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Abstract
We initiate a study of the Euclidean distance degree in the context of sparse polyno-
mials. Specifically, we consider a hypersurface f = 0 defined by a polynomial f that
is general given its support, such that the support contains the origin. We show that
the Euclidean distance degree of f = 0 equals the mixed volume of the Newton poly-
topes of the associated Lagrange multiplier equations. We discuss the implication of
our result for computational complexity and give a formula for the Euclidean distance
degree when the Newton polytope is a rectangular parallelepiped.
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1 Introduction

Let X ⊂ R
n be a real algebraic variety. For a point u ∈ R

n
� X , consider the following

problem:

compute the critical points of dX : X → R, x �→ ‖u − x‖, (1)

where ‖u − x‖ = √
(u − x)T (u − x) is the Euclidean distance on R

n .
Seidenberg [26] observed that if X is nonempty, then it contains a solution to (1).

He used this observation in an algorithm for deciding if X is empty. Hauenstein
[14] pointed out that solving (1) provides a point on each connected component of
X . So the solutions to (1) are also useful in learning the number and position of
the connected components of the variety. From the point of view of optimization,
problem (1) is a relaxation of the optimization problem of finding a point x ∈ X that
minimizes the Euclidean distance to u. A prominent example of this is low-rankmatrix
approximation, which can be solved by computing the singular value decomposition.
In general, computing the critical points of the Euclidean distance between X and u
is a difficult task in nonlinear algebra.

We consider problem (1) when X ⊂ R
n is a real algebraic hypersurface in R

n

defined by a single real polynomial,

X = VR( f ) := {x ∈ R
n | f (x) = 0}, where f (x) = f (x1, . . . , xn) ∈ R[x1, . . . , xn].

The critical points of the distance function dX from (1) are called ED-critical points.
They can be found by solving the associated Lagrange multiplier equations. This is a
system of polynomial equations defined as follows.

Let us write ∂i for the operator of partial differentiation with respect to the variable
xi , so that ∂i f := ∂ f

∂xi
, and also write ∇ f (x) = (∂1 f (x), . . . , ∂n f (x)) for the vector

of partial derivatives of f (its gradient). The Lagrange multiplier equations are the
following system of n+1 polynomial equations in the n+1 variables (λ, x1, . . . , xn).

L f ,u(λ, x) :=
[

f (x)

∇ f (x) − λ(u − x)

]
= 0 , (2)

where λ is an auxiliary variable (the Lagrange multiplier).
We consider the number of complex solutions to L f ,u(λ, x) = 0. For general u,

this number is called the Euclidean distance degree (EDD) [9] of the hypersurface
f = 0:

EDD( f ) := number of solutions to L f ,u(λ, x) = 0 in C
n+1 for general u. (3)

Here, “general” means for all u in the complement of a proper algebraic subvariety of
R

n . In the following, when referring to EDD( f ) we will simply speak of the EDD of
f .
Figure 1 shows the solutions to L f ,u(λ, x) = 0 for a biquadratic polynomial f .
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Fig. 1 The curve X =
VR(x21 x22 −3x21 −3x22 +5) ⊂ R

2

is in blue and u = (0.025, 0.2) is
in green. The 12 red points are
the critical points of the distance
function dX ; that is, they are the
x-values of the solutions to
L f ,u(λ, x) = 0. In this
example, the Euclidean distance
degree of X is 12, so all complex
solutions are in fact real (Color
figure online)

Determining the Euclidean distance degree is of interest in applied algebraic geom-
etry, but also in related areas, because, as we will discuss in Sect. 3, our results on the
EDD of f have implications for the computational complexity of solving problem (1).

There is a subtle point about EDD( f ). The definition in (3) does not need us to
assume that VR( f ) is a hypersurface in R

n . In fact, VR( f ) can even be empty. Rather,
EDD( f ) is a property of the complex hypersurface XC := VC( f ). We will therefore
drop the assumption ofVR( f ) being a real hypersurface in the following.Nevertheless,
the reader should keep in mind that for the applications discussed at the beginning of
this paper the assumption is needed. We will come back to those applications only in
Sects. 3.2 and 3.3.

In the foundational paper [9], the Euclidean distance degree of f was related to the
polar classes of XC, and there are other formulas involving characteristic classes [1] or
Euler characteristic [23] of XC. In this paper, we give a new formula for the Euclidean
distance degree EDD( f ).

Our main result is Theorem 1 in the next section. We show that, if f is sufficiently
general given its support A with 0 ∈ A, then EDD( f ) is equal to the mixed volume
of the Newton polytopes of L f ,u(λ, x). This opens new paths to compute Euclidean
distance degree using tools from convex geometry. We demonstrate this in Sect. 6 and
compute the EDD of a general hypersurface whose Newton polytope is a rectangular
parallelepiped.We think it is an interesting problem to relate ourmixedvolume formula
to other formulas involving topological invariants.

Our proof strategy relies on Bernstein’s Other Theorem (Proposition 1). This result
gives an effective method for proving that the number of solutions to a system of
polynomial equations can be expressed as a mixed volume. We hope our work sparks
a new line of research that exploits this approach in other applications, not just EDD.

2 Statement of Main Results

We give a new formula for the Euclidean distance degree that takes into account the
monomials in f . In Sect. 6 we work this out in the special case when this Newton
polytope is a rectangular parallelepiped.

Before stating our main results, we have to introduce notation: A vector a =
(a1, . . . , an) of nonnegative integers is the exponent of a monomial xa := xa1

1 · · · xan
n ,
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and a polynomial f ∈ C[x1, . . . , xn] is a linear combination of monomials. The set
A of exponents of monomials that appear in f is its support. The Newton polytope
of f is the convex hull of its support. Given polytopes Q1, . . . , Qm in R

m , we write
MV(Q1, . . . , Qm) for their mixed volume. This was defined by Minkowski; its defi-
nition and properties are explained in [12, Sect. IV.3], and we revisit them in Sect. 6.
Our main result expresses the EDD( f ) in terms of mixed volume.

We denote by P, P1, . . . , Pn the Newton polytopes of the Lagrange multiplier
equations L f ,u(λ, x) from (2). That is, P is the Newton polytope of f , and Pi is the
Newton polytope of ∂i f − λ(ui − xi ). Observe that P, P1, . . . , Pn are polytopes in
R

n+1, because L f ,u(λ, x) has n + 1 variables λ, x1, . . . , xn .
We state our first main result. The proof is given in Sect. 4.

Theorem 1 If f is a polynomial whose support A contains 0, then

EDD( f ) ≤ MV(P, P1, . . . , Pn) ,

where P is the Newton polytope of f and Pi is the Newton polytope of ∂i f −λ(ui −xi )

for 1 ≤ i ≤ n. There is a dense open subset U of polynomials with support A such
that when f ∈ U this inequality is an equality and for u ∈ C

n general, all solutions
to L f ,u occur without multiplicity.

