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Abstract
We study the L2-approximation of functions from a Hilbert space and compare the
sampling numbers with the approximation numbers. The sampling number en is the
minimal worst-case error that can be achieved with n function values, whereas the
approximation number an is the minimal worst-case error that can be achieved with
n pieces of arbitrary linear information (like derivatives or Fourier coefficients). We
show that

en �
√
√
√
√

1

kn

∑

j≥kn

a2j ,

where kn � n/ log(n). This proves that the sampling numbers decay with the same
polynomial rate as the approximation numbers and therefore that function values are
basically as powerful as arbitrary linear information if the approximation numbers are
square-summable. Our result applies, in particular, to Sobolev spaces Hs

mix(T
d) with

dominating mixed smoothness s > 1/2 and dimension d ∈ N, and we obtain

en � n−s logsd(n).

For d > 2s + 1, this improves upon all previous bounds and disproves the prevalent
conjecture that Smolyak’s (sparse grid) algorithm is optimal.

Keywords L2-approximation · Sampling numbers · Rate of convergence · Random
matrices · Sobolev spaces with mixed smoothness

Communicated by Frances Kuo.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-020-09481-w&domain=pdf


1142 Foundations of Computational Mathematics (2021) 21:1141–1151

Mathematics Subject Classification 41A25 · 41A46 · 60B20 · Secondary: 41A63 ·
46E35

Let H be a reproducing kernel Hilbert space, i.e., a Hilbert space of real-valued
functions on a set D such that point evaluation

δx : H → R, δx ( f ) := f (x)

is a continuous functional for all x ∈ D. We consider numerical approximation of
functions from such spaces, using only function values. We measure the error in the
space L2 = L2(D,A, μ) of square-integrable functions with respect to an arbitrary
measure μ such that H is embedded into L2. This means that the functions in H are
square-integrable and two functions from H that are equal μ-almost everywhere are
also equal point-wise.

We are interested in the n-th minimal worst-case error

en := en(H) := inf
x1,...,xn∈D
ϕ1,...,ϕn∈L2

sup
f ∈H : ‖ f ‖H≤1

∥
∥
∥ f −

n
∑

i=1

f (xi ) ϕi

∥
∥
∥
L2

,

which is the worst-case error of an optimal algorithm that uses at most n function
values. These numbers are sometimes called sampling numbers. We want to compare
en with the n-th approximation number

an := an(H) := inf
L1,...,Ln∈H ′
ϕ1,...,ϕn∈L2

sup
f ∈H : ‖ f ‖H≤1

∥
∥
∥ f −

n
∑

i=1

Li ( f ) ϕi

∥
∥
∥
L2

,

where H ′ is the space of all bounded, linear functionals on H . This is the worst-case
error of an optimal algorithm that uses at most n linear functionals as information.
Clearly, we have an ≤ en since the point evaluations form a subset of H ′.

The approximation numbers are quite well understood in many cases because they
are equal to the singular values of the embedding operator id : H → L2. However, the
sampling numbers still resist a precise analysis. For an exposition of such approxima-
tion problems, we refer to [11–13], especially [13, Chapter 26 & 29], and references
therein. One of the fundamental questions in the area asks for the relation of en and
an for specific Hilbert spaces H . The minimal assumption on H is the compactness
of the embedding id : H → L2. It is known that

lim
n→∞ en = 0 ⇔ lim

n→∞ an = 0 ⇔ H ↪→ L2 compactly,

see [13, Section 26.2]. However, the compactness of the embedding is not enough for
a reasonable comparison of the speed of this convergence, see [6]. If (a∗

n) and (e∗
n)

are decreasing sequences that converge to zero and (a∗
n) /∈ �2, one may construct H

and L2 such that an = a∗
n for all n ∈ N and en ≥ e∗

n for infinitely many n ∈ N. In
particular, if
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ord(cn) := sup
{

s ≥ 0 : lim
n→∞ cnn

s = 0
}

denotes the (polynomial) order of convergence of a positive sequence (cn), it may
happen that ord(en) = 0 even if ord(an) = 1/2.

