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Abstract
Maxwell’s equations describe the evolution of electromagnetic fields, together with
constraints on the divergence of the magnetic and electric flux densities. These
constraints correspond to fundamental physical laws: the nonexistence of magnetic
monopoles and the conservation of charge, respectively. However, one or both of these
constraints may be violated when one applies a finite element method to discretize in
space. This is a well-known and long-standing problem in computational electromag-
netics. We use domain decomposition to construct a family of primal hybrid finite ele-
ment methods for Maxwell’s equations, where the Lagrange multipliers are shown to
correspond to a numerical trace of themagnetic field and a numerical flux of the electric
flux density. Expressing the charge conservation constraint in terms of this numerical
flux, we show that both constraints are strongly preserved. As a special case, these
methods include a hybridized version of Nédélec’s method, implying that it preserves
the constraints more strongly than previously recognized. These constraint-preserving
properties are illustrated using numerical experiments in both the time domain and
frequency domain. In 2-D, we also observe a superconvergence phenomenon, where
hybrid post-processing yields an improved estimate of the magnetic field.
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1 Introduction

Maxwell’s equations consist of two vector evolution equations, together with two
scalar constraint equations, div B = 0 and div D = ρ, where B is magnetic flux
density, D is electric flux density, and ρ is charge density. These constraints are
automatically preserved by the evolution, so given initial conditions satisfying the
constraints, one can simply evolve forward in time without needing to “enforce” the
constraints in any way.

However, if one applies a finite element method in space, then the semidiscretized
evolution equations no longer necessarily preserve these constraints, at least not
strongly. Nédélec [39] showed that, if one uses curl-conforming edge elements for
the electric field E and divergence-conforming face elements for B, then the semidis-
cretized equations preserve div B = 0 strongly. On the other hand, div D = ρ holds
only in the Galerkin sense (i.e., when both sides are integrated against certain continu-
ous, piecewise polynomial test functions). Recent constraint-preserving methods due
to Campos Pinto and Sonnendrücker [17] and Hu et al. [29] also preserve div B = 0
strongly, but div D = ρ only in a weaker sense.

Christiansen and Winther [20] observe that strong preservation of both divergence
constraints “appears to be necessary for many applications in electromagnetics,” and
Houston et al. [28] call this “one of the main difficulties in the numerical solution of
Maxwell’s equations.” For this reason, alternative approaches havebeendeveloped that
enforce the constraints strongly—for instance, using Lagrange multipliers [4,18]—
instead of attempting to preserve them automatically but weakly, as Nédélec’s method
does. In caseswhereρ = 0, another idea is to use divergence-free elements to construct
nonconforming methods [9,11] or discontinuous Galerkin methods [10,23,28].

In this paper, we attack the problem of constraint preservation from a different
perspective. We perform domain decomposition of the Lagrangian (i.e., primal) varia-
tional principle for Maxwell’s equations, in terms of the vector potential A and scalar
potential ϕ, using Lagrange multipliers ̂H and ̂D to enforce inter-element continu-
ity and boundary conditions. These Lagrange multipliers are shown to correspond to
boundary traces of the magnetic field H and electric flux density D. After using gauge
symmetry to fix ϕ = 0, we show that the evolution of (A, ̂H) automatically preserves
the constraints div B = 0 and div ̂D = ρ. Finally, we semidiscretize this domain-
decomposed variational principle, obtaining primal hybrid finite element methods
that preserve this formulation of the constraints in a strong sense. As a special case,
we give a hybridized formulation of Nédélec’s method, implying that it preserves the
constraints in a stronger sense than previously recognized.

To place this in the context of previous work, we note that the general idea of
using Lagrange multipliers to weakly enforce inter-element continuity and boundary
conditions on H(curl) spaces is not itself new. Various alternative spaces of Lagrange
multipliers have been proposed in the literature onmortarmethods forMaxwell’s equa-
tions [5,27,30,42] and hybrid methods for the Stokes equations [21,22], for example.
In contrast to this previous work, one of the key distinctions here is that we take ̂H
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and ̂D to themselves be H(curl)- and H(div)-conforming, respectively. This makes it
possible to formulate the charge conservation constraint for these methods in a strong
sense.

The paper is organized as follows:

– In Sect. 2, we review Maxwell’s equations, the Lagrangian variational principle,
and semidiscretization using edge elements.

– In Sect. 3, we domain decompose the Lagrangian variational principle, relate
solutions to the classical (non-domain-decomposed) formulation of Maxwell’s
equations, and study the domain-decomposed version of the constraints and their
preservation.