The important point of this theorem is that polynomial systems of the form L f ,u

form a proper subvariety of the set of all polynomial systems with the same support—
its dimension is approximately 1

n th of the dimension of the ambient space. We also
remark that the assumption 0 ∈ A is essential to our proof, and it ensures that V( f )

is smooth at 0.
In the following, we refer to polynomials f ∈ U as general given the support A.
Since P, P1, . . . , Pn are the Newton polytopes of the entries in L f ,u , Bernstein’s

theorem [4] implies the inequality in Theorem 1 (commonly known as theBKK bound;
see also [10]). Our proof of Theorem 1 appeals to a theorem of Bernstein which gives
conditions that imply equality in the BKK bound. These conditions require the facial
systems to be empty.

Our next main result is an application of Theorem 1. We compute EDD( f ) when
the Newton polytope of f is the rectangular parallelepiped

B(a) := [0, a1] × · · · × [0, an], (4)

where a := (a1, . . . , an) is a list of positive integers. For each 1 ≤ k ≤ n, let

ek(a) :=
∑

1≤i1<···<ik≤n

ai1 · · · aik

be the k-th elementary symmetric polynomial in n variables evaluated at a. The next
theorem is our second main result.
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Theorem 2 Let a = (a1, . . . , an). If f ∈ R[x1, . . . , xn] has Newton polytope B(a),
then

EDD( f ) ≤
n∑

k=1

k! ek(a) .

There is a dense open subset U of the space of polynomials with Newton polytope
B(a) such that for f ∈ U, this inequality is an equality.

There is a conceptual change when passing from Theorem 1 to Theorem 2. The-
orem 1 is formulated in terms of the support of f , whereas Theorem 2 concerns its
Newton polytope. This is because the equality in Theorem 2 needs the Newton poly-
tope of the partial derivative ∂i f to be B(a1, . . . , ai−1, . . . , an) for each 1 ≤ i ≤ n.

When n = 2, a polynomial f with Newton polytope the 2 × 2 square B(2, 2) is
a biquadratic, and the bound of Theorem 2 becomes 2! · 2 · 2 + 1! · (2 + 2) = 12 ,
which was the number of critical points found for the biquadratic curve in Fig. 1.

Remark 1 Observe that for 1 ≤ i1 < · · · < ik ≤ n, if we project B(a) onto
the coordinate subspace indexed by i1, . . . , ik , we obtain B(ai1 , . . . , aik ). Thus,
the product ai1 · · · aik is the k-dimensional Euclidean volume of this projection
and k! ai1 · · · aik is the normalized volume of this projection. On the other hand,
ek(a) = ∑

1≤i1<···<ik≤n ai1 · · · aik . This observation implies an appealing interpre-
tation of the formula of Theorem 2: It is the sum of the normalized volumes of all
coordinate projections of the rectangular parallelepiped B(a). 	

Remark 2 [Complete Intersections]ExperimentswithHomotopyContinuation.
jl [7] suggest that a similar formula involving mixed volumes should hold for general
complete intersections. That is, for X = {x ∈ R

n | f1(x) = · · · = fk(x) = 0} such
that dim X = n − k and f1, . . . , fk are general given their Newton polytopes. The
Lagrange multiplier Eq. (2) become f1(x) = · · · = fk(x) = 0 and Jλ− (u − x) = 0,
where λ = (λ1, . . . , λk) is now a vector of variables, and J = (∇ f1, . . . ,∇ fk) is the
n × k Jacobian matrix.

We leave this general case of k > 1 for further research. 	

2.1 Outline

In Sect. 3, we explain implications of Theorem 1 for computational complexity in
the context of using the polyhedral homotopy for solving the Lagrange multiplier
equations L f ,u = 0 for problem (1). In Sect. 4, we explain Bernstein’s conditions and
give a proof of Theorem 1. The proof relies on a lemma asserting that the facial systems
of L f ,u are empty. Section 5 is devoted to proving this lemma. The arguments that are
used in this proof are explained on an example at the end of Sect. 4. We conclude in
Sect. 6 with a proof of Theorem 2.
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3 Implications for Computational Complexity

We discuss the implications of Theorem 1 for the computational complexity of com-
puting critical points of the Euclidean distance (1).

3.1 Polyhedral Homotopy is Optimal for EDD

Polynomial homotopy continuation is an algorithmic framework for numerically
solving polynomial equations which builds upon the following basic idea: Con-
sider the system of m polynomials F(x) = ( f1(x), . . . , fm(x)) = 0 in variables
x = (x1, . . . , xm). The approach to solve F(x) = 0 is to generate another sys-
tem G(x) (the start system) whose zeros are known. Then, F(x) and G(x) are joined
by a homotopy, which is a system H(x, t) of polynomials in m+1 variables with
H(x, 1) = G(x) and H(x, 0) = F(x). Differentiating H(x, t) = 0 with respect to
t leads to an ordinary differential equation called Davidenko equation. The ODE is
solved by standard numerical continuation methods with initial values the zeros of
G(x). This process is usually called path-tracking and continuation. For details, see
[27].

One instance of this framework is the polyhedral homotopy of Huber and Sturm-
fels [16]. It provides a start system G(x) for polynomial homotopy continuation and
a homotopy H(x, t) such that the following holds: Let Q1, . . . , Qm be the New-
ton polytopes of F(x). Then, for all t ∈ (0, 1] the system of polynomials H(x, t)
has MV(Q1, . . . , Qm) isolated zeros (at t = 0 this can fail, because the input
F(x) = H(x, 0)may have fewer than MV(Q1, . . . , Qm) isolated zeroes). Polyhedral
homotopy is implemented in many polynomial homotopy continuation software pack-
ages; for instance in HomotopyContinuation.jl [7], HOM4PS [19], PHCPack
[29].

Theorem 1 implies that the polyhedral homotopy is optimal for computing ED-
critical points in the following sense: If we assume that the continuation of zeroes has
unit cost, then the complexity of solving a system of polynomial equations F(x) = 0
by polynomial homotopy continuation is determined by the number of paths that have
to be tracked. This number is at least as large as the number of solutions to F(x) = 0
that are computed. We say that a homotopy is optimal if the following three properties
hold: (1) the start systemG(x) has asmany zeros as the input F(x); (2) all continuation
paths end in a zero of F(x); and (3) for every zero of F(x), there is a continuation
path which converges to it. In an optimal homotopy, no continuation paths have to be
sorted out. That is, the number of paths which need to be tracked is optimal.

We now have the following consequence of Theorem 1, as L f ,u = 0 has
MV(P, P1, . . . , Pn) isolated solutions.

Corollary 1 If f is general given its support A with 0 ∈ A, polyhedral homotopy is
optimal for solving L f ,u = 0.

Corollary 1 is an instance of a structured problem for which we have an optimal
homotopy available.
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In our definition of optimal homotopy, we ignored the computational complexity of
path-tracking in polyhedral homotopy. We want to emphasize that this is an important
part of contemporary research. We refer to Malajovich’s work [20] [21] [22].

