
Foundations of Computational Mathematics (2022) 22:1133–1169
https://doi.org/10.1007/s10208-021-09526-8

The Saddle Point Problem of Polynomials

Jiawang Nie1 · Zi Yang1 · Guangming Zhou2

Received: 15 February 2019 / Revised: 27 April 2021 / Accepted: 7 June 2021 / Published online: 9 July 2021
© The Author(s) 2021

Abstract
This paper studies the saddle point problem of polynomials. We give an algorithm for
computing saddle points. It is based on solving Lasserre’s hierarchy of semidefinite
relaxations. Under some genericity assumptions on defining polynomials, we show
that: (i) if there exists a saddle point, our algorithm can get one by solving a finite
hierarchy of Lasserre-type semidefinite relaxations; (ii) if there is no saddle point, our
algorithm can detect its nonexistence.

Keywords Saddle point · Polynomial · Nonsingularity · Lasserre relaxation ·
Semidefinite program

Mathematics Subject Classification 90C22 · 90C47 · 49K35 · 65K05

1 Introduction

Let X ⊆ R
n, Y ⊆ R

m be two sets (for dimensions n, m > 0), and let F(x, y) be a
continuous function in (x, y) ∈ X × Y . A pair (x∗, y∗) ∈ X × Y is said to be a saddle
point of F(x, y) over X × Y if

F(x∗, y) ≤ F(x∗, y∗) ≤ F(x, y∗) ∀ x ∈ X , ∀ y ∈ Y . (1.1)

Communicated by Michael Overton.

B Jiawang Nie
njw@math.ucsd.edu

Zi Yang
ziy109@ucsd.edu

Guangming Zhou
zhougm@xtu.edu.cn

1 Department of Mathematics, University of California San Diego, 9500 Gilman Drive, La Jolla,
CA 92093, USA

2 School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan,
China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-021-09526-8&domain=pdf

1134 Foundations of Computational Mathematics (2022) 22:1133–1169

The above implies that

F(x∗, y∗) = min
x∈X

F(x, y∗) ≤ max
y∈Y

min
x∈X

F(x, y),

F(x∗, y∗) = max
y∈Y

F(x∗, y) ≥ min
x∈X

max
y∈Y

F(x, y).

On the other hand, it always holds that

max
y∈Y

min
x∈X

F(x, y) ≤ min
x∈X

max
y∈Y

F(x, y).

Therefore, if (x∗, y∗) is a saddle point, then

min
x∈X

max
y∈Y

F(x, y) = F(x∗, y∗) = max
y∈Y

min
x∈X

F(x, y). (1.2)

All saddle points share the same objective value, although there may exist different
saddle points. The definition of saddle points in (1.1) requires the inequalities to hold
for all points in the feasible sets X , Y . That is, when y is fixed to y∗, x∗ is a global
minimizer of F(x, y∗) over X ; when x is fixed to x∗, y∗ is a global maximizer of
F(x∗, y) over Y . Certainly, x∗ must also be a local minimizer of F(x, y∗) and y∗
must be a local maximizer of F(x∗, y). So, the local optimality conditions can be
applied at (x∗, y∗). However, they are not sufficient to guarantee that (x∗, y∗) is a
saddle point, since (1.1) needs to be satisfied for all feasible points.

The saddle point problem of polynomials (SPPP) is for cases that F(x, y) is a
polynomial function in (x, y) and X , Y are semialgebraic sets, i.e., they are described
by polynomial equalities and/or inequalities. The SPPP concerns the existence of
saddle points and the computation of them if they exist. When F is convex–concave
in (x, y) and X , Y are nonempty compact convex sets, there exists a saddle point.
We refer to [5, §2.6] for the classical theory for convex–concave-type saddle point
problems. The SPPPs have broad applications. They are of fundamental importance
in duality theory for constrained optimization,min–max optimization and game theory
[5,30,56]. The following are some applications.

– Zero-sum games can be formulated as saddle point problems [1,40,53]. In a zero-
sum game with two players, suppose the first player has the strategy vector x :=
(x1, . . . , xn) and the second player has the strategy vector y := (y1, . . . , ym). The
strategies x, y usually represent probability measures over finite sets, for instance,
x ∈ �n , y ∈ �m . (The notation�n denotes the standard simplex inRn .) A typical
profit function of the first player is

f1(x, y) := xT A1x + yT A2y + xT By,

for matrices A1, A2, B. For the zero-sum game, the profit function f2(x, y) of
the second player is − f1(x, y). Each player wants to maximize the profit, for the
given strategy of the other player. A Nash equilibrium is a point (x∗, y∗) such that
the function f1(x, y∗) in x achieves the maximum value at x∗, while the function

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1135

f2(x∗, y) in y achieves the maximum value at y∗. Since f1(x, y) + f2(x, y) = 0,
the Nash equilibrium (x∗, y∗) is a saddle point of the function F := − f1 over
feasible sets X = �n , Y = �m .

– The image restoration [23] can be formulated as a saddle point problem with the
function

F(x, y) := xT Ay + 1

2
‖Bx − z‖2

and some feasible sets X , Y , for two given matrices A, B and a given vector z.
Here, the notation ‖ · ‖ denotes the Euclidean norm. We refer to [12,19,23] for
related work on this topic.

– The saddle point problem plays an important role in robust optimization [6,21,32,
61]. For instance, a statistical portfolio optimization problem is

min
x∈X

−μT x + xT Qx,

where Q is a covariance matrix, μ is the estimation of some parameters, and X
is the feasible set for the decision variable x . In applications, there often exists a
perturbation for (μ, Q). Suppose the perturbation for (μ, Q) is (δμ, δQ). There
are two types of robust optimization problems

min
x∈X

max
(δμ,δQ)∈Y

−(μ + δμ)T x + xT (Q + δQ)x,

max
(δμ,δQ)∈Y

min
x∈X

−(μ + δμ)T x + xT (Q + δQ)x,

where Y is the feasible set for the perturbation (δμ, δQ). People are interested
in x∗ and (δμ∗, δQ∗) such that the above two robust optimization problems are
solved simultaneously by them. In view of (1.2), this is equivalent to solving a
saddle point problem.

For convex–concave-type saddle point problems, most existing methods are based
on gradients, subgradients, variational inequalities, or other related techniques. For
these classical methods, we refer to the work by Chen et al. [13], Cox et al. [14], He
and Yuan [23], He and Monteiro [24], Korpelevich [29], Maistroskii [38], Monteiro
and Svaiter [39], Nemirovski [42], Nedić and Ozdaglar [41], and Zabotin [60]. For
more general cases of non convex–concave-type saddle point problems (i.e., F is not
convex–concave, and/or one of the sets X , Y is nonconvex), the computational task
for solving SPPPs is much harder. A saddle point may, or may not, exist. There is very
little work for solving non-convex–concave saddle point problems [16,51]. Obviously,
SPPPs can be formulated as a first-order formula over the real field R. By the Tarski–
Seidenberg theorem [2,11], the SPPP is equivalent to a quantifier-free formula. Such
quantifier-free formula can be computed symbolically, e.g., by cylindrical algebraic
decompositions [2,11,28]. Theoretically, the quantifier elimination (QE) method can
solve SPPPs exactly, but it typically has high computational complexity [10,17,54].
Another straightforward approach for solving (1.1) is to compute all its critical points
first and then select saddle points among them. The complexity of computing critical

123

1136 Foundations of Computational Mathematics (2022) 22:1133–1169

points is given in [55]. This approach typically has high computational cost, because
the number of critical points is dramatically high [43] and we need to check the global
optimality relation in (1.1) for getting saddle points. In Sect. 6.3, we will compare the
performance between these methods and the new one given in this paper.

The basic questions for saddle point problems are: If a saddle point exists, how can
we find it? If it does not, how can we detect its nonexistence? This paper discusses
how to solve saddle point problems that are given by polynomials and that are non-
convex–concave. We give a numerical algorithm to solve SPPPs.

1.1 Optimality Conditions

Throughout the paper, a property is said to hold generically in a space if it is true
everywhere except a subset of zero Lebesgue measure. We refer to [22] for the notion
of genericity in algebraic geometry. Assume X , Y are basic closed semialgebraic sets
that are given as

X = {x ∈ R
n | gi (x) = 0 (i ∈ E X

1), gi (x) ≥ 0 (i ∈ E X
2)}, (1.3)

Y = {y ∈ R
m | h j (y) = 0 (i ∈ EY

1), h j (y) ≥ 0 (i ∈ EY
2)}. (1.4)

Here, each gi is a polynomial in x := (x1, . . . , xn) and each h j is a polynomial in
y := (y1, . . . , ym). TheE X

1 , E X
2 , EY

1 , EY
2 are disjoint labeling sets of finite cardinalities.

To distinguish equality and inequality constraints, denote the tuples

geq := (gi)i∈E X
1
, heq := (h j) j∈EY

1
,

gin := (gi)i∈E X
2
, hin := (h j) j∈EY

2
.

(1.5)

When E X
1 = ∅ (resp., E X

2 = ∅), there is no equality (resp., inequality) constraint for
X . The same holds for Y . For convenience, denote the labeling sets

E X := E X
1 ∪ E X

2 , EY := EY
1 ∪ EY

2 .

Suppose (x∗, y∗) is a saddle point. Then, x∗ is a minimizer of

⎧
⎪⎨

⎪⎩

min
x∈Rn

F(x, y∗)
subject to gi (x) = 0 (i ∈ E X

1),

gi (x) ≥ 0 (i ∈ E X
2),

(1.6)

and y∗ is a maximizer of

⎧
⎪⎨

⎪⎩

max
y∈Rm

F(x∗, y)

subject to h j (y) = 0 (j ∈ EY
1),

h j (y) ≥ 0 (j ∈ EY
2).

(1.7)

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1137

Under the linear independence constraint qualification (LICQ), or other kinds of con-
straint qualifications (see [4, §3.3]), there exist Lagrange multipliers λi , μ j such that

∇x F(x∗, y∗) =
∑

i∈E X

λi∇x gi (x∗), 0 ≤ λi ⊥ gi (x∗) ≥ 0 (i ∈ E X
2), (1.8)

∇y F(x∗, y∗) =
∑

j∈EY

μ j∇yh j (y∗), 0 ≥ μ j ⊥ h j (y∗) ≥ 0 (j ∈ EY
2). (1.9)

In the above, a ⊥ b means the product a · b = 0 and ∇x F (resp., ∇y F) denotes the
gradient of F(x, y) with respect to x (resp., y). When g, h are nonsingular (see the
below for the definition), we can get explicit expressions for λi , μ j in terms of x∗, y∗
(see [49]). For convenience, write the labeling sets as

E X = {1, . . . , �1}, EY = {1, . . . , �2}.

Then, the constraining polynomial tuples can be written as

g = (g1, . . . , g�1), h = (h1, . . . , h�2).

The Lagrange multipliers can be written as vectors

λ = (λ1, . . . , λ�1), μ = (μ1, . . . , μ�2).

Denote the matrices

G(x) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∇x g1(x) ∇x g2(x) · · · ∇x g�1(x)

g1(x) 0 · · · 0
0 g2(x) · · · 0
...

...
. . .

...

0 0 · · · g�1(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (1.10)

H(y) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∇yh1(y) ∇yh2(y) · · · ∇yh�2(y)

h1(y) 0 · · · 0
0 h2(y) · · · 0
...

...
. . .

...

0 0 · · · h�2(y)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (1.11)

The tuple g is said to be nonsingular if rankG(x) = �1 for all x ∈ C
n . Similarly, h

is nonsingular if rank H(y) = �2 for all y ∈ C
m . Note that if g is nonsingular, then

LICQ must hold at x∗. Similarly, the LICQ holds at y∗ if h is nonsingular. When g, h
have generic coefficients (i.e., g, h are generic), the tuples g, h are nonsingular. The
nonsingularity is a property that holds generically. We refer to the work [49] for more
details.

