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Received: 28 October 2019 / Revised: 11 September 2020 / Accepted: 29 October 2020 /
Published online: 4 January 2021
© SFoCM 2021

Abstract
We develop some aspects of the homological algebra of persistence modules, in both
the one-parameter andmulti-parameter settings, considered as either sheaves or graded
modules. The two theories are different. We consider the graded module and sheaf
tensor product and Hom bifunctors as well as their derived functors, Tor and Ext, and
give explicit computations for interval modules. We give a classification of injective,
projective, and flat interval modules. We state Künneth theorems and universal coeffi-
cient theorems for the homology and cohomology of chain complexes of persistence
modules in both the sheaf and graded module settings and show how these theorems
can be applied to persistence modules arising from filtered cell complexes. We also
give a Gabriel–Popescu theorem for persistence modules. Finally, we examine cate-
gories enriched over persistence modules. We show that the graded module point of
view produces a closed symmetric monoidal category that is enriched over itself.
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1 Introduction

In topological data analysis, one often starts with application data that have been
preprocessed to obtain a digital image or a finite subset of a metric space, which is then
turned into a diagram of topological spaces, such as cubical complexes or simplicial
complexes. Then, one applies an appropriate homology functor with coefficients in a
field to obtain a diagram of vector spaces. In cases where the data are parametrized
by a number of real variables, this diagram of vector spaces is indexed by R

n or a
subset of Rn . Such a diagram is called a (multi-parameter) persistence module. These
persistence modules have a rich algebraic structure. The indexing set Rn is an abelian
group under addition and has a compatible coordinate-wise partial order. The sub-
poset generated by the origin is the positive orthant which is a commutative monoid
under addition which acts on persistence modules. The category of vector spaces
has kernels and cokernels with desirable properties; it is a particularly nice abelian
category. This algebraic structure underlies the power of topological data analysis.
We will exploit this algebraic structure and apply some of the tools of homological
algebra to study persistence modules.

To facilitate a broad class of present and future applications,we generalize the above
setting somewhat.We replaceRn with a preordered setwith a compatible abelian group
structure. We replace the category of vector spaces with any Grothendieck category.
This is an abelian category satisfying additional properties useful for homological
algebra.Wecall the resultingdiagramspersistencemodules. It follows that the category
of persistencemodules is also a Grothendieck category. Thus, for example, persistence
modules satisfy the Krull–Remak–Schmidt–Azumaya theorem [6].

The algebraic structure of persistence modules has been studied from a number of
points of view, for example, as graded modules [11,31,41], as functors [7,8], and as
sheaves [14]. Here, we develop some aspects of the homological algebra of persistence
modules, with an emphasis on the graded module and sheaf-theoretic points of view.
From both sheaf theory and graded module theory, we define tensor product and
Hom bifunctors for persistence modules as well as their derived functors Tor and Ext
(Sects. 3, 4, 7). We provide explicit formulas for the interval modules arising from the
persistent homology of sublevel sets of functions. In computational settings, single-
parameter persistence modules decompose into direct sums of finitely many such
interval modules. So, in the computational setting, since these four functors preserve
finite direct sums, the general case reduces to that of interval modules. For example,
we have the following.

Proposition 1.1 Suppose k[a, b) and k[c, d) are interval modules. Then:

– k[a, b) ⊗gr k[c, d) = k[a + c,min{a + d, b + c})
– Hom(k[a, b),k[c, d)) = k[max{c − a, d − b}, d − a)

– Torgr1 (k[a, b),k[c, d)) = k[max{a + d, b + c}, b + d)

– Ext1gr(k[a, b),k[c, d)) = k[c − b,min{c − a, d − b})
The sheaf theoretic Tor bifunctor is trivial (Theorem 7.3), but the Ext bifunctor is not
(Example 7.4).

A necessary step for computations in homological algebra is understanding projec-
tive, injective, and flat modules. We give a classification of these for single-parameter
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interval modules in Sect. 6 and also extend the result somewhat to the multi-parameter
setting.

Theorem 1.2 Let a ∈ R. Then:

– The interval modules k(−∞, a) and k(−∞, a] are injective. They are not flat and
thus not projective.

– The interval modules k[a,∞) are projective (free) and the interval modules
k(a,∞) are flat but not projective. Both are not injective.

– The interval module k[R] is both injective and flat, but not projective.
– If I ⊂ R is a bounded interval, then k[I ] is neither flat (hence not projective) nor

injective.

In both the graded module and sheaf settings, we have Künneth theorems and uni-
versal coefficient theorems for homology and cohomology (Sect. 8). There is evidence
to suggest these theorems can be used to give faster algorithms for computing persis-
tent homology [18]. We compute a number of examples for these theorems in Sect. 8.
In addition to our main results, we discuss (Matlis) duality (Sect. 5), persistence mod-
ules indexed by finite posets (Sect. 9), and we state the Gabriel–Popescu theorem for
persistence modules (Corollary 2.25). Matlis duality helps us identify injective and
flat modules and is used extensively in proving Theorem 1.2. The Gabriel–Popescu
theorem characterizes Grothendieck categories as quotients of module categories. For
persistence modules over finite posets, we show a stronger result is true; persistence
modules are isomorphic to modules over the ring End(U ) where U is a generator of
the Grothendieck category of persistence modules. This allows one to study persis-
tence modules as modules over a non-graded ring. In Sect. 10, we consider persistence
modules from the point of view of enriched category theory. We show that by viewing
persistence modules as graded modules we obtain a closed symmetric monoidal cate-
gory that is enriched over itself. Many of these results are adaptations or consequences
of well-known results in graded module theory, sheaf theory, and enriched category
theory. However, we hope that by carefully stating our results for persistence modules
and providing numerous examples we will facilitate new computational approaches to
topological data analysis. For example, the magnitude of persistence modules [19] is
a new numerical invariant that respects the monoidal structure of the graded module
tensor product of persistence modules.

RelatedWork

Some of the versions of theKünneth theorems that appear herewere independently dis-
covered by Polterovich, Shelukhin, and Stojisavljevic [36], andGakhar and Perea [18].
Recent papers on persistence modules as graded modules include [21,32,34] where
they are considered from the perspective of commutative algebra. Recent papers from
the sheaf theory point of view include [1,2,27]. Results akin to Theorem 1.2 also
appear in [3,24]. In the final stages of preparing this paper a preprint of Carlsson and
Fillipenko appeared [10], which covers some of the same material considered here, in
particular gradedmoduleKünneth Theorems, but from a complementary point of view.
Grothendieck categories have been used to define algebraic Wasserstein distances for
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persistencemodules [6]. Enriched categories over monoidal categories have been used
in other recent work in applied topology [12,29].

2 PersistenceModules

In this section, we consider persistence modules from several points of view and
provide background for the rest of the paper. In particular, we consider persistence
modules as functors, sheaves and graded modules. We show that these points of view
are equivalent. Thus, the reader may read the paper from their preferred viewpoint.
What the different perspectives bring to the table are canonical operations from their
respective well developed mathematical theories.

2.1 PersistenceModules as Functors

Given a preordered set (P,≤) there is a corresponding category P whose objects are
the elements of P and whose morphisms consist of the inequalities x ≤ y, where
x, y ∈ P . An up-set in a preordered set (P,≤) is a subset U ⊂ P such that if x ∈ U
and x ≤ y then y ∈ U . For a ∈ P denote by Ua ⊂ P the principal up-set at a, i.e.,
Ua := {x ∈ P | a ≤ x}. A down-set in a preordered set (P,≤) is a subset D ⊂ P
such that if y ∈ D and x ≤ y, then x ∈ D. For a ∈ P denote by Da ⊂ P the
principal down-set at a, i.e., Da := {x ∈ P | x ≤ a}. Let Rn denote the category
corresponding to the poset (Rn,≤), where ≤ denotes the product partial order. That
is, (x1, . . . , xn) ≤ (y1, . . . , yn) if and only if xi ≤ yi for all i .

Let (P,≤) be a preordered set and let P be the corresponding category. Let A
be a Grothendieck category—an abelian category with additional useful properties
(see Appendix A).

Definition 2.1 A persistence module is a functor M : P → A. The category of persis-
tence modules is the functor category AP, where the objects are persistence modules
and morphisms are natural transformations. Of greatest interest to us is a special case
of this, when P = Rn .

The assumption that A is a Grothendieck category contains most examples of
interest and ensures that the category of persistence modules has a number of use-
ful properties (Proposition 2.23). For example, the category A may be the category
ModR of right R-modules over a unital ring R and R-module homomorphisms. R will
always denote a unital ring in what follows and we will always assume that our rings
are unital. We could also consider RMod the category of left R-modules over a unital
ring R and R-module homomorphisms. Of greatest interest to us is a special case of
this, the category Vectk, of k-vector spaces for some field k and k-linear maps.

Definition 2.2 Let (P,≤) be a preordered set. SayU ⊂ P is convex if a ≤ c ≤ b with
a, b ∈ U implies that c ∈ U . Say U ⊂ P is connected if for any two a, b ∈ U there
exists a sequence a = p0 ≤ q1 ≥ p1 ≤ q2 ≥ · · · ≥ pn ≤ qn = b for some n ∈ N

such that all pi , qi ∈ U for 0 ≤ i ≤ n. A connected convex subset of a preordered set
is called an interval.
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Let A ⊂ P be a convex subset. The indicator persistence module on A is the
persistence module R[A] : P → ModR given by R[A]a equals R if a ∈ A and is
0 otherwise and all the maps R[A]a≤b, where a, b ∈ A, are identity maps. If A is
an interval, then R[A] is called an interval persistence module. If A is an interval on
the real line, say A = [a, b), and R = k is a field, we will write k[a, b) instead of
k[[a, b)] for brevity.

2.2 PersistenceModules as Sheaves and Cosheaves

For more details, see [13,14].

Definition 2.3 Let (P,≤) be a preordered set. Define the Alexandrov topology on P
to be the topology whose open sets are the up-sets in P . Let Open(P) denote the
category whose objects are the open sets in P and whose morphisms are given by
inclusions.

Lemma 2.4 Let (P,≤) and (Q,≤) be preordered sets and consider P and Q together
with their corresponding Alexandrov topologies. Let f : P → Q be a map of sets.
Then, f is order-preserving if and only if f is continuous.

Example 2.5 Consider R with the Alexandrov topology. Then, the open sets are ∅, R,
and the intervals (a,∞) and [a,∞), where a ∈ R.

Let (P,≤) be a preordered set, and let U be an up-set in P . Then the preorder on P
restricts to a preorder onU , andU is a full subcategory of P. Furthermore, any functor
F : P → C restricts to a functor F |U : U → C.

Lemma 2.6 [14, Remark 4.2.7] Let (P,≤) be a preordered set with the Alexandrov
topology and let P be the corresponding category. Let C be a complete category. Then,
any functor F : P → C has a canonical extension F̂ : Open(P)op → C given by

F̂(U ) = lim F |U = lim
p∈U

F(p),

and F̂(U ⊃ V ) is given by a canonical map.

Proof First we define ι : P → Open(P)op given by ι(p) = Up (the principal up-set
at p) for p ∈ P , and ι(p ≤ q) : Up ⊃ Uq .

Next for an up-set U in P we have the comma category U ↓ ι, whose objects are
elements p ∈ P such that U ⊃ Up, that is, p ∈ U , and whose morphisms are given
by p ≤ q ∈ U . Notice that this category is isomorphic to the categoryU. Consider the
projection π : U ↓ ι → P. Then, π is just the inclusion of U in P and F ◦ π = F |U .

Now let F̂ : Open(P)op → C be the right Kan extension, Ranι F . By definition,

F̂(U ) = Ranι F(U ) = lim(U ↓ ι
Fπ−−→ C) = lim F |U = limp∈U F(p). That is,

F̂(U ) is the universal (i.e., terminal) cone over the diagram F |U : U → C. For
U ⊃ V ∈ Open(P)op, F̂(U ) is a cone over F |V . By the universal property of F̂(V ),
there is a canonical map resV ,U : F̂(U ) → F̂(V ). Let F̂(U ⊃ V ) = resV ,U . The
universal property of the limit shows that this defines a functor.
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Finally for p ∈ P , Ranι F ι(p) = Ranι F(Up) = limq∈Up F(q) = lim p≤q F(q) =
F(p). So this Kan extension is actually an extension. �
Proposition 2.7 The functor F̂ = Ranι F : Open(P)op → C is a sheaf. That is, for
any open cover {Ui } of an open set U in P,

F̂(U )
∏

i

F̂(Ui )
∏

i, j

F̂(Ui ∩ U j )

∏
i F̂(U⊃Ui )

∏
i, j F̂(Ui ⊃Ui ∩U j )

∏
i, j F̂(U j ⊃Ui ∩U j )

(2.1)

is an equalizer.

Proof Let c be the limit of the diagram
∏

i lim F |Ui ⇒
∏

i, j lim F |Ui ∩U j where the
arrows are those in (2.1). By Lemma 2.6, we want to show that lim F |U ∼= c.

By the universal property of the limit, for all i, j wehave the following commutative
diagram of canonical maps.

lim F |Ui

lim F |U lim F |Ui ∩U j

lim F |U j

F̂(Ui ⊃Ui ∩U j )F̂(U⊃Ui )

F̂(U⊃U j )

F̂(U⊃Ui ∩U j )

F̂(U j ⊃Ui ∩U j )

Therefore, there is a canonical map lim F |U → c.
For all p ∈ U , p ∈ Ui for some i . So Ui ⊃ Up and hence we have a canonical map

c → lim F |Ui → lim F |Up = F(Up) = F(p). By the definition of c, this map does
not depend on the choice of i .

For p ≤ q, if p ∈ Ui then q ∈ Ui . So we have the following commutative diagram.

F(p)

c lim F |Ui

F(q)

Thus, for all p, q ∈ U with p ≤ q, we have canonical maps c → F(p) and c → F(q)

which commute with F(p ≤ q) : F(p) → F(q). Therefore, there is a canonical map
c → lim F |U .

By the universal property of the limit, both composites are the identity map. �
Theorem 2.8 [14, Theorem 4.2.10] Let (P,≤) be a preordered set and let C be a
complete category. Then, there is an isomorphism of categories between the func-
tor category CP and the category Shv(P;C) of sheaves on P with the Alexandrov
topology.