3.2 Computing Real Points on Real Algebraic Sets

Hauenstein [14] observed that solving the Lagrange multiplier equations L f ,u = 0
gives at least one point on each connected component of the real algebraic set X =
VR( f ). Indeed, every real solution to L f ,u = 0 corresponds to a critical point of the
distance function from (1). Every connected component of X contains at least one
such critical point.

Corollary 1 shows that polyhedral homotopy provides an optimal start system for
Hauenstein’s approach. Specifically, Corollary 1 implies that when using polyhedral
homotopy in the algorithm in [14, Sect. 2.1], one does not need to distinguish between
the sets E1 (= continuation paths which converge to a solution to L f ,u = 0) and E
(= continuation paths which diverge). This reduces the complexity of Hauenstein’s
algorithm, who puts his work in the context of complexity in real algebraic geometry
[2], [3], [24], [26].

3.3 Certification of ED-Critical Points

We consider a posteriori certification for polynomial homotopy continuation: Zeros
are certified after andnot during the (inexact) numerical continuation. Implementations
using exact arithmetic [15], [18] or interval arithmetic [6], [18], [25] are available. In
particular, box interval arithmetic in C

n is powerful in combination with our results.
We explain this.

Box interval arithmetic in the complex numbers is arithmeticwith complex intervals
that are of the form {x + √−1y | x1 ≤ x ≤ x2, y1 ≤ y ≤ y2} for x1, x2, y1, y2 ∈ R.
Box interval arithmetic inC

n uses products of such intervals. ByTheorem1, if f is gen-
eral given its support and u ∈ C

n is general, thenL f ,u has exactlyMV(P, P1, . . . , Pn)

solutions. Therefore, if we compute MV(P, P1, . . . , Pn) numerical approximations
to solutions, and then certify that each corresponds to a true zero, and if we can certify
that those true zeros are pairwise distinct, we have provably obtained all zeros ofL f ,u .
Furthermore, if we compute box intervals inC

n+1 which provably contain the zeros of
L f ,u , then we can use those intervals to certify whether a zero is real (see [6][Lemma
4.8]) or whether it is not real (by checking whether the intervals intersect the real line;
this is a property of box intervals).

If it is possible to classify reality for all zeros, we can take a set of intervals
{r1, . . . , rk} of R

n which contain the real critical points of the distance function dX

from (1). The r j are obtained from the coordinate projection (λ, x) �→ x of the inter-
vals containing the real zeros of L f ,u . Setting d j := {dX (s) | s ∈ r j } gives a set of
intervals {d1, . . . , dk} ofR. If there exists di such that di ∩d j = ∅ andmin di < min d j

for all i 
= j , then this is a proof that the minimal value of dX is contained in di and
that the minimizer for dX is contained in ri .
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4 Bernstein’s Theorem

The relation between number of solutions to a polynomial system and mixed volume
is given by Bernstein’s theorem [4].

Let g1, . . . , gm ∈ C[x1, . . . , xm] be m polynomials with Newton polytopes
Q1, . . . , Qm . Let (C×)m be the complex torus of m-tuples of nonzero complex num-
bers and #VC×(g1, . . . , gm) be the number of isolated solutions to g1 = · · · = gm = 0
in (C×)m , counted by their algebraic multiplicities. Bernstein’s theorem [4] asserts
that

#VC×(g1, . . . , gm) ≤ MV(Q1, . . . , Qm) , (5)

and the inequality becomes an equality when each gi is general given its support. The
restriction of the domain to (C×)m is because Bernstein’s theorem concerns Laurent
polynomials, in which the exponents in a monomial are allowed to be negative.

An important special case of Bernstein’s theorem was proven earlier by Kush-
nirenko. Suppose that the polynomials g1, . . . , gm all have the sameNewton polytope.
This means that Q1 = · · · = Qm . We write Q for this single polytope. Then, the
mixed volume in (5) becomes MV(Q1, . . . , Qm) = m!Vol(Q), where Vol(Q) is the
m-dimensional Euclidean volume of Q. Kushnirenko’s theorem [17] states that if
g1, . . . , gm are general polynomials with Newton polytope Q, then

#VC×(g1, . . . , gm) = m!Vol(Q) .

That themixed volume becomes the normalized Euclidean volumewhen the polytopes
are equal is one of three properties which characterize mixed volume, the others being
symmetry and multiadditivity. This is explained in [12][Sect. IV.3] and recalled in
Sect. 6.

Inequality (5) is called the BKK bound [5]. The key step in proving it is what we
call Bernstein’s Other Theorem. This a posteriori gives the condition under which
inequality (5) is strict (equivalently, when it is an equality). We explain that.

Let g ∈ C[x1, . . . , xm] be a polynomial with support A ⊂ Z
m , so that

g =
∑

a∈A
ca xa (ca ∈ C) .

For w ∈ Z
m , define hw(A) to be the minimum value of the linear function x �→ w · x

on the setA and writeAw for the subset ofA on which this minimum occurs. This is
the face of A exposed by w. We write

gw :=
∑

a∈Aw

caza , (6)

for the restriction of g to Aw. For w ∈ Z
m and a system G = (g1, . . . , gm) of m

polynomials, the facial system is Gw := ((g1)w, . . . , (gm)w).
We state Bernstein’s Other Theorem [4][Theorem B].
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Proposition 1 [Bernstein’s Other Theorem] Let G = (g1, . . . , gm) be a system of
Laurent polynomials in variables x1, . . . , xm. For each 1 ≤ i ≤ m, let Ai be the
support of gi and Qi = conv(Ai ) its Newton polytope. Then

#VC×(g1, . . . , gm) < MV(Q1, . . . , Qm)

if and only if there is 0 
= w ∈ Z
m such that the facial system Gw has a solution in

(C×)m. Otherwise, #VC×(g1, . . . , gm) is equal to MV(Q1, . . . , Qm)

While this statement is similar to Bernstein’s formulation, we use its contrapositive,
that the number of solutions equals the mixed volume when no facial system has a
solution. We use Bernstein’s Other Theorem when G = L f ,u and m = n+1. For this,
we must show that for a general polynomial f with supportA ⊂ N

n , all the solutions
to L f ,u = 0 lie in (C×)n+1 and no facial system (L f ,u)w = 0 for 0 
= w ∈ Z

n+1

has a solution in (C×)n+1. The latter is given by the next theorem which is proved in
Sect. 5.

Theorem 3 Suppose that f is general given its supportA, that 0 ∈ A, and that u ∈ C
n

is general. For any nonzero w ∈ Z
n+1, the facial system (L f ,u)w has no solutions

in (C×)n+1.

Using this theorem we can now prove Theorem 1.

Proof (Proof of Theorem 1) Suppose that a polynomial f (x) ∈ C[x1, . . . , xn] is
general given its supportA and that 0 ∈ A. Wemay also suppose that u ∈ C

n
�VC( f )

is general. By Theorem 3, no facial system (L f ,u)w has a solution. By Bernstein’s
OtherTheorem, theLagrangemultiplier equationsL f ,u = 0 haveMV(P, P1, . . . , Pn)

solutions in (C×)n+1. It remains to show that there are no other solutions to the
Lagrange multiplier equations.