123

1138 Foundations of Computational Mathematics (2022) 22:1133–1169

1.2 Contributions

This paper discusses how to solve saddle point problems of polynomials. We assume
that the sets X , Y are given as in (1.3)–(1.4) and the defining polynomial tuples g, h are
nonsingular, i.e., the matrices G(x), H(y) have full column rank everywhere. Then,
as shown in [49], there exist matrix polynomials G1(x), H1(y) such that (I� denotes
the � × � identity matrix)

G1(x)G(x) = I�1 , H1(y)H(y) = I�2 . (1.12)

When g, h have generic coefficients, they are nonsingular. Clearly, the above and
(1.8)–(1.9) imply that

λi = G1(x∗)i,1:n∇x F(x∗, y∗), μ j = H1(y∗) j,1:m∇y F(x∗, y∗).

(For a matrix A, the notation Ai,1:n denotes its i th row with column indices from 1 to
n.) Denote the Lagrange polynomial tuples

λ(x, y) := G1(x):,1:n∇x F(x, y), (1.13)

μ(x, y) := H1(y):,1:m∇y F(x, y). (1.14)

(The notation A:,1:n denotes the submatrix of A consisting of its first n columns.) At
each saddle point (x∗, y∗), the Lagrange multiplier vectors λ,μ in (1.8)–(1.9) can be
expressed as

λ = λ(x∗, y∗), μ = μ(x∗, y∗).

Therefore, (x∗, y∗) is a solution to the polynomial system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

gi (x) = 0 (i ∈ E X
1), h j (y) = 0 (j ∈ EY

1),

∇x F(x, y) = ∑

i∈E X

λi (x, y)∇x gi (x),

∇y F(x, y) = ∑

j∈EY

μ j (x, y)∇yh j (y),

0 ≤ λi (x, y) ⊥ gi (x) ≥ 0 (i ∈ E X
2),

0 ≥ μ j (x, y) ⊥ h j (y) ≥ 0 (j ∈ EY
2).

(1.15)

However, not every solution (x∗, y∗) to (1.15) is a saddle point. This is because x∗
might not be a minimizer of (1.6), and/or y∗ might not be a maximizer of (1.7). How
can we use (1.15) to get a saddle point? What further conditions do saddle points
satisfy? When a saddle point does not exist, what is an appropriate certificate for
the nonexistence? This paper addresses these questions. We give an algorithm for
computing saddle points. First, we compute a candidate saddle point (x∗, y∗). If it
is verified to be a saddle point, then we are done. If it is not, then either x∗ is not a
minimizer of (1.6) or y∗ is not a maximizer of (1.7). For either case, we add a new
valid constraint to exclude such (x∗, y∗), while all true saddle points are not excluded.

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1139

Then,we solve a newoptimization problem, togetherwith the newly added constraints.
Repeating this process, we get an algorithm (i.e., Algorithm 3.1) for solving SPPPs.
When the SPPP is given by generic polynomials, we prove that Algorithm 3.1 is able to
compute a saddle point if it exists, and it can detect nonexistence if there does not exist
one. The candidate saddle points are optimizers of certain polynomial optimization
problems. We also show that these polynomial optimization problems can be solved
exactly by Lasserre’s hierarchy of semidefinite relaxations, under some genericity
conditions on defining polynomials. Since semidefinite programs are usually solved
numerically (e.g., by SeDuMi) in practice, the computed solutions are correct up to
numerical errors.

The paper is organized as follows: Sect. 2 reviews some basics for polynomial
optimization. Section 3 gives an algorithm for solving SPPPs. We prove its finite
convergence when the polynomials are generic. Section 4 discusses how to solve the
optimization problems that arise inSect. 3.Under somegenericity conditions,weprove
that Lasserre-type semidefinite relaxations can solve those optimization problems
exactly. Proofs of some core theorems are given in Sect. 5. Numerical examples are
given in Sect. 6. Conclusions and some discussions are given in Sect. 7.

2 Preliminaries

This section reviews some basics in polynomial optimization. We refer to [9,33,34,
36,37,57] for the books and surveys in this field.

2.1 Notation

The symbol N (resp., R, C) denotes the set of nonnegative integral (resp., real,
complex) numbers. Denote by R[x] := R[x1, . . . , xn] the ring of polynomials in
x := (x1, . . . , xn)with real coefficients. The notationR[x]d stands for the set of poly-
nomials in R[x] with degrees ≤ d. Sometimes, we need to work with polynomials in
y := (y1, . . . , ym) or (x, y) := (x1, . . . , xn, y1, . . . , ym). The notation R[y],R[y]d ,
R[x, y],R[x, y]d is similarly defined. For a polynomial p, deg(p) denotes its total
degree. For t ∈ R, t� denotes the smallest integer ≥ t . For an integer k > 0, denote
[k] := {1, 2, . . . , k}. For α := (α1, . . . , αl) ∈ N

l with an integer l > 0, denote
|α| := α1 + · · · + αl . For an integer d > 0, denote

N
l
d := {α ∈ N

l | |α| ≤ d}.

For z = (z1, . . . , zl) and α = (α1, . . . , αl), denote

zα := zα1
1 · · · zαl

l , [z]d := [
1 z1 · · · zl z21 z1z2 · · · zd

l

]T
.

In particular, we often use the notation [x]d , [y]d or [(x, y)]d . The superscript T

denotes the transpose of a matrix/vector. The notation ei denotes the i th standard unit
vector, while e denotes the vector of all ones. The notation Ik denotes the k-by-k

123

1140 Foundations of Computational Mathematics (2022) 22:1133–1169

identity matrix. By writing X � 0 (resp., X � 0), we mean that X is a symmet-
ric positive semidefinite (resp., positive definite) matrix. For matrices X1, . . . , Xr ,
diag(X1, . . . , Xr) denotes the block diagonal matrix whose diagonal blocks are
X1, . . . , Xr . For a vector z, ‖z‖ denotes its standard Euclidean norm. For a func-
tion f in x , in y, or in (x, y), ∇x f (resp., ∇y f) denotes its gradient vector in x (resp.,
in y). In particular, Fxi denotes the partial derivative of F(x, y) with respect to xi .

2.2 Positive Polynomials

In this subsection, we review some basic results about positive polynomials in the
ring R[x, y]. The same kind of results hold for positive polynomials in R[x] or R[y].
An ideal I of R[x, y] is a subset such that I · R[x, y] ⊆ I and I + I ⊆ I . For a
tuple p = (p1, . . . , pk) of polynomials inR[x, y], Ideal(p) denotes the smallest ideal
containing all pi , which is the set

p1 · R[x, y] + · · · + pk · R[x, y].

In computation, we often need to work with the truncation:

Ideal(p)2k := p1 · R[x, y]2k−deg(p1) + · · · + pk · R[x, y]2k−deg(pk).

For an ideal I ⊆ R[x, y], its complex and real varieties are defined, respectively, as

VC(I) := {(u, v) ∈ C
n × C

m | f (u, v) = 0 ∀ f ∈ I },
VR(I) := {(u, v) ∈ R

n × R
m | f (u, v) = 0 ∀ f ∈ I }.

A polynomial σ is said to be a sum of squares (SOS) if σ = s21 + · · ·+ s2k for some
real polynomials s1, . . . , sk . Whether or not a polynomial is SOS can be checked by
solving a semidefinite program (SDP) [31,50]. Clearly, if a polynomial is SOS, then
it is nonnegative everywhere. However, the reverse may not be true. Indeed, there are
significantly more nonnegative polynomials than SOS ones [8,9]. The set of all SOS
polynomials in (x, y) is denoted as �[x, y], and its dth truncation is

�[x, y]d := �[x, y] ∩ R[x, y]d .

For a tuple q = (q1, . . . , qt) of polynomials in (x, y), its quadratic module is

Qmod(q) := �[x, y] + q1 · �[x, y] + · · · + qt · �[x, y].

We often need to work with the truncation

Qmod(q)2k := �[x, y]2k + q1 · �[x, y]2k−deg(g1) + · · · + qt · �[x, y]2k−deg(qt).

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1141

For two tuples p = (p1, . . . , pk) and q = (q1, . . . , qt) of polynomials in (x, y), for
convenience, we denote

{
IQ(p, q) := Ideal(p) + Qmod(q),

IQ(p, q)2k := Ideal(p)2k + Qmod(q)2k .
(2.1)

The set IQ(p, q) (resp., IQ(p, q)2k) is a convex cone that is contained inR[x, y] (resp.,
R[x, y]2k).

The set IQ(p, q) is said to be archimedean if there exists σ ∈ IQ(p, q) such that
σ(x, y) ≥ 0 defines a compact set in R

n × R
m . If IQ(p, q) is archimedean, then

the set K := {p(x, y) = 0, q(x, y) ≥ 0} must be compact. The reverse is not
always true. However, if K is compact, say, K ⊆ B(0, R) (the ball centered at 0 with
radius R), then IQ(p, q̃) is always archimedean, with q̃ = (q, R − ‖x‖2 − ‖y‖2),
while {p(x, y) = 0, q̃(x, y) ≥ 0} defines the same set K . Under the assumption
that IQ(p, q) is archimedean, every polynomial in (x, y), which is strictly positive
on K , must belong to IQ(p, q). This is the so-called Putinar’s Positivstellensatz [52].
Interestingly, under some optimality conditions, if a polynomial is nonnegative (but
not strictly positive) over K , then it belongs to IQ(p, q). This is shown in [46].

The above is for polynomials in (x, y). For polynomials in only x or y, the ideals,
sum of squares, quadratic modules, and their truncations are defined in the same way.
The notations �[x], �[x]d , �[y], �[y]d are similarly defined.

2.3 Localizing andMoment Matrices

Let ξ := (ξ1, . . . , ξl) be a subvector of (x, y) := (x1, . . . , xn, y1, . . . , ym). Through-
out the paper, the vector ξ is either x , or y, or (x, y). Denote by R

N
l
d the space of

real sequences indexed by α ∈ N
l
d . A vector in w := (wα)α∈Nl

d
∈ R

N
l
d is called a

truncated multi-sequence (tms) of degree d. It gives the Riesz functional Rw acting
on R[ξ]d as (each fα ∈ R)

Rw

(∑

α∈Nl
d

fαξα
)

:=
∑

α∈Nl
d

fαwα. (2.2)

For f ∈ R[ξ]d and w ∈ R
N

l
d , we denote

〈 f , w〉 := Rw(f). (2.3)

Consider a polynomial q ∈ R[ξ]2k with deg(q) ≤ 2k. The kth localizing matrix of q,
generated by a tms w ∈ R

N
l
2k , is the symmetric matrix L(k)

q (w) such that

vec(a1)
T
(

L(k)
q (w)

)
vec(a2) = Rw(qa1a2) (2.4)

123

1142 Foundations of Computational Mathematics (2022) 22:1133–1169

for all a1, a2 ∈ R[ξ]k−deg(q)/2�. (The vec(ai) denotes the coefficient vector of ai .)
For instance, when n = 2 and k = 2 and q = 1 − x21 − x22 , we have

L(2)
q [w] =

⎡

⎣
w00 − w20 − w02 w10 − w30 − w12 w01 − w21 − w03
w10 − w30 − w12 w20 − w40 − w22 w11 − w31 − w13
w01 − w21 − w03 w11 − w31 − w13 w02 − w22 − w04

⎤

⎦ .

When q = 1 (the constant one polynomial), L(k)
q (w) is called the moment matrix and

we denote
Mk(w) := L(k)

1 (w). (2.5)

The columns and rows of L(k)
q (w), as well as Mk(w), are labeled by α ∈ N

l with
2|α| ≤ 2k − deg(q). When q = (q1, . . . , qt) is a tuple of polynomials, then we define

L(k)
q (w) := diag

(
L(k)

q1 (w), . . . , L(k)
qt

(w)
)
, (2.6)

which is a block diagonal matrix. Moment and localizing matrices are important
tools for constructing semidefinite programming relaxations for solving moment and
polynomial optimization problems [20,25,31,47]. Moreover, moment matrices are
also useful for computing tensor decompositions [48]. We refer to [59] for a survey
on semidefinite programming and applications.