Proof Right Kan extension gives a functor Ranι : CP → COpen(P)op (see [38, Prop.
6.1.5] for example). By Proposition 2.7, Ranι : CP → Shv(P;C).

123



Foundations of Computational Mathematics (2021) 21:1233–1278 1239

Define a functor stalk(F) : Shv(P;C) → CP as follows. For p ∈ P , let
stalk(F)(p) = F(Up), and stalk(F)(p ≤ q) = F(Up ⊃ Uq).

We claim these functors are mutually inverse. Let p ∈ P and F ∈ CP. Then
(stalk Ranι F)(p) = Ranι F(Up) = F(p). Let U be an up-set of P and F ∈
Shv(P;C). Then (Ranι stalk F)(U ) = lim p∈U (stalk F)(p) = limp∈U F(Up). Since
U = ∪p∈U Up and F is a sheaf, this equals F(U ). �

We can dualize the above construction. For a preordered set (P,≤), let Pop denote
the preordered set with the opposite order. The Alexandrov topology on Pop has as
open sets the down-sets D of P . Instead of right Kan extensions and limits, we use
left Kan extensions and colimits.

Lemma 2.9 [13, Example 4.5] Let (P,≤) be a preordered set and let P be the cor-
responding category. Let C be a cocomplete category. Then any functor F : P → C
has a canonical extension F̂ : Open(Pop) → C given by

F̂(D) = colim F |D = colim
p∈D

F(p),

and F̂(D ⊂ E) is given by a canonical map.

Proposition 2.10 [13, Theorem 4.8] The functor above F̂ : Open(Pop) → C is a
cosheaf.

Theorem 2.11 [14, Theorem 4.2.10] Let (P,≤) be a preordered set and let C be a
cocomplete category. Then, there is an isomorphism of categories between the functor
categoryCP and the categoryCoshv(Pop;C) of cosheaves on Pop with the Alexandrov
topology.

Corollary 2.12 Let (P,≤) be a preordered set and let A be a Grothendieck category.
Then AP ∼= Shv(P;A) ∼= Coshv(Pop;A), where P and Pop have the Alexandrov
topology.

Example 2.13 We may consider the persistence module k[a, b) as a sheaf. For an

up-set U ⊆ R, k[a, b)(U ) = limx∈U [a, b)x =
{
k if inf U ∈ [a, b)

0 otherwise.

Let X be a topological space. If R is a sheaf of rings on X , we can define left
(or right) R-modules (which themselves are sheaves of abelian groups). These form
a category R-Mod (or Mod-R). If M and N are two such R-modules, we denote
their set of morphisms by HomR(M, N ). If R is a ring, define RX to be the sheaf
associated with the constant presheaf U �→ R for every open U ⊂ X . If R = k is a
field and X = R

n , we have the constant sheaf kRn (where X = R
n has, for example,

the Alexandrov topology). See Appendix C for more details.

Example 2.14 We may consider the persistence module R[P] as the constant sheaf of
rings RP on P with the Alexandrov topology (see Appendix C). By Corollary 2.12, we
can view persistence modules M ∈ ModPR , or M ∈ RModP as sheaves on P valued
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inModR or RMod, respectively, where P is given the Alexandrov topology obtained
from (P,≤). Furthermore, we have isomorphisms of categories:

ModPR ∼= Mod-RP and RModP ∼= RP -Mod

(see Appendix C).

Using the sheaf viewpoint, we have the six Grothendieck operations which we can
apply to persistencemodules (see [26,Chapters 2 and3]). In particular,wehave a tensor
product of sheaves M ⊗RP N and an internal hom of sheavesHom RP (M, N ). These
six Grothendieck operations are usually only left or right exact functors and in order
to preserve cohomological information we need the derived perspective (Appendix
D). Thus, it is crucial to be able to construct injective and projective resolutions of
complexes of sheaves. Proposition 2.15 gives us a way of determining if a given sheaf
is injective or not, by checking a smaller class of diagrams rather than the one usually
given in the definition of an injective object.

Proposition 2.15 [26, Exercise 2.10] Let R be a sheaf of rings on a topological space
X and let M ∈ Ob(Mod-R). Then,

(1) M is injective if and only if for any sub-R-module S of R (also called an ideal
of R), the natural homomorphism:

HomR(R, M) → HomR(S, M)

is surjective.
(2) Let k be a field. Then any ideal of kX is isomorphic to a sheaf kU , where U is

open in X.
(3) From (1) and (2), it follows that a kX -module M is injective if and only if the

sheaf M is flabby (Appendix C).

Part (1) of Proposition 2.15 is analogous to Theorem B.1, the Baer criterion for
graded modules. It can be used to identify injective persistence modules by looking
at a smaller class of diagrams. Part (3) tells us that a vector-space-valued persistence
module is injective if and only if it is flabby as a sheaf. In other words, we only need
to check if the restriction morphism M(P) = limx∈P Mx → M(U ) = limx∈U Mx is
surjective, for all up-sets U in P .

Example 2.16 Let a, b ∈ R
2 be incomparable with respect to ≤ and let U = Ua ∪

Ub and D = Da ∪ Db (Fig. 1). Consider the interval persistence module on D,
k[D]. Observe that k[D](R2) = limx∈R2k[D]x = k. On the other hand we have
that k[D](U ) = limx∈Uk[D]x = k2. Hence, the restriction morphism induced by
the inclusion U ⊂ R

2 cannot be surjective. Thus, k[D] is not flabby as a sheaf, and
therefore it is not injective, by Proposition 2.15.
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Fig. 1 An up-set U and a down-set D. The interval module k[D] is not injective. See Example 2.16

2.3 PersistenceModules as GradedModules

Throughout this section, we assume R is a unital ring and (P,≤, 0,+) is a preordered
set together with an abelian group structure. We assume that the addition operation in
the abelian group structure is compatible, meaning that for a, b, c ∈ P , a ≤ b implies
that a + c ≤ b + c. As an example consider (Ri ×Q

j ×Z
�,≤, 0,+), with i, j, � ≥ 0

and n := i + j + � ≥ 1, and where the right hand side has the product partial order.
Recall that U0 is the principal up-set at 0 ∈ P . For example, if (P,≤) = (Rn,≤),
then U0 ⊂ R

n is the nonnegative orthant of Rn .

Example 2.17 Let (P,≤) = (Rn,≤). Consider the monoid with addition, (U0,+, 0),
which we will also denote byU0. Let R be a unital ring. Let R[U0] be the monoid ring,
whose definition is analogous to that of a group ring R[G] for a ring R and a group
G. For example, elements of R[U0] can be xπ

1 , 1 + r1xe
1 + r2x53 , for r1, r2 ∈ R, etc.

This ring, R[U0], is anRn-graded ring and is commutative whenever R is. Indeed, we
can give it a grading in the following way: R[U0] = ⊕

a∈P R[U0]a , where R[U0]a is
the set of homogeneous elements in R[U0] of degree a if a ≥ 0, and is 0 otherwise.
Observe that R[U0]a ∼= R, for all a ≥ 0.

For a preordered set P with a compatible abelian structure, let P be the correspond-
ing category. Let A be the category of left R modules, RMod. Consider a persistence
module M : P → A. Then, M can be viewed as an P-graded left R[U0]-module
and vice versa. Indeed, we can write M = ⊕

a∈P Ma with left R[U0]-action given
by xs · m := Ma≤a+s(m) and extending linearly for a given m ∈ Ma and s ∈ U0
and xs the generator of R[U0]s . In the other direction, given a left action of R[U0]
we can construct R-module homomorphisms Ma → Ma+s by defining them to be
given by the left action by the generator xs of R[U0]s . Furthermore, every natural
transformation corresponds to a graded module homomorphism; see Fig. 2. This is
an isomorphism of categories. This has been observed by different authors, in [31] in
the P = R

n-graded case, in [41] in the P = Z
n-graded case and in [34, Lemma 3.4]

and [35] where P is a partially ordered abelian group. What is new in this paper is the
generalization to preordered sets. The corresponding statements also hold for functors
M : P → ModR and P-graded right R[U0]-modules.

In Sect. 8, we will state Künneth theorems for persistence modules. The splitting
of the short exact sequences in those theorems will depend on the properties of the
graded ring R[U0]. Observe that when the ring R is commutative, the ring R[U0] is
an associative R-algebra. Furthermore, the ring R[U0] is commutative; thus, it is a
commutative R-algebra. Now suppose R = k is a field and (P,≤) = (Rn,≤). We
make the following observations on the ring k[U0] and its ideals.

123



1242 Foundations of Computational Mathematics (2021) 21:1233–1278

Fig. 2 Consider maps αa : Ma → Na for a ∈ P . Viewing Ma≤b and Na≤b as actions by xb−a , the
equality αb(Ma≤b(m)) = Na≤b(αa(m)) corresponds to the equality α(xb−a ·m) = xb−a ·α(m). The first
equality is the condition for α to be natural transformation. The second equality is the condition for α to be
a graded module homomorphism

(i) k[U0] is not a principal ideal domain. In particular, the ideal k[U0 \ {0}] is not
generated by a single element.

(ii) k[U0] is not even a unique factorization domain. Otherwise, it would satisfy
the ascending chain condition for principal ideals (see [16, Section 0.2]). How-
ever, for m = 1, 2, 3, . . ., the increasing sequence of principal graded ideals
k[U( 1

m ,..., 1
m )] does not stabilize.

(iii) The only graded (homogeneous) ideals are the interval persistence modules of
up-sets that are contained in the first orthant, namely k[U ] for up-sets U ⊂ U0.
See also [34, Remark 8.12] and [25].

(iv) We have that k[U0 \ {0}] is the unique nonzero graded maximal ideal of k[U0],
consisting of homogeneous non-invertible elements of k[U0]. Hence, k[U0] is a
graded-local ring. Note that k[U0] is not a local ring. Indeed, if k[U0]were local,
then x1 or 1− x1 would be a unit. This is not the case, as these elements are not
invertible.

Recall that we have assumed that P is a preordered set together with an abelian
group structure. Let M, N : P → A be persistence modules, where A is eitherModR

or RMod. Let HomR[U0](M, N ) denote the set of module homomorphisms from a
persistence module M to N , forgetting the grading. For a module M , let M(s) be
the translation of M by s, i.e., M(s)a := Ms+a . Recall that a graded module is
finitely generated if it is finitely generated as a module (Appendix B). The following
proposition suggests how to construct sets of morphisms between persistence modules
that are themselves persistence modules. This will eventually allow us to consider a
chain complex of persistence modules with coefficients in another persistence module
(Sect. 8).

Proposition 2.18 [23, Theorem 1.2.6] Suppose M is a finitely generated per-
sistence module. Then, the abelian group of module homomorphisms from M
to N, HomR[U0](M, N ), has a direct sum decomposition HomR[U0](M, N ) ∼=⊕
s∈P

Hom(M, N (s)), where Hom(M, N (s)) is the set of natural transformations

(graded module homomorphisms) from M to N (s).

Hence, sets of (ungraded)module homomorphisms of persistencemodules have the
structure of a graded abelian group when the domain module M is a finitely generated
module.

The following is a graded version of Nakayama’s lemma in homological algebra.
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Proposition 2.19 [33, Theorem 4.6] Let � be a monoid. Let S be a �-graded ring.
Suppose S is a graded-local ring. Then, if P is a finitely generated graded projective
S-module, P is a graded free S-module.

Since every group is a monoid, we can apply Proposition 2.19 to rings and modules
graded over a group. Thus, we have the following corollary, where Vectk is defined
in Sect. 2.1.

Corollary 2.20 A finitely generated persistence module M : P → Vectk is projective
if and only if M is graded free.

Let us now summarize some of the results from this section and the previous two
sections.

Theorem 2.21 Let (P,≤,+, 0) be a preordered set with a compatible abelian group
structure. Let R be a unital ring. Then, we have the isomorphisms of categories

RModP ∼= RP -Mod ∼= GrP-R[U0]Mod and ModPR ∼= Mod-RP ∼= GrP-ModR[U0].

where Gr P -R[U0]Mod and Gr P -ModR[U0] are the categories of P-graded left and
right R[U0]-modules, respectively. In particular, for each a ∈ P, Ma ∼= M(Ua).
Also, M(U ) = lima∈U M(Ua), and the graded module structure is given by M ∼=⊕

a∈P Ma.

Definition 2.22 We say M is a left persistence module if M : P → RMod. We say M
is a right persistence module if M : P → ModR . Due to the above isomorphisms, we
will also use these termswhen M is a left RP -module or right RP -module, respectively,
and when P is a preordered set with a compatible abelian group operation, when M
is a P-graded left R[U0]-module or a P-graded right R[U0]-module, respectively.

2.4 A Grothendieck Category of Persistence Modules

In this section, we observe that the category of persistence modules is a Grothendieck
category and remark that the Gabriel–Popescu theorem can be applied. This allows
us to potentially consider persistence modules as modules over a new (non-graded)
ring. Let (P,≤) be a preordered set. Recall that for a ∈ P , Ua = {b ∈ P | a ≤ b}.
Let A be a Grothendieck category. Recall that a family of generators in a category is
a collection of objects {U }i such that for every two distinct morphism f , g : X → Y
in the category, there exists an i and h : Ui → X such that f h �= gh (Appendix A).
If the family is a singleton, we simply say generator.

Proposition 2.23 The category AP is a Grothendieck category with a generator. In
particular, the category has enough projectives and injectives.

Proof Since A is a Grothendieck category, so is the functor category AP, by Proposi-
tion A.2. Let G be a generator of A. For a ∈ P , define G[Ua] to be the persistence
module given by G[Ua]b = G if b ∈ Ua and 0 otherwise and let G[Ua]b≤c = 1G

if b, c ∈ Ua and 0 otherwise. The collection {G[Ua]}a∈P is a family of generators.
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Indeed, suppose f , g : M → N are natural transformations between persistence
modules M and N such that f �= g. Then, by definition, there exists an a ∈ P such
that fa �= ga . In particular, as G is a generator of A, there exists an ha : Ga → Ma

such that faha �= gaha . Define h : G[Ua] → M by setting hb = 0 for b /∈ Ua and
setting hb = Ma≤bha for b ∈ Ua . Since all of the maps in G[Ua] are the identity or are
zero, the collection of maps {hb}b∈P are the components of a natural transformation
h. Then, by construction it is clear that f h �= gh, hence {G[Ua]}a∈P is a family of
generators. By Proposition A.1, we have thatU := ⊕

a∈P G[Ua] is a generator (which
is also free and hence projective). By Theorem A.3 and Proposition A.1, the category
has enough injectives and projectives. �

We will show later in Sect. 6 that the interval modules k[Da] are injective and that
the interval modules k[Ua] are projective, when k is a field and P = R

n .