For this, we use standard dimension arguments, such as [13][Theorem 11.12], and
freely invoke the generality of f . Consider the incidence variety

S f := {(u, λ, x) ∈ C
n
u × Cλ × C

n
x | L f ,u(λ, x) = 0} ,

which is an affine variety. As f = 0 is an equation in L f ,u = 0, this is a subvariety of
C

n
u × Cλ × XC, where XC is the complex hypersurface XC = VC( f ).
Write π for the projection of S f to XC and let x ∈ XC. The fiber π−1(x) over x is

{(u, λ) ∈ C
n
u × Cλ | ∇ f (x) = λ(u − x)} .

Let (u, λ) ∈ π−1( f ). As f is general, XC is smooth, so that ∇ f (x) 
= 0 and we see
that λ 
= 0 and u 
= x . Thus u = x + 1

λ
∇ f (x). This identifies the fiber π−1(x) with

C
×
λ , proving that S f → XC is a C

×-bundle and thus is irreducible of dimension n.
The projection of S f to C

n
u is dominant, and therefore, Bertini’s theorem implies

that the general fiber is zero-dimensional and smooth. That is, for u ∈ C
n
u general,

L f ,u = 0 has finitely many solutions and each has multiplicity 1.

123



1752 Foundations of Computational Mathematics (2022) 22:1743–1765
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(1, 1, 0)

(0, 0, 0)
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(1, 0, 0)
(2, 0, 0)

P2

Fig. 2 The three Newton polytopes of L f ,u for f = c00 + c10x1 + c01x2 + c11x1x2 + c21x21 x2

Let Z ⊂ XC be the set of points of XC that do not lie in (C×)n and hence lie on some
coordinate plane. As f is irreducible and f (0) 
= 0, we see that Z has dimension n−2,
and its inverse image π−1(Z) in S f has dimension n−1. The image W of π−1(Z)

under the projection to C
n
u consists of those points u ∈ C

n
u which have a solution

(x, λ) to L f ,u(λ, x) = 0 with x /∈ (C×)n . Since W has dimension at most n−1, this
shows that for general u all solutions to L f ,u(λ, x) = 0 lie in (C×)n+1 (we already
showed that λ 
= 0).

This completes the proof of Theorem 1. ��

4.1 Application of Bernstein’s Other Theorem

To illustrate Theorem 3, let us consider two facial systems of the Lagrange multiplier
equations in an example.

Let ∂iA be the support of ∂i f . It depends upon the supportA of f and the index i in
the following way. Let ei := (0, . . . , 0, 1, 0, . . . , 0) be the i th standard basis vector (1
is in position i). To obtain ∂iA fromA ⊂ N

n , first remove all points a ∈ Awith ai = 0,
then shift the remaining points by −ei . The support of ∂i f − λ(ui − xi ) is obtained
by adding e0 and ei + e0 to ∂iA. (As usual, we identify N

n with {0} × N
n ⊂ N

n+1.)
Throughout the paper, we associate to λ the exponent with index 0.

Consider the polynomial in two variables,

f = c00 + c10x1 + c01x2 + c11x1x2 + c21x21 x2 .

Its support is A = {(0, 0), (0, 1), (1, 1), (2, 1), (1, 0)} and its Newton polytope is
P = conv(A), which is a trapezoid. Figure 2 shows the Newton polytope P along
with the Newton polytopes of ∂1 f − λ(u1 − x1) and ∂2 f − λ(u2 − x2). These are
polytopes in R

3; we plot the exponents of the Lagrange multiplier λ in the (third)
vertical direction in Fig. 2.

The faces exposed by w = (0, 1, 0) are shown in red in Fig. 3.
The corresponding facial system is

(L f ,u)w =
⎡

⎣
c00 + c10x1

c10 − λ(u1 − x1)
c01 + c11x1 + c21x21 − λu2

⎤

⎦ .
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(0, 1, 0)
(1, 1, 0)

(0, 0, 0)

(1, 0, 0)
(2, 1, 0)

(0, 0, 1) (1, 0, 1)
(0, 1, 0)

(1, 1, 0)(0, 0, 0)

(0, 0, 1)

(0, 1, 1)

(0, 0, 0)

(1, 0, 0)
(2, 0, 0)

Fig. 3 The faces Aw , (A1)w and (A2)w for w = (0, 1, 0) are shown in red (Color figure online)

(0, 1, 0)
(1, 1, 0)

(0, 0, 0)

(1, 0, 0)
(2, 1, 0)

(0, 0, 1) (1, 0, 1)
(0, 1, 0)

(1, 1, 0)(0, 0, 0)

(0, 0, 1)

(0, 1, 1)

(0, 0, 0)

(1, 0, 0)
(2, 0, 0)

Fig. 4 The faces Aw , (A1)w and (A2)w for w = (0, −1, 1) are shown in red (Color figure online)

Let us solve (L f ,u)w = 0. We solve the first equation for x1 and then substitute that
into the second equation and solve it for λ to obtain

x1 = −c00
c10

and λ = c10
u1 − x1

= c210
c10u1 + c00

.

Substituting these into the third equation and clearing denominators gives the equation

0 = (c10u1 + c00)(c
3
10 − c11c10c00 + c200c21) − c410u2

which does not hold for f , u general. The proof of Theorem 3 is divided into three
cases and one involves such triangular systems, which are independent of some of the
variables.

The faces exposed by w = (0,−1, 1) are shown in red in Fig. 4.
The corresponding facial system is

(L f ,u)w =
⎡

⎣
c01x2 + c11x1x2 + c21x21 x2

c11x2 + 2c21x1x2
c01 + c11x1 + c21x21 − λx2

⎤

⎦ =
⎡

⎣
fw

∂1( fw)

∂2( fw) − λx2

⎤

⎦ .

Observe that hw(A) = −1 and that we have

hw(A) · fw = − fw = w1 · x1 · ∂1( fw) + w2 · x2 · ∂2( fw))

= 0 · x1 · (∂1( fw)) + (−1) · x2 · (∂2( fw)) = x2∂2 f . (7)
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This is an instance of Euler’s formula for quasihomogeneous polynomials (Lemma
2). If (λ, x) is a solution to (L f ,u)w = 0, then the third equation becomes ∂2 f = λx2.
Substituting this into (7) gives 0 = − fw = λx22 , which has no solutions in (C×)3.
One of the cases in the proof of Theorem 3 exploits Euler’s formula in a similar way.

	

5 The Facial Systems of the LagrangeMultiplier Equations are Empty

Before giving a proof of Theorem 3, we present two lemmas to help understand the
support of f and its interaction with derivatives of f and thenmake some observations
about the facial system (L f ,u)w.