3 An Algorithm for Solving SPPPs

Let F, g, h be the polynomial tuples for the saddle point problem (1.1). Assume g, h
are nonsingular. So the Lagrange multiplier vectors λ(x, y), μ(x, y) can be expressed
as in (1.13)–(1.14). We have seen that each saddle point (x∗, y∗) must satisfy (1.15).
This leads us to consider the optimization problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
x∈X ,y∈Y

F(x, y)

subject to ∇x F(x, y) −∑
i∈E X λi (x, y)∇x gi (x) = 0,

∇y F(x, y) −∑
j∈EY μ j (x, y)∇yh j (y) = 0,

0 ≤ λi (x, y) ⊥ gi (x) ≥ 0 (i ∈ E X
2),

0 ≥ μ j (x, y) ⊥ h j (y) ≥ 0(j ∈ EY
2),

(3.1)

where λi (x, y) and μ j (x, y) are Lagrange polynomials given as in (1.13)–(1.14).
The saddle point problem (1.1) is not equivalent to (3.1). However, the optimization
problem (3.1) can be used to get a candidate saddle point. Suppose (x∗, y∗) is a
minimizer of (3.1). If x∗ is a minimizer of F(x, y∗) over X and y∗ is a maximizer
of F(x∗, y) over Y , then (x∗, y∗) is a saddle point; otherwise, such (x∗, y∗) is not a
saddle point, i.e., there exists u ∈ X and/or there exists v ∈ Y such that

F(u, y∗) − F(x∗, y∗) < 0 and/or F(x∗, v) − F(x∗, y∗) > 0.

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1143

The points u, v can be used to give new constraints

F(u, y) − F(x, y) ≥ 0 and/or F(x, y) − F(x, v) ≥ 0. (3.2)

Every saddle point (x, y) must satisfy (3.2), so (3.2) can be added to the optimiza-
tion problem (3.1) without excluding any true saddle points. For generic polynomials
F, g, h, problem (3.1) has only finitelymany feasible points (see Theorem 3.3). There-
fore, by repeatedly adding new inequalities like (3.2), we can eventually get a saddle
point or detect nonexistence of saddle points. This results in the following algorithm.

Algorithm 3.1 (An algorithm for solving saddle point problems.)

Input: The polynomials F, g, h as in (1.1), (1.3), (1.4) and Lagrange multiplier
expressions as in (1.13)–(1.14).

Step 0: Let K1 = K2 = Sa := ∅ be empty sets.
Step 1: If problem (3.1) is infeasible, then (1.1) does not have a saddle point and

stop; otherwise, solve (3.1) for a set K 0 of minimizers. Let k := 0.
Step 2: For each (x∗, y∗) ∈ K k, do the following:

(a): (Lower-level minimization) Solve the problem

⎧
⎪⎨

⎪⎩

ϑ1(y∗) := min
x∈X

F(x, y∗)
subject to ∇x F(x, y∗) −∑

i∈E X λi (x, y∗)∇x gi (x) = 0,
0 ≤ λi (x, y∗) ⊥ gi (x) ≥ 0 (i ∈ E X

2),

(3.3)

and get a set of minimizers S1(y∗). If F(x∗, y∗) > ϑ1(y∗), update

K1 := K1 ∪ S1(y∗).

(b): (Lower-level maximization) Solve the problem

⎧
⎪⎨

⎪⎩

ϑ2(x∗) := max
y∈Y

F(x∗, y)

subject to ∇y F(x∗, y) −∑
j∈EY μ j (x∗, y)∇yh j (y) = 0,

0 ≥ μ j (x∗, y) ⊥ h j (y) ≥ 0(j ∈ EY
2)

(3.4)

and get a set of maximizers S2(x∗). If F(x∗, y∗) < ϑ2(x∗), update

K2 := K2 ∪ S2(x∗).

(c): If ϑ1(y∗) = F(x∗, y∗) = ϑ2(x∗), update:

Sa := Sa ∪ {(x∗, y∗)}.

Step 3: If Sa �= ∅, then each point in Sa is a saddle point and stop; otherwise go to
Step 4.

123

1144 Foundations of Computational Mathematics (2022) 22:1133–1169

Step 4: (Upper-level minimization) Solve the optimization problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x∈X ,y∈Y

F(x, y)

subject to ∇x F(x, y) −∑
i∈E X λi (x, y)∇x gi (x) = 0,

∇y F(x, y) −∑
j∈EY μ j (x, y)∇yh j (y) = 0,

0 ≤ λi (x, y) ⊥ gi (x) ≥ 0 (i ∈ E X
2),

0 ≥ μ j (x, y) ⊥ h j (y) ≥ 0(j ∈ EY
2),

F(u, y) − F(x, y) ≥ 0 (u ∈ K1),

F(x, v) − F(x, y) ≤ 0 (v ∈ K2).

(3.5)

If (3.5) is infeasible, then (1.1) has no saddle points and stop; otherwise,
compute a set K k+1 of optimizers for (3.5). Let k := k + 1 and go to Step 2.

Output: If Sa is nonempty, every point in Sa is a saddle point; otherwise, output that
there is no saddle point.

For generic polynomials, the feasible set K0 of (3.1), as well as each K k in Algo-
rithm 3.1, is finite. The convergence of Algorithm 3.1 is shown as follows.

Theorem 3.2 LetK0 be the feasible set of (3.1) and letSa be the set of saddle points for
(1.1). If the complement set ofSa inK0 (i.e., the setK0\Sa) is finite, then Algorithm 3.1
must terminate after finitely many iterations. Moreover, ifSa �= ∅, then each (x∗, y∗) ∈
Sa is a saddle point; if Sa = ∅, then there is no saddle point.

Proof At an iteration, if Sa �= ∅, then Algorithm 3.1 terminates. For each iteration
with Sa = ∅, each point (x∗, y∗) ∈ K k is not feasible for (3.5). When the kth iteration
goes to the (k + 1)th one, the nonempty sets

K 0, K 1, K 2, K 3, . . . , K k

are disjoint from each other. All the points in K i are not saddle points, so

k⋃

i=0

K i ⊆ K0\Sa .

Therefore, when the set K0\Sa is finite, Algorithm 3.1 must terminate after finitely
many iterations.

When Sa �= ∅, each point (x∗, y∗) ∈ Sa is verified as a saddle point in Step 2.
When Sa = ∅, Algorithm 3.1 stops in Step 4 at some iteration, with the case that (3.5)
is infeasible. Since every saddle point is feasible for both (3.1) and (3.5), there does
not exist a saddle point if Sa = ∅. ��

The number of iterations required by Algorithm 3.1 to terminate is bounded above
by the cardinality of the complement setK0\Sa , which is always less than or equal to
the cardinality |K0| of the feasible set of (3.1). Generally, it is hard to count |K0\Sa |
or |K0| accurately. When the polynomials F, g, h are generic, we can prove that the
number of solutions for equality constraints in (3.1) is finite. For degrees a0, b0 > 0,
denote the set product C[x, y]a0,b0 := C[x]a0 · C[y]b0 .

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1145

Theorem 3.3 Let a0, b0 and ai , b j > 0 be positive degrees, for i ∈ E X and j ∈ EY . If
F(x, y) ∈ C[x, y]a0,b0 , gi ∈ C[x]ai , h j ∈ C[y]b j are generic polynomials, then the
polynomial system

⎧
⎪⎪⎨

⎪⎪⎩

∇x F(x, y) = ∑
i∈E X λi (x, y)∇x gi (x),

gi (x) = 0 (i ∈ E X
1), λi (x, y)gi (x) = 0 (i ∈ E X

2),

∇y F(x, y) = ∑
j∈EY μ j (x, y)∇yh j (y),

h j (y) = 0 (j ∈ EY
1), μ j (x, y)h j (y) = 0 (j ∈ EY

2)

(3.6)

has only finitely many complex solutions in C
n × C

m.

The proof for Theorem 3.3 will be given in Sect. 5. One would like to know what is
the number of complex solutions to the polynomial system (3.6) for generic polyno-
mials F, g, h. That number is an upper bound for |K0| and so is also an upper bound
for the number of iterations required by Algorithm 3.1 to terminate. The following
theorem gives an upper bound for |K0|.

Theorem 3.4 For the degrees ai , b j as in Theorem 3.3, let

M :=
∑

{i1,...,ir1 }⊆[�1],0≤r1≤n
{ j1,..., jr2 }⊆[�2],0≤r2≤m

ai1 · · · air1
b j1 · · · b jr2

· s (3.7)

where in the above the number s is given as

s =
∑

k0+···+kr1+r2=n+m−r1−r2
k0,...,kr1+r2∈N

(a0 + b0)
k0(ai1)

k1 · · · (air1
)kr1 (b j1)

kr1+1 · · · (b jr2
)kr1+r2 .

If F(x, y), gi , h j are generic, then (3.6) has at most M complex solutions, and hence,
Algorithm 3.1 must terminate within M iterations.

The proof for Theorem 3.4 will be given in Sect. 5. We remark that the upper bound
M given in (3.7) is not sharp. In our computational practice, Algorithm 3.1 typically
terminates after a few iterations. It is an interesting question to obtain accurate upper
bounds for the number of iterations required by Algorithm 3.1 to terminate.

4 Solving Optimization Problems

We discuss how to solve the optimization problems that appear in Algorithm 3.1.
Under some genericity assumptions on F, g, h, we show that their optimizers can
be computed by solving Lasserre-type semidefinite relaxations. Let X , Y be feasible
sets given as in (1.3)–(1.4). Assume g, h are nonsingular, so λ(x, y), μ(x, y) can be
expressed as in (1.13)–(1.14).

123

1146 Foundations of Computational Mathematics (2022) 22:1133–1169

4.1 The Upper-Level Optimization

The optimization problem (3.1) is a special case of (3.5), with K1 = K2 = ∅. It
suffices to discuss how to solve (3.5) with finite sets K1, K2. For convenience, we
rewrite (3.5) explicitly as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(x,y)

F(x, y)

subject to ∇x F(x, y) −∑
i∈E X λi (x, y)∇x gi (x) = 0,

∇y F(x, y) −∑
j∈EY μ j (x, y)∇yh j (y) = 0,

gi (x) = 0, h j (y) = 0 (i ∈ E X
1 , j ∈ EY

1),

λi (x, y)gi (x) = 0, μ j (x, y)h j (y) = 0 (i ∈ E X
2 , j ∈ EY

2),

gi (x) ≥ 0, λi (x, y) ≥ 0 (i ∈ E X
2),

h j (y) ≥ 0, −μ j (x, y) ≥ 0 (j ∈ EY
2),

F(u, y) − F(x, y) ≥ 0 (∀ u ∈ K1),

F(x, y) − F(x, v) ≥ 0 (∀ v ∈ K2).

(4.1)

Recall that λi (x, y), μ j (x, y) are Lagrange polynomials as in (1.13)–(1.14). Denote
by φ the tuple of equality constraining polynomials

φ :=
{
∇x F −

∑

i∈E X
λi (x, y)∇x gi

}
∪
{
∇y F −

∑

j∈EY
μ j (x, y)∇yh j

}

∪
{

gi , h j

}

i∈E X
1 , j∈EY

1

∪
{
λi (x, y)gi , μ j (x, y)h j

}

i∈E X
2 , j∈EY

2

, (4.2)

and denote by ψ the tuple of inequality constraining ones

ψ :=
{

gi , h j , λi (x, y), −μ j (x, y)
}

i∈E X
2 , j∈EY

2

∪
{

F(u, y) − F(x, y), F(x, y) − F(x, v)
}

u∈K1, v∈K2
. (4.3)

They are polynomials in (x, y). Let

d0 := ⌈1

2
max{deg F(x, y), deg(φ), deg(ψ)}⌉. (4.4)

Then, the optimization problem (4.1) can be simply written as

{
f∗ := min F(x, y)

subject to φ(x, y) = 0, ψ(x, y) ≥ 0.
(4.5)

We apply Lasserre’s hierarchy of semidefinite relaxations to solve (4.5). For integers
k = d0, d0 + 1, · · · , the kth-order semidefinite relaxation is

⎧
⎨

⎩

Fk := min 〈F, w〉
subject to (w)0 = 1, Mk(w) � 0,

L(k)
φ (w) = 0, L(k)

ψ (w) � 0, w ∈ R
N

n+m
2k .

