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Abstract
Various key problems from theoretical computer science can be expressed as polyno-
mial optimization problems over the boolean hypercube. One particularly successful
way to prove complexity bounds for these types of problems is based on sums of
squares (SOS) as nonnegativity certificates. In this article, we initiate optimization
problems over the boolean hypercube via a recent, alternative certificate called sums
of nonnegative circuit polynomials (SONC). We show that key results for SOS-based
certificates remain valid: First, for polynomials, which are nonnegative over the n-
variate boolean hypercube with constraints of degree d there exists a SONC certificate
of degree at most n + d. Second, if there exists a degree d SONC certificate for non-
negativity of a polynomial over the boolean hypercube, then there also exists a short
degree d SONC certificate that includes at most nO(d) nonnegative circuit polynomi-
als. Moreover, we prove that, in opposite to SOS, the SONC cone is not closed under
taking affine transformation of variables and that for SONC there does not exist an
equivalent to Putinar’s Positivstellensatz for SOS. We discuss these results from both
the algebraic and the optimization perspective.
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1 Introduction

An optimization problem over a boolean hypercube is an n-variate (constrained) poly-
nomial optimization problem where the feasibility set is restricted to some vertices of
an n-dimensional hypercube. This class of optimization problems belongs to the core
of theoretical computer science. However, it is known that solving them is NP-hard in
general, since one can easily cast, e.g., the Independent Set Problem in this framework.

One of the most promising approaches in constructing efficient algorithms is the
sum of squares (SOS) hierarchy [26,49,52,60], also known as Lasserre relaxation [39].
The method is based on a Positivstellensatz result [54] saying that the polynomial f ,
which is positive over the feasibility set, can be expressed as a sum of squares times
the constraints defining the set. Bounding a maximum degree of a polynomial used
in a representation of f provides a family of algorithms parametrized by an integer
d. Finding a degree d SOS certificate for nonnegativity of f can be performed by
solving a semidefinite programming (SDP) formulation of size nO(d). Finally, for
every (feasible) n-variate unconstrained hypercube optimization problem there exists
a degree 2n SOS certificate.

The SOS algorithm is a frontier method in algorithm design. It provides the best
available algorithms used for a wide variety of optimization problems. The degree 2
SOS for the Independent Set problem implies the Lovász θ -function [44] and gives
the Goemans–Williamson relaxation [23] for theMax Cut problem. The Goemans–
Linial relaxation for the Sparsest Cut problem (analyzed in [2]) can be captured by
theSOSof degree 6. Finally, the subexponential time algorithm forUnique Games [1]
is implied by a SOS of sublinear degree [6,28]. Moreover, it has been shown that
SOS is equivalent in power to any SDP extended formulation of comparable size in
approximating maximum constraint satisfaction problems (CSP) [43]. Recently, SOS
has been also applied to problems in dictionary learning [4,59], tensor completion and
decomposition [5,30,53], and robust estimation [34]. Other applications of the SOS
method can be found in [6,9,14,15,18,20,28,45,46,55], see also the surveys [16,40,42].

On the other hand, it is known that the SOS algorithm admits certain weaknesses.
For example, Grigoriev shows in [24] that a Ω(n) degree SOS certificate is needed to
detect a simple integrality argument for the Knapsack Problem, see also [25,36,41].
Other SOS degree lower bounds for Knapsack problems appeared in [13,37]. Some
lower bounds on the effectiveness of SOS have been shown for CSP problems [33,61]
and for the Planted Clique Problem [3,47]. For a polynomially solvable problem of
scheduling unit size jobs on a single machine to minimize the number of late jobs, a
degree Ω(

√
n) SOS, applied on the natural, widely used, formulation of the problem,

does not provide a relaxation with bounded integrality gap [38]. This excludes an
existence of a polynomial time, constant factor approximation algorithm based on the
SOS method for this formulation.
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Finally, in the case of global nonnegativity, not every nonnegative polynomial
is SOS, as first proven by Hilbert [29]. The first explicit example was given by
Motzkin [48]; see also [58] for an overview.Evenworse, as shownbyBlekherman [11],
for fixed degree d � 4 asymptotically, i.e., n → ∞, almost every nonnegative poly-
nomial is not a sum of squares.

Moreover, it remains open if finding a degree d SOS certificate can be performed
in time nO(d). Indeed, as noted in the recent paper by O’Donnell [50], and further dis-
cussed by Raghavendra and Weitz in [56], it is not obviously true that the search can
be done so efficiently. Namely, even if a small degree SOS certificate exists, the poly-
nomials in the certificate do not have necessarily small coefficients. O’Donnell in [50]
gives an example of polynomial optimization problem that admits a degree 2 SOS
certificate. However, every degree 2 SOS certificate for this problem has exponential
bit complexity. Next, in [56] the example is modified and cast into a hypercube opti-
mization problem again having a degree 2 SOS certificate, but with super-polynomial
bit complexity for certificates up to the degree O(

√
n). This excludes the possibil-

ity that known optimization tools used for solving SDP problems like the ellipsoid
method [27,32] are able to find a degree d certificates in time nO(d).

The above arguments motivate the search of new nonnegativity certificates for
solving optimization problems efficiently.

In this article, we initiate an analysis of hypercube optimization problems via sums
of nonnegative circuit polynomials (SONC). SONCs are a nonnegativity certificate
introduced in [31], which are independent of sums of squares; see Definition 2.1 and
Theorem 2.5 for further details. This means particularly that certain polynomials like
the Motzkin polynomial, which have no SOS certificate for global nonnegativity, can
be certified as nonnegative via SONCs. Moreover, SONCs generalize polynomials
which are certified to be nonnegative via the arithmetic-geometric mean inequality
[57]. Similarly as Lasserre’s relaxation for SOS, a Schmüdgen-like Positivstellensatz
yields a converging hierarchy of lower bounds for polynomial optimization problems
with compact constraint set; see [22, Theorem4.8] andTheorem2.6. These bounds can
be computed via a convex optimization program called relative entropy programming
(REP) [22, Theorem 5.3]. Our main question in this article is:

Can SONC certificates be an alternative for SOS methods for optimization prob-
lems over the hypercube?