Let f ∈ C[x1, . . . , xm] be a polynomial with support A ⊂ N
n , which is the set

of the exponents of monomials of f . We assume that 0 ∈ A. As before we write
∂iA ⊂ N

n for the support of the partial derivative ∂i f . Forw ∈ Z
n , the linear function

x �→ w · x takes minimum values on A and on ∂iA, which we denote by

h∗ = hw(A) := min
a∈A

w · a and h∗
i = hw(∂iA) := min

a∈∂iA
w · a . (8)

(We suppress the dependence on w.) Since 0 ∈ A, we have h∗ ≤ 0. Also, if h∗ = 0
and if there is some a ∈ A with ai > 0, then wi ≥ 0.

Recall that the subsets of A and ∂iA where the linear function x �→ w · x is
minimized are their faces exposed by w,

Aw := {a ∈ A | w · a = h∗} and (∂iA)w := {a ∈ ∂iA | w · a = h∗
i } . (9)

The proof below of Lemma 1 shows that ∂i (Aw) ⊂ (∂iA)w with equality when
∅ 
= ∂i (Aw). As in (6) we denote by fw the restriction of f to Aw, and similarly,
(∂i f )w denotes the restriction of the partial derivative ∂i f to (∂iA)w. The i th partial
derivative of fw is ∂i ( fw) and its support is denoted ∂i (Aw). The proof below of
Lemma 1 shows that ∂i (Aw) ⊆ (∂iA)w with equality when ∅ 
= ∂i (Aw).

Our proof of Theorem 3 uses the following two results.

Lemma 1 For each 1 ≤ i ≤ n and w ∈ Z
n, we have h∗

i ≥ h∗ − wi . If ∂i ( fw) 
= 0,
then ∂i ( fw) = (∂i f )w and h∗

i = h∗ − wi .

Proof Fix 1 ≤ i ≤ n. Let a ∈ ∂iA. Then a + ei ∈ A and so h∗ ≤ w · (a + ei ) =
w·a+wi . Thusw·a ≥ h∗−wi . Taking theminimumover a ∈ ∂iA gives h∗

i ≥ h∗−wi .
Suppose now that ∅ 
= ∂i (Aw). Let a ∈ ∂i (Aw). Then a + ei ∈ Aw and h∗ =

w·(a+ei ) = w·a+wi . But thenh∗−wi = w·a ≥ h∗
i ,which implies that h∗

i = h∗−wi .
It also implies that w · a = h∗

i . SinceAw ⊂ A, we have that a ∈ ∂iA. As w · a = h∗
i ,

we conclude that a ∈ (∂iA)w. This proves the inclusion ∂i (Aw) ⊂ (∂iA)w.
For the other inclusion, suppose that ∂i (Aw) 
= ∅. As we showed, h∗

i = h∗ − wi .
Let a ∈ (∂iA)w. Then w · a = h∗

i and as a ∈ ∂iA, we have a + ei ∈ A. But then
w · (a + ei ) = h∗

i + wi = h∗, so that a + ei ∈ Aw. We conclude that a ∈ ∂i (Aw).
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To complete the proof, observe that ∂i ( fw) 
= 0 is equivalent to ∂i (Aw) 
= ∅, and
that ∂i ( fw) and (∂i f )w are subsums of ∂i f over terms corresponding to ∂i (Aw) and
to (∂iA)w, respectively. ��

The restriction fw of f to the face of A exposed by w is quasihomogeneous with
respect to the weight w, and thus, it satisfies a weighted version of Euler’s formula.

Lemma 2 (Euler’s formula for quasihomogeneous polynomials) For w ∈ Z
n, we

have

h∗ · fw =
n∑

i=1

wi xi∂i ( fw) .

Proof For a monomial xa with a ∈ Z
n and 1 ≤ i ≤ n, we have that xi∂i xa = ai xa .

Thus

n∑

i=1

wi xi∂i xa =
n∑

i=1

wi ai xa = (w · a)xa .

The statement follows because for a ∈ Aw (the support of fw), w · a = h∗. ��
Our proof of Theorem 3 investigates facial systems (L f ,u)w for 0 
= w ∈ Z

n+1

with the aim of showing that for f general given its support A, no facial system has
a solution. Recall from (2) that the Lagrange multiplier equations for the Euclidean
distance problem are

L f ,u(λ, x1, . . . , xn) =

⎡

⎢⎢⎢
⎣

f (x1, . . . , xn)

∂1 f − λ(u1 − x1)
...

∂n f − λ(un − xn)

⎤

⎥⎥⎥
⎦

= 0 .

Fix 0 
= w = (v,w1, . . . , wn) ∈ Z
n+1. The initial coordinate of w is v ∈ Z. It has

index 0 and corresponds to the variable λ.
The first entry of the facial system (L f ,u)w is fw. The shape of the remaining entries

depends on w as follows. Recall from (8) that we have set h∗ := min{w · a | a ∈ A}
and h∗

i := min{w ·a | a ∈ ∂iA}. As v and v+wi are the weights of the monomials λui

and λxi , respectively, there are seven possibilities for each of these remaining entries,

(∂i f − λ(ui − xi ))w =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂i f )w if h∗
i < min{v, v + wi } ,

(∂i f )w − λ(ui − xi ) if h∗
i = v and wi = 0 ,

(∂i f )w − λui if h∗
i = v and wi > 0 ,

(∂i f )w + λxi if h∗
i = v + wi and wi < 0 ,

−λ(ui − xi ) if h∗
i > v and wi = 0 ,

−λui if h∗
i > v and wi > 0 ,

λxi if h∗
i > v + wi and wi < 0 .

(10)

Note that if one of the polynomials fw or (∂i f − λ(ui − xi ))w is a monomial, then
(L f ,u)w has no solutions in (C×)n+1.
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For a subset I ⊂ {1, . . . , n} and a vector u ∈ C
n , let uI := {ui | i ∈ I} be the

components of u indexed by i ∈ I. We similarly write wI for w ∈ Z
n and xI for

variables x ∈ C
n and write C

I for the corresponding subspace of C
n .

We recall Theorem 3, before we give a proof.

Theorem 4 Suppose that f is general given its supportA, that 0 ∈ A, and that u ∈ R
n

is general. For any nonzero w ∈ Z
n+1, the facial system (L f ,u)w has no solutions in

(C×)n+1.

Proof Let 0 
= w = (v,w1, . . . , wn) ∈ Z
n+1. As before, v corresponds to the variable

λ and wi to xi . We argue by cases that depend upon w and A, showing that in each
case, for a general polynomial f with support A, the facial system has no solutions
in (C×)n+1. Note that the last two possibilities in (10) do not occur as they give
monomials. As f has support A, if ∂i ( fw) = 0, then Aw ⊂ {a ∈ N

n | ai = 0}.
We distinguish three cases.

Case 1 (the constant case): Suppose that ∂i fw = 0 for all 1 ≤ i ≤ n. Then fw is
the constant term of f . Since 0 ∈ A, this is nonvanishing for f general and the facial
system (L f ,u)w has no solutions.