(4.6)

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1147

The number k is called a relaxation order. We refer to (2.4) for the localizing and
moment matrices used in (4.6).

Algorithm 4.1 (An algorithm for solving the optimization (4.1).)

Input: Polynomials F, φ, ψ as in (4.2)–(4.3).
Step 0: Let k := d0.
Step 1: Solve the semidefinite relaxation (4.6).
Step 2: If the relaxation (4.6) is infeasible, then (1.1) has no saddle points and stop;

otherwise, solve it for a minimizer w∗. Let t := d0.
Step 3 Check whether or not w∗ satisfies the rank condition

rank Mt (w
∗) = rank Mt−d0(w

∗). (4.7)

Step 4 If (4.7) holds, extract r := rank Mt (w
∗) minimizers for (4.1) and stop.

Step 5 If t < k, let t := t + 1 and go to Step 3; otherwise, let k := k + 1 and go to
Step 1.

Output: Minimizers of the optimization problem (4.1) or a certificate for the infeasi-
bility of (4.1).

The conclusions in the Steps 2 and 3 are justified by Proposition 4.2. The rank
condition (4.7) is called flat extension or flat truncation [15,44]. It is a sufficient and
also almost necessary criterion for checking convergence of Lasserre-type relaxations
[44]. When it is satisfied, the method in [27] can be applied to extract minimizers in
Step 4. It was implemented in the software GloptiPoly 3 [26].

Proposition 4.2 Suppose g, h are nonsingular polynomial tuples. For the hierarchy of
relaxations (4.6), we have the properties:

(i) If (4.6) is infeasible for some k, then (4.1) is infeasible and (1.1) has no saddle
points.

(ii) If (4.6) has a minimizer w∗ satisfying (4.7), then Fk = f∗ and there are r :=
rank Mt (w

∗) minimizers for (4.1).

Proof Since g, h are nonsingular, every saddle point must be a critical point, and
Lagrange multipliers can be expressed as in (1.13)–(1.14).

(i) For each (u, v) that is feasible for (4.1), [(u, v)]2k satisfies all the constraints of
(4.6), for all k. Therefore, if (4.6) is infeasible for some k, then (4.1) is infeasible.

(ii) The conclusion follows from the classical results in [15,27,35,44].

��
We refer to (2.1) for the notation IQ, which is the sum of an ideal and a quadratic

module. The polynomial tuples φ,ψ are from (4.2)–(4.3). Algorithm 4.1 is able to
solve (4.1) successfully after finitely many iterations, under the following genericity
conditions.

Condition 4.3 The polynomial tuples g, h are nonsingular and F, g, h satisfy one (not
necessarily all) of the following:

123

1148 Foundations of Computational Mathematics (2022) 22:1133–1169

(1) IQ(geq , gin) + IQ(heq , hin) is archimedean;
(2) the equation φ(x, y) = 0 has finitely many real solutions;
(3) IQ(φ,ψ) is archimedean.

In the above, the item (1) is almost the same as that X , Y are compact sets; the
item (2) is the same as that (3.6) has only finitely many real solutions. Also note that
the item (1) or (2) implies (3). In Theorem 3.3, we have shown that (3.6) has only
finitely many complex solutions when F, g, h are generic. Therefore, Condition 4.3
holds generically. Under Condition 4.3, Algorithm 4.1 can be shown to have finite
convergence.

Theorem 4.4 Under Condition 4.3, we have that:

(i) If problem (4.1) is infeasible, then the semidefinite relaxation (4.6) must be infea-
sible for all k big enough.

(ii) Suppose (4.1) is feasible. If (4.1) has only finitely many minimizers and each of
them is an isolated critical point (i.e., an isolated real solution of (3.6)), then, for
all k big enough, (4.6) has a minimizer and each minimizer must satisfy the rank
condition (4.7).

We would like to remark that when F, g, h are generic, every minimizer of (4.1)
is an isolated real solution of (3.6). This is because (3.6) has only finitely many com-
plex solutions for generic F, g, h. Therefore, Algorithm 4.1 has finite convergence
for generic cases. We would also like to remark that Proposition 4.2 and Theorem 4.4
assume that the semidefinite relaxation (4.6) is solved exactly. However, semidefinite
programs are usually solved numerical (e.g., by SeDuMi), for better computational
performance. Therefore, in computational practice, the optimizers obtained by Algo-
rithm 4.1 are correct up to numerical errors. This is a common feature of all numerical
methods.

4.2 Lower-Level Minimization

For a given pair (x∗, y∗) that is feasible for (3.1) or (3.5), we need to check whether or
not x∗ is a minimizer of F(x, y∗) over X . This requires us to solve the minimization
problem ⎧

⎪⎨

⎪⎩

min
x∈Rn

F(x, y∗)
subject to gi (x) = 0 (i ∈ E X

1),

gi (x) ≥ 0 (i ∈ E X
2).

(4.8)

When g is nonsingular, if it has a minimizer, the optimization (4.8) is equivalent to
(by adding necessary optimality conditions)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
x∈Rn

F(x, y∗)
subject to ∇x F(x, y∗) − ∑

i∈E X

λi (x, y∗)∇x gi (x) = 0,

gi (x) = 0 (i ∈ E X
1), λi (x, y∗)gi (x) = 0 (i ∈ E X

2),

gi (x) ≥ 0, λi (x, y∗) ≥ 0 (i ∈ E X
2).

(4.9)

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1149

Denote the tuple of equality constraining polynomials

φy∗ :=
{
∇x F(x, y∗) −

∑

i∈E X
λi (x, y∗)∇x gi

}

∪{gi
}

i∈E X
1

∪ {λi (x, y∗) · gi
}

i∈E X
2
, (4.10)

and denote the tuple of inequality ones

ψy∗ :=
{

gi , λi (x, y∗)
}

i∈E X
2

. (4.11)

They are polynomials in x but not in y, depending on the value of y∗. Let

d1 := ⌈1

2
max{deg F(x, y∗), deg(φy∗), deg(ψy∗)}⌉. (4.12)

We can rewrite (4.9) equivalently as

{
min
x∈Rn

F(x, y∗)
subject to φy∗(x) = 0, ψy∗(x) ≥ 0.

(4.13)

Lasserre’s hierarchy of semidefinite relaxations for solving (4.13) is

⎧
⎪⎨

⎪⎩

min
z

〈F(x, y∗), z〉
subject to (z)0 = 1, Mk(z) � 0,

L(k)
φy∗ (z) = 0, L(k)

ψy∗ (z) � 0, z ∈ R
N

n
2k ,

(4.14)

for relaxation orders k = d1, d1 + 1, Since (x∗, y∗) is a feasible pair for (3.1)
or (3.5), problems (4.8) and (4.13) are also feasible; hence, (4.14) is also feasible. A
standard algorithm for solving (4.13) is as follows.

Algorithm 4.5 (An algorithm for solving the problem (4.13).)

Input: The point y∗ and polynomials F(x, y∗), φy∗ , ψy∗ as in (4.10)–(4.11).
Step 0: Let k := d1.
Step 1: Solve the semidefinite relaxation (4.14) for a minimizer z∗. Let t := d1.
Step 2: Check whether or not z∗ satisfies the rank condition

rank Mt (z
∗) = rank Mt−d1(z

∗). (4.15)

Step 3: If (4.15) holds, extract r := rank Mt (z∗) minimizers and stop.
Step 4: If t < k, let t := t + 1 and go to Step 3; otherwise, let k := k + 1 and go to

Step 1.
Output: Minimizers of the optimization problem (4.13).

123

1150 Foundations of Computational Mathematics (2022) 22:1133–1169

Similar conclusions as in Proposition 4.2 hold for Algorithm 4.5. For cleanness of
the paper, we do not state them again. The method in [27] can be applied to extract
minimizers in the Step 3. Moreover, Algorithm 4.5 also terminates within finitely
many iterations, under some genericity conditions.

Condition 4.6 The polynomial tuple g is nonsingular and the point y∗ satisfies one
(not necessarily all) of the following:

(1) IQ(geq , gin) is archimedean;
(2) the equation φy∗(x) = 0 has finitely many real solutions;
(3) IQ(φy∗ , ψy∗) is archimedean.

Since (x∗, y∗) is feasible for (3.1) or (3.5), Condition 4.3 implies Condition 4.6,
which also holds generically. The finite convergence of Algorithm 4.5 is summarized
as follows.

Theorem 4.7 Assume the optimization problem (4.8) has a minimizer and Condi-
tion 4.6 holds. If each minimizer of (4.8) is an isolated critical point, then, for all k
big enough, (4.14) has a minimizer and each of them must satisfy (4.15).

The proof of Theorem 4.7 will be given in Sect. 5. We would like to remark that
everyminimizer of (4.13) is an isolated critical point of (4.8), when F, g, h are generic.
This is implied by Theorem 3.3.

4.3 Lower-Level Maximization

For a given pair (x∗, y∗) that is feasible for (3.1) or (3.5), we need to check whether or
not y∗ is a maximizer of F(x∗, y) over Y . This requires us to solve the maximization
problem {

max
y∈Rm

F(x∗, y)

subject to h j (y) = 0 (j ∈ EY
1), h j (y) ≥ 0 (j ∈ EY

2).
(4.16)

When h is nonsingular, if it has a minimizer, the optimization (4.16) is equivalent to
(by adding necessary optimality conditions) the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
y∈Rm

F(x∗, y)

subject to ∇y F(x∗, y) −∑
j∈EY μ j (x∗, y)∇yh j (y) = 0,

h j (y) = 0 (j ∈ EY
1), μ j (x∗, y) · h j (y) = 0 (j ∈ EY

2),

h j (y) ≥ 0, −μ j (x∗, y) ≥ 0 (j ∈ EY
2).

(4.17)

Denote the tuple of equality constraining polynomials

φx∗ :=
{
∇y F(x∗, y) −

∑

j∈EY

μ j (x∗, y)∇yh j

}

∪{h j
}

j∈EY
1

∪ {μ j (x∗, y)h j
}

j∈EY
2
, (4.18)

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1151

and denote the tuple of inequality ones

ψx∗ :=
{

h j , −μ j (x∗, y)
}

j∈EY
2

. (4.19)

They are polynomials in y but not in x , depending on the value of x∗. Let

d2 := ⌈1

2
max{deg F(x∗, y), deg(φx∗), deg(ψx∗)}⌉. (4.20)

Hence, (4.17) can be simply expressed as

{
max
y∈Rm

F(x∗, y)

subject to φx∗(y) = 0, ψx∗(y) ≥ 0.
(4.21)

Lasserre’s hierarchy of semidefinite relaxations for solving (4.21) is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
z

〈F(x∗, y), z〉
subject to (z)0 = 1, Mk(z) � 0,

L(k)
φx∗ (z) = 0, L(k)

ψx∗ (z) � 0,

z ∈ R
N

m
2k ,

(4.22)

for relaxation orders k = d2, d2 + 1, · · · . Since (x∗, y∗) is feasible for (3.1) or (3.5),
problems (4.16) and (4.21)must also be feasible. Hence, the relaxation (4.22) is always
feasible. Similarly, an algorithm for solving (4.21) is as follows.

Algorithm 4.8 (An algorithm for solving the problem (4.21).)

Input: The point x∗ and polynomials F(x∗, y), φx∗ , ψx∗ as in (4.18)–(4.19).
Step 0: Let k := d2.
Step 1: Solve the semidefinite relaxation (4.22) for a maximizer z∗. Let t := d2.
Step 2: Check whether or not z∗ satisfies the rank condition

rank Mt (z
∗) = rank Mt−d2(z

∗). (4.23)

Step 3: If (4.23) holds, extract r := rank Mt (z∗) maximizers for (4.21) and stop.
Step 4: If t < k, let t := t + 1 and go to Step 3; otherwise, let k := k + 1 and go to

Step 1.
Output: Maximizers of the optimization problem (4.21).

