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Abstract
We provide a new upper bound for sampling numbers (gn)n∈N associated with the
compact embedding of a separable reproducing kernel Hilbert space into the space
of square integrable functions. There are universal constants C, c > 0 (which are
specified in the paper) such that

g2n ≤ C log(n)

n

∑

k≥�cn�
σ 2
k , n ≥ 2,

where (σk)k∈N is the sequence of singular numbers (approximation numbers) of the
Hilbert–Schmidt embedding Id : H(K ) → L2(D, �D). The algorithm which realizes
the bound is a least squares algorithm based on a specific set of sampling nodes.
These are constructed out of a random draw in combination with a down-sampling
procedure coming from the celebrated proof ofWeaver’s conjecture, whichwas shown
to be equivalent to the Kadison–Singer problem. Our result is non-constructive since
we only show the existence of a linear sampling operator realizing the above bound.
The general result can for instance be applied to the well-known situation of Hs

mix(T
d)

in L2(T
d) with s > 1/2. We obtain the asymptotic bound

gn ≤ Cs,dn
−s log(n)(d−1)s+1/2,

which improves on very recent results by shortening the gap between upper and lower
bound to

√
log(n). The result implies that for dimensions d > 2 any sparse grid

sampling recovery method does not perform asymptotically optimal.
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1 Introduction

In this paper, we study a well-known problem on the optimal recovery of multivariate
functions from n function samples. The problem turned out to be rather difficult in
several relevant situations. Since we want to recover the function f from n function
samples ( f (x1), . . . , f (xn)), the problem boils down to the question of how to choose
these sampling nodes X = (x1, . . . , xn) and corresponding recovery algorithms. The
minimal worst-case error for an optimal choice is reflected by the n-th sampling
number defined by

gn(IdK ,�D ):= inf
x1,...,xn∈D

inf
ϕ:Cn→L2

sup
‖ f ‖H(K )≤1

‖ f − ϕ( f (x1), . . . , f (xn))‖L2(D,�D).

(1)
The functions are modeled as elements from a separable reproducing kernel Hilbert
space H(K ) of functions on a set D ⊂ Rd with finite trace kernel K (·, ·), i.e.,

tr(K ):=
∫

D
K (x, x)d�D(x) < ∞. (2)

The recovery problem (in the above framework) has been first addressed by
Wasilkowski and Woźniakowski in [42]. The corresponding problem for certain par-
ticular cases (e.g., classes of functions with mixed smoothness properties, see [7, Sect.
5]) has been studied much earlier. Our main result is the existence of two universal
constants C, c > 0 (specified in Remark 6.3) such that the relation

g2n ≤ C
log(n)

n

∑

k≥�cn�
σ 2
k , n ≥ 2, (3)

holds true between the sampling numbers (gn)n∈N and the square summable singular
numbers (σk)k∈N of the compact embedding

IdK ,�D : H(K ) → L2(D, �D).

Weemphasize that in general, the square-summability of the singular numbers (σk)k∈N
is not implied by the compactness of the embedding IdK ,�D . This is one reason why
we need the additional assumption of a finite trace kernel (2) (or a Hilbert–Schmidt
embedding). In addition, as it has beenobservedbyHinrichs et al. [10], the non-existing
trace may cause the sampling numbers to have a worse (or even no) polynomial decay
than the corresponding polynomially decaying singular numbers (σk)k . Hence, an
inequality (like (3)) which passes on the polynomial decay of the singular numbers to
the sampling numbers is in general impossiblewithout the condition of afinite trace (2).
In our main example, the recovery of multivariate functions with dominating mixed
smoothness (see Sect. 7), this condition is equivalent to s > 1/2, where s denotes
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the mixed smoothness parameter. For further historical and technical comments (e.g.,
non-separable RKHS) we refer to Remark 6.2.

The algorithm which realizes the bound (3) in the sense of (1) is a (linear) least
squares algorithm based on a specific set of sampling nodes. These are constructed
out of a random draw in combination with a down-sampling procedure coming from
the proof of Weaver’s conjecture [26], see Sect. 2. In its original form, the result in
[26] is not applicable for our purpose. That is why we have to slightly generalize it,
see Theorem 2.3. Note that the result in (3) is non-constructive. We do not have a
deterministic construction for a suitable set of nodes. However, we have control of
the failure probability which can be made arbitrarily small. In addition, the subspace,
where the least squares algorithm is taking place is precisely given and determined by
the first m singular vectors.

The problem discussed in the present paper is tightly related to the problem of
the Marcinkiewicz discretization of L2-norms for functions from finite-dimensional
spaces (e.g., trigonometric polynomials). In fact, constructing well-conditioned matri-
ces for the least squares approximation is an equivalent issue. Let us emphasize that
V.N. Temlyakov (and coauthors) already used the Nitzan et al. construction [26] for
the Marcinkiewicz discretization problem in the context of multivariate (hyperbolic
cross) polynomials, see [34,35] and the very recent paper [21].

Compared to the result by Krieg and M.Ullrich [15], the relation (3) is stronger. In
fact, the difference is mostly in the log-exponent as the example below shows. The
general relation (3) yields a significant improvement in the situation of mixed Sobolev
embeddings in L2, see Sect. 7. Applied, for instance, to the situation of Hs

mix(T
d) in

L2(T
d) with s > 1/2 (this condition is equivalent to the finite trace condition (2)),

the result in (3) yields
gn �d n−s log(n)(d−1)s+1/2, (4)

whereas the result in [15] (see also [13,24,41]) implies

gn �d n−s log(n)(d−1)s+s .

The log-gap grows with s > 1/2. Our new result achieves rates that are only worse
by

√
log(n) in comparison with the benchmark rates given by the singular numbers.

Note that in d ≥ 3 and any s > 1/2 the bound (4) yields a better performance than
any sparse grid technique is able to provide, see [2,3,6,8,31,33] and [7, Sect. 5]. In
addition, combining the above result with recent preasymptotic estimates for the (σ j ) j ,
see [14,17–19], we are able to obtain reasonable bounds for gn also in the case of small
n. See Sect. 7 for further comments and references in this direction.