For the next two cases, we may assume that there is a partition I �J = {1, . . . , n}
with I nonempty such that ∂i fw 
= 0 for i ∈ I and ∂ j fw = 0 for j ∈ J . By Lemma
1, we have

h∗
i = h∗ − wi for all i ∈ I . (11)

As j ∈ J implies that ∂ j fw = 0, we see that if a ∈ Aw, then aJ = 0. This implies
that fw is a polynomial in only the variables xI , that is, fw ∈ C[xI ].
Case 2 (triangular systems): Suppose that for i ∈ I, wi ≥ 0, that is, wI ≥ 0. We
claim that this implies wI = 0. To see this, let a ∈ Aw. As we observed, aJ = 0. We
have

0 ≥ h∗ = w · a = wI · aI ≥ 0 .

Thus h∗ = wI · aI = 0, which implies that 0 ∈ Aw. Let i ∈ I. Since ∂i fw 
= 0, there
exists some a ∈ Aw with ai > 0. Since wI · aI = 0 for all a ∈ Aw, we conclude that
wi = 0.

Let i ∈ I. By Lemma 1, we have h∗
i = h∗ − wi , so that h∗

i = h∗ = 0, and we also
have (∂i f )w = ∂i fw. As wi = 0, the possibilities from (10) become

(∂i f − λ(ui − xi ))w =

⎧
⎪⎨

⎪⎩

∂i fw if v > 0 ,

∂i fw − λ(ui − xi ) if v = 0 ,

−λ(ui − xi ) if v < 0 .

We consider three subcases of v < 0, v > 0, and v = 0 in turn. Suppose first that
v < 0 and that (λ, x) ∈ (C×)n+1 is a solution to (L f ,u)w. As λ 
= 0 and we have
λ(ui − xi ) = 0 for all i ∈ I, we conclude that xI = uI . Since fw ∈ C[xI ] is a
general polynomial with support Aw and u is general, we do not have fw(uI) = 0.
Thus (L f ,u)w has no solutions when v < 0.
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Suppose next that v > 0. Then, the subsystem of (L f ,u)w = 0 involving fw and
the equations indexed by I is

fw = ∂i ( fw) = 0 , for i ∈ I . (12)

As fw ∈ C[xI ], the system of Eq. (12) implies that the hypersurface V(C×)I ( fw) ⊂
(C×)I is singular. However, since fw is general, this hypersurface must be smooth.
Thus (L f ,u)w has no solutions when v > 0.

The third subcase of v = 0 is more involved. When v = 0, the subsystem of
(L f ,u)w consisting of fw and the equations indexed by I is

fw = ∂i ( fw) − λ(ui − xi ) = 0 for i ∈ I . (13)

As fw ∈ C[xI ] and 0 ∈ Aw, this is the system (L f ,u)w in Cλ × C
I for the critical

points of Euclidean distance from uI ∈ C
I to the hypersurface V

CI ( fw) ⊂ C
I . Thus

(L f ,u)w is triangular; to solve it, we first solve (13) and then consider the equations
in (L f ,u)w indexed by J .

Since ∂ j fw = 0 for j ∈ J , the remaining equations are independent of uI and fw.
We will see that they are also triangular.

Since h∗ = 0, if a ∈ A�Aw, then w · a > 0. Let j ∈ J . We earlier observed that
if a ∈ Aw then a j = 0 and we defined h∗

j to be the minimum min{w · a | a ∈ ∂ jA}.
Since if a ∈ ∂ jA, then a + e j ∈ A, we have that a + e j ∈ A � Aw. We arrive at
w · (a +e j ) > 0, which implies thatw ·a > −w j . Taking the minimum over a ∈ ∂ jA
implies that h∗

j > −w j .
Consider now the members of the facial system (L f ,u)w indexed by j ∈ J . Since

v = 0 and h∗
j > −w j , the second and fourth possibilities for (∂ j f − λ(u j − x j ))w

in (10) do not occur. Recall that the last two possibilities also do not occur. As v = 0,
we have three cases

(
∂ j f − λ(u j − x j )

)
w

=

⎧
⎪⎨

⎪⎩

(∂ j f )w if h∗
j < min{0, w j } ,

(∂ j f )w − λu j if h∗
j = 0 and w j > 0 ,

−λ(u j − x j ) if h∗
j > 0 and w j = 0 .

(14)

If the first case holds for some j ∈ J , then as h∗
j > −w j , we have w j > 0. Since

w j ≥ 0 in the other cases, we have w j ≥ 0 for all j ∈ J . As we showed earlier that
wI = 0, we have w ≥ 0. But then as ∂ jA ⊂ N

n , we have h∗
j ≥ 0 for all j ∈ J .

In particular, the first case in (14)—in which h∗
j < 0—does not occur. Thus the only

possibilities for the j th component of (L f ,u)w are the second or the third cases in (14),
so that wJ ≥ 0.

Let us further partition J according to the vanishing of w j ,

K := {k ∈ J | wk = 0} and M := {m ∈ J | wm > 0} .
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Every component of wM is positive and wI = wK = 0. Moreover, the second entry
in (14) shows that h∗

m = 0 for all m ∈ M. We conclude from this that no variable
in xM occurs in (∂m f )w, for any m ∈ M.

Let us now consider solving (L f ,u)w, using triangularity. Let (λ, xI) be a solution
to subsystem (13) for critical points of the Euclidean distance from uI to V

CI ( fw) in
C
I . We may assume that λ 
= 0 as fw is general. Then the subsystem corresponding

to K gives xk = uk for k ∈ K. Let m ∈ M. Since (∂m f )w only involves xI and xK,
substituting these values into (∂m f )w gives a constant, which cannot be equal to λum

for general um ∈ C. As w 
= 0, we cannot haveM = ∅, so this last case occurs. Thus
(L f ,u)w has no solutions when v = 0.

Case 3 (using the Euler formula): Let us now consider the case where there is some
index i ∈ I with wi < 0 and suppose that the facial system (L f ,u)w has a solution.
Let i ∈ I be such an index with wi < 0. As the facial system has a solution, the
last possibility in (10) for (∂i f − λ(ui − xi ))w does not occur. Thus either first or the
fourth possibility occurs. Hence, h∗

i ≤ wi + v < v, as wi < 0. By (11), we have
h∗ = h∗

i + wi ≤ 2wi + v < v.
For any i ∈ I, we have h∗

i = h∗ − wi < v − wi , by (11). Thus if wi ≥ 0, then
h∗

i < v. As we obtained the same inequality when wi < 0, we conclude that for all
i ∈ I we have h∗

i < v. Thus only the first or the fourth possibility in (10) occurs for
i ∈ I. That is,

(∂i f − λ(ui − xi ))w =
{

∂i fw if h∗ − wi < min{v,wi + v} ,

∂i fw + λxi if h∗ = 2wi + v and wi < 0 .
(15)

These cases further partition I into sets K and M, where

K := {k ∈ I | h∗ − wk < min{v,wk + v}} and

M := {m ∈ I | h∗ = 2wm + v and wm < 0} .

For k ∈ K the corresponding equation in (L f ,u)w = 0 is ∂k fw = 0 and for m ∈ M it
is ∂m fw + λxm = 0. IfM = ∅, thenK = I and the subsystem of (L f ,u)w consisting
of fw and the equations indexed by I is (12), which has no solutions as we already
observed.