It thus seems necessary to assume that (an) is in �2, i.e., that id : H → L2 is a
Hilbert–Schmidt operator. This is fulfilled, e.g., for Sobolev spaces defined on the unit
cube; see Corollary 2. Under this assumption, it is proven in [9] that

ord(en) ≥ 2 ord(an)

2 ord(an) + 1
ord(an).

In fact, the authors of [9] conjecture that the order of convergence is the same for both
sequences. We give an affirmative answer to this question. Our main result can be
stated as follows.

Theorem 1 There are absolute constants C, c > 0 and a sequence of natural numbers
(kn) with kn ≥ cn/ log(n + 1) such that the following holds. For any n ∈ N, any
measure space (D,A, μ) and any reproducing kernel Hilbert space H of real-valued
functions on D that is embedded into L2(D,A, μ), we have

en(H)2 ≤ C

kn

∑

j≥kn

a j (H)2.

In particular, we obtain the following result on the order of convergence. This solves
Open Problem 126 in [13, p. 333], see also [13, Open Problems 140 & 141].

Corollary 1 Consider the setting of Theorem 1. If an(H) � n−s logα(n) for some
s > 1/2 and α ∈ R, then we obtain

en(H) � n−s logα+s(n).

In particular, we always have ord(en) = ord(an).

Let us now consider a specific example. Namely, we consider Sobolev spaces with
(dominating) mixed smoothness defined on the d-dimensional torus Td ∼= [0, 1)d .
These spaces attracted quite a lot of attention in various areas of mathematics due to
their intriguing attributes in high dimensions. For history and the state of the art (from
a numerical analysis point of view) see [3,19,20].

Let us first define a one-dimensional and real-valued orthonormal basis of L2(T) by
b(1)
0 = 1, b(1)

2m = √
2 cos(2πmx) and b(1)

2m−1 = √
2 sin(2πmx) for m ∈ N. From this

we define a basis of L2(T
d) using d-fold tensor products: We set bm := ⊗d

j=1 b
(1)
m j

form = (m1, . . . ,md) ∈ N
d
0 . The Sobolev space with dominating mixed smoothness

s > 0 can be defined as

H := Hs
mix(T

d ) :=
{

f ∈ L2(T
d )

∣
∣
∣ ‖ f ‖2H :=

∑

m∈Nd
0

d
∏

j=1

(1 + |m j |2s) 〈 f ,bm〉2L2
< ∞

}

.
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This is a Hilbert space. It satisfies our assumptions whenever s > 1/2. It is not hard
to prove that an equivalent norm in Hs

mix(T
d) for s ∈ N is given by

‖ f ‖2Hs
mix(T

d )
=

∑

α∈{0,s}d
‖Dα f ‖2L2

.

The approximation numbers an = an(H) are known for some time to satisfy

an � n−s logs(d−1)(n)

for all s > 0, see, e.g., [3, Theorem 4.13]. The sampling numbers en = en(H),
however, seem to be harder to tackle. The best bounds so far are

n−s logs(d−1)(n) � en � n−s log(s+1/2)(d−1)(n)

for s > 1/2. The lower bound easily follows from en ≥ an , and the upper bound was
proven in [17], see also [3, Chapter 5]. For earlier results on this prominent problem,
see [15,16,18,22]. Note that finding the right order of en in this case is posed as
Outstanding Open Problem 1.4 in [3]. From Corollary 1, setting α = s(d − 1) in the
second part, we easily obtain the following.

Corollary 2 Let Hs
mix(T

d) be the Sobolev space with mixed smoothness as defined
above. Then, for s > 1/2, we have

en
(

Hs
mix(T

d)
)

� n−s logsd(n).

The bound in Corollary 2 improves on the previous bounds if d > 2s + 1, or
equivalently s < (d − 1)/2. With this, we disprove Conjecture 5.26 from [3] and
show, in particular, that Smolyak’s algorithm is not optimal in these cases. Although
our techniques do not lead to an explicit deterministic algorithm that achieves the
above bounds, it is interesting that n i.i.d. random points are suitable with positive
probability (independent of n).