We answer this question affirmatively in the sense that we prove SONC complexity
bounds for boolean hypercube optimization analogous to the SOS bounds mentioned
above. More specifically, we show:

1. For every polynomial which is nonnegative over an n-variate hypercube with con-
straints of degree at most d, there exists a SONC certificate of nonnegativity of
degree at most n + d; see Theorem 4.8 and Corollary 4.9.

2. If a polynomial f admits a degree d SONC certificate of nonnegativity over an
n-variate hypercube, then the polynomial f admits also a short degree d SONC
certificate that includes at most nO(d) nonnegative circuit polynomials; see Theo-
rem 4.10.

Furthermore, we show some structural properties of SONCs:
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1. We give a simple, constructive example showing that the SONC cone is not closed
under multiplication. Subsequently, we use this construction to show that the
SONC cone is not closed under taking affine transformations of variables, either;
see Lemma 3.1 and Corollary 3.2 and the discussion afterwards.

2. We address an open problem raised in [22] asking whether the Schmüdgen-like
Positivstellensatz for SONCs (Theorem 2.6) can be improved to an equivalent of
Putinar’s Positivstellensatz [54].We answer this question negatively by showing an
explicit hypercube optimization example, which provably does not admit a Putinar
representation for SONCs; see Theorem 5.1 and the discussion afterwards.

Our article is organized as follows: InSect. 2we introduce the necessary background
from theoretical computer sciences and about SONCs. In Sect. 3 we show that the
SONC cone is closed neither under multiplication nor under affine transformations.
In Sect. 4 we provide our two main results regarding the degree bounds for SONC
certificates over the hypercube. In Sect. 5 we prove the non-existence of an equivalent
of Putinar’s Positivstellensatz for SONCs and discuss this result.

2 Preliminaries

In this section, we collect basic notions and statements on sums of nonnegative circuit
polynomials (SONC).
Throughout the paper, we use bold letters for vectors, e.g., x = (x1, . . . , xn) ∈ R

n .
Let N

∗ = N \ {0} and R�0 (R>0) be the set of nonnegative (positive) real numbers.
Furthermore, let R[x] = R[x1, . . . , xn] be the ring of real n-variate polynomials and
the set of all n-variate polynomials of degree less than or equal to 2d is denoted by
R[x]n,2d . We use [n] for the set {1, . . . , n}, and we denote by e1, . . . , en the canonical
basis vectors in R

n .

2.1 Sums of Nonnegative Circuit Polynomials

Let A ⊂ N
n be a finite set. In what follows, we consider polynomials f ∈ R[x]

supported on A. Thus, f is of the form f (x) = ∑
α∈A fαxα with fα ∈ R and

xα = xα1
1 · · · xαn

n . A lattice point is called even if it is in (2N)n and a term fαxα is
called amonomial square if fα > 0 and α is even. We denote by New( f ) = conv{α ∈
N
n : fα �= 0} the Newton polytope of f .
Initially, we introduce the foundation of SONC polynomials, namely circuit poly-

nomials; see also [31]:

Definition 2.1 A polynomial f ∈ R[x] is called a circuit polynomial if it is of the
form

f (x) :=
r∑

j=0

fα( j)xα( j) + fβxβ , (2.1)
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with r � n, exponents α( j), β ∈ A, and coefficients fα( j) ∈ R>0, fβ ∈ R, such that
the following conditions hold:

(C1) New( f ) is a simplex with even vertices α(0),α(1), . . . ,α(r).
(C2) The exponent β is in the strict interior of New( f ). Hence, there exist unique

barycentric coordinates λ j relative to the vertices α( j) with j = 0, . . . , r satis-
fying

β =
r∑

j=0

λ jα( j) with λ j > 0 and
r∑

j=0

λ j = 1.

We call the terms fα(0)xα(0), . . . , fα(r)xα(r) the outer terms and fβxβ the inner term
of f .

For every circuit polynomial, we define the corresponding circuit number as

Θ f :=
r∏

j=0

(
fα( j)

λ j

)λ j

. (2.2)

	

Note that the nameof these polynomials ismotivated by the fact that their support set

forms a circuit, i.e., aminimal affinedependent set, see, e.g., [51]. Thefirst fundamental
statement about circuit polynomials is that its nonnegativity is determined by its circuit
number Θ f and fβ entirely:

Theorem 2.2 ([31], Theorem 3.8) Let f be a circuit polynomial with inner term fβxβ

and letΘ f be the corresponding circuit number, as defined in (2.2). Then, the following
statements are equivalent:

1. f is nonnegative.
2. | fβ | � Θ f and β /∈ (2N)n or fβ � −Θ f and β ∈ (2N)n.

We illustrate the previous definition and theorem by an example:

Example 2.3 The Motzkin polynomial [48] is given by

M(x1, x2) := x41 x
2
2 + x21 x

4
2 − 3x21 x

2
2 + 1.

It is a circuit polynomial since New( f ) = conv{(4, 2), (2, 4), (0, 0)}, and β = (2, 2)

with λ0, λ1, λ2 = 1/3. We have | fβ | = 3 and compute Θ f = 3

√(
1
1/3

)3 = 3.

Hence, we can conclude that M(x1, x2) is nonnegative by Theorem 2.2.

