM Journal on Mathematical Anal-
ysis 51(1), 1–44 (2019). https://doi.org/10.1137/17M1147822

46. Prony, G.: Essai expérimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles
de la force expansive de la vapeur de l’alkool, à différentes températures. J. de l’Ecole Polytechnique
1(22), 24–76 (1795)

47. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. Bull.
Calcutta Math. Soc. 37, 81–91 (1945)

48. Roy, R., Kailath, T.: ESPRIT-estimation of signal parameters via rotational invariance techniques.
IEEE Transactions on acoustics, speech, and signal processing 37(7), 984–995 (1989)

49. Santambrogio, F.: Optimal transport for applied mathematicians. Birkäuser, NY 55, 58–63 (2015)
50. Sauer, T.: Prony’s method in several variables. Numerische Mathematik 136(2), 411–438 (2017)
51. Schiebinger, G., Robeva, E., Recht, B.: Superresolution without separation. Information and Inference:

A Journal of the IMA 7(1), 1–30 (2018)
52. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE transactions on antennas

and propagation 34(3), 276–280 (1986)
53. Soubies, E., Blanc-Féraud, L., Aubert, G.: A continuous exact �0 penalty (CEL0) for least squares

regularized problem. SIAM Journal on Imaging Sciences 8(3), 1607–1639 (2015)
54. Tang, G., Bhaskar, B.N., Recht, B.: Sparse recovery over continuous dictionaries-just discretize. In:

2013 Asilomar Conference on Signals, Systems and Computers, pp. 1043–1047. IEEE (2013)
55. Tang, G., Bhaskar, B.N., Shah, P., Recht, B.: Compressed sensing off the grid. IEEE transactions on

information theory 59(11), 7465–7490 (2013)
56. Tibshirani, R.: Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical

Society. Series B (Methodological) pp. 267–288 (1996)
57. Tropp, J.A.: Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Infor-

mation theory 50(10), 2231–2242 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://arxiv.org/abs/1804.01490
https://doi.org/10.1016/j.physleta.2010.10.005
https://doi.org/10.1016/j.physleta.2010.10.005
https://arxiv.org/abs/1706.07180
https://doi.org/10.1063/1.2958160
https://doi.org/10.1063/1.2958160
https://arxiv.org/abs/1810.03340
https://doi.org/10.1137/17M1147822

	The Geometry of Off-the-Grid Compressed Sensing
	Abstract
	1 Introduction
	1.1 Sparse Spikes Recovery Using the BLASSO
	1.1.1 Observation Model
	1.1.2 BLASSO

	1.2 Previous Works
	1.2.1 Numerical Solvers and Alternative Approaches
	1.2.2 Other Approaches

	1.3 Contributions
	1.3.1 Outline of the Paper
	1.3.2 Relationship to Our Previous Work
	1.3.3 Notations

	2 Examples
	2.1 Off-the-Grid Compressed Sensing
	2.2 Continuous Sampling Fourier Transform
	2.3 Learning of Gaussian Mixtures with Fixed Covariances
	2.4 Gaussian Mixtures with Varying Covariances
	2.5 Sampling the Laplace Transform
	3 Stability and the Fisher Information Metric
	3.1 Fisher and Optimal Transport Distances
	3.1.1 The Covariance Kernel and the Fubini–Study Metric
	3.1.2 Optimal Transport Metric

	3.2 Non-degenerate Certificates, Uniqueness and Stability for Sparse Measures
	3.2.1 Dual Certificates
	3.2.2 Stable Recovery Bounds

	4 Non-degenerate Limit Certificates
	4.1 Notions of Differential Geometry
	4.1.1 Riemannian Gradient and Hessian
	4.1.2 Covariant Derivatives of the Kernel

	4.2 Non-Degenerate Dual Certificate with m toinfty
	4.2.1 Dependency on
	4.2.2 Babel Function

	4.3 Proof of Theorem 2
	5 Sparse Recovery
	5.1 Almost Bounded Random Features
	5.2 Main Result
	6 Proof of Theorem 3
	6.1 Outline of the Proof
	6.2 Preliminaries
	6.3 Step 1: Construction of an Approximate Certificate with the Golfing Scheme
	6.3.1 Parameters and Intermediate Assumptions
	6.3.2 Probability of Successful Construction

	6.4 Step 2: Correcting the Approximate Certificate
	6.5 Step 3: Bounding the Norm "026B30D  p "026B30D 
	6.6 Step 4: Non-degeneracy on the Entire Domain
	6.7 Step 5: Additional Certificates

	7 Conclusion and Outlooks
	Acknowledgements

	A Preliminaries
	A.1 Linear Algebra Tools
	A.2 Proof of Lemma 3
	A.3 Proof of Lemma 4
	B Concentration Bounds
	B.1 Elementary Concentration Inequalities
	B.2 Deviation Between fbarE and 
	B.3 Deviation Between D2[fbarE] and D2[]
	B.4 Deviation Between ΥbarE and 
	B.5 Proof of Proposition 3
	C Application: Discrete Fourier Sampling
	C.1 Preliminaries: Properties of the Univariate Kernel
	C.2 Notation
	C.3 Bounds When "026B30D  t "026B30D  is Small
	C.4 Bounds When "026B30D  t "026B30D  is Large

	C.5 Uniform Bounds

	C.6 Gradient Bounds
	D Application: Continuous Fourier Sampling with the Gaussian Kernel
	D.1 Properties of the Kernel
	D.2 Bounds When "026B30D  t "026B30D  is Small
	D.3 Bounds When "026B30D  t "026B30D  is Large
	D.4 Uniform Bounds

	D.5 Gradient Bounds
	D.5.1 Gaussian Mixture Model Learning


	E Application: Sampling the Laplace Transform
	E.1 Preliminaries: Properties of the Univariate Kernel
	E.2 Kernel Bounds
	E.3 Gradient Bounds
	References
