Theorem 2.24 [37, Theorem 14.2, Chapter 4](Gabriel–Popescu theorem) Let C be a
Grothendieck category and let U be an object in C. Consider the endomorphism ring
S := EndC(U ). Then, the following are equivalent:

(1) U is a generator.
(2) The functor Hom(U , ·) : C → ModS is full and faithful and its left adjoint

· ⊗S U : ModS → C is exact.

From this, we have the following Gabriel–Popescu theorem for persistence mod-
ules:

Corollary 2.25 Let U = ⊕
a∈P G[Ua] and let S = End(U ). Then,

– Hom(U , ·) : AP → ModS is full and faithful; and its left adjoint
– · ⊗S U : ModS → AP is exact.

We will use this result in Sect. 9 when we consider persistence modules over finite
preordered sets.

2.5 Chain Complexes of PersistenceModules

In Sect. 8, we will investigate how changing the coefficients of a chain complex of
persistence modules changes its homology. In order to compute examples that come
from applications, we consider a chain complex of persistence modules obtained from
a filtered cellular complex, such as a filtered simplicial complex or a filtered cubical
complex.

A filtration on a CW complex X is a function f : X → R that is constant on the
cells of X and such that f (∂σ ) ≤ f (σ ) for all cells σ of X . For a ∈ R, let Xa be the
subcomplex of X defined by Xa := f −1(−∞, a]. The collection of CW complexes
{Xa}a∈R with the inclusionmaps Xa ↪→ Xb whenever a ≤ b is a filtered CW complex.
The inclusion maps induce k-linear maps on cellular homology with coefficients in a
fieldk, Hn(Xa;k) → Hn(Xb;k). LetHn(X) denote the resulting persistencemodule.

Let X be a CW complex with filtration f . Let X(m) denote the set of m-cells of X .
For m ≥ 0, define Cm(X) = ⊕

σ∈X(m)
k[ f (σ ),∞). For σ ∈ X(m), also let σ denote
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the generator of k[ f (σ ),∞). For a ≥ f (σ ), let σa denote k[ f (σ ),∞) f (σ )≤aσ .
Similarly, define αa ∈ Cm(X) for an m-chain α in the cellular chain complex on
X . Define dm : Cm(X) → Cm−1(X) to be the natural transformation obtained by
extending the definition (dm)a(σa) := (∂σ )a linearly. Let Hn(C(X)) be the homology
of the chain complex (C∗(X), d∗).

Lemma 2.26 Let X be a CW complex with a filtration as above. For all n ∈ N,
Hn(C(X)) ∼= Hn(X).

Proof For all a ∈ R, by definition, Hn(X)a is the n-th cellular homology of
f −1(−∞, a] ⊆ X , Hn( f −1(−∞, a];k). By construction, Cm(X)a has as genera-
tors the m cells σ of X such that f (σ ) ≤ a. By the definition of (dm)a , it follows that
Hn(C(X))a is isomorphic to Hn( f −1(−∞, a];k). �

3 Tensor Products of PersistenceModules

In this section, we consider two functors of persistence modules. In Sect. 10, we show
that they are both monoidal products on the category of persistence modules. These
are ⊗gr and ⊗sh, the tensor products from graded module theory and sheaf theory,
respectively. We give formulas for calculating these functors applied to one-parameter
interval modules. These formulas will be useful in computations in Sect. 8.

3.1 Tensor Product of Sheaves

Let (P,≤) be a preordered set and let R be a unital ring. For more details, see [5,
Chapter 1] and [26, Chapter 2].

Definition 3.1 Let M be a right RP -module and let N be a left RP -module, where
P is given the up-set topology. The sheaf tensor product M ⊗RP N is the sheaf of
abelian groups on P which is associated with the presheaf given by the assignment
U �→ M(U ) ⊗R N (U ), for an up-set U ⊂ P . The stalk of this presheaf at a ∈ P
is Ma ⊗R Na . As sheafification preserves the values on stalks, we have (M ⊗RP

N )a = Ma ⊗R Na . However, as discussed in the proof of Lemma 2.6, we have
(M ⊗RP N )(Ua) = M(Ua)⊗R N (Ua) = Ma ⊗R Na . By the result of Theorem 2.8, we
can also take the functor stalk(M ⊗RP N ) : P → Ab, defined by stalk(M ⊗RP N )a :=
M(Ua)⊗R N (Ua), as the definition of M ⊗RP N . To simplify notation, we will denote
⊗RP by⊗sh throughout this paper (the ring R will always be clear from context).When
N is an RP -bimodule, M ⊗sh N is in fact a right RP -module. When R is commutative,
M ⊗sh N is an RP -module.

Example 3.2 Assume that (P,≤) = (Rn,≤) and R = k is a field. Let U , V ⊂ R
n be

intervals and let k[U ] and k[V ] be the corresponding interval persistence modules.
For a ∈ R

n , (k[U ] ⊗sh k[V ])a = k[U ]a ⊗k k[V ]a which equals k if a ∈ U ∩ V
and is otherwise zero. If U ∩ V is connected then, k[U ] ⊗sh k[V ] = k[U ∩ V ]. As a
special case, if n = 1, we have that k[a,∞) ⊗sh k[b,∞) = k[max{a, b},∞).
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3.2 Tensor Product of GradedModules

Let (P,+, 0) be an abelian group. There exists a tensor product operation on Gr P -S,
the category of P-graded modules over a P-graded ring S; for example, see [23].
Hence, we have a tensor product of persistence modules, M ⊗R[U0] N . For the one-
parameter case, see, for example, [10,36]. For simplicity and to differentiate from the
sheaf tensor product, we will write M ⊗gr N throughout, as the ring R and the abelian
group P will be clear from the context.

Definition 3.3 Let M be a P-graded right R[U0]-module and let N be P-graded left
R[U0]-module. Let M ⊗R N := ⊕

r∈P (M⊗R)r , where

(M ⊗R N )r := R
〈{∑

i

mi ⊗R ni | mi ∈ Mh, ni ∈ N h, deg(mi ) + deg(ni ) = r
}〉

.

Define the graded module tensor product of M and N , written M ⊗gr N , to be the
P-graded abelian group given by

M ⊗gr N := (M ⊗R N )/J ,

where J is the subgroup of M ⊗R N generated by the homogeneous elements

{m · x ⊗R n − m ⊗R x · n | m ∈ Mh, n ∈ N h, x ∈ R[U0]h}.

where Mh, N h and R[U0]h are the sets of homogeneous elements of M, N and R[U0],
respectively.

Now assume (P,≤,+, 0) is a preorder with a group structure compatible with the
preorder, namely a ≤ b implies a +c ≤ b+c. Then, there is an equivalent categorical
definition of ⊗gr, as observed in [36]. Let Xr = ⊕

s+t=r (Ms ⊗R Nt ). The abelian
group (M ⊗gr N )r is the quotient of Xr given by the colimit of the diagram of abelian
groups (Ms ⊗R Nt )s+t≤r . See Fig. 3 for the case (P,≤) = (R,≤).

Definition 3.4 Let M be a P-graded right R[U0]-module and let N be a P-graded left
R[U0]-module. Define the P graded abelian group M ⊗gr N by setting (M ⊗gr N )r :=
colims+t≤r (Ms ⊗R Nt ).

Observe that Definitions 3.3 and 3.4 are equivalent. Indeed, this follows from
Sect. 2.3 and the way the Z[U0] action is defined in the quotient in Definition 3.3. If
N is a P-graded R[U0]-bimodule, then M ⊗gr N is a P-graded right R[U0]-module.
Furthermore, M ⊗gr N (s) = M(s) ⊗gr N = (M ⊗gr N )(s) for all s ∈ R

n , and
M ⊗gr k[Us] = M(−s).

Example 3.5 Let M = k[a, b) and N = k[c, d). Assume b + c ≤ a + d (see Fig. 4).
Let r ∈ R and let Xr := ⊕

s+t=r (Ms ⊗k Nt ). For a + c ≤ r < b + c, every
summand of Xr is in the image of Ma ⊗k Nc ∼= k, and hence (M ⊗gr N )r ∼= k and
for a + c ≤ r ≤ r ′ < b + c, (M ⊗gr N )r≤r ′ is the identity map on k. For b + c ≤ r ,
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Fig. 3 The tensor product of one-parameter persistence modules M and N . Each abelian group (M ⊗gr N )r
is assigned to be the colimit of the diagram of abelian groups (Ms ⊗R Nt )s+t≤r

Fig. 4 Tensor product of interval modules : k[a, b) ⊗gr k[c, d) = k[a + c,min{a + d, b + c})

each nonzero summand Ms ⊗k Nt of Xr has t > c and thus lies in the image of
Ms ⊗k Nc ∼= k. However, the map Ms ⊗k Nc → Ml ⊗k Nc where l is such that
l + c = r has to be the zero map as r ≥ b + c, thus l ≥ b and thus Ml = 0. Hence,
M ⊗gr N ∼= k[a + c, b + c).

If we had a + d ≤ b + c, then the same argument shows that M ⊗gr N ∼= k[a +
c, a + d). Combining these two results we have the following.

k[a, b) ⊗gr k[c, d) = k[a + c,min{a + d, b + c})

Note that the persistence of this interval module (i.e., the length of the corresponding
interval) is the minimum of the persistences of the interval modules M and N .

123



1248 Foundations of Computational Mathematics (2021) 21:1233–1278

Alternatively, note that k[a, b) and k[c, d) are graded modules with one generator
in degrees a and c, respectively. Label these generators as ya and zc, respectively.
Then, note that by the action of the graded ring k[0,∞), we have xt · ya �= 0 if and
only if t < b −a. Similarly xt · zc �= 0 if and only if t ≤ d −c. From the point of view
of graded module theory, k[a, b) ⊗gr k[c, d) will be a graded module with a single
generator in degree a + c, namely ya ⊗gr zc and xt · (ya ⊗gr zc) �= 0 if and only if
t < min{b − a, d − c}.

Similarly one obtains the following equalities.

k[a,∞) ⊗gr k[c, d) = k[a + c, a + d) k[a,∞) ⊗gr k[c,∞) = k[a + c,∞)

k[a, b) ⊗gr k(−∞, d) = 0 k[a,∞) ⊗gr k(−∞, d) = k(−∞, a + d)

k[a, b) ⊗gr k(−∞,∞) = 0 k[a,∞) ⊗gr k(−∞,∞) = k(−∞,∞)

Note that ⊗gr is different from ⊗sh. Indeed, the tensor unit of ⊗gr is R[U0] while
the tensor unit of ⊗sh is R[P]. We will focus more on ⊗gr over ⊗sh in this paper
because ⊗gr is right exact in general unlike ⊗sh which is exact when R = k is a
field. We thus need to spend more time carefully constructing projective resolutions
and calculating the derived functor of ⊗gr. However, as we will see in Proposition 3.7
and Remark 3.8, unlike ⊗sh, ⊗gr does not interact nicely with the other Grothendieck
operations obtained from sheaf theory.

Definition 3.6 Let X and Y be topological spaces and f : Y → X a continuous map.
Let F be a sheaf on X . The inverse image of F by f , denoted f −1F is the sheaf on
Y associated with the presheaf given by the following assignment:

f −1F(U ) := colim
f (U )⊂V

F(V ),

for all open U ⊂ Y , where V ranges over all open subsets of X containing f (U ).

Proposition 3.7 Let f : P → P be a continuous map (with respect to the Alexandrov
topology on (P,≤)). Then, for a right persistence module M and a left persistence
module N we have a canonical isomorphism.

f −1(M ⊗sh N ) ∼= f −1M ⊗sh f −1N (3.1)

Proof Let f : X → Y be a map of topological spaces, and let R be a sheaf of
rings on Y . Let M be a rightR module and let N be a leftR module. Then, there is a
canonical isomorphism f −1(M⊗R N ) ∼= f −1M⊗ f −1R f −1N , see, for example, [26,
Proposition 2.3.5]. Now let X = Y = P (with the Alexandrov topology) and letR =
RP . Suppose f : P → P is continuous, with respect to theAlexandrov topology on P .
Then, f −1RP = RP . Indeed, letU ⊂ P be an up-set. Then, byDefinition 3.6, f −1RP

is the sheaf associated with the presheaf f −1RP (U ) := colim f (U )⊂V RP (V ) = R,
which means f −1RP is the constant sheaf on P . Thus, we have f −1(M ⊗sh N ) ∼=
f −1M ⊗sh f −1N . �
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Remark 3.8 Let f : P → P be continuous (with respect to the Alexandrov topology
on (P,≤)). It is not necessarily true that f −1(M ⊗gr N ) is isomorphic to f −1M ⊗gr
f −1N . Indeed consider the following counter example. Let (P,≤) = (R,≤) and let
R = k. Let f : R → R be given by f (x) = x + 5. Observe that f is continuous and
that for an interval module k[a, b) we have:

f −1(k[a, b) ⊗gr k[a, b)) = f −1k[2a, a + b) = k[2a − 5, a + b − 5) .

On the other hand:

f −1k[a, b) ⊗gr f −1k[a, b) = k[a − 5, b − 5) ⊗gr k[a − 5, b − 5)

= k[2a − 10, a + b − 10) .

For the remainder of this section, we assume that (P,≤) = (Rn,≤) and that R = k
is a field.