Krieg and M.Ullrich [15] used a sophisticated random sampling strategy which
allowed for establishing a new connection between sampling numbers and singular
values. Let us emphasize that this can be considered as a major progress in this field. In
addition, the result in this paper partly relies on this random sampling strategy accord-
ing to a distribution built upon spectral properties of the embedding. The advantage
of the pure random strategy in connection with a log(n)-oversampling is the fact that
the failure probability decays polynomially in n which has been recently shown by
M.Ullrich [41] and, independently, by Moeller together with the third named author
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[24]. In other words, although this approach incorporates a probabilistic ingredient,
the failure probability is controlled and the algorithm may be implemented. Note that
there are some obvious parallels to the field of compressed sensing, where also the
measurement matrix is drawn at random and satisfies RIP with high probability.
Notation. As usual, N denotes the natural numbers, N0:=N ∪ {0}, Z denotes the
integers,R the real numbers andR+ the nonnegative real numbers andC the complex
numbers. For a natural number m, we set [m]:={1, . . . ,m}. We will also use ∪̇ to
emphasize that a union is disjoint. If not indicated otherwise log(·) denotes the natural
logarithm of its argument. Cn denotes the complex n-space, whereas Cm×n denotes
the set of all m × n-matrices L with complex entries. Vectors and matrices are usually
typesetted boldface with x, y ∈ Cn . The matrix L∗ denotes the adjoint matrix. The
spectral norm of matrices L is denoted by ‖L‖ or ‖L‖2→2. For a complex (column)
vector y ∈ Cn (or �2), we will often use the tensor notation for the matrix

y ⊗ y:=y · y∗ = y · y� ∈ Cn×n (orCN×N).

For 0 < p ≤ ∞ and x ∈ Cn , we denote ‖x‖p:=(
∑n

i=1 |xi |p)1/p with the usual mod-
ification in the case p = ∞ or x being an infinite sequence. As usual, we will denote
with EX the expectation of a random variable X on a probability space (Ω,A,P).
Given a measurable subset D ⊂ Rd and a measure �, we denote with L2(D, �) the
space of all square integrable complex-valued functions (equivalence classes) on D
with

∫
D | f (x)|2 d�(x) < ∞. We will often use Ω = Dn as probability space with the

product measure P = d�n if � is a probability measure itself.

2 Weaver’s Theorem

In this section, we prove a modified version of Weaver’s KS2-theorem, also known as
Weaver’s KS2-conjecture, from [43] which was shown to be equivalent to the famous
Kadison–Singer conjecture [12] dating back as far as 1959. For a long time, these
statements were mere conjectures and many people even believed them to be false.
Since the celebrated proof given by Marcus et al. [22] in 2015, however, they have
turned into actual theorems and thus into rather strong tools for various applications,
and it is in fact the Weaver KS2-conjecture that is at the heart of our argument in this
article. We need it in a slightly modified form, however, formulated in Theorem 2.3.
The starting point for its proof is the following reformulation of the classical Weaver
statement which already occurred in [26]. We will formulate it with slightly improved
constants, see [25].

Theorem 2.1 [26] Let 0 < ε and u1, . . . ,un ∈ Cm with ‖ui‖22 ≤ ε for all i = 1, . . . , n
and

n∑

i=1

|〈w,ui 〉|2 = ‖w‖22 (5)
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for all w ∈ Cm. Then, there is a partition S1∪̇S2 = [n] with

∑

i∈S j
|〈w,ui 〉|2 ≤ (1 + √

2ε)2

2
‖w‖22

for each j = 1, 2 and all w ∈ Cm. In particular, we have

1 − (2 + √
2)

√
ε

2
‖w‖22 ≤

∑

i∈S j
|〈w,ui 〉|2 ≤ 1 + (2 + √

2)
√

ε

2
‖w‖22

for each j = 1, 2 and all w ∈ Cm.

Note that the above statement is trivial for ε ≥ (2 + √
2)−2, since in this case the

lower bound is ≤ 0 and the upper bound is ≥ 1. Relaxing condition (5), one obtains
an analogous statement for non-tight frames.

Corollary 2.2 [26] Let 0 < ε and u1, . . . ,un ∈ Cm with ‖ui‖22 ≤ ε for all i = 1, . . . , n
and

α‖w‖22 ≤
n∑

i=1

|〈w,ui 〉|2 ≤ β‖w‖22

for all w ∈ Cm, where β ≥ α > 0 are some fixed constants. Then, there is a partition
S1∪̇S2 = [n], such that

1 − (2 + √
2)

√
ε/α

2
· α‖w‖22 ≤

∑

i∈S j
|〈w,ui 〉|2 ≤ 1 + (2 + √

2)
√

ε/α

2
· β‖w‖22

for each j = 1, 2 and all w ∈ Cm.

Again, the above statement is trivial for ε/α ≥ (2 + √
2)−2. Now we are ready

to formulate and prove the theorem which is convenient for our later purpose. The
proof technique of this theorem is analogous to the one used for the proof of Lemma
2 in [26]. After the preprint was finished, V.N. Temlyakov pointed out to us that their
proof of Lemma 2.2 in their recent paper [21], which is stated in a weaker form, also
contains a version of the theorem below with unspecified constants.

Theorem 2.3 Let k1, k2, k3 > 0 and u1, . . . ,un ∈ Cm with ‖ui‖22 ≤ k1
m
n for all

i = 1, . . . , n and

k2‖w‖22 ≤
n∑

i=1

|〈w,ui 〉|2 ≤ k3‖w‖22

123



450 Foundations of Computational Mathematics (2022) 22:445–468

for all w ∈ Cm. Then, there is a J ⊆ [n] of size #J ≤ c1m with

c2 · m
n

‖w‖22 ≤
∑

i∈J

|〈w,ui 〉|2 ≤ c3 · m
n

‖w‖22

for all w ∈ Cm, where c1, c2, c3 only depend on k1, k2, k3. More precisely, we can
choose

c1 = 1642
k1
k2

, c2 = (2 + √
2)2k1, c3 = 1642

k1k3
k2

in case n
m ≥ 47 k1

k2
. In the regime 1 ≤ n

m < 47 k1
k2
, one may put c1 = 47k1/k2, c2 = k2,

c3 = 47k1k3/k2.

Proof To ease the notation a bit, let us set ζ :=2 + √
2. Put δ:=k1

m
n , α0:=k2, β0:=k3

and define recursively

α�+1:=1 − ζ
√

δ/α�

2
· α�, β�+1:=1 + ζ

√
δ/α�

2
· β�

for � ∈ N0. Assume for the moment that δ < (2ζ )−2k2. We want to show that there
is a constant γ > 0, not depending on δ and an L ∈ N, such that α� ≥ (2ζ )2δ for all
� ≤ L as well as ζ 2δ ≤ αL+1 < (2ζ )2δ and βL+1 < γαL+1 < (2ζ )2γ δ.