Let us conclude with a few topics for future research. While this paper was under
review, Theorem 1 has already been extended to the case of complex-valued functions
and non-injective operators id : H → L2 in [7], including explicit values for the
constants c andC , see also [21]. It remains open to generalize our results to non-Hilbert
space settings. It is also quite a different question whether the sampling numbers and
the approximation numbers behave similarly with respect to the dimension of the
domain D. This is a subject of tractability studies. We refer to [13, Chapter 26] and
especially [14, Corollary 8]. Here, we only note that the constants of Theorem 1 are, in
particular, independent of the domain, and that this may be utilized for these studies,
see also [7].
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The Proof

The result follows from a combination of the general technique to assess the quality
of random information as developed in [4,5], together with bounds on the singular
values of random matrices with independent rows from [10].

Before we consider algorithms that only use function values, let us briefly recall
the situation for arbitrary linear functionals. In this case, the minimal worst-case error
an is given via the singular value decomposition of id : H → L2 in the following
way. Since W = id∗id is positive, compact and injective, there is an orthogonal
basis B = {

b j : j ∈ N
}

of H that consists of eigenfunctions of W . Without loss of
generality, we may assume that H is infinite-dimensional. It is easy to verify that B
is also orthogonal in L2. We may assume that the eigenfunctions are normalized in
L2 and that ‖b1‖H ≤ ‖b2‖H ≤ . . . . From these properties, it is clear that the Fourier
series

f =
∞
∑

j=1

f j b j , where f j := 〈

f , b j
〉

L2
,

converges in H for every f ∈ H , and therefore also point-wise. The optimal algorithm
based on n linear functionals is given by

Pn : H → L2, Pn( f ) :=
∑

j≤n

f j b j ,

which is the L2-orthogonal projection onto Vn := span{b1, . . . , bn}. We refer to [11,
Section 4.2] for details. We obtain that

an(H) = sup
f ∈H : ‖ f ‖H≤1

∥
∥ f − Pn( f )

∥
∥
L2

= ‖bn+1‖−1
H .

Wenow turn to algorithms using only function values. In order to bound theminimal
worst-case error en from above, we employ the probabilistic method in the following
way. Let x1, . . . , xn ∈ D be i.i.d. random variables with μ-density

� : D → R, �(x) := 1

2

⎛

⎝
1

k

∑

j<k

b j+1(x)
2 + 1

∑

j≥k a
2
j

∑

j≥k

a2j b j+1(x)
2

⎞

⎠ ,

where k ≤ n will be specified later. Given these sampling points, we consider the
algorithm

An : H → L2, An( f ) :=
k
∑

j=1

(G+N f ) j b j ,
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where N : H → R
n with N ( f ) := (�(xi )−1/2 f (xi ))i≤n is the weighted information

mapping and G+ ∈ R
k×n is the Moore–Penrose inverse of the matrix

G := (�(xi )
−1/2b j (xi ))i≤n, j≤k ∈ R

n×k .

This algorithm is a weighted least-squares estimator: If G has full rank, then

An( f ) = argmin
g∈Vk

n
∑

i=1

|g(xi ) − f (xi )|2
�(xi )

.

In particular, we have An( f ) = f whenever f ∈ Vk . The worst-case error of An is
defined as

e(An) := sup
f ∈H : ‖ f ‖H≤1

∥
∥ f − An( f )

∥
∥
L2

.

Clearly, we have en ≤ e(An) for every realization of x1, . . . , xn . Thus, it is enough to
show that e(An) obeys the desired upper bound with positive probability.

Remark 1 If μ is a probability measure and if the basis is uniformly bounded, i.e., if
sup j∈N ‖b j‖∞ < ∞, we may also choose � ≡ 1 and consider i.i.d. sampling points
with distribution μ.

Remark 2 Weighted least-squares estimators are widely studied in the literature. We
refer to [1,2]. In contrast to previous work, we show that we can choose a fixed set of
weights and sampling points that work simultaneously for all f ∈ H . We do not need
additional assumptions on the function f , the basis (b j ) or the measure μ. For this,
we think that our modification of the weights is important.

Remark 3 The worst-case error e(An) of the randomly chosen algorithm An is not
to be confused with the Monte Carlo error of a randomized algorithm, which can be
defined by

eran(An) := sup
f ∈H : ‖ f ‖H≤1

(

E ‖ f − An( f )‖2L2

)1/2
.