Example 3.9 Consider persistence modules M = k[[a1, b1) × · · · × [an, bn)] and
N = k[[c1, d1) × · · · × [cn, dn)]. Then, M ⊗gr N = k[[a1 + c1,min{b1 + c1, a1 +
d1}) × · · · × [an + cn,min{bn + cn, an + dn)]. To see this, observe that M and N
are graded modules with a single generator, in degrees (a1, . . . , an) and (c1, . . . , cn),
respectively. Hence, M ⊗gr N will be a persistence module with a single generator in
degree (a1 + c1, . . . , an + cn), say ya+c, and all that is left is to determine for which
t ∈ R

n is xt · ya+c zero. We examine this coordinatewise as in Example 3.5 to obtain
the answer above.

4 Homomorphisms of PersistenceModules

In this section, we consider two bifunctors of persistence modules: the two internal
homs, Hom and Hom , coming from graded module theory and sheaf theory, respec-
tively. These functors are well known in their respective domains but examples in
the persistence module literature seem to be lacking. In order to do computations
with interval modules we first need to understand the sets of natural transformations
between them. The following examples serve that purpose.

Example 4.1 [9, Appendix A.2] Suppose k[a, b) and k[c, d) are interval modules.
Then, due to the constraints of commutative squares for natural transformations, we
have:

Hom(k[a, b),k[c, d)) ∼=
{
k if c ≤ a < d ≤ b

0 otherwise

Example 4.2 [35, Proposition 3.10] Let U be an up-set and D a down-set in a poset
(P,≤). Then Hom(k[U ],k[D]) ∼= kπ0(U∩D) where π0A is the set of equivalence
classes of connected components of a set A, with respect to the poset structure, as in
Definition 2.2. For upsets U and U ′, Hom(k[U ′],k[U ]) = k{S∈π0U ′ | S⊆U }.
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4.1 Sheaf Internal Hom

Let (P,≤) be a preorder with the Alexandrov topology and let R be a unital ring.
Given two left/right persistence modules M and N , thought of as sheaves, there is a
sheaf of abelian groups given by Hom RP (M, N )(U ) := HomRP |U (M |U , N |U ), for
any up-setU (see Appendix C).We will writeHom (M, N ) instead ofHom RP (M, N )

as the ring R and preorder P will always be clear from context. Furthermore, when the
ring R is commutative, Hom (M, N ) also has the structure of an RP -module (i.e., a
persistence module). For any persistence module X , the functor−⊗sh X is left adjoint
to the functor Hom (X ,−) (see Proposition C.1).

Example 4.3 For interval modules k[a, b) and k[c, d) we have the following.

Hom (k[a, b),k[c, d)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a < b ≤ c < d

0 if a < c ≤ b < d

k[c, d) if a < c < d ≤ b

0 if c ≤ a < b < d

k(−∞, d) if c ≤ a < d ≤ b

0 if c < d ≤ a < b

To see this, note that by definition we have the following.

Hom (k[a, b),k[c, d))x = Hom (k[a, b),k[c, d))([x,∞)) =
= Homk[R]|[x,∞)

(k[a, b)|[x,∞),k[c, d)|[x,∞))

Thus, we need to compute the set of natural transformations between the functors

k[a, b)|[x,∞),k[c, d)|[x,∞) : [x,∞) → Vectk,

where [x,∞) is given the total linear order induced from R. Note that k[a, b)|[x,∞)

is nonzero if and only if x ∈ (−∞, b). Consider the case c ≤ a < d ≤ b. As
in Example 4.1, we see that Homk[R]|[x,∞)

(k[a, b)[x,∞),k[c, d)[x,∞)) ∼= k if x ∈
(−∞, d) and is zero otherwise. The other cases may be computed similarly. The same
argument also shows that

Hom (k[a,∞),k[c, d)) =

⎧
⎪⎨

⎪⎩

k[c, d) if a < c

k(−∞, d) if c ≤ a < d

0 if d ≤ a

and that

Hom (k[a, b),k[R]) = 0 and Hom (k[a,∞),k[R]) = k[R].
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4.2 GradedModule Internal Hom

Now assume that (P,≤,+, 0) is a preordered set with a compatible abelian group
structure. Then, we can consider the graded module internal hom, the right adjoint of
⊗gr.

Definition 4.4 Let M be a persistence module (either left or right). For s ∈ P , let
Ts : P → P be the translation functor by s, i.e., Ts(x) = x +s. Define M(s) := M ◦Ts .

Observe that for every s ∈ U0, there is a natural transformation ηs : 1P → Ts whose
components (ηs)a : 1P(a) → Ts(a) are given by a ≤ a + s. Then, ηs is a natural
transformation since a ≤ b implies a + s ≤ b + s for all a, b ∈ P . Furthermore,
for any s ∈ U0, given a persistence module M , we have a natural transformation
1M ∗ ηs : M → M(s), where ∗ denotes horizontal composition.

Definition 4.5 Let M and N be two persistence modules (both left or both right).
Define Hom(M, N ) := ⊕

s∈P Hom(M, N (s)). Then Hom(M, N ) is a P-graded
abelian group. This follows from Proposition 2.18. When the ring R is commuta-
tive, Hom(M, N ) is a persistence module. Given s ∈ P , we have the R-module
Hom(M, N )s := Hom(M, N (s)) and for each s ≤ t we have an R-module homo-
morphisms Hom(M, N )s≤t defined by ({αx : Mx → Nx+s}x∈P ) �→ ({Nx+s≤x+tαx :
Mx → Nx+t }x∈P ) or equivalently, by the naturality ofα, ({αx : Mx → Nx+s}x∈P ) �→
({αx+t Mx≤x+t : Mx → Nx+s+t }x∈P ).

There is a canonical isomorphism Hom(M, N (s)) ∼= Hom(M(−s), N ) for all
s ∈ P . Hence, shifting the first argument in Hom or the second one to construct Hom
gives us the same definition.

Proposition 4.6 (Limit characterization of Hom) Let M, N be persistence mod-
ules (both left or both right). Then, Hom(M, N )r is the limit of the diagram
{HomR(M−s, Nt )}s+t≥r .

Proof Define Xr = ∏
s+t=r HomR(M−s, Nt ). We claim that Hom(M, N )r is the

abelian subgroup of Xr that is the limit of the diagram of abelian groups given by
HomR(M−s, Nt ) with s + t ≥ r and maps as in Fig. 5. Note that Fig. 5 illustrates the
case in which (P,≤) = (R,≤), but the algebra holds for the general case. To see this,
observe the following: Let f ∈ HomR(M−b, Nc) and g ∈ HomR(M−a, Nd), where
a + d = b + c = r . The canonical maps HomR(M−b, Nc) → HomR(M−b, Nd) and
HomR(M−a, Nd) → HomR(M−b, Nd) that are induced by M−b≤−a and Nc≤d are just
postcomposition and precomposition by Nc≤d and M−b≤−a , respectively. If f and g
are components of a natural transformation in Hom(M, N (r)), then the parallelogram
in Fig. 6 commutes. Equivalently, f and g are mapped to the same morphism under
the above maps (see Fig. 6). �

In the remainder of this section, we assume that (P,≤) = (Rn,≤) and R = k is a
field.
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Fig. 5 Limit characterization of Hom

Fig. 6 Commutativity of natural transformations is equivalent to a limit characterization of the appropriate
hom sets

Example 4.7 Consider two interval modules, say k[a, b) and k[c, d). Note that in
the definition of Hom(M, N ), we compute the direct sum of abelian groups of nat-
ural transformations between the persistence module M and all translations of the
persistence module N on the real line. Thus, by using the same arguments as in Exam-
ple 4.1, Hom(k[a, b),k[c, d)) is the interval module k[I ] such that for all t ∈ I ,
Hom(k[a, b),k[c, d))t = k and 0 otherwise. Depending on the lengths of the inter-
vals [a, b) and [c, d) there are two cases to consider, namely b − a ≤ d − c and
d − c ≤ b − a. We can calculate, accounting for both cases, that

Hom(k[a, b),k[c, d)) = k[max{c − a, d − b}, d − a) ,

Alternatively, using Proposition 4.6 and reasoning similar to that used in Exam-
ple 3.5 we can do the same calculation in terms of limits of diagrams of
vector spaces, see Fig. 7. Other formulas such as Hom(k[a, b),k[c,∞) = 0,
Hom(k[a,∞),k[b, c)) = k[b − a, c − a) can be computed using the same argu-
ments.
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Fig. 7 Hom of interval modules: Hom(k[a, b), k[c, d) = k[max{c − a, d − b}, d − a)

Example 4.8 Suppose that M = k[[a1, b1) × · · · × [an, bn)] and N = k[[c1, d1) ×
· · ·×[cn, dn)] are two rectangle modules. Then Hom(M, N ) = k[[max{c1−a1, d1 −
b1}, d1 − a1) × · · · × [max{cn − an, dn − bn}, dn − an)].

5 Duality

Let (P,≤) be a preorder. Let R be a commutative unital ring. For a persistencemodule
we have duals from sheaf theory and from graded module theory. For the former, see
[26, Corollary 2.2.10.] and for the latter see [32,34]. The graded module dual will be
useful in determining which interval modules are flat and injective, which will be used
in homological algebra computations to come.

Definition 5.1 The sheaf dual of a persistence module M is the persistence module
given by

M∗
sh := Hom (M, RP ).

Example 5.2 Let (P,≤) = (R,≤) and let R = k be a field. Let a ≤
b and consider the interval module k[a, b). Then, by Example 4.3, we find
k[a, b)∗sh := Hom (k[a, b),k[R]) = 0. Similarly, if a ∈ R, we have k[a,∞)∗sh :=
Hom (k[a,∞),k[R]) = k[R].

Now suppose that (P,≤,+, 0) is a preorderwith a compatible abelian group action.
The ring R is still assumed commutative and unital.

Definition 5.3 The Matlis dual of a persistence module M is the persistence module
given by

M∗
gr := Hom(M, R[D0]]).
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Lemma 5.4 For a ∈ P,
(

M∗
gr

)

a
∼= HomR(M−a, R).

Proof Note that Hom(M, R[D0])a = Hom(M, R[D0](a)) = Hom(M, R[D−a]). It
remains to show that

Hom(M, R[D−a]) ∼= HomR(M−a, R).

For ϕ : M → R[D−a], we have the component ϕ−a : M−a → R. For f : M−a → R,
define ϕ : M → R[D−a] by ϕ−a = f , for x ≤ −a, ϕx = f Mx≤−a , and let ϕx be
the zero map otherwise. These two mappings provide the desired isomorphism. Under

this isomorphism,
(

M∗
gr

)

a≤b
is given by the mapping f �→ f ◦ M−b≤−a . �

Using the⊗gr−Hom adjunction (see Theorem 10.7), we have the following canon-
ical isomorphism:

(M ⊗gr N )∗gr = Hom(M ⊗gr N , R[D0]]) ∼= Hom(M,Hom(N , R[D0]))
= Hom(M, N∗

gr) .

Similarly, using the ⊗sh − Hom adjunction, [26, Proposition 2.2.9], we have the
following canonical isomorphism:

(M ⊗sh N )∗sh = Hom (M ⊗sh N , RP ) ∼= Hom (M,Hom (N , RP )) = Hom (M, N∗
sh) .

In the remainder of this section (P,≤) = (Rn,≤) and R = k is a field.
If a persistence module M is pointwise finite dimensional, we have (M∗

gr)
∗
gr

∼= M .
This is true since for finite dimensional vector spaces the same formula holds for vector
space duals. In particular for a pointwise finite dimensional persistence module M ,
the module M∗

gr is in some sense the dilation of M about the origin of scale factor −1.

Example 5.5 Consider an interval module k[A]. Then, k[A]∗gr = k[−A].

Definition 5.6 A graded module M is ⊗gr-flat if − ⊗gr M is an exact functor.

Proposition 5.7 [34, Remark 4.20] A persistence module M is ⊗gr-flat if and only if
its Matlis dual M∗ is injective, and vice versa. In particular, k[A] is injective if and
only if k[−A] is ⊗gr-flat.

Remark 5.8 Observe that we can use Matlis duality and the fact that injectivity of per-
sistence modules is equivalent to their flabbiness (Appendix C and Proposition 2.15)
to classify interval modules into injectives and flats, see Fig. 1, or use the Baer crite-
rion (Proposition A.4, Theorem B.1, and Proposition 2.15) if one prefers it over the
flabbiness condition.
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6 Classification of Projective, Injective and Flat Interval Modules

In this section, we assume that (P,≤) = (Rn,≤) and that R = k is a field.We classify
interval modules (in the one-parameter case) into injectives and projectives and extend
the results somewhat to the multi-parameter setting. This is a necessary step for the
homological algebra computations that are to come involving interval modules.

Proposition 6.1 Let a ∈ R. The interval module k(a,∞) is not graded projective.

Proof For simplicity, we will prove the claim for k(0,∞). Consider the following
diagram

k(0,∞)

⊕
a>0

k[a,∞) k(0,∞) 0
Id

β

p

where p is induced by the inclusions k[a,∞) ↪→ k[0,∞), a > 0. However, by
Example 4.2, k(0,∞) has no nonzero maps to k[a,∞), when a > 0, because (0,∞)

is not a subset of [a,∞). Thus, β = 0, but then the diagram cannot commute, and
thus, k(0,∞) is not projective. �

In particular, submodules of freemodules are not necessarily free,which is expected
as the graded ring we are working with is not a principal ideal domain.

The following is an observation due to Parker Edwards.

Lemma 6.2 If a < c ∈ R ∪ {∞}, then colima<b<c k[b, c) = k(a, c). Dually, if
c < a ∈ R ∪ {−∞}, then limc<b<ak(c, b] = k(c, a).

Lemma 6.3 Colimits of graded projective modules are ⊗gr-flat.

Corollary 6.4 Let a ∈ R. The interval module k(a,∞) is ⊗gr-flat.

We now prove the classification of projective, injective and ⊗gr-flat interval mod-
ules stated in Theorem 1.2.

Theorem 6.5 (Theorem 1.2) Let a ∈ R. Then,

– The interval modules k(−∞, a) and k(−∞, a] are injective. They are not flat and
thus not projective.

– The interval modules k[a,∞) are projective (free) and the interval modules
k(a,∞) are flat but not projective. Both are not injective.

– The interval module k[R] is both injective and flat, but not projective.
– If I ⊂ R is a bounded interval, then k[I ] is neither flat (hence not projective) nor

injective.