The same kind of conclusions like in Proposition 4.2 hold for Algorithm 4.8. The
method in [27] can be applied to extract maximizers in Step 3. We can show that it
must also terminate within finitely many iterations, under some genericity conditions.

Condition 4.9 The polynomial tuple h is nonsingular and the point x∗ satisfies one
(not necessarily all) of the following:

(1) IQ(heq , hin) is archimedean;

123

1152 Foundations of Computational Mathematics (2022) 22:1133–1169

(2) the equation φx∗(y) = 0 has finitely many real solutions;
(3) IQ(φx∗ , ψx∗) is archimedean.

By the same argument as for Condition 4.6, we can also see that Condition 4.9 holds
generically. Similarly, Algorithm 4.8 also terminates within finitely many iterations
under some genericity conditions.

Theorem 4.10 Assume that (4.16) has a maximizer and Condition 4.9 holds. If each
maximizer of (4.16) is an isolated critical point, then, for all k big enough, (4.22) has
a maximizer and each of them must satisfy (4.23).

The proof of Theorem 4.10 will be given in Sect. 5. Similarly, when F, g, h are
generic, each maximizer of (4.16) is an isolated critical point of (4.16).

5 Some Proofs

This section gives the proofs for some theorems in the previous sections.

Proof of Theorem 3.3 Under the genericity assumption, the polynomial tuples g, h are
nonsingular, so the Lagrange multipliers in (1.8)–(1.9) can be expressed as in (1.13)–
(1.14). Hence, (3.6) is equivalent to the polynomial system in (x, y, λ, μ):

⎧
⎪⎪⎨

⎪⎪⎩

∇x F(x, y) = ∑
i∈E X λi∇x gi (x),

∇y F(x, y) = ∑
j∈EY μ j∇yh j (y),

gi (x) = 0 (i ∈ E X
1), λi gi (x) = 0 (i ∈ E X

2),

h j (y) = 0 (j ∈ EY
1), μ j h j (y) = 0 (j ∈ EY

2).

(5.1)

Due to the complementarity conditions, gi (x) = 0 or λi = 0 for each i ∈ E X
2 , and

h j (x) = 0 or μ j = 0 for each j ∈ EY
2 . Note that if gi (x) �= 0 then λi = 0 and

if h j (x) �= 0 then μ j = 0. Since E X
2 , EY

2 are finite labeling sets, there are only
finitely many cases of gi (x) = 0 or gi (x) �= 0, h j (x) = 0 or h j (x) �= 0. We prove the
conclusion is true for every case.Moreover, if gi (x) = 0 for i ∈ E X

2 , then the inequality
gi (x) ≥ 0 can be counted as an equality constraint. The same is true for h j (x) = 0
with j ∈ EY

2 . Therefore, we only need to prove the conclusion is true for the case that
has only equality constraints. Without loss of generality, assume E X

2 = EY
2 = ∅ and

write the labeling sets as

E X
1 = {1, . . . , �1}, EY

1 = {1, . . . , �2}.

When all gi are generic polynomials, the equations gi (x) = 0 (i ∈ E X
1) have no

solutions if �1 > n. Similarly, the equations h j (x) = 0 (j ∈ EY
1) have no solutions if

�2 > m and all h j are generic. Therefore, we only consider the case that �1 ≤ n and
�2 ≤ m. When F, g, h are generic, we show that (5.1) cannot have infinitely many
solutions. System (5.1) is the same as

{
∇x F(x, y) = ∑�1

i=1 λi∇x gi (x), g1(x) = · · · = g�1(x) = 0,
∇y F(x, y) = ∑�2

j=1 μ j∇yh j (y), h1(y) = · · · = h�2(y) = 0.
(5.2)

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1153

Let x̃ = (x0, x1, . . . , xn) and ỹ = (y0, y1, . . . , ym). Denote by g̃i (x̃) (resp., h̃ j (ỹ))
the homogenization of gi (x) (resp., h j (y)). Let Pn denote the n-dimensional complex
projective space. Consider the projective variety

U := {
(x̃, ỹ) ∈ P

n × P
m : g̃i (x̃) = 0 (i ∈ E X), h̃ j (ỹ) = 0 (j ∈ EY)

}
.

It is smooth, by Bertini’s theorem [22], under the genericity assumption on gi , h j .
Denote the bi-homogenization of F(x, y)

F̃(x̃, ỹ) := xa0
0 yb0

0 F̃(x/x0, y/y0).

When F(x, y) is generic, the projective variety

V := U ∩ {F̃(x̃, ỹ) = 0}

is also smooth. One can directly verify that (for homogeneous polynomials)

xT ∇x F̃(x̃, ỹ) + x0∂x0 F̃(x̃, ỹ) = a0 F̃(x̃, ỹ),

xT ∇x g̃i (x̃) + x0∂x0 g̃i (x̃) = ai g̃i (x̃),

yT ∇y F̃(x̃, ỹ) + y0∂y0 F̃(x̃, ỹ) = b0 F̃(x̃, ỹ),

yT ∇y h̃ j (ỹ) + y0∂y0 h̃ j (ỹ) = bi h̃ j (ỹ).

(They are called Euler’s identities.) Consider the determinantal variety

W :=
{

(x, y) ∈ C
n × C

m
∣
∣
∣
∣
rank

[∇x F(x, y) ∇x g1(x) · · · ∇x g�1(x)
] ≤ �1

rank
[∇y F(x, y) ∇yh1(y) · · · ∇yh�2(y)

] ≤ �2

}

.

Its homogenization is

W̃ :=
{

(x̃, ỹ) ∈ P
n × P

m
∣
∣
∣
∣
rank

[∇x F̃(x̃, ỹ) ∇x g̃1(x̃) · · · ∇x g̃�1(x̃)
] ≤ �1

rank
[∇y F̃(x̃, ỹ) ∇y h̃1(ỹ) · · · ∇y h̃�2(ỹ)

] ≤ �2

}

.

The projectivization of (5.2) is the intersection

W̃ ∩ U .

If (3.6) has infinitely many complex solutions, so does (5.2). Then, W̃ ∩ U must
intersect the hypersurface {F̃(x̃, ỹ) = 0}. This means that there exists (x̄, ȳ) ∈ V such
that

∇x F̃(x̄, ȳ) =
�1∑

i=1

λi∇x g̃i (x̄), ∇y F̃(x̄, ȳ) =
�2∑

j=1

μ j∇y h̃ j (ȳ),

123

1154 Foundations of Computational Mathematics (2022) 22:1133–1169

for some λi , μ j . Also note g̃i (x̄) = h̃ j (ȳ) = F̃(x̄, ȳ) = 0. Write

x̄ = (x̄0, x̄1, . . . , x̄n), ȳ = (ȳ0, ȳ1, . . . , ȳm).

– If x̄0 �= 0 and ȳ0 �= 0, by Euler’s identities, we can further get

∂x0 F̃(x̄, ȳ) =
�1∑

i=1

λi∂x0 g̃i (x̄), ∂y0 F̃(x̄, ȳ) =
�2∑

j=1

μ j∂y0 h̃ j (ȳ).

This implies that V is singular, which is a contradiction.
– If x0 = 0 but y0 �= 0, by Euler’s identities, we can also get

∂y0 F̃(x̄, ȳ) =
�2∑

j=1

μ j∂y0 h̃ j (ȳ).

This means the linear section V ∩ {x0 = 0} is singular, which is a contradiction
again, by the genericity assumption on F, g, h.

– If x0 �= 0 but y0 = 0, then we can have

∂x0 F̃(x̄, ȳ) =
�1∑

i=1

λi∂x0 g̃i (x̄).

So the linear section V ∩ {y0 = 0} is singular, which is again a contradiction.
– If x0 = y0 = 0, then V ∩ {x0 = 0, y0 = 0} is singular. It is also a contradiction,
under the genericity assumption on F, g, h.

For every case, we obtain a contradiction. Therefore, the polynomial system (3.6)must
have only finitely many complex solutions, when F, g, h are generic. ��
(Proof of Theorem 3.4) Each solution of (3.6) is a critical point of F(x, y) over the
set X × Y . We count the number of critical points by enumerating all possibilities of
active constraints. For an active labeling set {i1, . . . , ir1} ⊆ [�1] (for X) and an active
labeling set { j1, . . . , jr2} ⊆ [�2] (for Y), an upper bound for the number is critical
points ai1 · · · air1

b j1 · · · b jr2
· s, which is given by Theorem 2.2 of [43]. Summing this

upper bound for all possible active constraints, we eventually get the bound M . Since
K0 is a subset of (3.6), Algorithm 3.1 must terminate within M iterations, for generic
polynomials. ��
(Proof of Theorem 4.4) In Condition 4.3, the item (1) or (2) implies (3). Note that the
dual optimization problem of (4.6) is

{
max γ

subject to F − γ ∈ IQ(φ,ψ)2k .
(5.3)

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1155

(i) When (4.1) is infeasible, the set {φ(x, y) = 0, ψ(x, y) ≥ 0} is empty. Since
IQ(φ,ψ) is archimedean, by the classical Positivstellensatz [7] and Putinar’s Posi-
tivstellensatz [52], we have −1 ∈ IQ(φ,ψ). So, −1 ∈ IQ(φ,ψ)2k for all such k big
enough. Hence, (5.3) is unbounded from above for all big k. By weak duality, we know
(4.6) must be infeasible.

(ii) When (4.1) is feasible, every feasible point is a critical point. By Lemma 3.3 of
[18], F(x, y) achieves finitely many values on φ(x, y) = 0, say,

c1 < c2 < · · · < cN .

Recall that f∗ is the minimum value of (4.5). So, f∗ is one of the ci , say, c� = f∗.
Since (4.1) has only finitely many minimizers, we can list them as the set

O := {(u1, v1), . . . , (u B, vB)}.

If (x, y) is a feasible point of (4.1), then either F(x, y) = ck with k > �, or (x, y) is
one of (u1, v1), . . . , (u B , vB). Define the polynomial

P(x, y) :=
(N∏

i=�+1

(F(x, y) − ci)
2
)

·
(∏

(u j ,v j)∈O

(
‖x − u j‖2 + ‖y − v j‖2

))

.

We partition the set {φ(x, y) = 0} into four disjoint ones:

U1 := {φ(x, y) = 0, c1 ≤ F(x, y) ≤ c�−1} ,

U2 := {φ(x, y) = 0, F(x, y) = c�, (x, y) /∈ O} ,

U3 := {φ(x, y) = 0, F(x, y) = c�, (x, y) ∈ O} ,

U4 := {φ(x, y) = 0, c�+1 ≤ F(x, y) ≤ cN } .

Note that U3 is the set of minimizers for (4.5).

– For all (x, y) ∈ U1 and i = � + 1, . . . , N ,

(F(x, y) − ci)
2 ≥ (c�−1 − c�+1)

2.

The set U1 is closed and each (u j , v j) /∈ U1. The distance from (u j , v j) to U1 is
positive. Hence, there exists ε1 > 0 such that P(x, y) > ε1 for all (x, y) ∈ U1.

– For all (x, y) ∈ U2, (F(x, y) − ci)
2 = (c� − ci)

2. For each (u j , v j) ∈ O , its
distance to U2 is positive. This is because each (ui , vi) ∈ O is an isolated real
critical point. So, there exists ε2 > 0 such that P(x, y) > ε2 for all (x, y) ∈ U2.

Denote the new polynomial

q(x, y) := min(ε1, ε2) − P(x, y).

123

1156 Foundations of Computational Mathematics (2022) 22:1133–1169

On the set {φ(x, y) = 0}, the inequality q(x, y) ≥ 0 implies (x, y) ∈ U3 ∪ U4.
Therefore, (4.1) is equivalent to the optimization problem

{
min
x,y

F(x, y)

subject to φ(x, y) = 0, q(x, y) ≥ 0.
(5.4)

Note that q(x, y) > 0 on the feasible set of (4.1). (This is because if (x, y) is a
feasible point of (4.1), then F(x, y) ≥ f∗ = c�, so (x, y) /∈ U1. If F(x, y) = c�,
then (x, y) ∈ O and P(x, y) = 0, so q(x, y) = min(ε1, ε2) > 0. If F(x, y) > c�,
then P(x, y) = 0 and we also have q(x, y) = min(ε1, ε2) > 0.) By Condition 4.3
and Putinar’s Positivstellensatz, it holds that q ∈ IQ(φ,ψ). Now, we consider the
hierarchy of Lasserre’s relaxations for solving (5.4):

⎧
⎨

⎩

f ′
k := min 〈F, w〉
subject to (w)0 = 1, Mk(w) � 0,

L(k)
φ (w) = 0, L(k)

q (w) � 0.
(5.5)

Its dual optimization problem is

{
fk := max γ

subject to F − γ ∈ IQ(φ, q)2k .
(5.6)

��
Claim: For all k big enough, it holds that fk = f ′

k = f∗.