Notice that

1 − √
δ/α�

2

is strictly increasing in α� > 0. For α� ≥ (2ζ )2δ, we thus have

1

4
=

1 − ζ
√

δ
(2ζ )2δ

2
≤ 1 − ζ

√
δ/α�

2
< lim

x−→∞
1 − ζ

√
δ/x

2
= 1

2
,

and therefore

1

4
α� ≤ 1 − ζ

√
δ/α�

2
· α� = α�+1 <

1

2
α�.

Set L:=max
{
� ∈ N0 : α� ≥ (2ζ )2δ

}
so that α� ≥ (2ζ )2δ for all � ≤ L . Notice that,

since α�+1 < α�/2 as long as α� ≥ (2ζ )2δ, we have L < ∞. Since α0 = k2 > (2ζ )2δ,
we also have L ≥ 0.

The definition of L directly yields αL+1 < (2ζ )2δ, but by the above also

αL+1 ≥ 1

4
αL ≥ ζ 2δ.
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It remains to find a γ > 0 as described above. To do so, first observe by the definition
of the α� and β� that

βL+1

αL+1
= βL

αL
· 1 + ζ

√
δ/αL

1 − ζ
√

δ/αL
= βL−1

αL−1
· 1 + ζ

√
δ/αL−1

1 − ζ
√

δ/αL−1
· 1 + ζ

√
δ/αL

1 − ζ
√

δ/αL
= . . .

= β0

α0
·

L∏

�=0

1 + ζ
√

δ/α�

1 − ζ
√

δ/α�

.

We have αL ≥ (2ζ )2δ so that ζ
√

δ/αL ≤ 2−1 and using

α�+1 <
1

2
α� ⇒ ζ

√
δ/α� < 2−1/2 · ζ

√
δ/α�+1

inductively we get ζ
√

δ/αL−� ≤ 2−1−�/2 for � = 0, 1, . . . , L . Thus,

βL+1

αL+1
≤ k3

k2
·

L∏

�=0

1 + ζ
√

δ/α�

1 − ζ
√

δ/α�

<
k3
k2

·
∞∏

�=0

1 + 2−1−�/2

1 − 2−1−�/2 =: γ < 35.21 · k3
k2

,

which yields the final claim.
With this at hand, consider the situation of the theorem. Clearly, we have n ≥ m

due to the lower frame bound k2 > 0. We now distinguish two cases. Firstly, if
1 ≤ n

m < 47 k1
k2

the assertion follows directly for J = [n] and the choice c1 = n
m ,

c2 = k2
n
m , and c3 = k3

n
m . Incorporating the bounds for n/m gives the choice in the

statement of the theorem.
In the second case, when n

m ≥ 47 k1
k2
, let α�, β� be as above and note that δ =

k1
m
n ≤ k2/47 < (2ζ )−2k2. The vectors ui fulfill the assumptions of Corollary 2.2 for

α = α0 = k2 and β = β0 = k3, so that there is a set J1 ⊆ [n] with

α1‖w‖22 ≤
∑

i∈J1

|〈w,ui 〉|2 ≤ β1‖w‖22

for all w ∈ Cm . By choosing the smaller of the two partition classes S1 or S2, we may
assume #J1 ≤ 1

2n. We can now apply Corollary 2.2 again, where we restrict ourselves
to the indices in J1. We thus get a J2 ⊆ J1 with

α2‖w‖22 ≤
∑

i∈J2

|〈w,ui 〉|2 ≤ β2‖w‖22

for all w ∈ Cm . Again, by choosing the smaller partition class, we may assume
#J2 ≤ 1

2#J1 ≤ 1
4n. After L + 1 applications of Corollary 2.2, we get

αL+1‖w‖22 ≤
∑

i∈JL+1

|〈w,ui 〉|2 ≤ βL+1‖w‖22
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for all w ∈ Cm , where JL+1 ⊆ [n] with #JL+1 ≤ 2−(L+1)n. By what was proven in
the first part of this proof, we therefore get

ζ 2δ‖w‖22 ≤
∑

i∈JL+1

|〈w,ui 〉|2 ≤ (2ζ )2γ δ‖w‖22

for all w ∈ Cm . We thus get the assertion for J = JL+1, c2 = ζ 2k1 and c3 =
(2ζ )2γ k1 ≤ 35.21 · (2ζ )2 k1k3k2

. As for c1, look at the quantities

φ�:= β�

#J�

for � = 0, 1, . . . , L + 1, where we set J0:=[n]. Then, φ0 = β0/n = k3/n. Since

φ�+1

φ�

= β�+1

β�

· #J�
#J�+1

= 1 + ζ
√

δ/α�

2︸ ︷︷ ︸
≥1/2

· #J�
#J�+1︸ ︷︷ ︸

≥2

≥ 1,

we see that the φ� are monotonically increasing. Thus,

k3
n

= φ0 ≤ φL+1 = βL+1

#JL+1
≤ (2ζ )2γ δ

#JL+1
,

so that

#J = #JL+1 ≤ n

k3
· (2ζ )2γ · k1m

n
≤ 35.21 · (2ζ )2

k1
k2

· m,

i.e., c1 ≤ 35.21 · (2ζ )2k1/k2. ��

3 Reproducing Kernel Hilbert Spaces

We will work in the framework of reproducing kernel Hilbert spaces. The relevant
theoretical background can be found in [1, Chapt. 1] and [4, Chapt. 4]. The papers [9]
and [32] are also of particular relevance for the subject of this paper.

Let L2(D, �D) be the space of complex-valued square-integrable functions with
respect to �D . Here D ⊂ Rd is an arbitrary measurable subset and �D a measure on
D. We further consider a reproducing kernel Hilbert space H(K ) with a Hermitian
positive definite kernel K on D × D. The crucial property of reproducing kernel
Hilbert spaces is the fact that Dirac functionals are continuous, or, equivalently, the
reproducing property

f (x) = 〈 f , K (·, x)〉H(K )

holds for all x ∈ D.
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We will use the notation from [4, Chapt. 4]. In the framework of this paper, the
finite trace of the kernel is given by

tr(K ):=‖K‖22 =
∫

D
K (x, x)d�D(x) < ∞. (6)

The embedding operator

IdK ,�D : H(K ) → L2(D, �D) (7)

is Hilbert–Schmidt under the finite trace condition (6), see [9], [32, Lemma 2.3],
which we always assume from now on. We additionally assume that H(K ) is at least
infinite dimensional. Let us denote the (at most) countable system of strictly positive
eigenvalues (λ j ) j∈N of WK ,�D = Id∗

K ,�D
◦ IdK ,�D arranged in non-increasing order,

i.e.,

λ1 ≥ λ2 ≥ λ3 ≥ · · · > 0.