Proof First, let us show that k(−∞, a) is injective. By Corollary 6.4, we know the
interval module k(−a,∞) is ⊗gr-flat. By Proposition 5.7, it follows that the interval
module k(−∞, a) is injective. To see that k[a,∞) is projective, note that it is a
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graded free module and is thus graded projective (hence ⊗gr-flat). The statement that
k(a,∞) is ⊗gr-flat and not projective is Proposition 6.1 and Corollary 6.4. Note that
k[a,∞)([a,∞) ⊂ R) : k[a,∞)(R) = 0 → k[a,∞)[a,∞) = k is not surjective.
Thus, the sheaf k[a,∞) is not flabby and hence by Proposition 2.15 is not injective.
The same argument shows k(a,∞) is not injective. By Proposition 5.7, k(−∞, a)

and k(−∞, a] are not ⊗gr-flat thus not projective.
The same argument used for k(−∞, a) shows that k[R] is injective. By Proposi-

tion 5.7, k[−R] = k[R] is ⊗gr-flat.
For a bounded interval I ⊂ R note that for a ∈ I , k[I ]([a,∞) ⊂ R) is not

surjective. Thus, the sheaf k[I ] is not flabby thus not injective by Proposition 2.15.
Its Matlis dual k[−I ] is thus not ⊗gr-flat. By the same arguments k[−I ], as −I is a
bounded interval, k[−I ] is not injective, thus by Proposition 5.7 k[I ] is not ⊗gr-flat
thus not projective. �

For the multi-parameter case note that for a ∈ R
n , the persistence module k[Ua]

is graded free, thus graded projective, and hence ⊗gr-flat. By Proposition 5.7, the
persistence module k[Da] is injective.
Definition 6.6 Let (Q,≤) be a poset. Let p, q ∈ Q. The join of p and q denoted
p ∨ q is the smallest r ∈ Q such that p ≤ r and q ≤ r , if it exists. The meet of p and
q denoted p ∧ q is the largest t ∈ Q such that t ≤ p and t ≤ q, if it exists. A poset
where every join exists is called a join semilattice. A poset where every meet exists is
called a meet semilattice. A poset where every join and every meet exists is called a
lattice. Note that every up-set U (and every down-set D) in a lattice is an interval.

Example 6.7 The poset (Rn,≤) is a lattice.

Proposition 6.8 Let (P,≤) be a lattice. Consider a down-set D ⊂ P such that for all
a, b ∈ D, the join a ∨ b is in D. Then, the interval module k[D] is injective. Dually,
for an up-set U ⊂ R

n with a ∧ b ∈ U for all a, b ∈ U, the interval module k[U ] is
⊗gr-flat.

Proof Let D be as in the statement of the proposition. Observe that, viewing k[D]
as a sheaf, we have k[D](P) = limx∈P k[D]x ∼= k. Let U be an up-set of P with
D ∩ U �= ∅. Then, since the join for all a, b ∈ D ∩ U exists in D ∩ U , it follows
that k[D](U ) = limx∈U k[D]x ∼= k. Since the nonzero maps in the module k[D]
are identities, the induced map between the limits is an isomorphism. Hence, k[D]
is a flabby sheaf, hence an injective persistence module by Proposition 2.15. The
remainder of the statement follows from Proposition 5.7. �

7 Derived Functors for PersistenceModules

In this section,we consider the derived functors of the following functors of persistence
modules: ⊗gr,Hom,⊗sh and Hom . Throughout this section, we assume (P,≤) =
(Rn,≤) and that R = k is a field. For one-parameter interval decomposable persistence
modules, wewill use the classification of projective, injective, and flat intervalmodules
(Theorem 1.2) in order to construct projective and injective resolutions and calculate
these derived functors. The resulting formulas will be used in Sect. 8.
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7.1 GradedModule Tor and Ext

Here, we consider the derived functors Torgr and Extgr of the graded module tensor
product ⊗gr and its adjoint, Hom.

Example 7.1 ([36]) Consider the interval modules k[a, b) and k[c, d). We have the
following augmented projective resolution of k[a, b).

0 → k[b,∞) → k[a,∞) → k[a, b) → 0

Apply the functor − ⊗gr k[c, d) to the projective resolution to get the following (no
longer exact) sequence.

0 → k[b + c, b + d) → k[a + c, a + d) → 0

Calculating homology (i.e., taking the kernel of the middle map) we get the following.

Torgr1 (k[a, b),k[c, d)) = k[max{a + d, b + c}, b + d) .

SimilarlyTorgr1 (k[a, b), (−∞, d)) = k[a +d, b+d) andTorgr1 (k[a,∞),k[c, d)) =
0.

Example 7.2 Consider the interval modules k[a, b) and k[c, d). We have the following
augmented injective resolution of k[c, d).

0 → k[c, d) → k(−∞, d) → k(−∞, c) → 0

Apply the functor Hom(k[a, b),−) to the injective resolution.

0 → k[d − b, d − a) → k[c − b, c − a) → 0

Calculating homology (i.e., taking the cokernel of the middle map) we get the follow-
ing.

Ext1gr(k[a, b),k[c, d)) = k[c − b,min{c − a, d − b})

In Examples 7.1 and 7.2, where U0 ⊆ R, the given one-parameter persistence
modules had projective, respectively, injective resolutions, of length one. It is an open
question whether all one-parameter persistence modules have projective resolutions
of length one. More generally, for U0 ⊆ R

n , it is unknown if the ring k[U0] has a
finite global dimension.

7.2 Sheaf Tor and Ext

Here, we consider the derived functors Torsh and Extsh of the sheaf tensor product
⊗sh and its adjoint Hom .
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Theorem 7.3 Let M be a persistence module. Then, − ⊗sh M and M ⊗sh − are exact
functors. In particular, Torshi (M, N ) = 0 for any persistence modules M and N and
any i ≥ 1.

Proof We will show that − ⊗sh M is exact. The other case is symmetric.
Suppose 0 → A → B → C → 0 is a short exact sequence of persistence modules.

A classical result in sheaf theory is that a sequence of morphisms A → B → C of
sheaves is short exact if and only if the induced maps on all the stalks are short exact.
Thus, for all x ∈ R

n , 0 → Ax → Bx → Cx → 0 is a short exact sequence of
vector spaces. Now observe that applying the functor − ⊗sh M , we get a sequence
A⊗sh M → B⊗sh M → C ⊗sh M which gives us a sequence on stalks (A⊗sh M)x →
(B ⊗sh M)x → (C ⊗sh M)x which is equal to Ax ⊗k Mx → Bx ⊗k Mx → Cx ⊗k Mx .
Since every k-vector space is a flat k-module, and the sequence Ax → Bx → Cx is
short exact, the sequence (A ⊗sh M)x → (B ⊗sh M)x → (C ⊗sh M)x is also exact,
for all x ∈ R

n . Thus, the sequence A ⊗sh M → B ⊗sh M → C ⊗sh M is also exact.
Thus, − ⊗sh M is an exact functor. �

It is not true in general that for any persistence module M the functorsHom (−, M)

and Hom (M,−) are exact. Thus, we do have non-trivial Extish(M, N ) groups for
certain persistence modules M and N , see Example 7.4.

Example 7.4 Consider two intervalmodulesk[a, b) andk[c, d).We have the following
augmented projective resolution.

0 → k[b,∞) → k[a,∞) → k[a, b) → 0

Apply the functor Hom (−,k[c, d)) to the projective resolution to get the (no longer
exact) sequence:

0 → Hom (k[a,∞),k[c, d)) → Hom (k[b,∞),k[c, d)) → 0

Using Example 4.3, this sequence falls in one of the following cases:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 → k[c, d) → k[c, d) → 0 if a < b < c < d

0 → k[c, d) → k(−∞, d) → 0 if a < c ≤ b < d

0 → k[c, d) → 0 → 0 if a < c < d ≤ b

0 → k(−∞, d) → k(−∞, d) → 0 if c ≤ a < b < d

0 → k(−∞, d) → 0 → 0 if c ≤ a < d ≤ b

0 → 0 → 0 → 0 if c < d ≤ a < b

By definition, Ext1sh(k[a, b),k[c, d)) is the cokernel of the middle morphisms. Thus,
we have the following.

Ext1sh(k[a, b),k[c, d)) =
{
k(−∞, c) if a < c ≤ b < d

0 otherwise
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8 Künneth Theorems and Universal Coefficient Theorems

In this section, we state Künneth and universal coefficient theorems for chain com-
plexes of persistence modules. We apply these theorems to products of filtered CW
complexes. We will see that the Künneth formula for the additive product-filtration
comes from graded module theory and that the Künneth formula for the maximum
product-filtration comes from sheaf theory.

Theorems 8.1 and 8.2 imply the existence of certain natural short exact sequences;
however, additional assumptions are needed for these sequences to split. One of these
is the assumption that the ring R[U0] is hereditary (submodules of projective modules
are projective). For example, the G = R

n-graded ring k[U0] is not hereditary. Indeed,
for a ∈ R the interval module k[a,∞) is projective; however, its submodule k(a,∞)

is not (Theorem 1.2). However, the Z-graded ring k[U0] where U0 is the principal
up-set at 0 of the poset Z, is hereditary, since it is a principal ideal domain. We can
obtain splittings for more general persistence modules if they are left Kan extension
of persistence modules indexed over Z. That is, if M : Z → Vectk is a persistence
module and i : Z → G is an inclusion of posets, then the left Kan extension of M
along i , is the persistence module given by Ma = limi(k)≤a Mk . In particular, when
n = 1 and M is a real parameter persistence module isomorphic to a direct sum of
interval modules, M = ⊕N

i=1k[ai , bi ) then M is obtained by such a Kan extension. In
these cases, by the functoriality of the left Kan extension, the splitting of persistence
modules indexed by Z provides a splitting of persistence modules indexed by G.

Below, let (P,≤,+, 0) be a preorder with a compatible abelian group structure.
Let ∗ denote either sh or gr. Recall that given a chain complex (K , d K ), valued in
some abelian category, the subcomplex of boundaries is the chain complex (L, d L)

where Ln = d K
n (Kn) and d L

n is the restriction of d K
n , for all n ∈ Z.

Theorem 8.1 (Künneth Homology Theorem for PersistenceModules) Let (K , d K ) be
a chain complex of ⊗∗-flat right persistence modules whose subcomplex of boundaries
B also has all terms ⊗∗-flat. Let (L, d L) be a chain complex of left persistence modules.
Then:

(1) For every n ∈ Z there is a natural short exact sequence

0 →
⊕

p+q=n

(Hp(K ) ⊗∗ Hq(L)) → Hn(K ⊗∗ L)

→
⊕

p+q=n−1

(Tor∗1(Hp(K ), Hq(L))) → 0 .

(2) Suppose now that R[U0] is right hereditary and all terms in (K , d K ) are projec-
tive, then the above sequence splits (the splitting need not be natural).

Proof For part (1), adapt the proof of Theorem 3.6.3 in [40]. Part (2) follows from
Exercise 3.6.2 in [40]. �

Recall that by Theorem 7.3 persistence modules with coefficients in a field are
⊗sh-flat, hence there will be no Torsh1 term present in the sequence above, if we work
over a field k.
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Fig. 8 A product complex, with respect to ⊗gr , visualized

Theorem 8.2 (Künneth Cohomology Theorem for PersistenceModules) Let (K , d K )

be a complex of left persistence modules such that all terms of K and its subcomplex
of boundaries B are projective.

(1) For all n ≥ 0 and every complex (L, d L) of left persistence modules, there is a
natural short exact sequence

0 →
∏

p−q=n−1

Ext1∗(Hp(K ), H−q(L)) → Hn(Hom∗(K , L))

→
∏

p−q=n

Hom∗(Hp(K ), H−q(L)) → 0 .

where Hom∗ is Hom if ∗ = gr and Hom otherwise.
(2) If R[U0] is graded left hereditary, then the exact sequence splits for all n ≥ 0.

Proof In the ungraded module case, this is Exercise 3.6.1 in [40] and Theorem 10.85
in [39]. The proof can be adapted to the graded case. �

Weapply theKünneth theorems above to some simple filtered simplicial complexes.

Example 8.3 See Fig. 8. Let (K , d K ) and (L, d L) be chain complexes of persistence
modules determined by filtrations of the 1-simplex. In particular, let

K0 = k[a1,∞) ⊕ k[b1,∞), K1 = k[c1,∞),

L0 = k[a2,∞) ⊕ k[b2,∞), L1 = k[c2,∞)

where a1 ≤ b1 ≤ c1 and a2 ≤ b2 ≤ c2, and let dK and dL be the induced boundary
maps by the boundary maps of the 1-simplex, as discussed in Sect. 2.5. Note that the
boundary subcomplexes of K and L are⊗gr-flat. Indeed, the only non-trivial boundary
map is d K

1 and d L
1 and by construction d K

1 (K1) ∼= k[c1,∞) and d L
1 (L1) ∼= k[c2,∞)

and we know these are in fact projective by Theorem 1.2. Thus, the hypotheses in
Theorem 8.1 are satisfied for both (K , d K ) and (L, d L). Now consider the product
complex K ⊗gr L (Appendix D). Note that it is the chain complex of persistence
modules corresponding to the filtered cubical given by the square in Fig. 8, which
assigns each cell the sum of filtration values of corresponding cells in the two 1-
simplices.
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Fig. 9 A product complex, with respect to ⊗sh, visualized

One can compute that the only non-trivial homology groups are:

H0(K ) = k[a1,∞) ⊕ k[b1, c1), H0(L) = k[a2,∞) ⊕ k[b2, c2),

H0(K ⊗gr L) = k[a1 + a2,∞) ⊕ k[a1 + b2, a1 + c2)

⊕ k[b1 + a2, c1 + a2) ⊕ k[b1 + b2,min{b1 + c2, c1 + b2}),
and H1(K ⊗gr L) = k[max{b1 + c2, c1 + b2}, c1 + c2).

Note that H0(K ⊗gr L) = H0(K ) ⊗gr H0(L) and H1(K ⊗gr L) = Torgr1 (H0(K ),

H0(L)), which agrees with Theorem 8.1.