Definition 2.4 We define for every n, d ∈ N
∗ the set of sums of nonnegative circuit

polynomials (SONC) in n variables of degree 2d as
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Cn,2d :=
{

f ∈ R[x]n,2d : f =
k∑

i=1

μi pi ,
pi is a nonnegative circuit polynomial,

μi � 0, k ∈ N
∗

}

	

We denote by SONC both the set of SONC polynomials and the property of a

polynomial to be a sum of nonnegative circuit polynomials.
Inwhat follows, let Pn,2d be the coneof nonnegativen-variate polynomials of degree

at most 2d and Σn,2d be the corresponding cone of sums of squares, respectively. An
important observation is that SONC polynomials form a convex cone independent of
the SOS cone:

Theorem 2.5 ([31], Proposition 7.2) Cn,2d is a convex cone satisfying:

1. Cn,2d ⊆ Pn,2d for all n, d ∈ N
∗,

2. Cn,2d ⊆ Σn,2d if and only if (n, 2d) ∈ {(1, 2d), (n, 2), (2, 4)},
3. Σn,2d � Cn,2d for all (n, 2d) with 2d � 6.

For further details about the SONC cone, see [21,22,31].

2.2 SONC Certificates Over a Constrained Set

In [22, Theorem 4.8], Iliman, the first, and the third author showed that for an arbitrary
real polynomial which is strictly positive on a compact, basic closed semialgebraic
set K there exists a SONC certificate of nonnegativity. We recall this result in what
follows.

We assume that K is given by polynomial inequalities gi (x) � 0 for i = 1, . . . , s
and is compact. For technical reason we add 2n redundant box constraints l+j (x) :=
N + x j � 0 and l−j (x) := N − x j � 0 for j ∈ [n] for some sufficiently large N ∈ N,
which exists due to our assumption of compactness of K ; see [22] for further details.
For convenience we use l±j (x) to refer to both N + x j and N − x j . Hence, we have

K := {x ∈ R
n : gi (x) � 0 for i ∈ [s] and l±j (x) � 0 for j ∈ [n]}. (2.3)

In what follows, we consider polynomials H (q)(x) defined as products of at most
q ∈ N

∗ of the polynomials gi , l
±
j and 1, i.e.,

H (q)(x) :=
q∏

k=1

hk(x), (2.4)

where hk ∈ {1, g1, . . . , gs, l+1 , . . . , l+n , l−1 , . . . , l−n }. Now we can state:

Theorem 2.6 ([22], Theorem 4.8) Let f , g1, . . . , gs ∈ R[x] be real polynomials and
K be a compact, basic closed semialgebraic set as in (2.3). If f > 0 on K , then there
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exist d, q ∈ N
∗ such that we have an explicit representation of f of the following

form:

f (x) =
∑

finite

s(x)H (q)(x),

where the s(x) are contained in Cn,2d and every H (q)(x) is a product as in (2.4).

The central object of interest is the smallest value of d and q that allows f a
decomposition as in Theorem 2.6. This motivates the following definition of a degree
d SONC certificate.

Definition 2.7 Let f ∈ R[x] such that f is positive on the set K given in (2.3).
Then, f has a degree d SONC certificate if it admits for some q ∈ N

∗ the following
decomposition:

f (x) =
∑

finite

s(x)H (q)(x),

where the s(x) are SONCs, the H (q)(x) are products as in (2.4), and

deg

(
∑

finite

s(x)H (q)(x)

)

� d.

	

Note that for a given set A ⊆ N

n , searching through the space of degree d certifi-
cates can be computed via a relative entropy program (REP) [22] of size nO(d). REPs
are generalizations of geometric programs but still are convex optimization programs
[12]. Convex optimization problems are efficiently solvable under relatively mild con-
ditions. For example, using the ellipsoid method, a convex optimization problem is
solvable in polynomial time under the assumption of polynomial computability, poly-
nomial growth, and polynomial boundedness of its feasible set; see, e.g., [10, Section
5.3] for more details. The violation of polynomial boundedness is the reasonwhy solv-
ing constant degree SOS in polynomial time is an open problem; see our discussion in
the introduction and [50,56]. Finally, there exist convex optimization problems, which
are known to be not solvable in polynomial time at all; see, e.g., [19].

There are two main bottlenecks that might affect its complexity of finding a degree
d SONC certificate. The first one is to guarantee the existence of a sufficiently short
degree d SONC certificate. The answer to the equivalent question for the SOS degree
d certificates follows from the fact that a polynomial is SOS if and only if the cor-
responding matrix of coefficients of size nO(d), called the Gram matrix, is positive
semidefinite. Since every real, symmetricmatrixM that is positive semidefinite admits
a decomposition M = VV�, this yields an explicit SOS certificate including at most
nO(d) squared polynomials. For more details, we refer the reader to the excellent
lecture notes in [8].
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The second bottleneck: even if there exists a short degree d SONC certificate, then
it is not clear a priori whether there exists an efficient algorithm, i.e., particularly of
bit complexity nO(d), to find it in the space of n-variate circuit polynomials of degree
d. The number of circuits grows exponentially in n and d.

In this paper, we resolve the first bottleneck regarding the existence of short
SONC certificates affirmatively. Namely, we show that one can always restrict oneself
to SONC certificates including at most nO(d) nonnegative circuit polynomials, see
Sect. 4.2 for details and further discussion on this topic.

3 Properties of the SONC Cone

In this section, we show that the SONC cone is neither closed under multiplication
nor under affine transformations. First, we give a constructive proof for the fact that
the SONC cone is not closed under multiplication, which is simpler than the initial
proof of this fact in [22, Lemma 4.1]. Second, we use our construction to show that
the SONC cone is not closed under affine transformation of variables.

Lemma 3.1 For every n, d ∈ N
∗ with n � 2 the SONC cone Cn,2d is not closed

under multiplication in the following sense: if p1, p2 ∈ Cn,2d , then p1 · p2 /∈ Cn,4d
in general.

Proof For every n, d ∈ N
∗ with n � 2 we construct two SONC polynomials p1,

p2 ∈ Cn,2d such that the product p1 p2 is an n-variate, degree 4d polynomial that is
not inside Cn,4d .

Let n = 2. We construct the following two polynomials p1, p2 ∈ R[x1, x2]:

p1(x1, x2) := (1 − x1)
2, p2(x1, x2) := (1 − x2)

2.