The Monte Carlo error is a weaker error criterion. It is shown in [8], see also [23], that
the assumptions of Corollary 1 give rise to a randomized algorithm Mn which uses at
most n function values and satisfies

eran(Mn) � n−s logα(n).

However, this does not imply that theworst-case error e(Mn) is small for any realization
of Mn .
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To give an upper bound on e(An), let us assume thatG has full rank. For any f ∈ H
with ‖ f ‖H ≤ 1, we have

‖ f − An f ‖L2
≤ ak + ‖Pk f − An f ‖L2

= ak + ‖An( f − Pk f )‖L2

= ak + ∥∥G+N ( f − Pk f )
∥
∥

�k2

≤ ak +
∥
∥
∥G+ : �n2 → �k2

∥
∥
∥

∥
∥
∥N : Pk(H)⊥ → �n2

∥
∥
∥ .

The norm of G+ is the inverse of the kth largest (and therefore the smallest) singular
value of the matrix G. The norm of N is the largest singular value of the matrix

	 := (

�(xi )
−1/2a jb j+1(xi )

)

1≤i≤n, j≥k ∈ R
n×∞.

To see this, note that N = 	
 on Pk(H)⊥, where the mapping 
 : Pk(H)⊥ → �2
with 
g = (g j+1/a j ) j≥k is an isomorphism. This yields

e(An) ≤ ak + smax(	)

smin(G)
. (1)

It remains to bound smin(G) from below and smax(	) from above. Clearly, any non-
trivial lower bound on smin(G) automatically yields that the matrix G has full rank.
To state our results, let

βk :=
⎛

⎝
1

k

∑

j≥k

a2j

⎞

⎠

1/2

and γk := max
{

ak, βk

}

.

Note that a22k ≤ 1
k (a

2
k + . . . + a22k) ≤ β2

k for all k ∈ N and thus γk ≤ β�k/2�. Before
we continue with the proof of Theorem 1, we show that Corollary 1 follows from
Theorem 1 by providing the order of βk in the following special case. The proof is an
easy exercise.

Lemma 1 Let an � n−s logα(n) for some s, α ∈ R. Then,

βk �
{

ak, if s > 1/2,

ak
√

log(k), if s = 1/2 and α < −1/2,

and βk = ∞ in all other cases.

The rest of the paper is devoted to the proof of the following two claims: There
exist constants c,C > 0 such that, for all n ∈ N and k = �c n/ log n�, we have
Claim 1

P

(

smax(	) ≤ C γk n
1/2
)

> 1/2.
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Claim 2

P

(

smin(G) ≥ n1/2/2
)

> 1/2.

Together with (1), this will yield with positive probability that

e(An) ≤ ak + 2C γk ≤ (2C + 1) γk ≤ (2C + 1) β�k/2�,

which is the statement of Theorem 1.
Both claims are based on [10, Theorem 2.1], which we state here in a special case.

Recall that, for X ∈ �2, the operator X⊗X is defined on �2 by X⊗X(v) = 〈X , v〉2 ·X .
By ‖M‖ we denote the spectral norm of a matrix M .

Proposition 1 There exists an absolute constant c > 0 for which the following holds.
Let X be a random vector in R

k or �2 with ‖X‖2 ≤ R with probability 1, and let
X1, X2, . . . be independent copies of X. We put

D := E(X ⊗ X), A := R2 log n

n
and B := R ‖D‖1/2

√

log n

n
.

Then, for any t > 0,

P

(∥
∥
∥
∥

n
∑

i=1

Xi ⊗ Xi − nD

∥
∥
∥
∥

≥ c t max{A, B} n
)

≤ 2e−t .

Proof of Proposition 1 We describe the steps needed to obtain this reformulation of
[10, Theorem 2.1]. For this let ‖Z‖ψα := inf{C > 0 : E exp(|Z |α/Cα) ≤ 2} for
Z = ‖X‖2 and

ρ := sup

{
(

E 〈X , θ〉42
)1/4 : θ ∈ R

k with ‖θ‖2 = 1

}

.