Example 8.4 Let (K , d K ) and (L, d L) be as in the previous example, where again
a1 ≤ b1 ≤ c1 and a2 ≤ b2 ≤ c2. Now form the product complex K ⊗sh L , recalling
that k[a,∞) ⊗sh k[b,∞) = k[max(a, b),∞) (Example 3.2). The corresponding
picture is given in Fig. 9.

In this case, recalling the discussion from Example 3.2, the only non-trivial homol-
ogy groups are:

H0(K ) = k[a1,∞) ⊕ k[b1, c1), H0(L) = k[a2,∞) ⊕ k[b2, c2),

H0(K ⊗sh L) = k[max{a1, a2},∞) ⊕ k[max{a1, b2}, c2)

⊕ k[max{b1, a2}, c1) ⊕ k[max{b1, b2},min{c1, c2}) =
= H0(K ) ⊗sh H0(L).

Examples 8.3 and 8.4 are specific instances of Theorem 8.5. Let X and Y be CW
complexes with filtrations f and g, respectively (see Sect. 2.5). The CW complex
X × Y has two canonical filtration given by f + g and max( f , g), which we call the
additive filtration and maximum filtration, respectively.

Theorem 8.5 Let (K , dK ) and (L, dL) be two chain complexes of persistence modules
obtained from filtered CW complexes X and Y , respectively (Sect. 2.5). Then, the
additive and maximum filtrations on X ×Y induce the chain complexes of persistence
modules K ⊗gr L and K ⊗sh L, respectively. In particular, we can calculate the
persistent homology of these filtrations on X × Y by applying Theorem 8.1.

Proof Let σ be an n-cell of Y and let τ be an m-cell of Y . These cells have correspond-
ing free summands k[aσ ,∞) and k[bτ ,∞) in Kn and Lm , respectively (Sect. 2.5).
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Consider the additive filtration on X×Y . Then,σ×τ is a (n+m)-cell in X×Y with cor-
responding free summand k[aσ ,∞)⊗gr k[bτ ,∞) = k[aσ +bτ ,∞) in (K ⊗gr L)m+n

(Example 3.5). Note that this correspondence is compatible with the cellular boundary
∂(σ × τ) = ∂(σ ) × τ + (−1)|σ |σ × ∂(τ ) (see, for example, [22, Proposition 3.B.1]),
and the boundary map in K ⊗gr L (see Appendix D). Thus, K ⊗gr L is the chain
complex of persistence modules induced by the additive filtration on X × Y .

Similarly, by Example 3.2, k[aσ ,∞) ⊗sh k[bτ ,∞) = k[max{aσ , bτ },∞) and
K ⊗sh L is the chain complex of persistence modules induced by the maximum
filtration on X × Y . �

The Künneth theorems allow us to compute homology of a tensor product of chain
complexes of persistence modules (or cohomology of its adjoint). Thus, as a special
case of the Künneth theorem for persistence modules, we have Theorem 8.6 and
Theorem 8.7, where the second chain complex of persistence modules is assumed to
be concentrated in degree 0.

Theorem 8.6 [Universal Coefficient Homology Theorem for Persistence Modules]
Let A be a left persistence module and let (K , d) be a chain complex of ⊗∗-flat right
persistence modules whose subcomplex of boundaries B also has all terms ⊗∗-flat.
Then,

(1) for all n ∈ N, there is a natural exact sequence

0 → Hn(K ) ⊗∗ A → Hn(K ⊗∗ A) → Tor∗
1(Hn−1(K , A)) → 0

(2) Assuming the ring in question is right-hereditary (right submodules of right
projective modules are projective) and (K , d) has all terms projective (no assump-
tions on B this time), the above sequence splits (it need not be a natural splitting).

Theorem 8.7 (Universal Coefficient Cohomology Theorem for Persistence Modules)
Let A be a left persistence module, let (K , d) be a complex of projective left persistence
modules whose subcomplex B of boundaries has all terms projective.

(1) Then for all n ∈ N there is a natural short exact sequence

0 → Ext1∗(Hn−1(K ), A) → Hn(Hom∗(K , A)) → Hom∗(Hn(K ), A) → 0

where Hom∗ is Hom if ∗ = gr and Hom otherwise.
(2) If the ring in question is left-hereditary, then the above splits (need not be a natural

splitting).

We now consider some examples in the one-parameter setting and assuming that
the coefficient ring is a field k.

Example 8.8 Let a ≤ b ≤ c ≤ d ≤ e ≤ f ≤ g be real numbers and consider the
filtration of the 2-simplex in Fig. 10.
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Fig. 10 A filtration of a triangle

The corresponding chain complex of persistence modules (Sect. 2.5) is given by

K0 = k[a,∞) ⊕ k[b,∞) ⊕ k[c,∞),

K1 = k[d,∞) ⊕ k[e,∞) ⊕ k[ f ,∞),

and K2 = k[g,∞).

We compute H0(K ) = k[a,∞) ⊕ k[b, d) ⊕ k[c, e), and H1(K ) = k[ f , g).

Example 8.9 Let (K , d) be the chain complex of persistence modules in Example 8.8.
Let A = k[α,∞). Let us compute H∗(K ⊗gr A). Using Theorem 8.6, since A is free,
Torgri (Hn−1(K ), A) = 0 for all i ≥ 1, hence Hn(K ⊗gr A) ∼= Hn(K ) ⊗gr A. Thus,

H0(K ) = k[a + α,∞) ⊕ k[b + α, d) ⊕ k[c + α, e),

and H1(K ) = k[ f + α, g).

That is, all interval modules have shifted to the right by α. If K is obtained from a
filtration f , then K ⊗gr A is the chain complex obtained from the filtration f + α.

Example 8.10 Let (K , d) be the chain complex of persistencemodules in Example 8.8.
Let A = k[R]. Let us compute H∗(K ⊗gr A). By Theorem 8.6, Hn(K ⊗gr A) =
Hn(K ) ⊗gr A since A is ⊗gr-flat. From Example 3.5, we have k[a, b) ⊗gr A = 0 for
all a ≤ b ∈ R, and k[a,∞) ⊗gr A = A for all a ∈ R. Therefore, H0(K ) = k[R] and
H1(K ) = 0.

Example 8.11 Let (K , d) be the chain complex of persistencemodules in Example 8.8.
Let A = k(−∞, 0). Applying Example 3.5, we have

(K ⊗gr A)0 := K0 ⊗gr A = k(−∞, a) ⊕ k(−∞, b) ⊕ k(−∞, c),

(K ⊗gr A)1 := K1 ⊗gr A = k(−∞, d) ⊕ k(−∞, e) ⊕ k(−∞, f ),

and (K ⊗gr A)2 := K2 ⊗gr A = k(−∞, g).

Applying Theorem 8.6 and Example 7.1, we calculate the following:

H0(K ⊗gr A) ∼= H0(K ) ⊗gr A = k(−∞, a),

H1(K ⊗gr A) ∼= H1(K ) ⊗gr A ⊕ Torgr(H0(K ), A) = 0 ⊕ k(b, d) ⊕ k(c, e),

and H2(K ⊗gr A) ∼= Torgr(H1(K ), A) = k( f , g).
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Fig. 11 Afiltration of the geometric realization of�2 corresponding to the chain complex K ⊗gr k(−∞, 0)

Remark 8.12 We thank Alexander Dranishnikov for the following observation. The
persistence barcodes in Example 8.11 correspond to the compactly supported coho-
mology groups of the filtration of topological spaces in Fig. 11. It may be that this
observation can be generalized to an arbitrary filtered CW complex. We leave it as
question for future work.

Example 8.13 Let (K , d) be the chain complex of persistencemodules in Example 8.8.
Let A = k[α, β). Using Example 3.5, we have

(K ⊗gr A)0 := K0 ⊗gr A = k[a + α, a + β) ⊕ k[b + α, b + β) ⊕ k[c + α, c + β),

(K ⊗gr A)1 := K1 ⊗gr A = k[d + α, d + β) ⊕ k[e + α, e+β) ⊕ k[ f +α, f +β),

and (K ⊗gr A)2 = K2 ⊗gr A = k[g + α, g + β).

Applying Theorem 8.6 and Example 7.1, we have the following:

H0(K ⊗gr A) ∼= H0(K ) ⊗gr A = k[a + α, a + β) ⊕ k[b + α,min{d + α, b + β})
⊕ k[c + α,min{e + α, c + β}),

H1(K ⊗gr A) ∼= Torgr(H0(K ), A) ⊕ H1(K ) ⊗gr A =
= 0 ⊕ k[max{b + β, d + α}, d + β) ⊕ k[max{c + β, e + α}, e + β)

⊕ k[ f + α,min{ f + β, g + α},
and H2(K ⊗gr A) ∼= Torgr(H1(K ), A) = k[max{ f + β, g + α}, g + β).

Once again, there is a geometric interpretation. Ifwe examine the chain groups K⊗gr A,
then we see that for each simplex appearing at time t in the original filtration, it now
appears at time t + α and is removed at time t + β. For example, an edge generates a
homology class when both its boundary points are removed.

Example 8.14 Let A = k[α,∞). Let (K , d) be the chain complex in Example 8.8.
Then, by using Example 4.7 we calculate that:

Homgr(K , A)0 := Hom(K0, A)

= k[α − a,∞) ⊕ k[α − b,∞) ⊕ k[α − c,∞),

Homgr(K , A)1 := Hom(K1, A)

= k[α − d,∞) ⊕ k[α − e,∞) ⊕ k[α − f ,∞),

and Homgr(K , A)2 := Hom(K2, A) = k[α − g,∞).
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Fig. 12 A filtration of the geometric realization of �2 corresponding to Homgr(K , A)

By Theorem 8.7, Example 7.2 and Theorem 1.2 we have

H0(Homgr(K , A)) ∼= Hom(H0(K ), A) = k[α − a,∞),

H1(Homgr(K , A)) ∼= Extgr(H0(K ), A) ⊕ Hom(H1(K ), A) =
= k[α − d, α − b) ⊕ k[α − e, α − c) ⊕ 0 = k[α − d, α − b)

⊕ k[α − e, α − c),

and H2(Homgr(K , A)) ∼= Extgr(H1(K ), A) = k[α − g, α − f ).

This also has a geometric interpretation (see Fig. 12). In particular, each cell in the
original simplicial complex which appeared at time t , now appears at time α − t .

Example 8.15 Let (K , d) be the chain complex in Example 8.8. Let A = k(−∞, α).
Then, by using Example 4.7 we have:

Homgr(K , A)0 := Hom(K0, A) = k(−∞, α − a)

⊕ k(−∞, α − b) ⊕ k(−∞, α − c),

Homgr(K , A)1 := Hom(K1, A) = k(−∞, α − d)

⊕ k(−∞, α − e) ⊕ k(−∞, α − f ),

and Homgr(K , A)2 := Hom(K2, A) = k(−∞, α − g).

Noting that A is injective, by Theorem 8.7 we have that:

H0(Homgr(K , A)) ∼= Hom(H0(K ), A) = k(−∞, α − a) ⊕ k(α − d, α

− b) ⊕ k(α − e, α − c),

and H1(Homgr(K , A)) ∼= Extgr(H0(K ), A) ⊕ Hom(H1(K ), A) = 0 ⊕ k(α

− g, α − f )= k(α − g, α − f ).

As before, there is a filtration (see Fig. 13) and the persistence module may be inter-
preted as arising from the cohomology of this filtration. It is not yet clear how this
generalizes to arbitrary CW complexes with a filtration. We leave this question for
future work.

Each simplex in the original simplicial complex which appeared at time t now
appears at time α − t . Note that if α = 0, then Hom(Hn(K ), A) = Hn(K )∗gr =
Hn(Hom(K , A)) = Hn(K ∗

gr), generalizing the classical result that homology and
cohomology, with coefficients in a field, are isomorphic.
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Fig. 13 A filtration corresponding to Homgr(K , A)

Example 8.16 Let A = k[α, β). Let (K , d) be the chain complex in Example 8.8. By
Example 4.7, we have:

Homgr(K , A)0 := Hom(K0, A) = k[α − a, β − a)

⊕ k[α − b, β − b) ⊕ k[α − c, β − c),

Homgr(K , A)1 := Hom(K1, A) = k[α − d, β − d)

⊕ k[α − e, β − e) ⊕ k[α − f , β − f ),

and Homgr(K , A)2 := Hom(K2, A) = k[α − g, β − g).

By Theorem 8.7 and Example 7.2, we have that:

H0(Homgr(K , A)) ∼= Hom(H0(K ), A)

= k[α−a, β−a) ⊕ k[max{α−b, β−d}, β − b) ⊕ k[max{α − c, β − e}, β − c),

H1(Homgr(K , A)) ∼= Extgr(H0(K ), A) ⊕ Hom(H1(K ), A) =
= k[α − d,min{α − b, β − d}) ⊕ k[α − e,min{α − c, β − e})
⊕ k[max{α − f , β − g}, β − f ),

and H2(Homgr(K , A)) ∼= Extgr(H1(K ), A) = k[α − g,min{α − f , β − g}).

This has a geometric interpretation, dual situation to that in Example 8.13

Example 8.17 Let (K , d) be complex of projective persistence modules coming from
a filtration of a simplicial complex and let A be an arbitrary persistence module. Since
persistence modules are ⊗sh-flat as noted in Theorem 7.3, we have natural isomor-
phisms Hn(K ⊗sh A) ∼= Hn(K )⊗sh A, by Theorem 8.6. In particular, if A is an interval
module, say A = k[I ], and Hn(K ) ∼= ⊕

j∈Jk[I j ] is the interval decomposition of
Hn(K ), then recalling Example 3.2 we have Hn(K ⊗sh A) ∼= ⊕

j∈Jk[I ∩ I j ].

Example 8.18 Let (K , d) be as in Example 8.8 and let A = k[α, β) with b ≤ α and
g ≤ β. By Example 4.3, we have:

Homsh(K , A)0 := Hom (K0, A) = k[α, β) ⊕ k[α, β) ⊕ k(−∞, β),

Homsh(K , A)1 := Hom (K1, A) = k(−∞, β) ⊕ k(−∞, β) ⊕ k(−∞, β),

and Homsh(K , A)2 := Hom (K2, A) = k(−∞, β).