We will also need the left and right singular vectors (ek)k ⊂ H(K ) and (ηk)k ⊂
L2(D, �D)which both represent orthonormal systems in the respective spaces related
by ek = σkηk with λk = σ 2

k for k ∈ N.Wewould like to emphasize that the embedding
(7) is not necessarily injective. In other words, for certain kernels there might also be a
nontrivial null-space of the embedding in (7). Therefore, the system (ek)k from above
is not necessarily a basis in H(K ). It would be a basis under additional restrictions,
e.g., if the kernel K (·, ·) is continuous and bounded (i.e., a Mercer kernel). It is shown
in [9], [32, Lemma 2.3] that if tr(K ) < ∞ and H(K ) is separable the nonnegative
function

K (x, x) −
∞∑

k=1

|ek(x)|2 (8)

vanishes almost everywhere. Let us finally define the “spectral functions”

N (m):= sup
x∈D

m−1∑

k=1

|ηk(x)|2 (9)

and

T (m):= sup
x∈D

∞∑

k=m

|ek(x)|2 (10)

provided that they exist.

4 Weighted Least Squares

Let us begin with concentration inequalities for the spectral norm of sums of complex
rank-1 matrices. Such matrices appear as L∗L when studying least squares solutions
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of over-determined linear systems

L · c = f,

where L ∈ Cn×m is a matrix with n > m. It is well known that the above system
may not have a solution. However, we can ask for the vector c which minimizes the
residual ‖f − L · c‖2. Multiplying the system with L∗ gives

L∗L · c = L∗ · f

which is called the system of normal equations. If L has full rank, then the unique
solution of the least squares problem is given by

c = (L∗L)−1L∗ · f . (11)

For function recovery problems, we will use the following matrix

Ln,m :=
⎛

⎜⎝
η1(x1) η2(x1) · · · ηm−1(x1)

...
...

...

η1(xn) η2(xn) · · · ηm−1(xn)

⎞

⎟⎠ =
⎛

⎜⎝
y1
...

yn

⎞

⎟⎠ and f =
⎛

⎜⎝
f (x1)

...

f (xn)

⎞

⎟⎠ , (12)

for X = (x1, . . . , xn) ∈ Dn of distinct sampling nodes and a system (ηk(·))k of
functions. Here yi :=(η1(xi ), . . . , ηm−1(xi )), i = 1, . . . , n.

Lemma 4.1 [13, Proposition 3.1] Let L ∈ Cn×m be a matrix with m ≤ n with full
rank and singular values τ1, . . . , τm > 0 arranged in non-increasing order.

(i) Then, also the matrix (L∗L)−1L∗ has full rank and singular values τ−1
m , . . . , τ−1

1
(arranged in non-increasing order).

(ii) In particular, it holds that

(L∗L)−1L∗ = V∗Σ̃U

whenever L = U∗ΣV, where U ∈ Cn×n and V ∈ Cm×m are orthogonal matri-
ces and Σ ∈ Rn×m is a rectangular matrix with only (τ1, . . . , τm) on the main
diagonal. Here Σ̃ ∈ Rm×n denotes the matrix with (τ−1

1 , . . . , τ−1
m ) on the main

diagonal.
(iii) The operator norm ‖(L∗L)−1L∗‖2→2 can be controlled as follows:

τ−1
1 ≤ ‖(L∗L)−1L∗‖2→2 ≤ τ−1

m .

Being in the RKHS setting, we compute the coefficients ck , k = 1, . . . ,m − 1, of
the approximant

SmX f :=
m−1∑

k=1

ck ηk (13)
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using the least squares algorithm (11). We will also use the weighted version below,
where �m(·) is a density function which essentially first appeared in [15] and has been
adapted in [24] to

�m(x) = 1

2

(
1

m − 1

m−1∑

j=1

|η j (x)|2 + K (x, x) −∑m−1
j=1 |e j (x)|2

∫
D K (x, x)d�D(x) −∑m−1

j=1 λ j

)
. (14)

Algorithm 1Weighted least squares approximation [5],[15],[13].

Input: X = (x1, ..., xn) ∈ Dn matrix of distinct sampling nodes,
f = ( f (x1), ..., f (xn))� samples of f evaluated at the nodes fromX,
m ∈ N m ≤ n such that the matrix L̃n,m in (15)

has full (column) rank.

Compute weighted samples g := (g j )
n
j=1 with g j :=

{
0, �m (x j ) = 0,

f (x j )/
√

�m (x j ), �m (x j ) �= 0 .

Solve the over-determined linear system

L̃n,m · (c̃1, ..., c̃m−1)
� = g , L̃n,m :=

(
l j ,�

)n,m−1

j=1,�=1
, l j ,� :=

{
0, �m (x j ) = 0,

η�(x j )/
√

�m (x j ), �m (x j ) �= 0,

(15)

via least squares (e.g. directly or via the LSQR algorithm [29]), i.e., compute

(c̃1, ..., c̃m−1)
� := (L̃∗

n,m L̃n,m )−1 L̃∗
n,m · g.

Output: c̃ = (c̃1, ..., c̃m−1)
� ∈ Cm−1 coefficients of the approximant S̃mX f := ∑m−1

k=1 c̃kηk .

Note that the mapping f �→ S̃mX f is well defined and linear for a fixed set of
sampling nodes

X = (x1, . . . , xn) ∈ Dn

if the matrix L̃n,m has full (column) rank. The next section gives sufficient conditions
when this is the case.

5 Concentration Results for RandomMatrices

We start with a concentration inequality for the spectral norm of a matrix of type (12).
It turns out that the complex matrix Ln,m :=Ln,m(X) ∈ Cn×(m−1) has full rank with
high probability, if X = (x1, . . . , xn) is drawn at random from Dn according to a
measure P = d�n , the functions (ηk)

m−1
k=1 are orthonormal w.r.t the measure � and m

is not too large (compared to n). We will find below that the eigenvalues of

Hm :=Hm(X) = 1

n
L∗
n,mLn,m = 1

n

n∑

i=1

yi ⊗ yi ∈ C(m−1)×(m−1) (16)

123



456 Foundations of Computational Mathematics (2022) 22:445–468

are bounded away from zero with high probability if m is small enough compared to
n. The following result is a consequence of [40, Thm. 1.1], see also [24, Thm. 2.3,
Cor. 2.5].