Proof The possible objective values of (5.4) are c�, . . . , cN . Let p1, . . . , pN be real
univariate polynomials such that pi (c j) = 0 for i �= j and pi (c j) = 1 for i = j . Let

si := (ci − f∗)
(

pi (F)
)2

, i = �, . . . , N .

Then s := s� + · · · + sN ∈ �[x]2k1 for some order k1 > 0. Let

F̂ := F − f∗ − s.

Note that F̂(x) ≡ 0 on the set

K2 := {φ(x, y) = 0, q(x, y) ≥ 0}.

It has a single inequality. By the Positivstellensatz [7, Corollary 4.1.8], there exist
0 < t ∈ N and Q = b0 + qb1 (b0, b1 ∈ �[x]) such that F̂2t + Q ∈ Ideal(φ). Note
that Q ∈ Qmod(q). For all ε > 0 and τ > 0, we have F̂ + ε = φε + θε where

φε = −τε1−2t(F̂2t + Q
)
,

θε = ε
(
1 + F̂/ε + τ(F̂/ε)2t

)
+ τε1−2t Q.

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1157

By Lemma 2.1 of [45], when τ ≥ 1
2t , there exists k2 such that, for all ε > 0,

φε ∈ Ideal(φ)2k2 , θε ∈ Qmod(q)2k2 .

Hence, we can get

F − (f∗ − ε) = φε + σε,

where σε = θε + s ∈ Qmod(q)2k2 for all ε > 0. For all ε > 0, γ = f∗ − ε is feasible
in (5.6) for the order k2, so fk2 ≥ f∗. Because fk ≤ fk+1 ≤ · · · ≤ f∗, we have
fk = f ′

k = f∗ for all k ≥ k2. ��
Because q ∈ Qmod(ψ), each w, which is feasible for (4.6), is also feasible for

(5.5). This can be implied by [44, Lemma 2.5]. So, when k is big, each w is also a
minimizer of (5.5). The problem (5.4) also has only finitely many minimizers. By
Theorem 2.6 of [44], the condition (4.7) must be satisfied for some t ∈ [d0, k], when
k is big enough. ��
(Proof of Theorem 4.7) The proof is the same as the one for Theorem 4.4. This is
because the Lasserre’s relaxations (4.14) are constructed by using optimality condi-
tions of (4.8), which is the same as for Theorem 4.4. In other words, Theorem 4.7 can
be thought of a special version of Theorem 4.4 with K1 = K2 = ∅, without variable
y. The assumptions are the same. Therefore, the same proof can be used. ��
(Proof of Theorem 4.10) The proof is the same as the one for Theorem 4.7. ��

6 Numerical Experiments

This section presents numerical examples of applying Algorithm 3.1 to solve saddle
point problems. The computation is implemented in MATLAB R2012a, on a Lenovo
Laptop with CPU@2.90GHz and RAM 16.0G. The Lasserre-type moment semidef-
inite relaxations are solved by the software GloptiPoly 3 [26], which calls the
semidefinite program solver SeDuMi [58]. For cleanness, only four decimal digits are
displayed for computational results.

In prior existing references, there are very few examples of non-convex–concave-
type SPPPs.We construct various examples, with different types of functions and con-
straints. When g, h are nonsingular tuples, the Lagrange multipliers λ(x, y), μ(x, y)

can be expressed by polynomials as in (1.13)–(1.14). Here we give some expressions
for λ(x, y) that will be frequently used in the examples. The expressions are similar
for μ(x, y). Let F(x, y) be the objective.

– For the simplex �n = {x ∈ R
n : eT x = 1, x ≥ 0}, g = (eT x − 1, x1, . . . , xn)

and we have

λ(x, y) = (xT ∇x F, Fx1 − xT ∇x F, . . . , Fxn − xT ∇x F). (6.1)

123

1158 Foundations of Computational Mathematics (2022) 22:1133–1169

– For the hypercube set [−1, 1]n , g = (1 − x21 , . . . , 1 − x2n) and

λ(x, y) = −1

2
(x1Fx1, . . . , xn Fxn). (6.2)

– For the box constraint [0, 1]n , g = (x1, . . . , xn, 1 − x1, . . . , 1 − xn) and

λ(x, y) = ((1 − x1)Fx1, . . . , (1 − xn)Fxn ,−x1Fx1, . . . ,−xn Fxn). (6.3)

– For the ball Bn(0, 1) = {x ∈ R
n : ‖x‖ ≤ 1} or sphere Sn−1 = {x ∈ R

n : ‖x‖ =
1}, g = 1 − xT x and we have

λ(x, y) = −1

2
xT ∇x F . (6.4)

– For the nonnegative orthant Rn+, g = (x1, . . . , xn) and we have

λ(x, y) = (Fx1, . . . , Fxn). (6.5)

We refer to [49] for more details about Lagrange multiplier expressions.

6.1 Some Explicit Examples

Example 6.1 Consider the simplex feasible sets X = �n , Y = �m . The Lagrange
multipliers can be expressed as in (6.1).

(i) Let n = m = 3 and

F(x, y) = x1x2 + x2x3 + x3y1 + x1y3 + y1y2 + y2y3.

This function is neither convex in x nor concave in y. After 1 iteration by Algo-
rithm 3.1, we got the saddle point:

x∗ = (0.0000, 1.0000, 0.0000), y∗ = (0.2500, 0.5000, 0.2500).

It took about 2 s.
(ii) Let n = m = 3 and F(x, y) be the function

x31 + x32 − x33 − y31 − y32 + y33 + x3y1y2(y1 + y2) + x2y1y3(y1 + y3) + x1y2y3(y2 + y3).

This function is neither convex in x nor concave in y. After 2 iterations by Algo-
rithm 3.1, we got the saddle point

x∗ = (0.0000, 0.0000, 1.0000), y∗ = (0.0000, 0.0000, 1.0000).

It took about 7.5 s.

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1159

(iii) Let n = m = 4 and

F(x, y) =
4∑

i, j=1

x2i y2j −
∑

i �= j

(xi x j + yi y j).

This function is neither convex in x nor concave in y. After 2 iterations by Algo-
rithm 3.1, we got 4 saddle points:

x∗ = (0.2500, 0.2500, 0.2500, 0.2500), y∗ = ei ,

with i = 1, 2, 3, 4. It took about 99 s.
(iv) Let n = m = 3 and

F(x, y) := x1x2y1y2 + x2x3y2y3 + x3x1y3y1 − x21 y23 − x22 y21 − x23 y22 .

This function is neither convex in x nor concave in y. After 4 iterations by Algo-
rithm 3.1, we got that there is no saddle point. It took about 32 s.

Example 6.2 Consider the box constraints X = [0, 1]n andY = [0, 1]m . TheLagrange
multipliers can be expressed as in (6.3).

(i) Consider n = m = 2 and

F(x, y) := (x1 + x2 + y1 + y2 + 1)2 − 4(x1x2 + x2y1 + y1y2 + y2 + x1).

This function is convex in x but not concave in y. After 2 iterations by Algo-
rithm 3.1, we got the saddle point

x∗ = (0.3249, 0.3249), y∗ = (1.0000, 0.0000).

It took about 3.7 s.
(ii) Let n = m = 3 and

F(x, y) :=
n∑

i=1

(xi + yi) +
∑

i< j

(x2i y2j − y2i x2j).

This function is neither convex in x nor concave in y. After 3 iterations by Algo-
rithm 3.1, we got that there is no saddle point. It took about 12.8 s.

Example 6.3 Consider the cube constraints X = Y = [−1, 1]3. The Lagrange multi-
pliers can be expressed as in (6.2).

(i) Consider the function

F(x, y) :=
3∑

i=1

(xi + yi) −
3∏

i=1

(xi − yi).

123

1160 Foundations of Computational Mathematics (2022) 22:1133–1169

This function is neither convex in x nor concave in y. After 1 iteration by Algo-
rithm 3.1, we got 3 saddle points:

x∗ = (−1.0000,−1.0000, 1.0000), y∗ = (1.0000, 1.0000, 1.0000),

x∗ = (−1.0000, 1.0000,−1.0000), y∗ = (1.0000, 1.0000, 1.0000),

x∗ = (1.0000,−1.0000,−1.0000), y∗ = (1.0000, 1.0000, 1.0000).

It took about 75 s.
(ii) Consider the function

F(x, y) := yT y − xT x +
∑

1≤i< j≤3

(xi y j − x j yi).

This function is neither convex in x nor concave in y. After 4 iterations by Algo-
rithm 3.1, we got the saddle point

x∗ = (−1.0000, 1.0000,−1.0000), y∗ = (−1.0000, 1.0000,−1.0000).

It took about 6 s.

Example 6.4 Consider the sphere constraints X = S
2 and Y = S

2. They are not
convex. The Lagrange multipliers can be expressed as in (6.4).

(i) Let F(x, y) be the function

x31 + x32 + x33 + y31 + y32 + y33 + 2(x1x2y1y2 + x1x3y1y3 + x2x3y2y3).

After 2 iterations by Algorithm 3.1, we got 9 saddle points (−ei , e j), with i, j =
1, 2, 3. It took about 64 s.

(ii) Let F(x, y) be the function

x21 y21 + x22 y22 + x23 y23 + x21 y2y3 + x22 y1y3 + x23 y1y2
+y21 x2x3 + y22 x1x3 + y23 x1x2.

After 4 iterations by Algorithm 3.1, we got that there is no saddle point. It took
about 127 s.

Example 6.5 Let X = Y = B3(0, 1) be the ball constraints and

F(x, y) := x21 y1 + 2x22 y2 + 3x23 y3 − x1 − x2 − x3.

The Lagrange multipliers can be expressed as in (6.4). The function F is not convex
in x but is concave in y. After 1 iteration by Algorithm 3.1, we got the saddle point:

x∗ = (0.7264, 0.4576, 0.3492), y∗ = (0.6883, 0.5463, 0.4772).

It took about 3.3 s.

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1161

Example 6.6 Consider the function

F(x, y) := x21 y2y3 + y21 x2x3 + x22 y1y3 + y22 x1x3 + x23 y1y2 + y23 x1x2

and the sets

X := {x ∈ R
3 : xT x − 1 = 0, x ≥ 0}, Y := {y ∈ R

3 : yT y − 1 = 0, y ≥ 0}.

They are nonnegative portions of spheres. The feasible sets X , Y are non-convex. The
Lagrange multipliers are expressed as

λ(x, y) = (
1

2
xT ∇x F, Fx1 − x1xT ∇x F, Fx2 − x2xT ∇x F, Fx3 − x3xT ∇x F),

μ(x, y) = (
1

2
yT ∇y F, Fy1 − y1yT ∇y F, Fy2 − y2yT ∇y F, Fy3 − y3yT ∇y F).

After 3 iterations by Algorithm 3.1, we got that there is no saddle point. It took about
37.3 s.

Example 6.7 Let X = Y = R
4+ be the nonnegative orthant and F(x, y) be

y1(x2 + x3 + x4 − 1)2 + y2(x1 + x3 + x4 − 2)2 + y3(x1 + x2 + x4 − 3)2

−y4(x1 + x2 + x3 − 4)2 −
(

x1(y2 + y3 + y4 − 1)2 + x2(y1 + y3 + y4 − 2)2

−x3(y1 + y2 + y4 − 3)2 + x4(y1 + y2 + y3 − 4)2
)
.