Now suppose that M 
= ∅. Define w∗ := min{wi | i ∈ I}. Then w∗ < 0.
Moreover, by (15) we have that if m ∈ M, then wm = 1

2 (h
∗ − v). Thus, wm = w∗

for every m ∈ M. Suppose that (λ, x) is a solution to (L f ,u)w. For k ∈ K, we have
∂k fw(x) = 0 and for m ∈ M, we have that ∂m fw(x) = −λxm . Then by Lemma 2,
we get

0 = h∗ fw(x) =
∑

i∈I
wi xi ∂i ( fw)(x) = −λw∗ ∑

m∈M
x2m .

The last equality uses that I = K � M. Since λ 
= 0 and w∗ 
= 0, we have∑
m∈M x2m = 0. Let Q be this quadratic form. Then the point xI lies on both

hypersurfaces V( fw) and V(Q). Since ∂k fw(xI) = ∂k Q = 0 for k ∈ K and
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2∂m fw(xI) = λ∂m Q for m ∈ M, we see that the two hypersurfaces meet non-
transversely at xI . But this contradicts fw being general. Thus, there are no solutions
to (L f ,u)w = 0 in this last case.

This completes the proof of Theorem 3. ��

6 The Euclidean Distance Degree of a Rectangular Parallelepiped

Let a = (a1, . . . , an) be a vector of nonnegative integers and recall from (4) the
definition of the rectangular parallelepiped:

B(a) = [0, a1] × · · · × [0, an] ⊂ R
n .

We consider the Euclidean distance degree of a general polynomial whose Newton
polytope is B(a), with the goal of proving Theorem 2. We consider polytopes in R

n ,
such as B(a), as polytopes in R

n+1, using the identification of R
n with {0} × R

n ⊂
R

n+1.
Recall that ei := (0, . . . , 1, . . . , 0) is the i th standard unit vector in R

n (the unique
1 is in the i th position). The 0-th unit vector e0 corresponds to the variable λ. Let f
be a general polynomial with Newton polytope B(a). Then the Newton polytope of
the partial derivative ∂i f is B(a1, . . . , ai−1, . . . , an).

For each1 ≤ i ≤ n, let Pi (a)⊂ R
n+1 be the convexhull of B(a1, . . . , ai−1, . . . , an)

and the twopoints e0 and e0+ei . Then Pi (a) is theNewton polytope of ∂i f −λ(ui −xi ).
Consequently, B(a), P1(a), . . . , Pn(a) are theNewton polytopes of theLagrangemul-
tiplier Eq. (2).

Recall that for each 1 ≤ k ≤ n, ek(a) is the elementary symmetric polynomial of
degree k evaluated at a. It is the sum of all square-free monomials in a1, . . . , an . Let
us write

E(a) :=
n∑

k=1

k! ek(a) . (16)

The main result in this section is the following mixed volume computation. It and
Theorem 1 together imply Theorem 2.

Theorem 5 With these definitions, MV(B(a), P1(a), . . . , Pn(a)) = E(a).

Our proof of Theorem 5 occupies Sect. 6.3, and it depends upon lemmas and
definitions collected in Sects. 6.1 and 6.2. One technical lemma from Sect. 6.2 is
proven in Sect. 6.4.

6.1 MixedVolumes

Let m be a positive integer. The Minkowski sum of two polytopes P, Q in R
m is the

sum of all pairs of points, one from each of P and Q,

P + Q := {p + q | p ∈ P and q ∈ Q} .
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Letm be a positive integer. As explained in [12][Sect. IV.3],mixed volume is a nonneg-
ative functionMV(Q1, . . . , Qm) of polytopes Q1, . . . , Qm inR

m that is characterized
by three properties:

Normalization. If Q1 = · · · = Qm = Q, and Vol(Q) is the Euclidean volume of
Q, then

MV(Q1, . . . , Qm) = m!Vol(Q) .

Symmetry. If σ is a permutation of {1, . . . , m}, then

MV(Q1, . . . , Qm) = MV(Qσ(1), . . . , Qσ(m)) .

Multiadditivity. If Q′
1 is another polytope in R

m , then

MV(Q1+Q′
1, Q2, . . . , Qm) = MV(Q1, Q2, . . . , Qm) + MV(Q′

1, Q2, . . . , Qm) .

Mixed volume decomposes as a product when the polytopes possess a certain
triangularity (see [28][Lem. 6] or [11][Thm. 1.10]). We use a special case. For a
positive integer b, write [0, b ei ] for the interval of length b along the i th axis in R

m .
For each 1 ≤ j ≤ m, let π j : R

m → R
m−1 be the projection along the coordinate

direction j .

Lemma 3 Let Q1, . . . , Qm−1 ⊂ R
m be polytopes, b be a positive integer, and 1 ≤

j ≤ m. Then

MV(Q1, . . . , Qm−1, [0, b e j ]) = b MV(π j (Q1), . . . , π j (Qm−1)) .

Proof Weparaphrase the proof in [11],which is bijective and algebraic. Consider a sys-
tem g1, . . . , gm of general polynomialswithNewtonpolytopes Q1, . . ., Qm−1, [0, b e j ],
respectively. As gm is a univariate polynomial of degree b in x j , gm(x j ) = 0 has b
solutions. For each solution x∗

j , if we substitute x j = x∗
j in g1, . . . , gm−1, then we

obtain general polynomials with Newton polytopes π j (Q1), . . . , π j (Qm−1). Thus,
there are MV(π j (Q1), . . . , π j (Qm−1)) solutions to our original system for each of
the b solutions to gm(x j ) = 0. ��

6.2 Pyramids

Let 1 ≤ m ≤ n and a = (a1, . . . , am) be a vector of positive integers. The small
rectangular parallelepiped is B(a) := [0, a1] × · · · × [0, am]. It is the Minkowski
sum of intervals:

B(a) = [0, a1e1] + · · · + [0, akem] .

Its Euclidean volume is a1 · · · am , the product of its side lengths. This is embedded in
R

m+1 as {0} × B(a).
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As before, Pi (a) is the convex hull of B(a1, . . . , ai−1, . . . , am) and e0 + [0, ei ].
Define Pyr(a) to be the pyramid with base the rectangular parallelepiped B(a)

and apex e0, this is the convex hull of B(a) and e0. For each j = 1, . . . , m
we have the projection π j : R

m → R
m−1 along the j th coordinate, so that

π j (a) = (a1, . . . , a j−1 , a j+1, . . . , am). We then have that π j (B(a)) = B(π j (a)).
The following is immediate from the definitions.

Lemma 4 Let a = (a1, . . . , am) and 1 ≤ i, j ≤ m. Then we have

π j (Pi (a)) =
{

Pi (π j (a)) if i 
= j
Pyr(π j (a)) if i = j

.

We now have the following lemma. Recall definition (16) of E(a).

Lemma 5 We have MV(Pyr(a), P1(a), . . . , Pm(a)) = 1 + E(a).