First, observe that p1, p2 are nonnegative circuit polynomials, since, in both cases,
λ1 = λ2 = 1/2, fα(1) = fα(2) = 1, and fβ = −2, thus 2 = Θ f � | fβ |.

Now consider the polynomial r(x1, x2) = p1 p2 = ((1 − x1)(1 − x2))2. We show
that this polynomial, even though it is nonnegative, is not a SONC polynomial. Note
that r(x1, x2) = 1 − 2x1 − 2x2 + 4x1x2 + x21 + x22 − 2x21 x2 − 2x1x22 + x21 x

2
2 ; the

support of r is shown inFig. 1.Assume that r ∈ C2,4, i.e., r has aSONCdecomposition.
This implies that the term −2x1 has to be an inner term of some nonnegative circuit
polynomial r1 in this representation. Such a circuit polynomial necessarily has the
terms 1 and x21 as outer terms, that is,

r1(x1) = p1(x1, x2) = 1 + x21 − 2x1.

Since Θr1 = 2 the polynomial r1 is indeed nonnegative and, in addition, we cannot
choose a smaller constant term to construct r1. Next, also the term −2x2 has to be an
inner term of some nonnegative circuit polynomial r2. Since this term again is on the
boundary of New(r), the only option for such an r2 is: r2(x2) = p2(x1, x2) = 1+x22 −
2x2. However, the term 1 has been already used in the above polynomial r1, which
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Fig. 1 The Newton polytope and
the support set of r(x1, x2) with
the supports of p1 and p2 in
blue ovals (Color figure online)

leads to a contradiction, i.e., r /∈ C2,4. Since Cn,4d ⊆ Cn+1,4d and Cn,4d ⊆ Cn,4d+2,
the general statement follows. 	


In what follows, we show another operation, which behaves differently for SONC
than it does for SOS: Similarly as in the case of multiplications, affine transformations
also do not preserve the SONC structure. This observation is important for possible
degree bounds on SONC certificates, when considering optimization problems over
distinct descriptions of the hypercube.

Corollary 3.2 For every n, d � 2, the SONC cone Cn,2d is not closed under affine
transformation of variables.

Proof Consider the polynomial f (x1, x2) = x21 x
2
2 . Clearly, the polynomial f is a

nonnegative circuit polynomial since it is a monomial square, hence f ∈ Cn,2d with
n, d � 2. Now consider the following affine transformation of the variables x1 and
x2:

x1 → 1 − x1, xk → 1 − x2.

After applying the transformation, the polynomial f equals the polynomial p1 p2 from
the proof of Lemma 3.1 and thus is not inside Cn,2d . 	


Corollary 3.2, from optimization perspective, implies that problem formulations
obtained by applying affine transformations of variables can lead to problems of dif-
ferent tractability when using the SONC method. This means, on the one hand, that
a choice of representation has to be done carefully, which makes the process of algo-
rithmdesignmore demanding.On the other hand, even a small changeof representation
might allow to find a SONC certificate or simplify an existing one. Note that every
affine transformation of variables applied to the Motzkin polynomial never has a SOS
certificate over reals, as the SOS cone is closed under affine transformations. The affine
closure of the SONC cone, however, strictly contains the SONC cone and still yields a

123



374 Foundations of Computational Mathematics (2022) 22:365–387

certificate of nonnegativity. In this sense, Corollary 3.2 motivates the following future
research question:

Find an efficient algorithm to determine whether an affine transformation of a
given polynomial f admits a SONC representation.

4 An Upper Bound on the Degree of SONC Certificates Over the
Hypercube

In the previous section, we showed that the SONC cone is not closed under taking
an affine transformation of variables, Corollary 3.2. Thus, if a polynomial f admits
a degree d SONC certificate proving that it is nonnegative on a given compact semi-
algebraic set K , then it is a priori not clear whether a polynomial g, obtained from
f via an affine transformation of variables, admits a degree d SONC certificate of
nonnegativity on K , too. The degree needed to prove nonnegativity of g might be
much larger than d according to the argumentation in the proof of Corollary 3.2.

In this section, we prove that every n-variate polynomial which is nonnegative over
the boolean hypercube has a degree n SONC certificate. Moreover, if the hypercube
is additionally constrained with some polynomials of degree at most d, then the non-
negative polynomial over such a set has degree n + d SONC certificate. We show this
fact for all hypercubes {ai , bi }n ; see Theorem 4.3 for further details.

Formally, we consider the following setting: We investigate real multivariate poly-
nomials in R[x]. For j ∈ [n], and a j , b j ∈ R, such that a j < b j let

g j (x) := (x j − a j )(x j − b j )

be a quadratic polynomial with two distinct real roots. Let H ⊂ R
n denote the n-

dimensional hypercube given by
∏n

j=1{a j , b j }. Moreover, let

P := {p0, p1, . . . , pm : p0 = 1 and pi ∈ R[x] for all i ∈ [m]}

be a set of polynomials, whichwe consider as constraints pi (x) � 0with deg(pi (x)) �
d for all i ∈ [n] as follows. We define

HP := {x ∈ R
n : g j (x) = 0, j ∈ [n], p(x) � 0, p ∈ P}

as the n-dimensional hypercube H constrained by polynomial inequalities given by
P .

Throughout the paper, we assume that |P| = poly(n), i.e., the size of the constraint
set P is polynomial in n. This is usually the case, since otherwise the problem gets
less tractable from the optimization point of view.

As a first step, we introduce a Kronecker function:
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Definition 4.1 For every v ∈ H, the function

δv(x) :=
∏

j∈[n]: v j=a j

(−x j + b j

b j − a j

)

·
∏

j∈[n]: v j=b j

(
x j − a j

b j − a j

)

(4.1)

is called the Kronecker delta (function) of the vector v.