TheLagrangemultipliers can be expressed as in (6.5). The function F is neither convex
in x nor concave in y. After 1 iteration by Algorithm 3.1, we got the saddle point

x∗ = (1.5075, 0.5337, 0.0000, 0.5018), y∗ = (2.4143, 1.1463, 0.0000, 0.0000).

It took about 4.8 s.

Example 6.8 Let X = Y = R
3 be the entire space, i.e., there are no constraints. There

are no needs for Lagrange multiplier expressions. Consider the function

F(x, y) =
3∑

i=1

(x4i − y4i + xi + yi) +
∑

i �= j

x3i y3j .

It is neither convex in x nor concave in y. After 1 iteration by Algorithm 3.1, we got
the saddle point

x∗ = −(0.6981, 0.6981, 0.6981), y∗ = (0.4979, 0.4979, 0.4979).

It took about 113 s.

123

1162 Foundations of Computational Mathematics (2022) 22:1133–1169

Example 6.9 Consider the sets and the function

X := {x ∈ R
3 : x1 ≥ 0, x1x2 ≥ 1, x2x3 ≥ 1},

Y := {y ∈ R
3 : y1 ≥ 0, y1y2 ≥ 1, y2y3 ≥ 1},

F(x, y) := x31 y1 + x32 y2 + x33 y3 − 3x1x2x3 − y21 − 2y22 − 3y23 .

The function F(x, y) is not convex in x but is concave in y. The Lagrange multipliers
can be expressed as

λ1 = (1 − x1x2)Fx1, λ2 = x1Fx1, λ3 = −x1Fx1 + x2Fx2 .

The same expressions are for μ j (x, y). After 9 iterations by Algorithm 3.1, we get
the saddle point:

x∗ = (1.2599, 1.2181, 1.3032), y∗ = (1.0000, 1.1067, 0.9036).

It took about 64 s.

6.2 Some Application Problems

Example 6.10 We consider the saddle point problem arising from zero-sum games
with two players. Suppose x ∈ R

n is the strategy for the first player and y ∈ R
m

is the strategy for the second one. The usual constraints for strategies are given by
simplices, which represent probability measures on finite sets. So we consider feasible
sets X = �n , Y = �m . Suppose the profit function of the first player is

f1(x, y) = xT A1x + yT A2y + xT By,

for matrices A1 ∈ R
n×n , A2 ∈ R

m×m , B ∈ R
n×m . For the zero-sum game, the

profit function for the second player is f2(x, y) := − f1(x, y). Each player wants to
maximize the profit, for the given strategy of the other player. The Nash equilibrium
is a point (x∗, y∗) such that the maximum of f1(x, y∗) over �n is achieved at x∗,
while the maximum of f2(x∗, y) over �m is achieved at y∗. This is equivalent to that
(x∗, y∗) is a saddle point of the function F := − f1(x, y) over X , Y . For instance, we

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1163

consider the matrices

A1 =

⎛

⎜
⎜
⎜
⎜
⎝

−4 4 0 3 −4
3 4 3 −4 −5

−3 0 −2 0 4
−4 −4 −1 3 −5
4 1 −3 0 −5

⎞

⎟
⎟
⎟
⎟
⎠

, A2 =

⎛

⎜
⎜
⎜
⎜
⎝

−4 4 1 0 1
−2 −4 2 −3 1
−3 1 1 4 4
3 −4 0 1 −2

−1 −3 −1 3 −2

⎞

⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎝

−2 −4 −2 −5 3
0 0 2 4 2
0 −4 −1 −5 3
1 −3 −4 0 −3
3 −1 −5 4 −4

⎞

⎟
⎟
⎟
⎟
⎠

.

The resulting saddle point problem is of the non-convex–concave type. After 2 itera-
tions by Algorithm 3.1, we get two Nash equilibria

x∗ = (0, 1, 0, 0, 0), y∗ = (1, 0, 0, 0, 0),

x∗ = (0, 1, 0, 0, 0), y∗ = (0, 1, 0, 0, 0).

It took about 7 s.

Example 6.11 Consider the portfolio optimization problem [21,61]

min
x∈X

−μT x + xT Qx,

where Q is a covariance matrix and μ is the estimation of some parameters. There
often exists a perturbation (δμ, δQ) for (μ, Q). This results in two types of robust
optimization problems

min
x∈X

max
(δμ,δQ)∈Y

−(μ + δμ)T x + xT (Q + δQ)x,

max
(δμ,δQ)∈Y

min
x∈X

−(μ + δμ)T x + xT (Q + δQ)x .

We look for x∗ and (δμ∗, δQ∗) that can solve the above two robust optimization
problems simultaneously. This is equivalent to the saddle point problem with F =
−(μ + δμ)T x + xT (Q + δQ)x . For instance, consider the case that

Q =
⎛

⎝
5 −4 −2

−4 13 10
−2 10 8

⎞

⎠ , μ =
⎛

⎝
0

−1
3

⎞

⎠ ,

with the feasible sets

X := {x ∈ R
3 | −0.5 ≤ xi ≤ 0.5, i = 1, . . . , n},

Y :=
{

(δμ, δQ) ∈ R
3 × SR3×3

∣
∣
∣
−0.1 ≤ (δμ)k, (δQ)i j ≤ 0.1,

1 ≤ k ≤ 3, 1 ≤ i, j ≤ 3

}

.

123

1164 Foundations of Computational Mathematics (2022) 22:1133–1169

In the above, SR3×3 denotes the space of real symmetric 3-by-3 matrices. The
Lagrange multipliers can be similarly expressed as in (6.3). After 1 iteration by Algo-
rithm 3.1, we got the saddle point

x∗ =
⎛

⎝
−0.1289
−0.4506
0.5000

⎞

⎠ , δQ∗ =
⎛

⎝
0.1 0.1 −0.1
0.1 0.1 −0.1

−0.1 −0.1 0.1

⎞

⎠ , δμ∗ =
⎛

⎝
0.1
0.1

−0.1

⎞

⎠ .

It took about 32 s. The above two min–max and max–min optimization problems are
solved simultaneously by them.

6.3 Some Comparisons with Other Methods

Upon the request by referees, we give some comparisons between Algorithm 3.1 and
other methods. The saddle point problems can also be solved by the straightforward
approach of enumerating all KKT points. When all KKT points are to be computed,
the numerical homotopy method such as Bertini [3] can be used. Saddle points
can also be computed by quantifier elimination (QE) methods. Note that the definition
(1.1) automatically gives a quantifier formula for saddle points. In the following, we
give a comparison of the performance of these methods and Algorithm 3.1.

For computing all KKT points, the Maple function Solve is used. After they are
obtained, we select saddle points from them by checking the definition. For the QE
approach, the Maple function QuantifierElimination is used to solve the
quantifier elimination formulae. For the numerical homotopy approach, the software
Bertini is used to solve the KKT system for getting all KKT points first and then
we select saddle points from them. When there are infinitely many KKT points, the
function Solve and the software Bertini experience difficulty to get saddle points
by enumerating KKT points. This happens for Examples 6.1(i), 6.2(i), 6.4(ii). The
computational time (in seconds or hours) for these methods is reported in Table 1. We
would like to remark that the Maple function QuantifierElimination cannot
solve any example question (it does not terminate within 6 h for each one). So we also
try the Mathematica function Resolve to implement the QEmethod. It can solve
Example 6.1(iii) in about 1 second, but it cannot solve any other example question (it
does not terminate within 6 h). The software Bertini can solve Examples 6.1(ii),
6.2(ii), 6.3(i), 6.4(i), 6.5, 6.7, 6.8, 6.9. For other example questions, it cannot finish
within 6 hours. For these examples, Algorithm 3.1 tookmuch less computational time,
except Example 6.1(iii). We also like to remark that the symbolic methods like QE
can obtain saddle points exactly in symbolic operations, while numerical methods can
only obtain saddle points correctly up to round off errors.

7 Conclusions and Discussions

This paper discusses how to solve the saddle point problem of polynomials. We pro-
pose an algorithm (i.e., Algorithm 3.1) for computing saddle points. The Lasserre-type
semidefinite relaxations are used to solve the polynomial optimization problems.

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1165

Table 1 Comparisons with other types of methods

Exemp. Algorithm 3.1 KKT (Solve) QE Bertini

6.1(i) 2 s ∞ KKT points > 6 h ∞ KKT points

6.1(ii) 7.5 s > 6 h > 6 h 380 s

6.1(iii) 99 s 190 s 1 s > 6 h

6.1(iv) 32 s > 6 h > 6 h > 6 h

6.2(i) 3.7 s ∞ KKT points > 6 h ∞ KKT points

6.2(ii) 12.8 s > 6 h > 6 h 780 s

6.3(i) 75 s 30 s > 6 h 1100 s

6.3(ii) 6 s 13011 s > 6 h > 6 h

6.4(i) 64 s 13921 s > 6 h 441 s

6.4(ii) 127 s ∞ KKT points > 6 h ∞ KKT points

6.5 3.3 s > 6 h > 6 h 8701 s

6.6 37.3 s > 6 h > 6 h > 6 h

6.7 4.8 s > 6 h > 6 h 78 s

6.8 113 s > 6 h > 6 h 102 s

6.9 64 s > 6 h > 6 h 6293 s

6.10 7 s > 6 h > 6 h > 6 h

6.11 32 s > 6 h > 6 h > 6 h

Under some genericity assumptions, the proposed algorithm can compute a saddle
point if there exists one. If there does not exist a saddle point, the algorithm can detect
the nonexistence. However, we would like to remark that Algorithm 3.1 can always be
applied, no matter whether the defining polynomials are generic or not. The algorithm
needs to solve semidefinite programs for Lasserre-type relaxations. Since semidefinite
programs are usually solved numerically (e.g., by SeDuMi), the computed solutions
by Algorithm 3.1 are correct up to numerical errors. If the computed solutions are not
accurate enough, classical nonlinear optimization methods can be applied to improve
the accuracy. The method given in this paper can be used to solve saddle point prob-
lems from broad applications, such as zero-sum games, min–max optimization and
robust optimization.

If the polynomials are such that the set K0 is infinite, then the convergence of
Algorithm 3.1 is not theoretically guaranteed. For future work, the following questions
are important and interesting.

Question 7.1 When F, g, h are generic, what is an accurate (or sharp) upper bound
for the number of iterations required by Algorithm 3.1 to terminate? What is the
complexity of Algorithm 3.1 for generic F, g, h?

Theorem 3.4 gives an upper bound for the number of iterations. However, the bound
given in (3.7) is certainly not sharp. Beyond the number of iterations, the complexity
of solving the polynomial optimization problems (3.3), (3.4) and (3.5) is another
concern. For efficient computational performance, Algorithms 4.1, 4.5 and 4.8 are
applied to solve them. However, their complexities are mostly open, to the best of

123

1166 Foundations of Computational Mathematics (2022) 22:1133–1169

the authors’ knowledge. We remark that Algorithms 4.1, 4.5 and 4.8 are based on the
tight relaxation method in [49], instead of the classical Lasserre relaxation method
in [31]. For the method in [31], there is no complexity result for the worst cases,
i.e., there exist instances of polynomial optimization such that the method in [31]
does not terminate within finitely many steps. The method in [49] always terminates
within finitely many steps, under nonsingularity assumptions on constraints, while its
complexity is currently unknown.

The finite convergence of Algorithm 3.1 is guaranteed if the set K0\Sa is finite. If
it is infinite, it may or may not have finite convergence. If it does not, how can we get
a saddle point? The following question is mostly open for the authors.

Question 7.2 For polynomials F, g, h such that the set K0\Sa is not finite, how can
we compute a saddle point if it exists? Or how can we detect its nonexistence if it does
not exist?

When X , Y are nonempty compact convex sets and the function F is convex–
concave, there always exists a saddle point [5, §2.6]. However, if one of X , Y is
nonconvex or if F is not convex–concave, a saddle point may, or may not, exist. This
is the case even if F is a polynomial and X , Y are semialgebraic sets. The existence
and nonexistence of saddle points for SPPPs are shown in various examples in Sect. 6.
However, there is a new interesting property for SPPPs. We can write the objective
polynomial F(x, y) as

F(x, y) = [x]T
d1G[y]d2 ,

for degrees d1, d2 > 0 and a matrix G (see Sect. 2 for the notation [x]d1 and [y]d2).
Consider new variables u := [x]d1 , v := [y]d2 and the new sets

X = {[x]d1 : x ∈ X}, Y = {[y]d2 : y ∈ Y }.