– In Sect. 4, we consider primal hybrid finite element methods for semidiscretizing
the domain-decomposed evolution equations, showing that constraints are pre-
served in a strong sense.

– Finally, in Sect. 5 we conduct numerical experiments demonstrating the behavior
of the hybridized Nédélec method. In addition to the constraints being preserved
to machine precision, these results illustrate a superconvergence phenomenon in
2-D for the post-processed magnetic field ̂Hh , similar to that observed for other
hybridized mixed methods (cf. Arnold and Brezzi [2], Brezzi et al. [12]).

2 Review of Maxwell’s Equations

2.1 Maxwell’s Equations

We begin by reviewing the classical formulation of Maxwell’s equations, first in terms
of the electric and magnetic fields and flux densities, and then in terms of the vector
and scalar potentials. We postpone the discussion of regularity until the introduction
of the weak formulation, in Sect. 2.2; for the moment, everything may be assumed to
be smooth.

2.1.1 Standard Formulation

In their most familiar form, Maxwell’s equations consist of the vector evolution equa-
tions,

Ḃ = − curl E, (1a)

Ḋ + J = curl H , (1b)

together with the scalar constraint equations,

div B = 0, (2a)

div D = ρ. (2b)

Here, E and H denote the electric field and magnetic field, D = εE and B = μH
denote the electric flux density and magnetic flux density, ε and μ are the electric
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permittivity and magnetic permeability tensors, and J and ρ are current density and
charge density, respectively. We use the “dot” notation u̇ := ∂t u to denote partial
differentiation with respect to time.

The evolution equations (1) automatically preserve the constraints (2). Indeed,
taking the divergence of (1a) implies div Ḃ = 0, so (2a) is preserved. Similarly, taking
the divergence of (1b) implies div Ḋ + div J = 0, so (2b) is preserved if and only if
J and ρ satisfy ρ̇ + div J = 0, which is the law of conservation of charge. We refer
to (2b) as the charge conservation constraint, since it is equivalent to this condition.

2.1.2 Formulation in Terms of Potentials

Alternatively, Maxwell’s equations may be expressed in terms of a vector field A,
called the vector potential, and a scalar field ϕ, called the scalar potential. Given A
and ϕ, we define the electric field and magnetic flux density by

E := −( Ȧ + grad ϕ), B := curl A.

Note that (1a) and (2a) are automatically satisfied, so we may restrict our attention
entirely to the single evolution equation (1b), which we have already seen preserves
(2b).

However, Maxwell’s equations do not uniquely determine the evolution of (A, ϕ).
Observe that if ξ is any time-dependent scalar field, then the transformation (A, ϕ) �→
(A + grad ξ, ϕ − ξ̇ ) leaves E , B, D, H unchanged. Such transformations are called
gauge transformations, and the invariance of Maxwell’s equations under gauge trans-
formations is called gauge symmetry. In particular, any solution (A, ϕ) may be
transformed into one of the forms (A + grad ξ, 0) by taking ξ to be a solution of
ξ̇ = ϕ. Therefore, we may restrict our attention to solutions with ϕ = 0.

Remark 1 This procedure of restricting to particular solutions, which are related to
a general solution by some gauge transformation, is called gauge fixing. The choice
ϕ = 0, called temporal gauge, is the most convenient for our purposes, but there are
other choices as well. Note that there is still some remaining gauge symmetry, even
after performing temporal gauge fixing: We may transform A �→ A + grad ξ for any
ξ constant in time.

After temporal gauge fixing, we can write (1b) as either a first-order system in A,
D,

Ȧ = −ε−1D, Ḋ + J = curl(μ−1 curl A),

or as a second-order equation in A alone,

−∂t (ε Ȧ) + J = curl(μ−1 curl A).

In the special case where ε and μ are simply positive constants with εμ = 1 (as in
vacuum, with units chosen so that the speed of light is 1) and J = 0, the latter equation
just becomes
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Ä + curl curl A = 0.

Taking the Fourier transform with respect to time (the so-called frequency domain or
time-harmonic approach), this latter equation transforms into the eigenvalue problem
for the curl-curl operator.

2.2 Weak Formulation

Wenext discuss theweak formulation ofMaxwell’s equations, first using a Lagrangian
variational principle in terms of the potentials A and ϕ, and then fixing the temporal
gauge ϕ = 0 to arrive at a weak formulation in terms of A alone.