Theorem 5.1 For n ≥ m, r > 1, we immediately obtain that the matrix Hm has only
eigenvalues greater than 1/2 and smaller than 3/2 with probability at least 1−2n1−r

if the nodes are sampled i.i.d. according to � and

N (m) ≤ n

10 r log n
, (17)

where N (m) is the quantity defined in (9). Equivalently, we have for all w ∈ Cm−1

1

2
‖w‖22 ≤ 1

n

∥∥Ln,mw
∥∥2
2 ≤ 3

2
‖w‖22

and √
2

3n
≤ ‖(L∗

n,mLn,m)−1L∗
n,m‖2→2 ≤

√
2

n
(18)

with probability at least 1 − 2n1−r .

Let us now turn to infinite matrices. We need a result which can be applied to
independent �2-sequences of the form

yi = (em(xi ), em+1(xi ), . . .) , i = 1, . . . , n,

where (ek)k ⊂ H(K ) is the system of right singular vectors of the embedding Id :
H(K ) → L2 defined above.

The following infinite-dimensional concentration result is proved in
[24, Thm. 1.1]. There are earlier versions for the finite-dimensional framework (matri-
ces) proved by Tropp [40], Oliveira [28], Rauhut [30] and others. Mendelson, Pajor
[23] and also Oliveira [28] comment on infinite versions of their result. The key feature
of the following proposition is the exact control of the constants and the decaying fail
probability, see also Remark 3.10 in [24] for a more detailed comparison to earlier
results.

Proposition 5.2 Let yi , i = 1 . . . n, be i.i.d random sequences from �2. Let further
n ≥ 3, r > 1, M > 0 such that ‖yi‖2 ≤ M for all i = 1 . . . n almost surely and
Eyi ⊗ yi = Λ for all i = 1 . . . n. Then,

P
(∥∥∥

1

n

n∑

i=1

yi ⊗ yi − Λ

∥∥∥
2→2

≥ F
)

≤ 2
3
4 n1−r ,

where F :=max
{
8r log n

n M2κ2, ‖Λ‖2→2

}
and κ = 1+√

5
2 .

This can be written in a more compact form.

123



Foundations of Computational Mathematics (2022) 22:445–468 457

Theorem 5.3 Let yi , i = 1 . . . n, be i.i.d random sequences from �2. Let further n ≥ 3,
M > 0 such that ‖yi‖2 ≤ M for all i = 1 . . . n almost surely and Eyi ⊗ yi = Λ for
i = 1, . . . , n with ‖Λ‖2→2 ≤ 1. Then, for 0 < t < 1,

P
(∥∥∥

1

n

n∑

i=1

yi ⊗ yi − Λ

∥∥∥
2→2

≥ t
)

≤ 2
3
4 n exp

(
− t2n

21M2

)
.

6 New Bounds for Sampling Numbers

We are interested in the question of optimal sampling recovery of functions from
reproducing kernel Hilbert spaces in L2(D, �D). The quantity we want to study is
classically given by

gn(IdK ,�D ):= inf
x1,...,xn∈D

inf
ϕ:Cn→L2

sup
‖ f ‖H(K )≤1

‖ f − ϕ( f (x1), . . . , f (xn))‖L2(D,�D)

and quantifies the recovery of functions out of n function values in the worst-case
setting. The goal is to get reasonable bounds for this quantity in n, preferably in terms
of the singular numbers of the embedding. Results on the decay properties of this
quantity in the framework of RKHS have been given by several authors, see, e.g.,
[15,20,27] and the references therein (see also Remark 6.2). For a special case in the
field of hyperbolic cross approximation, we refer to [7, Outstanding Open Problem
1.4]. Here we present a new upper bound in the general framework.
The main idea. In the following theorem, we apply Weaver’s theorem to a random
frame. The idea is to construct a sampling operator S̃mJ using O(m) sampling nodes as
follows. We draw nodesX = (x1, . . . , xn) i.i.d. at random according to some measure
μm specified concretely in the proof below, where n scales as m logm. At this stage,
we have too many sampling nodes, however a “good” frame in the sense of a well-
conditioned matrix Ln,m in (12). To this frame (rows of Ln,m), we apply our modified
Weaver theorem. The result is a shrunk well-conditioned sub-frame corresponding to
a subset (xi )i∈J of the initial set of sample nodes. With this sub-frame (sub-matrix of
Ln,m), we solve the over-determined system via the least squares Algorithm 1. This
represents the sampling operator.When it comes to the error analysis, we again benefit
from the fact that we deal with a (not too small compared to n) subset of the original
nodes X. The consequence is that we do not pay too much (

√
log n) compared to the

sampling operator based on the original set X of nodes. However, we only used O(m)

sample nodes which makes the difference.

Theorem 6.1 Let H(K ) be a separable reproducing kernel Hilbert space on a set
D ⊂ Rd with a positive semidefinite kernel K : D × D → C satisfying

∫

D
K (x, x)d�D(x) < ∞

for some measure �D on D. Then, IdK ,�D : H(K ) → L2(D, �D) is a Hilbert–
Schmidt embedding, the corresponding sequence of singular numbers (σk)

∞
k=1
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square-summable. For the sequence of sampling numbers gn :=gn(IdK ,�D ), we have
the general bound

g2n ≤ C
log n

n

∑

k≥cn

σ 2
k , n ≥ 2, (19)

with two universal constants C, c > 0, which are specified in Remark 6.3.

Proof Let m ≥ 2. Similarly, as in [13,15] and [24], we use the density function (14)
in order to consider the embedding Ĩd : H(K̃m) → L2(D, �m(·)d�D) instead of
IdK ,�D : H(K ) → L2(D, �D). In fact, we define the new kernel

K̃m(x, y):= K (x, y)√
�m(x)

√
�m(y)

. (20)

This yields

sup
‖ f ‖H(K )≤1

∥∥ f − S̃mX f
∥∥
L2(D,�D)

≤ sup
‖g‖H(K̃m )≤1

∥∥g − SmX g
∥∥
L2(D,�m (·)d�D)

(21)

and Ñ (m) ≤ 2(m−1), T̃ (m) ≤ 2
∑∞

j=m σ 2
j . For the details of this, see the discussion

in the proof of [13, Thm. 5.9] and [13, Thm. 5.5]. Note that the operators S̃mX and SmX
are defined by Algorithm 1 and (11). The number of samples will be chosen later as
O(m). Choose now the smallest n such that

m ≤ n

40 log(n)
.