A convex moment relaxation for the SPPP is to find (u∗, v∗) ∈ conv(X) × conv(Y)

such that

(u∗)T Gv ≤ (u∗)T G(v∗) ≤ uT Gv∗

for all u ∈ conv(X), v ∈ conv(Y). (The notation conv(T) denotes the convex hull
of T .) When X , Y are nonempty compact sets, the above (u∗, v∗) always exists,
because uT Gv is bilinear in (u, v) and conv(X), conv(Y) are compact convex sets.
In particular, if such u∗ is an extreme point of conv(X) and v∗ is an extreme point
of conv(Y), say, u∗ = [a]d1 and v∗ = [b]d2 for a ∈ X , b ∈ Y , then (a, b) must be a
saddle point of the original SPPP. If there is no saddle point (u∗, v∗) such that u∗, v∗
are both extreme, the original SPPP does not have saddle points. We refer to [30] for
related work about this kind of problems.

Acknowledgements Jiawang Nie and Zi Yang were partially supported by the NSF Grants DMS-1417985
and DMS-1619973.

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1167

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. T. Başar and G. Olsder, Dynamic noncooperative game theory, SIAM, 1998
2. S. Basu, R. Pollack and M.-F. Roy, Algorithms in Real Algebraic Geometry, Algorithms and Compu-

tation in Mathematics, 10, Springer-Verlag, 2003.
3. D. Bates, J. Hauenstein, A. Sommese and C. Wampler, Bertini: Software for Numerical Algebraic

Geometry, Available at bertini.nd.edu with permanent https://doi.org/10.7274/R0H41PB5.
4. D. Bertsekas, Nonlinear programming, second edition, Athena Scientific, 1995.
5. D. Bertsekas, A. Nedić and A. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, Bel-

mont, 2003.
6. D. Bertsimas, O. Nohadani andM. Teo, Robust optimization for unconstrained simulation-based prob-

lems, Operations Research 58(2010), no. 1, 161–178.
7. J. Bochnak, M. Coste and M-F. Roy, Real Algebraic Geometry, Springer, 1998.
8. G. Blekherman, There are significantly more nonnegative polynomials than sums of squares, Isr. J.

Math. 153(2006), 355–380.
9. G. Blekherman, P. Parrilo and R. Thomas (eds.), Semidefinite Optimization and Convex Algebraic

Geometry, MOS-SIAM Series on Optimization, SIAM, 2013.
10. C. Brown and J. Davenport, The complexity of quantifier elimination and cylindrical algebraic decom-

position, Proceedings of the 2007 international symposium on Symbolic and algebraic computation,
54–60, 2007.

11. B. Caviness and J. Johnson, Quantifier elimination and cylindrical algebraic decomposition, Springer
Science & Business Media, 2012.

12. A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications
to imaging, Journal of Mathematical Imaging And Vision 40(2011), no. 1, 120–145.

13. Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods for a class of saddle point problems.
SIAM J. Optim. 24(2014), no. 4, 1779–1814.

14. B. Cox, A. Juditsky, and A. Nemirovski, Decomposition techniques for bilinear saddle point problems
and variational inequalities with affine monotone operators, J. Optim. Theory Appl. 172(2017), no. 2,
402–435.

15. R. Curto and L. Fialkow, Truncated K-moment problems in several variables, J. Operator Theory
54(2005), 189–226.

16. Y. Dauphin, R. Pascanu, C. Gülehre, K. Cho, S. Ganguli and Y. Bengio, Identifying and attacking the
saddle point problem in high-dimensional non-convex optimization, in: Advances in Neural Informa-
tion Processing Systems 27 (NIPS 2014), 2933–2941, Curran Associates, Inc., 2014.

17. J. Davenport and J. Herntz, Real quantifier elimination is doubly exponential, J. Symb. Comput.
5(1988), no. 1-2, 29–35.

18. J. Demmel, J.Nie and V. Powers, Representations of positive polynomials on non-compact semialge-
braic sets via KKT ideals, J. Pure Appl. Algebra 209(2007), no. 1, pp. 189–200.

19. E. Esser, X. Zhang, and T. F. Chan, A general framework for a class of first order primal-dual algorithms
for convex optimization in imaging science, J. Imaging Sci. 3(2010), 1015–1046.

20. L. Fialkow and J. Nie, The truncatedmoment problem via homogenization and flat extensions, J. Funct.
Anal. 263(2012), no. 6, 1682–1700.

21. B. Halldórsson and R. Tütüncü, An interior-point method for a class of saddle-point problems, J.
Optim. Theory Appl. 116(2003), no. 3, 559–590.

22. J. Harris, Algebraic Geometry, A First Course, Springer Verlag, 1992.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7274/R0H41PB5

1168 Foundations of Computational Mathematics (2022) 22:1133–1169

23. B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: from
contraction perspective, SIAM J. Imaging Sci. 5(2012), no. 1, 119–149.

24. Y. He and R. Monteiro, Accelerating block-decomposition first-order methods for solving composite
saddle-point and two-player nash equilibrium problems, SIAM J. Optim. 25(2015), no. 4, 2182–2211.

25. J.W. Helon and J. Nie, A semidefinite approach for truncated K-moment problems, Found. Comput.
Math. 12(2012), no. 6, 851–881.

26. D. Henrion, J. Lasserre and J. Loefberg, GloptiPoly 3: moments, optimization and semidefinite pro-
gramming, Optim. Methods Softw. 24(2009), no. 4-5, 761–779.

27. D. Henrion and J. Lasserre, Detecting global optimality and extracting solutions in GloptiPoly, Positive
polynomials in control, 293–310, Lecture Notes in Control and Inform. Sci., 312, Springer, Berlin,
2005.

28. H. Hong and M. S. El Din, Variant quantifier elimination, J. Symb. Comput. 47(2012), 883–901.
29. G.M. Korpelevič, An extragradient method for finding saddle points and other problems, Èkonom. i

Mat. Metody 12(1976), no. 4, 747–756.
30. R.Laraki and J. Lasserre, Semidefinite programming formin-maxproblems andgames,Math. Program.

131(2012), 305–332.
31. J. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim.

11(2011), no. 3, 796–817.
32. J. Lasserre, Min-max and robust polynomial optimization. Journal of Global Optimization 51(2011),

no. 1, 1–10.
33. J. Lasserre, Introduction to polynomial and semi-algebraic optimization, Cambridge University Press,

Cambridge, 2015.
34. J. Lasserre, The Moment-SOS Hierarchy, In Proceedings of the International Congress of Mathemati-

cians (ICM 2018), vol 4, B. Sirakov, P. Ney de Souza and M. Viana (Eds.), World Scientific, 2019, pp.
3773–3794.

35. M. Laurent, Revisiting two theorems of Curto and Fialkow on moment matrices, Proceedings of the
AMS 133(2005), no. 10, 2965–2976.

36. M. Laurent, Sums of squares, moment matrices and optimization over polynomials, Emerging Appli-
cations of Algebraic Geometry, Vol. 149 of IMA Volumes in Mathematics and its Applications (Eds.
M. Putinar and S. Sullivant), Springer, pp. 157–270, 2009.

37. M. Laurent, Optimization over polynomials: Selected topics, Proceedings of the International Congress
of Mathematicians, 2014.

38. D. Maistroskii, Gradient methods for finding saddle points, Matekon 13 (1977), 3–22.
39. R.Monteiro andB. Svaiter, Complexity of variants of Tseng’smodified F-B splitting andKorpelevich’s

methods for hemivariational inequalities with applications to saddle-point and convex optimization
problems, SIAM J. Optim. 21(2011), no. 4, 1688–1720.

40. J. Nash, Non-cooperative games, Annals of Mathematics (1951): 286-295
41. A. Nedić and A. Ozdaglar, Subgradient methods for saddle-point problems, J. Optim. Theory Appl.

142(2009), no. 1, 205–228.
42. A.Nemirovski, Prox-methodwith rate of convergence O(1/t) for variational inequalitieswithLipschitz

continuous monotone operators and smooth convex-concave saddle point problems, SIAM J. Optim.
15 (2004), no. 1, 229–251.

43. J. Nie and K. Ranestad, Algebraic degree of polynomial optimization, SIAM J. Optim. 20(2009),
no. 1, 485–502.

44. J. Nie, Certifying convergence of Lasserre’s hierarchy via flat truncation, Math. Program. 142(2013),
no. 1-2, 485–510.

45. J. Nie, Polynomial optimization with real varieties, SIAM J. Optim. 23(2013), no. 3, 1634–1646.
46. J.Nie,Optimality conditions andfinite convergence ofLasserre’s hierarchy,Math. Program. 146(2014),

no. 1-2, 97–121.
47. J. Nie, Linear optimization with cones of moments and nonnegative polynomials, Math. Program.

153(2015), no. 1, 247–274.
48. J. Nie, Generating polynomials and symmetric tensor decompositions, Found. Comput. Math.

17(2017), no. 2, 423–465.
49. J. Nie, Tight relaxations for polynomial optimization and lagrange multiplier expressions, Math. Pro-

gram. 178(2019), no. 1-2, 1–37.
50. P. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Program.

96(2003), no.2, 293–320.

123

Foundations of Computational Mathematics (2022) 22:1133–1169 1169

51. R. Pascanu, Y. Dauphin, S. Ganguli and Y. Bengio, On the saddle point problem for non-convex
optimization, Preprint, 2014. arXiv:1405.4604 [cs.LG]

52. M. Putinar, Positive polynomials on compact semi-algebraic sets, Ind. Univ. Math. J. 42(1993),
969–984.

53. L. Ratliff, S. Burden and S. Sastry, Characterization and computation of local Nash equilibria in
continuous games, 2013 51stAnnualAllertonConference onCommunication, Control, andComputing
(Allerton), 917–924, 2013.

54. J. Renegar, On the computational complexity and geometry of the first-order theory of the reals, Parts
I, II, III. J. Symbolic Comput. 13(1992), no. 3, 255–352.

55. P. J. Spaenlehauer, On the complexity of computing critical points with Gröbner bases, SIAM J. Optim.
24(2014), no. 3, 1382–1401.

56. P. Shah and P. Parrilo, Polynomial stochastic games via sum of squares optimization, Proceedings of
the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, Dec. 12-14, 2007.

57. C. Scheiderer, Positivity and sums of squares: A guide to recent results, Emerging Applications of
Algebraic Geometry (M. Putinar, S. Sullivant, eds.), IMA Volumes Math. Appl. 149, Springer, 2009,
pp. 271–324.

58. J. Sturm, SeDuMi 1.02: AMATLAB toolbox for optimization over symmetric cones, Optim. Methods
Softw. 11 & 12 (1999), 625–653.

59. M. Todd, Semidefinite optimization, Acta Numerica 10(2001), 515–560.
60. I. Zabotin, A subgradient method for finding a saddle point of a convex-concave function, Issled. Prikl.

Mat. 15(1988), 6–12.
61. L. Zhu, T. Coleman and Y. Li, Min-max robust CVaR robust mean-variance portfolios, Journal of Risk

11(2009), no. 3, 55.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1405.4604

	The Saddle Point Problem of Polynomials
	Abstract
	1 Introduction
	1.1 Optimality Conditions
	1.2 Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Positive Polynomials
	2.3 Localizing and Moment Matrices

	3 An Algorithm for Solving SPPPs
	4 Solving Optimization Problems
	4.1 The Upper-Level Optimization
	4.2 Lower-Level Minimization
	4.3 Lower-Level Maximization

	5 Some Proofs
	6 Numerical Experiments
	6.1 Some Explicit Examples
	6.2 Some Application Problems
	6.3 Some Comparisons with Other Methods

	7 Conclusions and Discussions
	Acknowledgements
	References