Next we show that the term “Kronecker delta” is justified, i.e., we show that for
every v ∈ H the function δv(x) takes the value zero for all x ∈ H except for x = v
where it takes the value one.

Lemma 4.2 For every v ∈ H, it holds that:

δv(x) =
{
0, for every x ∈ H \ {v},
1, for x = v.

Proof On the one hand, if x ∈ H \ {v}, then there exists an index k such that xk �= vk .
This implies that there exists at least one multiplicative factor in δv which attains the
value zero due to (4.1). On the other hand, if x = v, then we have

δv(x) =
∏

j∈[n]: v j=a j

(−a j + b j

b j − a j

) ∏

j∈[n]: v j=b j

(
b j − a j

b j − a j

)

= 1.

	

The main result of this section is the following theorem.

Theorem 4.3 Let f (x) ∈ R[x]n,n. Then, f (x) � 0 for every x ∈ HP if and only if f
has the following representation:

f (x) =
∑

v∈HP

cvδv(x) +
∑

v∈H\HP

cvδv(x)pv(x) +
n∑

j=1

s j (x)g j (x) +

n∑

j=1

sn+ j (x)(−g j (x)), (4.2)

where s1, . . . , s2n ∈ Cn,n−2, cv ∈ R�0, and pv ∈ P .

Remark 4.4 Note that the choice of the pv in the theorem can be stated precisely: If
f (v) < 0, then we choose pv as one of the constraints satisfying pv < 0 (which has to
exist since v ∈ H \ HP ). If, however, f (v) � 0, then we choose pv = 1. For further
details, see the proof of Theorem 4.3 in Sect. 4.1.

Since we are interested in optimization on the boolean hypercube H, we assume
without loss of generality that the polynomial f considered in Theorem 4.3 has degree
at most n. Indeed, if f has degree bigger than n, one can efficiently reduce the degree
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of f by applying iteratively the polynomial division with respect to polynomials g j

with j ∈ [n]. The remainder of the division process is a polynomial with degree at
most n that agrees with f on all the vertices of H.

We begin with proving the easy direction of the equivalence stated in Theorem 4.3.

Lemma 4.5 If f admits a decomposition of the form (4.2), then f (x) is nonnegative
for all x ∈ HP .

Proof The coefficients cv are nonnegative; all s j (x) are SONC and hence nonnegative
on R

n . We have ±g j (x) � 0 for all x ∈ H, and for all choices of v ∈ H we have
pv(x) � 0 for all x ∈ HP , and δv(x) ∈ {0, 1} for all x ∈ H. Thus, the right-hand side
of (4.2) is a sum of nonnegative terms for all x ∈ HP . 	


We postpone the rest of the proof of Theorem 4.3 to the end of the section. Now, we
state a result about the presentation of the Kronecker delta function δv. In what follows
let K be the basic closed semialgebraic set defined by g1, . . . , gn and l±1 , . . . , l±n as
in (2.3).

Lemma 4.6 For every v ∈ H the Kronecker delta function can be written as

δv =
2n∑

j=1

s j H
(n)
j ,

for s1, . . . , s2n ∈ R�0 and every H (n)
j given as in (2.4) with q = n.

Proof First, note that the function δv can be rewritten as

δv(x) =
n∏

j=1

1

b j − a j

∏

j∈[n]: v j=a j

(−x j + b j
) ∏

j∈[n]: v j=b j

(
x j − a j

)
,

where
∏n

j=1
1

b j−a j
∈ R�0. Now, the proof follows just by noting that for every j ∈ [n]

both inequalities −x j + b j � 0 and x j − a j � 0 are in K . 	

The following statement is well known in similar variations; see, e.g., [7, Lemma

2.2 and its proof]. For clarity, we provide an own proof here.

Proposition 4.7 Let f ∈ R[x]n,2d be a polynomial vanishing on H. Then, we have
f = ∑n

j=1 p j g j for some polynomials p j ∈ R[x]n,2d−2.

Proof Let J := 〈g1, . . . , gn〉 be the ideal generated by the g j ’s. Let V(J ) denote
the affine variety corresponding to J , let I(V(J )) denote its radical ideal, and let
I(H) denote the ideal of H. It follows from

∏n
j=1 g j ∈ J that V(J ) ⊆ H and

hence I(H) ⊆ I(V(J )) = J . The last equality holds since J itself is a radical
ideal. This results from Seidenberg’s Lemma; see [35, Proposition 3.7.15] by means
of the following observations. The affine variety V(J ) consists exactly of the points
defining H, therefore we know that J is a zero-dimensional ideal. Furthermore, for
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every j ∈ [n] the polynomials g j satisfy g j ∈ J ∩ R[x j ] and gcd(g j , g′
j ) = 1. Thus,

every f ∈ I(H) is of the form f = ∑n
j=1 p j g j .

Moreover G := {g1, . . . , gn} is a Gröbner basis for J with respect to the graded
lexicographic order ≺glex. This follows from Buchberger’s Criterion, which says that
G is a Gröbner basis for J if and only if for all pairs i �= j the remainder on the
division of the S-polynomials S(gi , g j ) by G with respect to ≺glex is zero. Consider
an arbitrary pair gi , g j with i > j . Then, the corresponding S-polynomial is given by

S(gi , g j ) = (a j + b j )x
2
i x j − (ai + bi )xi x

2
j − a jb j x

2
i + aibi x

2
j .

Applying polynomial division with respect to ≺glex yields the remainder 0 and hence
G is a Gröbner basis for J with respect to ≺glex. Therefore, we conclude that if
f ∈ R[x]n,2d , then deg(p j ) � 2d − 2. 	

For an introduction to Gröbner bases, see, for example, [17].

Theorem 4.8 Let d ∈ N and f ∈ R[x]n,2d+2 such that f vanishes on H. Then, there
exist s1, . . . , s2n ∈ Cn,2d such that f = ∑n

j=1 s j g j + ∑n
j=1 sn+ j (−g j ).