This implies Ñ (m) ≤ 2(m − 1) ≤ n/(20 log(n)). Applying Theorem 5.1 with r = 2
gives that the rows of the matrix 1√

n
L̃n,m represent a finite frame with frame bounds

1/2 and 3/2 with high probability (the failure probability 2n−1 decays polynomially
in n) whenX = (x1, . . . , xn) ∈ Dn is sampled w.r.t to the measure dμm = �m(·)d�D .
That means we have with high probability for any w ∈ Cm−1

1

2
‖w‖22 ≤ 1

n

∥∥L̃n,mw
∥∥2
2 ≤ 3

2
‖w‖22. (22)

Let us now denote with Pm−1 : H(K̃m) → H(K̃m) the projection operator onto
span{e1(·)/

√
�m(·), . . . , em−1(·)/

√
�m(·)}. Following the proof in [24, Thm. 5.1], we

obtain almost surely

sup
‖g‖H(K̃m )≤1

1

n

n∑

i=1

|g(xi ) − Pm−1g(xi )|2 ≤ 1

n
‖Φ∗

mΦm‖2→2

≤
∥∥∥
1

n
Φ∗

mΦm − Λ

∥∥∥
2→2

+ ‖Λ‖2→2

(23)

123



Foundations of Computational Mathematics (2022) 22:445–468 459

with Λ = diag(σ 2
m, σ 2

m+1, . . .) and

Φm :=
⎛

⎜⎝
y1
...

yn

⎞

⎟⎠

being infinitematrices/operatorswith sequences yi = 1/
√

�m(xi )
(
em(xi ), em+1(xi ),

. . . ), i = 1 . . . n. By Proposition 5.2, we finally get from this with high probability

sup
‖g‖H(K̃m )≤1

1

n

n∑

i=1

|g(xi ) − Pm−1g(xi )|2 ≤ c1
(
σ 2
m + 1

m

∞∑

k=m

σ 2
k

)
, (24)

for some constant c1 > 0, where we used that

‖yi‖22 ≤ T̃ (m) ≤ 2
∞∑

j=m

σ 2
j .

Due to the high probability of both events, (22) and (24), there exists an instance of
nodes {x1, . . . , xn} such that the bound (24) is true and 1√

n
L̃n,m represents a finite

frame in Cm−1. Note that all the assumptions of Theorem 2.3 are fulfilled. Indeed,
the squared Euclidean norms of the rows of 1√

n
L̃n,m are bounded by 2(m − 1)/n. To

this finite frame, we may thus apply Theorem 2.3 which constructs a sub-matrix L̃J ,m

having #J = O(m) rows which, properly normalized, still form a frame in Cm−1. It
holds for all w ∈ Cm−1

c2‖w‖22 ≤ 1

m
‖L̃J ,mw‖22 ≤ C2‖w‖22 . (25)

With this matrix we perform the least squares method (11) applied to the shrunk vector
of function samples ( f (xi ))i∈J corresponding to the rows of L̃J ,m .We denote the least
squares operator with SmJ . Note that this operator uses only #J = O(m) samples. Let
‖g‖H(K̃m ) ≤ 1 and again denote with Pm−1 : H(K̃m) → H(K̃m) the projection

operator onto span{e1(·)/
√

�m(·), . . . , em−1(·)/
√

�m(·)}. Then, it holds

‖g − SmJ g‖2L2
= ‖g − Pm−1g + Pm−1g − SmJ g‖2L2

= ‖g − Pm−1g‖2L2
+ ‖SmJ (Pm−1g − g)‖2L2

≤ σ 2
m + ‖(L̃∗

J ,mL̃J ,m)−1L̃∗
J ,m‖22→2

∑

i∈J

|g(xi ) − Pm−1g(xi )|2 .

(26)

Using Lemma 4.1 together with (25) gives

‖g − SmJ g‖2L2
≤ σ 2

m + c3
m

n∑

i=1

|g(xi ) − Pm−1g(xi )|2.
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By the choice of n together with (24), we may estimate further

‖g − SmJ g‖2L2
≤ c4 log(n)

(
σ 2
m + 1

m

∞∑

k=m

σ 2
k

)

≤ c5
log(m)

m

∞∑

k=�m/2�
σ 2
k .

(27)

Consequently, by (21) we obtain

sup
‖ f ‖H(K )≤1

∥∥ f − S̃mJ f
∥∥
L2(D,�D)

≤ c5
log(m)

m

∞∑

k=�m/2�
σ 2
k

and finally, using that #J = O(m),

g2�c6m� ≤ c5
log(m)

m

∞∑

k=�m/2�
σ 2
k ,

where all the involved constants are universal. This implies the statement of the theo-
rem. ��
Remark 6.2 (i) The additional assumption on the “separability” of H(K ) ensures the
equality sign in the inequality

∞∑

k=1

σ 2
k ≤

∫

D
K (x, x)d�D(x) < ∞. (28)

The identity is crucial in the proof of Theorem 6.1, see also [13, Thm. 5.5]. Without
an equality in (28), the best known general upper bound for the sampling numbers gn
can be found in the recent paper [24]. In fact, combining the proof of Theorem 6.1
with the one in [24, Thm. 7.1], one can prove

g2n ≤ C max
{1
n
,
log n

n

∑

k≥cn

σ 2
k

}
.

The bound is worse compared to (19). However, one should rather compare to the
bound in [42], since this proof also works without equality in (28). There the authors
proved under the same assumptions

g2n ≤ min
{
σ 2

� + tr(K )�

n
: � = 1, 2, . . .

}
.

(ii) As far as we know, Wasilkowski and Woźniakowski [42] were the first who
addressed the sampling recovery problem in 2001 in the context of reproducing kernel
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Hilbert spaces. They obtained results using exclusively the finite trace condition (2).
Later in 2009, Kuo et al. [20] did further progress by determining the range for the
“power of standard information”when knowing the decay rate of the singular numbers.
We refer to the monograph [27] for a detailed historical discussion of the development
until 2012. The recent progress in the field has been initiated by Krieg and M.Ullrich
[15] in 2019. The authors proved under stronger assumptions than in Theorem 6.1 an
existence result, namely

g2n � log n

n

∑

k�n/ log(n)

σ 2
k ,

which represents a slightly weaker bound. Further progress (explicit constants, con-
sequences for numerical integration) has been given in Kämmerer et al. [13] and in
M.Ullrich [41] as well as Moeller and T.Ullrich [24] for the control of the failure
probability.