123



Foundations of Computational Mathematics (2021) 21:1233–1278 1267

By Theorem 8.7, Examples 7.4, 4.3, and Theorem 8.7, we have that:

H0(Homsh(K , A)) ∼= Hom (H0(K ), A) = Hom (k[a,∞),k[α, β))

⊕ Hom (k[b, d),k[α, β) ⊕ Hom (k[c, e),k[α, β)) =
= k[α, β) ⊕ 0 ⊕ 0 = k[α, β),

H1(Homsh(K , A)) ∼= Extsh(H0(K ), A) ⊕ Hom (H1(K ), A) =
= Extsh(k[a,∞),k[α, β)) ⊕ Extsh(k[b, d),k[α, β))

⊕ Extsh(k[c, e),k[α, β) ⊕ Hom (k[ f , g),k[α, β)) =
= 0 ⊕ k(−∞, α) ⊕ 0 ⊕ 0 = k(−∞, α),

and H2(Homsh(K , A)) ∼= Extsh(H1(K ), A) = Extsh(k[ f , g),k[α, β)) = 0.

9 PersistenceModules Over Finite Preordered Sets

In this section, we apply the Gabriel–Popescu theorem (Theorem 2.24) to persistence
modules over finite preordered sets. It is a classical result that every abelian category is
isomorphic to a full subcategory of modules over some ring. Here, we do not assume
an additional abelian group structure on our preorder P and thus persistence modules
are not graded modules over a graded ring. However, the stronger version of the
Gabriel—Popescu theorem we show for persistence modules in this section allows
us to explicitly construct the ring in question in the above-mentioned isomorphism of
categories.

Definition 9.1 Let C be a cocomplete abelian category. Then, an object A in C is
compact if HomC(A, ·) commutes with direct sums.

Example 9.2 ([30, Satz 3] and [4, Introduction]) Let R be a unital ring and A a left
R-module. Then, A is compact if and only if A is finitely presented.

Theorem 9.3 (Strengthening of the Gabriel–Popescu Theorem) Let U ∈ C be an
object in a cocomplete abelian category. Let R = End(U ). Then, the following are
equivalent:

(1) U is a compact projective generator.
(2) The functor HomC(U , ·) gives us an equivalence of categories between C and

Mod(R).

Proof See [17, Exercise F, page 106]. �
Proposition 9.4 Suppose A is a Grothendieck category, let (P,≤) be a finite pre-
ordered set and let P denote the corresponding category. Let G be a generator
of A. Then, the set {G[Ua]}a∈P is a family of generators for AP. In particular,
U := ⊕

a∈P G[Ua] is a generator for AP.

Proof Repeat the arguments in the proof of Proposition 2.23. �
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Proposition 9.5 Let (P,≤) be a finite preordered set and let R be a unital ring. For
each a ∈ P, R[Ua] is a projective right (and left) persistence module. In particular,
U = ⊕

a∈P R[Ua] is a projective persistence module.

Proof We prove the statement for the case for right persistence modules. The proof for
left persistence modules uses the same arguments. Given any right exact sequence of
right persistence modules M

π−→ N → 0 and a natural transformation α : R[Ua] →
N we need to show that there exists a natural transformation α̂ : R[Ua] → M
such that πα̂ = α. Since we have R-module homomorphisms πa : Ma → Na and
αa : R[Ua]a → Na and R is a projective object in ModR , there is an R-module
homomorphismα̂a : R[Ua]a → Ma such that πa α̂a = αa . Define α̂b : R[Ua]b → Mb

for a ≤ b to be the map Ma≤bα̂a R[Ua]−1
a≤b (recall that R[Ua]a≤b) is the identity map

on R so its inverse is defined). If b /∈ Ua , let α̂b : R[Ua]b → Mb be the zero map.
By construction, it follows that the collection {α̂b}b∈P are components of a natural
transformation α̂ : R[Ua] → M . Furthermore, observe that since all the maps for
R[Ua]a≤b are the identity maps of R and α is a natural transformation it follows that
αb = Na≤bαa R[Ua]−1

a≤b. On the other hand, for a ≤ b, since α̂ and π are natural

transformations we have πbα̂b = πb Ma≤bα̂a R[Ua]−1
a≤b = Na≤bπa α̂a R[Ua]−1

a≤b =
Na≤bαa R[Ua]−1

a≤b = αb. Thus πα̂ = α and therefore R[Ua] is a projective persistence
module. �
Proposition 9.6 Let (P,≤) be a finite preordered set and let R be a unital ring. Then,
U = ⊕

a∈P R[Ua] is a compact right (and left) persistence module.

Proof We show that there is a canonical isomorphism Hom(U ,
⊕

i Mi ) ∼= ⊕
i

Hom(U , Mi ). Given f : R[Ua] → ⊕
i Mi , since f is a natural transformation

and all maps in R[Ua] are the identity or the zero map, f is completely determined
by its image, f (1a), where 1a is the multiplicative identity in R[Ua]a . Thus as the
codomain is a direct sum we have f (1a) = ∑n

i=1 ma
i for some ma

i ∈ (Mi )a . Define
fi : R[Ua] → Mi by setting fi (1a) = ma

i , and extending appropriately. Define
the map ψa : Hom(R[Ua],⊕i Mi ) → ⊕

i Hom(R[Ua], Mi ) by f �→ ( fi ). This is
clearly well-defined and a canonical isomorphism. The functor Hom commutes with
limits. Since finite direct sums are isomorphic to finite direct products, Hom commutes
with finite direct sums. Thus, we have canonical isomorphisms

Hom(
⊕

a∈P

R[Ua],
⊕

i

Mi ) ∼=
⊕

a∈P

Hom(R[Ua],
⊕

i

Mi )

⊕ψa∼=
⊕

a∈P

⊕

i

Hom(R[Ua], Mi ) ∼=
⊕

i

(
⊕

a∈P

R[Ua], Mi ) �

Combining Propositions 9.4, 9.5, 9.6 and the fact a unital ring R is a generator for
the category left/right modules over R (Appendix A) we obtain Theorem 9.7.

Theorem 9.7 Let (P,≤) be a finite preordered set with corresponding category P
and let R be a unital ring. Let U = ⊕

a∈P R[Ua]. Then, Hom(U ,−) : ModPR →
ModEnd(U ) is an equivalence of categories.
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Thus, two persistence modules M and N over a finite preordered set are isomorphic
iff the End(U )-modules Hom(U , M) and Hom(U , N ) are isomorphic.

10 Enriched Category Theory and PersistenceModules

In this section, we assume that R is a commutative unital ring and that (P,≤,+, 0)
is a preorder with a compatible abelian group structure. That is, a ≤ b implies that
a + c ≤ b + c. The purpose of this section is to observe that persistence modules
are symmetric monoidal categories enriched over themselves, with respect to both the
graded module and sheaf tensor products. These observations follow from classical
results in enriched category theory. We state these results for persistence modules in
the hope that doing so will facilitate new computational approaches to topological data
analysis. We remark that enriched category theory has been used in applied topology
recently [12,19,29].

10.1 Enriched Structure of PersistenceModules with the Graded Tensor

Theorem 10.1
(
ModPR,⊗gr, R[U0]

)
is a symmetric monoidal category.

Proof Let M, N ∈ ModPR and s, t ∈ P . We have canonical morphisms γs,t : Ms ⊗R

Nt → Nt ⊗R Ms sinceModR is a symmetric monoidal category, as R is assumed to be
commutative, with unit R and tensor product ⊗R . The collection of maps γs,t induces
an isomorphism of diagrams {(Ms ⊗R Nt )}s+t≤r and {Nt ⊗R Ms}s+t≤r and thus a
natural isomorphism between their colimits. Hence, we get a natural isomorphism
between (M ⊗gr N )r and (N ⊗gr M)r , called the braiding. By the same argument,
we obtain an associator and left and right unitors.

Since it will be used later, let us explicitly define the left unitor. The left unitor is a

natural isomorphismwith components λM : R[U0]⊗gr M
∼=−→ M , for each persistence

module M . Let x0 be the generator of R[U0] and consider∑ ci xti ⊗grmi ∈ R[U0]⊗gr
M where ci ∈ R, ti ∈ U0, andmi ∈ Msi . Note that by the definition of⊗gr wehave that∑

ci xti ⊗gr mi = ∑
i x0 ⊗gr ci xti · mi . Define λM (

∑
ci xti ⊗gr mi ) := ∑

i ci x ti · mi .
Since the pentagon identity, triangle identity, and hexagon identity hold in ModR ,

it follows that they also hold here. �

Proposition 10.2 There is a functor Hom(−,−) : (ModPR)op × ModPR → ModPR
given by

Hom(M, N )s := Hom(M, N (s)),

for s ∈ P and persistence modules M and N.

Proof Let s ∈ P . Then, Hom(M, N (s)) is the set of natural transformations from M
to N (s). This is an R-module. Indeed given a natural transformation, we define an R
action by an element r ∈ R to be componentwise multiplication by r . Whenever s ≤ t
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define Hom(M, N )s≤t : Hom(M, N (s)) → Hom(M, N (t)) to be the map

Hom(M, N )s≤t (α) = α ∗ ηt−s .

That is, given a natural transformation α : M → N (s) compose each component αa

with Na+s≤a+t to get a new natural transformation, namely α ∗ ηt−s . Note that we
could have precomposed with Ma−(t−s)≤a to have a similar construction, however due
to the naturality of α this choice would give us the same answer.

Ma−(t−s) Ma

Na+s Na+t

Ma−(t−s)≤a

αa

Na+s≤a+t

It remains to show is that this definition is functorial.
Suppose α : M → N is a natural transformation of persistence modules M

and N . Let N ′ be a persistence module. Define Hom(α, P) : Hom(N , N ′) →
Hom(M, N ′) by pre-composing with α. Namely, for a given β : N → P(s) define
Hom(α, N ′)(β) = βα. Then, Hom(γ α, N ′)(βα) = Hom(α, N ′) ◦ Hom(γ, N ′) and
that Hom(−, N ′)(1M ) = 1Hom(M,N ′). To show that Hom(N ′,−) is a functor, define
Hom(N ′, α)(β) = αβ. It follows that Hom(N ′,−) is a functor. �

By Proposition 2.18, when M is finitely generated Hom(M, N ) is the abelian group
of module homomorphisms when we forget the grading.

Proposition 10.3 There is a category whose objects are persistence modules and
whose morphisms are the sets Hom(M, N ). We denote this category ModPR.

Proof Let α ∈ Hom(M, N ) and β ∈ Hom(N , N ′). Suppose α and β are of homoge-
neous degrees, s and t , respectively. That is α : M �⇒ N (s) and β : N �⇒ N ′(t).
Define the x-component of β ◦ α to be βs+x ◦ αx . Extend to the general case by lin-
earity. Since the composition in ModPR is associative, this composition is associative
as well.

For the more categorically minded reader, this can be stated using horizontal and
vertical compositions of natural transformations. We define β ◦ α := (β ∗ 1Ts ) • α

(Definition 4.4), where ∗ signifies horizontal composition and • a vertical composition.
Consider the following diagram, where N (s) = NTs and N ′(t) = N ′Tt .

P ModR

P P ModR

P P P ModR

=

M

=
N (s)

α

=

Ts N

= =

Ts

1Ts

Tt

β

N ′
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For every persistence module M , we have an identity morphism, 1M the identity
morphism inModPR viewed as a morphism in the new category. The identity axiom in
ModPR follows from the identity axiom in ModPR . �
Example 10.4 Let M be a persistence module and s ∈ P . Then the translations by
s and −s, show that M(s) and M are isomorphic in ModPR . That is, translations are
isomorphisms.

Proposition 10.5 ModPR is an additive category.

Proof Each Hom(M, N ) is an abelian group as it is a graded direct sum of abelian
groups.Our definitionof composition inModPR is bilinear. The zeropersistencemodule
is the 0 object. The coproduct of persistence modules M and N is M ⊕ N . The product
of persistence modules M and N is M × N and is canonically isomorphic to M ⊕ N .
�
Theorem 10.6

(
ModPR,⊗gr, R[U0]

)
is a symmetric monoidal category.

Proof Let the braiding, associator, left and right unitor morphisms be those from the
symmetric monoidal category

(
ModPR,⊗gr, R[U0]

)
(Theorem 10.1). It remains to

show that these commute with the larger set of morphisms inModPR .
Consider the braiding. Let ϕ : M → M ′ and ψ : N → N ′ in ModPR . Since we

have the following commutative diagrams in ModR ,

Ms ⊗R Nt Nt ⊗R Ms

M ′
s+a ⊗R N ′

t+b N ′
t+s ⊗R M ′

s+a

γ

ϕa
s ⊗Rψb

t ψb
t ⊗Rϕa

s
γ

it follows that the braiding is natural in ModPR . Naturality of the associator and left
and right unitors follows similarly. �

Theorem 10.7
(
ModPR,⊗gr, R[U0]

)
is a closed symmetric monoidal category. That

is, for all N ∈ ModPR, −⊗gr N has right adjointHom(N ,−) : ModPR → ModPR. That
is, for any persistence modules M, N and N ′ there exists a natural (in all arguments)
isomorphism Hom(M ⊗gr N , N ′) ∼= Hom(M,Hom(N , N ′)). Furthermore, this iso-
morphism is a morphism of degree zero, i.e., a natural transformation. In particular,(
ModPR,⊗gr, R[U0]

)
is a closed symmetric monoidal category.

Proof Define ψr to be the following composition of isomorphisms. The first two and
last isomorphisms are by the categorical definitions of Hom(−,−) and − ⊗gr −
(Definition 3.4 and Proposition 4.6). The third and the third last isomorphism are due
to the fact that HomR(−,−) preserves limits in both variates. Since it is contravariant
in the first variable this means that it sends colimits to limits in ModR . The fourth
isomorphism is the tensor-hom adjunction inModR . The remaining fifth isomorphism
follows from reindexing. We have p + q ≤ −s ≤ t − r which may be rewritten as
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p + q − t ≤ −r . Substituting variables, we have −s − p − q ≤ −r which may be
rewritten as p + q ≥ t ≥ −s + r .