Proof By Proposition 4.7 we know that f = ∑n
j=1 p j g j for some polynomials p j of

degree � 2d. Hence, it is sufficient to show that every single summand p j g j is of the
form

∑n
j=1 s j g j−∑n

j=1 sn+ j g j for some s1, . . . , s2n ∈ Cn,2d . Let p j = ∑	
i=1 a jim ji

where every a ji ∈ R and every m ji is a single monomial. We show that p j g j has the
desired form by investigating an arbitrary individual term a jim ji g j .

Case 1 Assume that the exponent of m ji is contained in (2N)n . If a jim ji is a
monomial square, then a jim ji is a circuit polynomial. If a ji < 0, then −a jim ji is
a monomial square. In both cases we obtain a representation s ji (±g j ), where s ji ∈
Cn,2d .

Case 2 Assume the exponent β of m ji contains odd numbers. Without loss of
generality, assume that β = (β1, . . . , βk, βk+1, . . . , βn) such that the first k entries
are odd and the remaining n − k entries are even. We construct a SONC polynomial
s ji = aα(1)xα(1) + aα(2)xα(2) + a jixβ such that

α(1) = β +
�k/2�∑

j=1

e j −
k∑

j=�k/2�+1

e j , α(2) = β −
�k/2�∑

j=1

e j +
k∑

j=�k/2�+1

e j , (4.3)

|a ji | � 2
√
aα(1)aα(2). (4.4)

By the construction (4.3), it follows that α(1),α(2) ∈ (2N)n and β = 1/2(α(1) +
α(2)). Thus, s ji is a circuit polynomial and by (4.4) the coefficients aα(1), aα(2) are
chosen large enough such that |a ji | is bounded by the circuit number 2

√
aα(1)aα(2)

corresponding to s ji . Therefore, s ji is nonnegative by [31, Theorem 1.1]. Hence, we
obtain

a jim ji g j = s ji g j + (aα(1)xα(1) + aα(2)xα(2))(−g j ),

where s ji , aα(1)xα(1), and aα(2)xα(2) are nonnegative circuit polynomials.
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Degree: All involved nonnegative circuit polynomials are of degree at most 2d.
In Case 1 this follows by construction. In Case 2 we have for the circuit polynomial
s ji that deg(α(1)), deg(α(2)) = deg(β) if k is even, and deg(α(1)) = deg(β) + 1,
deg(α(2)) = deg(β) if k is odd. Since β is an exponent of the polynomial f , we know
that deg(β) � 2d. If k is odd, however, then

deg(β) =
k∑

j=1

β j
︸︷︷︸

odd number

+
n∑

j=k+1

β j
︸︷︷︸

even number

,

i.e., deg(β) is a sum of k many odd numbers, with k being odd, plus a sum of even
numbers. Thus, deg(β) has to be an odd number and hence deg(β) < 2d. Therefore,
all degrees of terms in s ji are bounded by 2d and thus s ji ∈ Cn,2d .

Conclusion: Combining the Cases 1 and 2, and the degree argument, we obtain a
representation

f =
n∑

j=1

p j g j =
n∑

j=1

	 j∑

i=1

a jim ji g j =
n∑

j=1

	 j∑

i=1

s ji g j + s̄ j i (−g j ),

with s ji , s̄ j i ∈ Cn,2d for every i, j ∈ [n]. By defining s j = ∑	 j
i=1 s ji ∈ Cn,2d and

sn+ j = ∑	 j
i=1 s̄ j i ∈ Cn,2d we obtain the desired representation of f . 	


4.1 Proof of Theorem 4.3

In this section, we combine the results of this section and finish the proof of Theo-
rem 4.3.

Due to Lemma 4.5, it remains to show that if f (x) � 0 for every x ∈ HP , then
f (x) admits a decomposition of the form (4.2).
When restricting the domain of the polynomial f to the boolean hypercubeH, then

f can be represented in the following way:

f (x) = f (x)
∑

v∈HP

δv(x) + f (x)
∑

v∈H\HP

δv(x) for all x ∈ H

=
∑

v∈HP

δv(x) f (v) +
∑

v∈H\HP

δv(x) f (v) for all x ∈ H, (4.5)

where the last equality follows by Lemma 4.2 .
Now, our goal is to obtain the desired representation (4.2) from (4.5) via apply-

ing Theorem 4.8. The challenge is that the representation (4.2) requires nonnegative
coefficients cv (to obtain a Schmüdgen-like representation). If f is nonnegative over
the entire hypercube H, then we can simply put cv = f (v) and pv = 1 = p0 ∈ P .
However, in our construction (4.5) there might exist a vector v ∈ H \ HP such that
f attains a negative value at v. If f (v) < 0, then let pv ∈ P be one of the poly-
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nomials among the constraints satisfying pv(v) < 0. Since by Lemma 4.2 we have
δv(x)pv(x) = δv(x)pv(v) for every v, x ∈ H, we can now write:

f (x) =
∑

v∈HP

δv(x) f (v) +
∑

v∈H\HP

δv(x)pv(x)
f (v)
pv(v)

for all x ∈ H.

Thus, the polynomial f (x)−∑
v∈HP δv(x) f (v)−∑

v∈H\HP δv(x)pv(x)
f (v)
pv(v)

has
degree at most n + d and vanishes on H. By Theorem 4.8 we finally get

f (x) =
n∑

j=1

s j (x)g j (x) +
n∑

j=1

sn+ j (x)(−g j (x)) +
∑

v∈HP

δv(x) f (v) +

∑

v∈H\HP

δv(x)pv(x)
f (v)
pv(v)

,

for some s1, . . . , s2n ∈ Cn,n−2 and pv ∈ P . This finishes the proof together with
Lemma 4.6. 	

Corollary 4.9 For every polynomial f which is nonnegative over the boolean hyper-
cube constrainedwith polynomial inequalities of degree atmost d, there exists a degree
n + d SONC certificate.