(iii)To further demonstrate the usefulness of the tools developed here, let usmention
that they have already been used by others. In fact, while this manuscript was under
review, Krieg and M.Ullrich [16] used this technique to observe that for non-Hilbert
function space embeddings the “gap” is also at most

√
log(n) if the corresponding

approximation numbers are p-summable with p < 2. Finally, we would like to men-
tion a very recent result by Temlyakov [36], where the sampling numbers gn of a
function class F in L2 are related to the Kolmogorov numbers in L∞. This allows for
treating the case of “small smoothness”, where the square summability does not hold
[37,38].

Remark 6.3 Note that, using Theorem 2.3, Theorem 5.1 and Proposition 5.2, we can
get explicit values for the constants in the above theorem. Concretely, we can conclude
that (19) holds for m ≥ 13136 with C = 1.5 · 106 and c = 3.8 · 10−5.

To verify this, let m ≥ 2 and n = n(m), as in the proof of Theorem 6.1, such that

n − 1

40 log(n − 1)
< m ≤ n

40 log(n)
.

For m = 2 we get n = 497 and since n increases as m increases, we generally have
n ≥ 497. Put r = 2. We then also have (22) with probability at least 1 − 2/n ≥
1 − 2/497 and (24) with probability at least 1 − 23/4/n ≥ 1 − 23/4/497. Since these
already sum up to (1− 2/497) + (1− 23/4/497) > 1, we can guarantee the existence
of a node set {x1, . . . , xn} as in the proof of Theorem 6.1.

In the proof, we apply Theorem 2.3 with k1 = 2, k2 = 1/2, k3 = 3/2, so that we
get the respective constants

c̃1 = 6568, c̃2 = 2(2 + √
2)2, c̃3 = 9852.

For this, note that for all m ≥ 2 and n = n(m) as above we have

n

m
≥ 40 log(n) ≥ 40 log(497) ≥ 40 · 4.7 = 47

k1
k2

.
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To calculate c1, we apply Proposition 5.2 with M2 = 2
∑∞

k=m σ 2
k , so that we get

F = max

{
σ 2
m,

16 log(n)

n
M2κ2

}
= max

⎧
⎨

⎩σ 2
m, 32

(
1 + √

5

2

)2
log(n)

n

∞∑

k=m

σ 2
k

⎫
⎬

⎭ .

Using log(n)/n ≤ 1/40m, we can then estimate further

F ≤ max

⎧
⎨

⎩σ 2
m,

32

40

(
1 + √

5

2

)2
1

m

∞∑

k=m

σ 2
k

⎫
⎬

⎭

≤
⎛

⎝1 + 4

5

(
1 + √

5

2

)2
⎞

⎠

︸ ︷︷ ︸
=:c1

(
σ 2
m + 1

m

∞∑

k=m

σ 2
k

)
,

so that c1 = 3.09 . . . .
After applying Theorem 2.3, we get c2 = c̃2 = 2(2 + √

2)2 and C2 = c̃3 = 9852,
as well as #J ≤ 6568m.

Since

mc2‖w‖22 ≤ ‖L̃J ,mw‖22 ≤ C2m‖w‖22,

Lemma 4.1 (iii) gives

1

C2m
≤ ‖(L̃∗

J ,mL̃J ,m)−1L̃
∗
J ,m‖22→2 ≤ 1

c2m
,

so that we may choose c3 = 1/c2 = (2 + √
2)−2/2.

To obtain c4, we use n/m ≤ n
n−1 ·40 log(n−1) ≤ 497 log(496)

496 log(497) ·40 log(n) to estimate

‖g − S̃mJ g‖2L2
≤ σ 2

m + c3
m

n∑

i=1

|g(xi ) − Pm−1g(xi )|2

≤ σ 2
m + c3

n

m
· c1

(
σ 2
m + 1

m

∞∑

k=m

σ 2
k

)

≤ σ 2
m + 40 · 497 log(496)

496 log(497)
c1c3 log(n)

(
σ 2
m + 1

m

∞∑

k=m

σ 2
k

)

≤
(
1 + 40 · 497 log(496)

496 log(497)
c1c3

)

︸ ︷︷ ︸
=:c4

log(n)

(
σ 2
m + 1

m

∞∑

k=m

σ 2
k

)

and get c4 = 6.31 . . . .
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As for c5, we start with

σ 2
m ≤ 1

(m − 1) − �m/2� + 1

m−1∑

k=�m/2�
σ 2
k = 1

�m/2�
m−1∑

k=�m/2�
σ 2
k ≤ 2

m

m−1∑

k=�m/2�
σ 2
k ,

so that

σ 2
m + 1

m

∞∑

k=m

σ 2
k ≤ 2

m

∞∑

k=�m/2�
σ 2
k .

Furthermore, we have log(n − 1) − log(40) − log log(n − 1) < log(m) and

log(n − 1) − log(40) − log log(n − 1)

log(n)
≥ log(496) − log(40) − log log(496)

log(497)︸ ︷︷ ︸
=:ϑ=0.11...

,

from which we conclude log(n) ≤ ϑ−1 log(m). We then have

c4 log(n)

(
σ 2
m + 1

m

∞∑

k=m

σ 2
k

)
≤ 2c4

ϑ︸︷︷︸
=:c5

· log(m)

m

∞∑

k=�m/2�
σ 2
k

with c5 = 113.35 . . . .
Finally observe that we can choose c6 = c̃1 = 6568 due to #J ≤ c̃1m = 6568m.
Now take m̃ ≥ 2c̃1 and m = �m̃/c̃1� ≥ 2. Further note that �m̃/2c̃1� =

��m̃/c̃1�/2�. Then

g2m̃ ≤ g2c̃1m ≤ c5
log(m)

m

∞∑

k=�m/2�
σ 2
k = c5

log(�m̃/c̃1�)
�m̃/c̃1�

∞∑

k=�m̃/(2c̃1)�
σ 2
k .

The asserted estimates now follow due to 2c̃1 = 13136 and 2c5c̃1 ≤ 1.5 · 106 and
1/(4c̃1) ≥ 3.8 · 10−5.