Hom(M ⊗gr N , N ′)r Hom(M,Hom(N , N ′))r

lim
s+t≥r

HomR((M ⊗gr N )−s , N ′
t ) lim

s+t≥r
HomR(M−s ,Hom(N , N ′)t )

lim
s+t≥r

HomR( colim
p+q≤−s

Mp ⊗R Nq , N ′
t ) lim

s+t≥r
HomR(M−s , lim

p+q≥t
HomR(N−p, N ′

q ))

lim
s+t≥r

( lim
p+q≤−s

HomR(Mp ⊗R Nq , N ′
t )) lim

s+t≥r
( lim

p+q≥t
HomR(M−s ,HomR(N−p, N ′

q )))

lim
s+t≥r

( lim
p+q≤−s

HomR(Mp,HomR(Nq , N ′
t )))

∼=

∼=

∼=

∼=

∼=

∼=

∼=

∼=

Note that all of these isomorphisms are natural. The last statement of the theorem
follows by setting r = 0 and thus getting the following natural isomorphism:

ψ0 : Hom(M ⊗gr N , N ′)0 := Hom(M ⊗gr N , N ′)
∼= Hom(M,Hom(N , N ′))0 := Hom(M,Hom(N , N ′)),

which gives us an adjunction between ⊗gr and Hom inModPR . �
Every closed symmetric monoidal category is enriched over itself, see, for example,

[28, Section 1.6]. Thus, we have the following corollary. We expect that it will be
useful in applications that the respective hom objects between persistence modules
are themselves persistence modules, from which one may compute invariants such as
persistence diagrams.

Corollary 10.8 The category ModPR is enriched over
(
ModPR,⊗gr, R[U0]

)
. The cate-

gory ModPR is enriched over (ModPR,⊗gr, R[U0]).
Note that the statements in Corollary 10.8 and Theorem 10.7 are not true if we

replaceModR bymodR , the category of finitely generated R-modules. The reason is
that when applied to persistence modules valued inmodR , Hom does not always give
a persistence module valued inmodR , as shown in the following example.

Example 10.9 Let vectk denote the category of finite-dimensional k-vector spaces and
k-linear maps. Let M : (R,≤) → vectk be the one-parameter persistence module
given by Ma = k if a ∈ Z and Ma = 0 otherwise. By functoriality, the maps
Ma≤b have to be zero except when a = b ∈ Z. Hence, any collection of linear maps
{ fa : Ma → Ma} will give us a natural transformation f : M → M as there are no
restrictions for the appropriate squares to commute. In particular let, αn : M → M
be a natural transformation such that αn

a = 1k if a = n and αn
a = 0 otherwise.

Then, Hom(M, M)0 is an infinite dimensional vector space as the collection {αn}n∈Z
is linearly independent.
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10.2 Enriched Structure of PersistenceModules with the Sheaf Tensor

Let M be a right RP -module and let N be a left RP -module, where P is given the
Alexandrov topology (Sect. 2.2). Recall that we have a sheaf tensor product M ⊗sh N
(Sect. 3.1). Viewed as a graded module, M ⊗sh N ∼= ⊕

a∈P M(Ua) ⊗R N (Ua) ∼=⊕
a∈P Ma ⊗R Na .

Theorem 10.10
(
ModPR,⊗sh, R[P]) is a symmetric monoidal category.

Proof Since ⊗sh is a pointwise tensor product of R-modules, the axioms for a sym-
metric monoidal category will hold pointwise and thus can be assembled to obtain the
desired axioms for persistence modules. �
Theorem 10.11

(
ModPR,⊗sh, R[P]

)
is a closed symmetric monoidal category. �

Proof See Proposition C.1. �
Corollary 10.12 The category ModPR is enriched over

(
ModPR,⊗sh, R[P]).

Proof Same arguments that justify Corollary 10.8 may be used. �
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Appendix A Category Theory

We review some notions from category theory. For more details, see, for example,
[37,38].

Let C be a category. A family {Ui }i∈I of objects from C is called a family of
generators of C if for any pair (A, B) of objects in C and for any two distinctmorphisms
f , g : A → B, there is an index i0 and a morphism h : Ui0 → A such that f h �= gh.
We say {Ui }i∈I is a set of cogenerators of C if the family {U op

i }i∈I is a set of generators
of Cop. If the families in question are singleton sets, we say they are a generator (resp.
cogenerator) of C. In the category Set, the singleton set {∗} is a generator and the 2
point set {∗1, ∗2} is a cogenerator. In the category of abelian groups Ab the group Z

is a generator. More generally, whenever we have a unital ringR and the category of
left modules overR , ModR, the ring as a module over itself is a generator of ModR.
In particular, if R is a field, say k , then Vectk the category of vector spaces over k
is a category with generator k. Grothendieck categories are abelian categories with a
few extra axioms that guarantee existence of injective and projective resolutions, for
more details, see [17,20,37]. A Grothendieck category C is a category satisfying the
following axioms: 1. C is an abelian category. 2. C has a generator. 3. C contains all
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small colimits (colimits of diagrams indexed by a category with a set of objects). 4.
Taking colimits of diagrams of short exact sequences produces a short exact sequence.

The following is due to Grothendieck and is presented in, for example, [20, Propo-
sition 1.9.1] or [37, Chapter 2, Proposition 8.2].

Proposition A.1 Let C be an abelian category with infinite direct sums and {Ui }i∈I a
set of objects of C. The following are equivalent:

1. The given set is a set of generators of C.
2. The object U := ∐

i∈I Ui is a generator of C.
3. For any object A in C, there is a set J and an epimorphism: U (J ) → A.

Proposition A.2 ([20, Proposition 1.8]) Let (P,≤) be a preordered set and P be the
corresponding category. Let C be a category. If C is an additive/abelian/Grothendieck
category, then C(P,≤) is also an additive/abelian/Grothendieck category.

Theorem A.3 ([20, Theorem 1.10.1]) If a category C is a Grothendieck category, then
any A ∈ C has a monomorphism into an injective object.

The category of abelian groupsAb (or more generally the category of modules over
a unital ring) is a Grothendieck category. In particular, if we have a unital ring R, then
ModR and RMod are Grothendieck categories. Note that if we consider the category
modR of right R-modules of finite rank, it is abelian but not a Grothendieck category,
as a coproduct (direct sum) of an infinite family of finite rank modules is not a finite
rank module.

Proposition A.4 ([37, Chapter 3, Lemma 3.1], [20, Lemma 1]) LetC be a Grothendieck
category, U a generator and E and object of C. Then, E is an injective object if and
only if for any monomorphism ι : U ′ → U and for any morphism f : U ′ → E there
exists a morphism f̄ : U → E such that f̄ ι = f .

Proposition A.4 provides a simpler criterion for an object to be injective in a
Grothendieck category. In particular instead of checking diagrams with arbitrary
monomorphisms M → N , we need only check diagrams with monomorphisms into
the generator. This generalizes the Baer criterion in module theory. The Baer criterion
for graded modules is presented in Theorem B.1.

Appendix B GradedModule Theory

The purpose of this section is to introduce the reader to the basics of graded module
theory. The literature on graded modules is bountiful but our main reference is [23].

Let � be a group. A �-graded ring is a ring S = ⊕
g∈�

Sg , where Sg is an additive

subgroup of S and Sg Sh ⊂ Sgh . Let S be a �-graded ring. A graded left S-module is
a left S-module M = ⊕

g∈�

Mg , where Mg is an additive subgroup of M and Sg Mh ⊂
Mgh . Let M and N be �-graded S-modules. A �-graded S-module homomorphism
between M and N is a module homomorphism α : M → N , such that α(Mg) ⊂ Ng .
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One can analogously define graded right S-module and corresponding graded module
homomorphism. Assuming the ring S is commutative we stop differentiating between
left and right. The set Mh = ⋃

g∈� Mg is called the set of homogeneous elements of
M .

For graded S-modules M and N , a graded S-module homomorphism of degree
ε, ε ∈ �, is a S-module homomorphism f : M → N , such that f (Mg) ⊂ Ngε

for any g ∈ �. Let HomS(M, N )ε be the subgroup of HomS(M, N ), the group of
non-graded module homomorphisms between M and N , consisting of all S-graded
module homomorphisms of degree ε.

A graded module M is finitely generated if it is finitely generated as a module.
A �-graded (left) S-module M is called a graded-free S-module if M is a free left
S-module with a homogeneous base. Let M be a �-graded module over a �-graded
ring S. Let g ∈ �. Define a newmodule M(g) by setting its graded by M(g)h := Mgh .
The action of S on M(g) is induced from the action of S on M .

Theorem B.1 (Baer Criterion for Graded Modules) Let E be a �-graded module
over the �-graded ring S. Then, E is injective if and only if given any monomorphism
i : I → S(g) and a graded module homomorphism f : I → E, there exists an
f : S(g) → E such that f = f i .

Note that this is a specific example of Proposition A.4, as the generator of the
category of �-graded modules over the �-graded ring S, with graded module homo-
morphisms as the morphisms, is

⊕
g∈�

S(g).

Appendix C Sheaf Theory

We introduce some notions from sheaf theory. For more details see [5, Chapter 1] and
[26, Chapter 2]. Throughout this section, X is a topological space.

Given a presheaf F on X there exists a sheaf F+ and a morphism θ : F → F+
such that for any sheaf G the homomorphism given by θ :

HomSh(X)(F+, G) → HomPSh(X)(F, G)

is an isomorphism. In other words, F �→ F+ is the left adjoint functor of the inclusion
functor Sh(X) → P Sh(X). Moreover, (F+, θ) is unique up to isomorphism, and for
any x ∈ X , θx : Fx → F+

x is an isomorphism. The sheaf F+ is called the sheaf
associated with F or sheafification of F.

Given an abelian group A, we denote by AX the sheaf associated with the presheaf
U �→ A, where U is open in X , and we say AX is the constant sheaf on X with stalk
A.

Let F be a sheaf on X . We say F is flabby if the map F(U ⊂ X) : F(X) → F(U )

is surjective for all open U ⊂ X .
Let R be a sheaf of rings on X . The pair (X ,R) is called a ringed space. A left

R-module M is a sheaf of abelian groups M such that for every open U ⊂ X , M(U )

is a left R(U )-module, and for any inclusion V ⊂ U , V and U open, the restriction
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morphism is compatible with the structure of the module, that is, M(V ⊂ U )(sm) =
R(V ⊂ U )(s) · M(V ⊂ U )(m) for every s ∈ R(U ) and m ∈ M(U ). Define rightR-
modules in the obvious way and morphisms between left(right) modules is a natural
transformation compatible with the structure of the module. Denote these sets of
natural transformations byHomR(M, N ).We denote the category of rightR-modules
byMod-R, and the category of left R-modules by R-Mod.

Denote by ZX the sheaf associated with the constant presheaf U �→ Z for every
open U ⊂ X . Then ZX -modules are precisely sheaves with values in abelian groups,
i.e., Mod(ZX ) = Sh(X). More generally, define RX to be the sheaf associated with
the constant presheaf U �→ R for every open U ⊂ X . For example, we have the
constant sheaf kRn .

LetR be a sheaf of rings and let F and G be two leftR-modules. Then, the presheaf
Hom (F, G) defined byHom (F, G)(U ) := HomR|U (F |U , G|U ) is a sheaf of abelian
groups, in particular a left R-module.

Let F be a right R-module and G be a left R-module. Define F ⊗R G to be the
sheaf associated with the presheaf of abelian groups U �→ F(U ) ⊗R(U ) G(U ), and
call F ⊗R G the tensor product of F and G over R.

Proposition C.1 ([26, Proposition 2.2.9]) Let X be a topological space. Let R be a
sheaf of rings on X, S a sheaf of commutative rings and S → R a morphism of
sheaves of rings such that its image is contained in the center of R. Let F and G be
two R-modules and H and S-module. Then one has canonical isomorphisms:

HomR(H ⊗S F, G) ∼= HomR(F,Hom S(H , G)) ∼= Hom S(H ,HomR(F, G))

Note that by taking global sections of each of the sheaves above, we get:

HomR(H ⊗S F, G) ∼= HomS(H ,HomR(F, G))

In other words, − ⊗S F is the left adjoint of HomR(F,−).

Proposition C.2 ([26, Section 2.2]) The functor Hom (−,−) is left exact with respect
to each of its arguments and the functor − ⊗R − is right exact with respect to each
of its arguments.

Appendix D Homological Algebra

We introduce some homological algebra. For more details, see [15,26,39,40].
The homotopy category of an abelian category A, K (A), is obtained from the

category of chain complexes valued in A, C(A) by identifying all morphisms that
are chain homotopic to 0. Furthermore, by formally inverting quasi isomorphisms we
obtain the derived category of A, D(A).

Assuming that A has enough projectives/injectives, we are able to construct pro-
jective/injective resolutions which are used to compute derived functors. Given an
object A of A, we consider it to be a chain complex concentrated in degree 0. For
such a chain complex, there is a quasi-isomorphism to a chain complex of injective
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objects of A concentrated in nonnegative degrees given by an injective resolution of
A: · · · → 0 → E0 → E1 → · · · . In the derived category, D(A), A is isomorphic
to this injective resolution. Given a left-exact functor F : A → B, we compute the
i-th right derived functor of F by calculating the i-th cohomology group of the chain
complex: · · · → 0 → F(E0) → F(E1) → · · · .

Similarly, we use projective resolutions to compute left derived functors of right-
exact functors.

Let A be an abelian category and consider C(A) the category of chain complexes
valued in A. Suppose A comes equipped with a monoidal product, say ⊗∗ and an
adjoint for the monoidal product, say Hom∗.

Consider (A, dA) and (B, dB) in C(A). The tensor product A⊗∗ B is the chain com-
plex given by (A ⊗∗ B)n := ⊕

p+q=n
(Ap ⊗∗ Bq) and the differential given on elements

x ⊗∗ y in homogeneous degree by d(x ⊗∗ y) = dAx ⊗∗ y + (−1)|x |x ⊗∗ dB y. The
hom chain complex Hom∗(A, B) given by Hom∗(A, B)n = ∏

p+q=n
Hom∗(A−p, Bq),

with differential d defined on homogeneous f ∈ Hom∗(A, B)n by d f := dB ◦ f −
(−)n f ◦ dA.
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