Proof The argument follows directly from Theorem 4.3 by noting that the right hand
side of (4.2) is a SONC certificate of degree n + d (see Definition 2.7). 	


4.2 Degree d SONC Certificates

In this section, we show that if a polynomial f admits a degree d SONC certificate,
then f also admits a short degree d certificate that involves at most nO(d) terms. We
conclude the section with a discussion regarding the time complexity of finding a
degree d SONC certificate.

Theorem 4.10 Let f be an n-variate polynomial, nonnegative on the constrained
hypercubeHP with |P| = poly(n). Assume that there exists a degree d SONC certifi-
cate for f , then there exists a degree d SONC certificate for f involving at most nO(d)

many nonnegative circuit polynomials.

Proof Since there exists a degree d SONC proof of the nonnegativity of f onHP , we
know that

f (x) =
∑

j

s j H
(q)
j ,

where the summation is finite, the s j ’s are SONCs, and every H (q)
j is a product as

defined in (2.4).
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Step 1: We analyze the terms s j . Since every s j is a SONC, we know that there
exists a representation

s j = κ j ·
k j∑

i=1

μi j · qi j

such that κ j , μ1 j , . . . , μk j j ∈ R>0,
∑k j

i=1 μi j = 1, and the qi j are nonnegative circuit
polynomials. Since s j is of degree at most d, we know that Q j := {q1 j , . . . , qk j j } is
contained in R[x]n,d , which is a real vector space of dimension

(n+d
d

)
. Since s j/κ j is

a convex combination of the qi j , i.e., in the convex hull of Q j , and dim(Q j ) �
(n+d

d

)
,

applying Carathéodory’s Theorem, see, e.g., [62], yields that s j/κ j can be written as
a convex combination of at most

(n+d
d

) + 1 many of the qi j .

Step 2: We analyze the terms H (q)
j . By definition of HP and the terms H (q)

j , we
have

H (q)
j = g j1 · · · g js · l+r1 · · · l+rt · l−r1 · · · l−rt · p	1 · · · p	v

with j1, . . . , js ∈ [n], r1, . . . , rt ∈ [n], and 	1, . . . , 	v ∈ [m]. Since the maximal
degree of H (q)

j is d, the number of different H (q)
j ’s is bounded fromabove by

(n+2n+m
d

)
.

Conclusion: In summary, we obtain a representation:

f (x) =
(n+2n+m

d )∑

i=1

H (q)
j s j =

(n+2n+m
d )∑

i=1

H (q)
j κ j

(n+d
d )+1∑

j=1

μi j qi j .

Since, as assumed, m can bounded by poly(n), the total number of summands
is poly(n)O(d) = nO(d), and we found a desired representation with at most nO(d)

nonnegative circuit polynomials of degree at most d. 	


Theorem4.10 states thatwhen searching for a degreed SONCcertificate it is enough
to restrict to certificates containing at most nO(d) nonnegative circuit polynomials.
Moreover, as proved in [22, Theorem 3.2] for a given set A ⊆ N

n , searching through
the space of degree d SONC certificates supported on set A can be computed via a
relative entropy program (REP) of size nO(d), see, e.g., [22] for more information
about REP. However, the above arguments do not necessarily imply that the search
through the space of degree d SONC certificates can be performed in time nO(d). The
difficulty is that one needs to restrict the configuration space of n-variate degree d
SONCs to a subset of order nO(d) to be able to formulate the corresponding REP in
time nO(d). Since the current proof of Theorem 4.10 just guarantees the existence of
a short SONC certificate, it is currently not clear how to search for a short certificate
efficiently. We leave this as an open problem.
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5 There Exists No Equivalent to Putinar’s Positivstellensatz for SONCs

In this section, we address the open problem raised in [22] asking whether the Theo-
rem 2.6 can be strengthened by requiring q = 1. Such a strengthening, for a positive
polynomial over some basic closed semialgebraic set, would provide a SONC decom-
position equivalent to Putinar’s Positivstellensatz for SOS. The advantage of Putinar’s
Positivstellensatz over Schmüdgen’s Positivstellensatz is that for every fixed degree
d the cardinality of possible degree d certificates is smaller; for background see, e.g.,
[42,54] however, asymptotically still in both cases it is nO(d).

We answer this question in a negativeway.More precisely, we provide a polynomial
f which is strictly positive over the hypercube {±1}n such that there does not exist
a SONC decomposition of f for q = 1. Moreover, we prove it not only for the most
natural choice of the box constraints that is l±i = 1± xi , but for a generic type of box
constraints of the form 	±

i := 1 + ci ± xi , for ci ∈ R�0. We close the section with a
short discussion.

Let H = {±1}n and consider the following set of polynomials parametrized by a
natural number a:

fa(x) := (a − 1)
n∏

i=1

(
xi + 1

2

)

+ 1.

These polynomials satisfy fa(e) = a for a vector e = ∑n
i=1 ei and fa(x) = 1 for

every other x ∈ H \ {e}. We define for every d ∈ N

Sd :=
{

∑

finite

s · h : s ∈ Cn,2d , h ∈ {
1, ±(x2i − 1), 1 + ci ± xi : i ∈ [n], ci ∈ R�0

}
}

as the set of polynomials admitting a SONC decomposition over H given by Theo-
rem 2.6 for q = 1. The main result of this section is the following theorem.

Theorem 5.1 For every a > 2n−1
2n−2−1

, we have fa /∈ Sd for all d ∈ N.

Before we prove this theorem, we show the following structural results. Note that
similar structural observations were already made for AGIforms by Reznick in [57]
using a different notation.

Lemma 5.2 Every s(x) ∈ Cn,2d attains at most two different values on H = {±1}n.
Moreover, if s(x) attains two different values, then each value is attained for exactly
the half of the hypercube vertices.