Remark 6.4 The interesting question remains, whether there is a situation where the
above bound on sampling numbers is sharp. Let us refer to the next subsection for a
possible candidate. Clearly, there are situations where the bound in Theorem 6.1 does
not reflect the correct behavior of sampling numbers. This is, for instance, the case for
the univariate Sobolev embedding Id : H1([0, 1]) → L2([0, 1]) where the sampling
numbers show, at least asymptotically, the same behavior as the singular numbers.

7 An Outstanding Open Problem

Let us once again comment on an important open problem for the optimal sampling
recovery of multivariate functions. We consider the minimal worst-case error (sam-
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pling numbers/widths) defined by

gn(Ids,d : Hs
mix(T

d ) → L2(T
d )):= inf

X=(x1,...,xn)
inf

ϕ:Cn→L2
sup

‖ f ‖Hs
mix

≤1
‖ f −ϕ( f (X))‖L2(Td ). (29)

Let us comment on the class Hs
mix(T

d). That is, we consider functions on the d-
dimensional torus Td � [0, 1)d , where T stands for [0, 1] with endpoints identified.
Note that the unit cube [0, 1]d is preferred here since it has Lebesgue measure 1
and is therefore a probability space. We could have also worked with [0, 2π ]d and
the Lebesgue measure (which can be made a probability measure by a d-dependent
rescaling).

There are many different ways to define function spaces of dominating mixed
smoothness, see [7, Chapt. 3]. We choose an approach which is closely related to
[18, Sect. 2.1], see also (2.6) there. In fact, L2(T

d)-norms of mixed derivatives of the
multivariate function f can be written in terms of Fourier coefficients f̂k of f . For
α ∈ N we define the space Hα

mix(T
d) as the Hilbert space with the inner product

〈 f , g〉Hα
mix

:=
∑

j∈{0,α}d
〈D(j) f , D(j)g〉L2(Td ). (30)

D( j1,..., jd ) = ∂
j1
1 · · · ∂ jd

d thereby denotes the weak derivative operator. Defining the
weight

wα(k) = (1 + (2π |k|)2α)1/2 , k ∈ Z (31)

and the univariate kernel function

K 1
α(x, y):=

∑

k∈Z

exp(2π ik(y − x))

wα(k)2
, x, y ∈ T,

directly leads to

Kd
α (x, y):=K 1

α(x1, y1) · · · K 1
α(xd , yd) , x, y ∈ Td , (32)

which is a reproducing kernel for Hα
mix(T

d). In particular, for any f ∈ Hα
mix(T

d) we
have

f (x) = 〈 f , Kd
α (x, ·)〉Hα

mix
.

The kernel defined in (32) associated with the inner product (30) can be extended to
the case of fractional smoothness s > 0 replacing α by s in (31)–(32) which in turn
leads to the inner product

〈 f , g〉Hs
mix

:=
∑

k∈Zd

f̂k ĝk

d∏

j=1

ws(k j )
2
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in terms of the Fourier coefficients f̂k, ĝk and the corresponding norm. The (ordered)
sequence (λ j )

∞
j=1 of eigenvalues of the corresponding mapping Ws,d = Id∗

s,d ◦ Ids,d ,
where Id : H(Kd

s

) → L2(T
d), is the non-increasing rearrangement of the numbers

{
λk:=

d∏

j=1

ws(k j )
2 =

d∏

j=1

(1 + (2π |k j |)2s)−1 : k ∈ Zd
}
.

It has been shown by various authors, see [7, Chapt. 4] and the references therein, that
we have asymptotically (s > 0)

σn(Ids,d) �s,d n−s(log n)(d−1)s , n ≥ 2. (33)

The correct asymptotic behavior of (29) has been addressed by several authors
in the information-based complexity (IBC) community, see, e.g., [27] and also [7,
Outstanding Open Problem 1.4]. It is nowadays well known, see, e.g., [6,31,39] and
[7, Sec. 5] for some historical remarks that for s > 1/2 the bound

cs,dn
−s(log n)(d−1)s ≤ gn(Ids,d) ≤ Cs,dn

−s(log n)(d−1)(s+1/2) (34)

holds asymptotically in n ∈ N. Note that there is a d-depending gap in the logarithm
between upper and lower bound.

Recently, Krieg and M.Ullrich [15] improved this bound by using a probabilistic
technique to show that for s > 1/2

gn(Ids,d) �s,d n−s(log n)(d−1)s+s .

Clearly, if s < (d − 1)/2, then the gap in (34) is reduced to (log n)s , which is still
growing in s. In particular, there is no improvement if d = 2. However, this result can
be considered as a major progress for the research on the complexity of this problem.
They disproved Conjecture 5.6.2. in [7] for p = 2 and 1/2 < s < (d − 1)/2. Indeed,
the celebrated sparse grid points are now beaten by random points in a certain range
for s. This again reflects the “power of random information”, see [11].

Still it is worth mentioning that the sparse grids represent the best known
deterministic construction what concerns the asymptotic order. Indeed, the guaran-
tees are deterministic and only slightly worse compared to random nodes in the
asymptotic regime. However, regarding preasymptotics the random constructions pro-
vide substantial advantages. The problem is somehow related to the recent efforts
in compressed sensing. There the optimal RIP matrices are given as realizations
of random matrices. Known deterministic constructions are far from being opti-
mal.

In the present paper, we prove that the sparse grids are beaten for the full range of
s > 1/2 whenever d ≥ 3. In case d = 2 our approach and the sparse grids have the
same performance. Clearly, inserting (33) into the bound in Theorem 6.1 gives
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gn(Ids,d) �s,d n−s(log n)(d−1)s+1/2, (35)

which shortens the gap between upper and lower bound to
√
log n. The best known

lower bound is the one from (33). It is neither clear whether the bound in (35) is sharp
nor if it can be improved. So this frameworkmight serve as a candidate for Remark 6.4.
Therefore, the outstanding open question remains (see, e.g., [7, Chapt. 5] and the
references therein) whether there is an intrinsic additional difficulty when restricting to
algorithms based on function samples rather than Fourier coefficients. From a practical
point of view, sampling algorithms are highly relevant since we usually have given
discrete samples of functions. The question remains: are the asymptotic characteristics
σn and gn of the same order or do they rather behave like σn = o(gn)? This represents
a fundamental open problem in hyperbolic cross approximation, see [7, Outstanding
Open Problem 1.4].
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