We prove this in Sect. 6.4.

6.3 Proof of Theorem 5

Since B(a) is the Minkowski sum of the intervals [0, aiei ] for 1 ≤ i ≤ n, multiaddi-
tivity and Lemma 3 give

MV(B(a), P1(a), . . . , Pn(a)) =
n∑

j=1

MV([0, a je j ], P1(a), . . . , Pn(a)) (17)

=
n∑

j=1

a j MV(π j (P1(a)), . . . , π j (Pn(a))) .

By Lemma 4, the j th term is

a j MV(P1(π j (a)), . . . , Pj−1(π j (a)) , Pyr(π j (a)) , Pj+1(π j (a)), . . . , Pn(π j (a))) .

Applying symmetry and Lemma 5 with m = n−1, this is a j (1 + E(π j (a))), where
E(•) is defined in (16). Thus, the mixed volume (17) is

e1(a) +
n−1∑

k=1

k!
n∑

j=1

a j ek(π j (a)) = E(a) .

The equality in this formula follows from the identity,

n∑

j=1

a j ek(π j (a)) =
n∑

j=1

a j ek(a1, . . . , a j−1 , a j+1, . . . , an) = (k+1)ek+1(a) .

This finishes the proof of Theorem 5. ��
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6.4 Proof of Lemma 5

We use Bernstein’s theorem to show that a general polynomial system with support
Pyr(a), P1(a), . . . , Pm(a) has 1 + E(a) solutions in the torus (C×)m+1, where a =
(a1, . . . , am) is a vector of positive integers.

A general polynomial with Newton polytope Pyr(a) has the form cλ+ f , where f
has Newton polytope B(a) and c 
= 0. Here, λ is a variable with exponent e0. Dividing
by c, we may assume that the polynomial is monic in λ. Similarly, as Pi (a) is the
convex hull of B(a1, . . . , ai−1, . . . , am) and e0 + [0, ei ], a general polynomial with
support Pi (a)may be assumed to have the form λ�i (xi )+ fi (x), where fi has Newton
polytope B(a1, . . . , ai−1, . . . , am) and �i (xi ) := ci + xi is a linear polynomial in xi

with ci 
= 0.
We may therefore assume that a general system of polynomials with the given

support has the form

λ − f , λ�1(x1) + f1 , . . . , λ�m(xm) + fm , (18)

where f is a general polynomial with Newton polytope B(a) and for each 1 ≤ i ≤ m,
fi is a general polynomial with Newton polytope B(a1, . . . , ai−1, . . . , am). We show
that 1+ E(a) is the number of common zeros in (C×)n+1 of the polynomials in (18).

Using the first polynomial to eliminate λ from the rest shows that solving sys-
tem (18) is equivalent to solving the system

F : f1 + �1(x1) f , . . . , fm + �m(xm) f , (19)

which is in the variables x1, . . . , xm , as z �→ ( f (z), z) is a bijection between the
solutions z to (19) and the solutions to (18).We show that the number of commonzeroes
to (19) is 1 + E(a), when f , f1, . . . , fm are general given their Newton polytopes.

Unlike system (18), the system F is not general given its support. Nevertheless, we
will show that no facial system has any solutions. Then, byBernstein’s Other Theorem,
its number of solutions is the corresponding mixed volume, which we now compute.

Since B(a1, . . . , ai−1, . . . , am) ⊂ B(a), the Newton polytope of fi + �i (xi ) f is
B(a) + [0, ei ]. Thus the mixed volume we seek is

MV(B(a) + [0, e1], . . . , B(a) + [0, em]) =
∑

I⊂{1,...,m}
|I|!

∏

i∈I
ai = 1 + E(a) .

To see this, first observe that the second equality is the definition of E(a). For the first
equality, consider expanding the mixed volume using multilinearity. This will have
summands indexed by subsets I of {1, . . . , m} where in the summand indexed by I,
we choose B(a) in the positions in I and [0, e j ] when j /∈ I. A repeated application
of Lemma 3 shows that this summand is MV(B(aI), . . . , B(aI)), as projecting a
from the coordinates j /∈ I gives aI . This term is |I|!∏i∈I ai , by the normalization
property of mixed volume.
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We now show that no facial system of (19) has any solutions. Since each Newton
polytope is a rectangular parallelepiped B(a) + [0, e j ], its proper faces are exposed
by nonzero vectors w ∈ {−1, 0, 1}m , and each exposes a different face.

Let w ∈ {−1, 0, 1}m and suppose that w 
= 0. We first consider the face of B(a)

exposed by w. This is a rectangular parallelepiped whose i th coordinate is

0 if wi = 1 , [0, ai ] if wi = 0 , and ai if wi = −1 .

In the samemanner as (9), we define B(a)w := {b∗ ∈ B(a) | w·b∗ = minb∈B(a) w·b},
and we similarly define (B(a) + [0, e j ])w for each j = 1, . . . , m. Then,

B(a)w =
∑

i : wi =1

{0} +
∑

i : wi =0

[0, aiei ] +
∑

i : wi =−1

{aiei } , (20)

and we have

(B(a) + [0, e j ])w =

⎧
⎪⎨

⎪⎩

B(a)w, if w j = 1,

B(a)w + [0, e j ], if w j = 0,

B(a)w + e j , if w j = −1.

As � j = c j + x j , we also have

� j (x j )w =

⎧
⎪⎨

⎪⎩

c j , if w j = 1,

� j (x j ), if w j = 0,

x j , if w j = −1.

The Newton polytope of fi has i th coordinate the interval [0, (ai−1)] and for j 
= i
its j th coordinate is the interval [0, a j ]. The Newton polytope of �i · f differs in that
its i th coordinate is the interval [0, (ai+1)]. We get

( fi + �i f )w =
⎧
⎨

⎩

( fi )w + ci · fw if wi = 1
( fi )w + �i · fw if wi = 0

xi · fw if wi = −1
, (21)

and for fi general ( fi )w 
= 0 when wi 
= 1.
Let α be the number of coordinates ofw equal to 0, β be the number of coordinates

equal to 1 and set γ := n − α − β, which is the number of coordinates of w equal to
−1. The faces of (B(a) + [0, e j ])w exposed by w have dimension α, by (20), so the
facial system Fw of (19) is effectively in α variables. Suppose first that γ > 0. Since
on (C×)n each variable xi is nonzero, by (21) the facial system Fw is equivalent to

fw , {( fi )w | wi 
= −1} .

As these are nonzero and general given their support, and there are α + β + 1 > α of
them, we see that Fw has no solutions.
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If γ = 0, then β > 0. Consider the subfamily F̂ of systems of form (19) where
f = 0, but the fi remain general. Then the facial system Fw is equivalent to the system
{( fi )w | wi 
= −1} of α + β > α polynomials which are nonzero and general given
their support, so that F̂w has no solutions.

As the condition that Fw has no solutions is an open condition in the space of
all systems (18), this implies that for a general system (18) with corresponding sys-
tem F (19), no facial system Fw has a solution. This completes the proof of the
lemma. ��
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