Proof By Definition 2.1 every nonnegative circuit polynomial is of the form:

s(x) =
r∑

j=0

fα( j)xα( j) + fβxβ .
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Note that for j = 0, . . . , r , we have α( j) ∈ (2N)n . Hence, when evaluated over the
hypercube x ∈ H = {±1}n , s(x) can take only one of at most two different values∑r

j=0 fα( j) ± fβ .
If s(x) attains two different values over H, then there has to exist a non-empty

subset of variables that have an odd entry in β. Let I ⊆ [n] be this subset. Then,
s(x) = ∑r

j=0 fα( j)(x) − fβ(x), for x ∈ H if and only if x has an odd number of −1
entries in the set I . The number of such vectors is equal to

2n−|I |
|I |∑

i=0,
i odd

2i = 2n−|I |2|I |−1 = 2n−1.

	

Lemma 5.3 Every polynomial s(x)	±

i (x), with s ∈ Cn,2d and 	±
i = 1+ ci ± xi being

a box constraint, attains at most four different values onH = {±1}n. Moreover, each
value is attained for at least one-fourth of the hypercube vertices.

Proof By Lemma 5.2, s(x) attains at most the two values
(∑r

j=0 fα( j) ± fβ
)
on H.

Similarly, 	±
i (x) attains at most the two values 1+ ci ± xi overH. Thus, a polynomial

s(x)	±
i (x) attains at most the four different values

(∑r
j=0 fα( j) ± fβ

)
(1 + ci ± xi )

onH.
Let I be as in the proof of Lemma 5.2, i.e., the subset of variables that have an

odd entry in β. If I = ∅, then the first term
∑r

j=0 fα( j) + fβ is constant over the

hypercube H, thus s(x)	±
i (x) takes two different values depending on the i-th entry

of the vector. Each value is attained for exactly half of the vectors.
If I �= ∅ and i /∈ I , the claim holds since the value of the first term depends only on

the entries in I and the value of the second term depends on the i-th entry. Hence, the
polynomial s(x)	±

i (x) attains four values, such that each value is attained on exactly
one-fourth of the vertices of H.

Finally, let I �= ∅ and i ∈ I . We partition the hypercube vertices into two sets
depending on the i-th entry. Each set has cardinality 2n−1. Consider the set with
xi = 1. For the vectors in this set the second term takes a constant value 2 + c. Over
this set the polynomial s takes one of the values

∑r
j=0 fα( j)(x) ± fβ(x), depending

on whether x has an odd or even number of −1 entries in the set I \ {−1}. In both
cases the number of such vectors is equal to

2n−|I |
|I |−1∑

i=0,
i odd

2i = 2n−|I |2|I |−2 = 2n−2.

The analysis for the case xi = −1 is analogous. 	

Now we can provide the proof of Theorem 5.1.
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Proof (Proof of Theorem 5.1)
Assume fa ∈ Sd for some a ∈ N and d ∈ N. We prove that a has to be smaller or

equal than 2n−1
2n−2−1

. Since fa ∈ Sd , we know that

fa(x) = s0(x) +
n∑

i=1

si (x)	
±
i (x) +

n∑

j=1

s̃ j (x)(x2j − 1) + s̃ j+n(x)(1 − x2j )

with s0, . . . , sn, s̃1, . . . , s̃2n ∈ Cn,2d . Since ±(x2j − 1) for j ∈ [n] vanishes over the
hypercube H, for some s0, s1, . . . , sn ∈ Cn,2d , we can conclude

fa(x) = s0(x) +
n∑

i=1

si (x)	
±
i (x) for all x ∈ H. (5.1)

Let s0,k , and si, j be some nonnegative circuit polynomials such that s0 = ∑
k s0,k ,

and si = ∑
j si, j for i ∈ [n]. Thus, we get

∑

x∈H

(

s0(x) +
n∑

i=1

si (x)	
±
i (x)

)

=
∑

k

∑

x∈H
s0,k(x) +

n∑

i=1

∑

j

∑

x∈H
si, j (x)	

±
i, j (x)

�
∑

k

2n−1s0,k(e) +
n∑

i=1

∑

j

2n−2si, j (e)	
±
i, j (e)

� 2n−2

(

s0(e) +
n∑

i=1

si (e)	
±
i (e)

)

= 2n−2a,

where the first inequality comes directly from Lemma 5.2 and 5.3 and the last equality
from the fact that fa(e) = a. On the other hand, by the properties of the function fa
and the equality (5.1), we know that

∑

x∈H

(

s0(x) +
n∑

i=1

si (x)	
±
i (x)

)

= 2n − 1 + a,

which makes the subsequent inequality a necessary requirement for fa ∈ Sd :

a � 2n − 1

2n−2 − 1
.

	

Speaking from a broader perspective, we interpret Theorem 5.1 as an indication that

the real algebraic structures,whichweuse to handle sumsof squares, do not apply in the
same generality to SONCs.We find this not at all surprising from the point of view that
in the nineteenth century Hilbert initially used SOS as a certificate for nonnegativity
and many of the algebraic structures in question where developed afterwards with
Hilbert’s results in mind; see [58] for a historic overview. Our previous work shows
that SONCs, in contrast, can, e.g., very well be analyzed with combinatorial methods.
We thus see Theorem 5.1 as further evidence about the very different behavior of
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SONCs and SOS and as an encouragement to take methods beside the traditional real
algebraic ones into account for the successful application of SONCs in the future.

Proving that SONC is an alternative for SOSover the boolean hypercube in the sense
of the main results of this article motivates two directions of follow-up research. First,
one could specialize further on the boolean hypercube. For example, as we discussed
in the introduction, there are many (constrained) boolean hypercube optimization
problems known for which SOS provides an efficient algorithm. Given our results,
it is a natural question to ask whether SONC can provide comparable algorithmic
solutions for these problems. Second, one could generalize the region of feasibility,
asking whether the results for SONC on the boolean hypercube can be (partially)
extended to more general finite varieties.
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