Theorem 2.1 of [10] then states that

P

(∥
∥
∥
∥

n
∑

i=1

Xi ⊗ Xi − nD

∥
∥
∥
∥

≥ c t max{ Ã, B̃} n
)

≤ 2e−tα/(2+α)

with

Ã := ‖Z‖2ψα

(log n)1+ 2
α

n
and B̃ := ρ2

√
n

+ (‖D‖ · Ã)1/2 ,

for all t > 0, α ≥ 1, n ∈ N and some absolute constant c > 0. Note that the 2 in the
right-hand side of above inequality is missing in [10, Theorem 2.1], but can be found
in the proof.
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From ‖X‖2 ≤ R we obtain ‖Z‖ψα ≤ 2R for all α ≥ 1. Therefore, we can take the

limit α → ∞ and obtain the result with Ã = R2 log n
n and B̃ = ρ2√

n
+ R‖D‖1/2

√
log n
n

(and a slightly changed constant c). Moreover, we have

E 〈X , θ〉42 ≤ R2 · E 〈X , θ〉22 = R2 · 〈Dθ, θ〉2 ≤ R2 · ‖D‖

for any θ ∈ R
k (or �2) with ‖θ‖2 = 1, which implies ρ2 ≤ R · ‖D‖1/2. This “trick”

leads to an improvement over [10, Corollary 2.6] and yields our formulation of the
result. ��
Proof of Claim 1 Consider independent copies X1, . . . , Xn of the vector

X := �(x)−1/2(akbk+1(x), ak+1bk+2(x), . . .),

where x is a random variable on D with density �. Clearly,
∑n

i=1 Xi ⊗ Xi = 	∗	
with 	 from above. First, observe

‖X‖22 = �(x)−1
∑

j≥k

a2j b j+1(x)
2 ≤ 2

∑

j≥k

a2j = 2k β2
k =: R2.

Since D := E(X ⊗ X) = diag(a2k , a
2
k+1, . . .), we have ‖D‖ = a2k . This implies, with

A and B defined as in Proposition 1, that

A ≤ 2k β2
k
log n

n

and

B ≤ (2k β2
k )1/2ak

√

log n

n
.

Choosing k = �c n/ log n� for c small enough, we obtain

P

( ∥
∥	∗	 − nD

∥
∥ ≥ t γ 2

k n
)

≤ 2 exp (−t) .

By choosing t = 2, we obtain with probability greater 1/2 that

smax(	)2 = ∥
∥	∗	

∥
∥ ≤ ‖nD‖ + ∥∥	∗	 − nD

∥
∥ ≤ n a2k + 2γ 2

k n ≤ 3 γ 2
k n.

This yields Claim 1. ��
Proof of Claim 2 Consider X := �(x)−1/2(b1(x), . . . , bk(x)) with x distributed
according to �. Clearly,

∑n
i=1 Xi ⊗ Xi = G∗G with G from above. First, observe

‖X‖22 = �(x)−1
∑

j≤k

b j (x)
2 ≤ 2k =: R2.
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Since D := E(X ⊗ X) = diag(1, . . . , 1), we have ‖D‖ = 1. This implies, with A and
B defined as in Proposition 1, that

A ≤ 2k
log n

n

and

B ≤ (2k)1/2
√

log n

n
.

Again, choosing k = �c n/ log n� for c small enough, we obtain

P

(
∥
∥G∗G − nD

∥
∥ ≥ t n

4

)

≤ 2 exp (−t) .

By choosing t = 2, we obtain with probability greater 1/2 that

smin(G)2 = smin(G
∗G) ≥ smin(nD) − ‖G∗G − nD‖ ≥ n/2.

This yields Claim 2. ��
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23. G. W.Wasilkowski and H.Woźniakowski. The power of standard information for multivariate approx-
imation in the randomized setting. Math. Comp., 76:965–988, 2006.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

David Krieg1 ·Mario Ullrich1,2

B Mario Ullrich
mario.ullrich@jku.at

David Krieg
david.krieg@jku.at

1 Institut für Analysis, Johannes Kepler Universität, Linz, Austria

2 Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State
University, Moscow, Russia

123

http://arxiv.org/abs/1911.10111
https://doi.org/10.1016/j.jco.2020.101484

	Function Values Are Enough for L2-Approximation
	Abstract
	The Proof
	Acknowledgements
	References