2.2.1 Function Spaces and Regularity

Let � ⊂ R
3 be a bounded Lipschitz domain, and define the function spaces

H1(�) := {

u ∈ L2(�) : grad u ∈ L2(�,R3)
}

,

H(curl;�) := {

u ∈ L2(�,R3) : curl u ∈ L2(�,R3)
}

,

H(div;�) := {

u ∈ L2(�;R3) : div u ∈ L2(�)
}

.

We also define the following subspaces, with boundary conditions imposed:

H̊1(�) := {

u ∈ H1(�) : u|∂� = 0
}

,

H̊(curl;�) := {

u ∈ H(curl;�) : u × n|∂� = 0
}

,

H̊(div;�) := {

u ∈ H(div;�) : u · n|∂� = 0
}

.

Here, n|∂� denotes the outer unit normal to ∂�, and restrictions to ∂� are interpreted
in the trace sense.

Let A : t �→ A(t) be a C1 curve in H̊(curl;�) and ϕ : t �→ ϕ(t) be a C0 curve in
H̊1(�). It follows that E is aC0 curve in H̊(curl;�), that B is aC1 curve in H̊(div;�),
and that (1a) and (2a) hold strongly in L2. We also assume that both ε = εi j (x, t) and
μ = μi j (x, t) are L∞, symmetric, and uniformly elliptic. In particular, this implies
that D and H are both C0 curves in L2(�,R3). Henceforth, we restrict our attention
to (A, ϕ) such that D is in fact aC1 curve in L2(�,R3). Finally, let the current density
J be a given C0 curve in H(div;�) and the charge density ρ be a given C1 curve in
L2(�), satisfying the charge conservation condition ρ̇ + div J = 0.

2.2.2 The Lagrangian and Euler–Lagrange Equations

For (A, ϕ) satisfying the regularity assumptions in the previous paragraph, define the
Lagrangian

L(A, ϕ, Ȧ, ϕ̇) :=
∫

�

(

1

2
E · D − 1

2
B · H + A · J − ϕρ

)

.
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The Euler–Lagrange equations are

∫

�

(

A′ · (Ḋ + J ) − curl A′ · H) = 0, ∀A′ ∈ H̊(curl;�), (3a)
∫

�

(grad ϕ′ · D + ϕ′ρ) = 0, ∀ϕ′ ∈ H̊1(�), (3b)

which are weak expressions of (1b) and (2b), respectively.
These Euler–Lagrange equations imply that solutions have additional regularity

properties. Since curl H = Ḋ + J is C0 in L2, we have that H is C0 in H(curl;�).
Likewise, since div D = ρ is C1 in L2, we have that D is C1 in H(div;�). Hence,
solutions to this weak problem are in fact strong solutions of Maxwell’s equations.

Remark 2 When ε and μ are constant in time, the electric and magnetic fields have
precisely the same regularity assumed by Monk [37, eqs. (7)–(8)]; namely, E is C1 in
L2(�,R3) and C0 in H̊(curl;�), while H is C1 in L2(�,R3) and C0 in H(curl;�).

As in Sect. 2.1, this formulation is symmetric with respect to gauge transformations
(A, ϕ) �→ (A+grad ξ, ϕ− ξ̇ ), where ξ is now an arbitraryC1 curve in H̊1(�). Fixing
the temporal gauge ϕ = 0, the Lagrangian becomes

L(A, Ȧ) =
∫

�

(

1

2
E · D − 1

2
B · H + A · J

)

,

and the Euler–Lagrange equations are just (3a). This again implies that H is C0

in H(curl;�), so (1b) holds strongly. By the same argument as in Sect. 2.1, this
automatically preserves the charge conservation constraint.

Remark 3 Preservation of the charge conservation constraint may also be seen as
a consequence of the remaining gauge symmetry A �→ A + grad ξ , mentioned in
Remark 1, where ξ ∈ H̊1(�) is constant in time. This is a particular instance of
Noether’s theorem, which relates symmetries to conservation laws. See Marsden and
Ratiu [34, Section 1.6] for an account of the J = 0 case, as well as the discussion in
Christiansen and Winther [20].

2.3 Galerkin Semidiscretization Using Nédélec Elements

The use of finite elements in computational electromagnetics is a broad topic with a
long history, and we do not attempt to give a full account here. We refer the reader
to the texts by Monk [38] and Jin [31], as well as the excellent survey article by
Hiptmair [26], which relates these methods to the more recent theory of finite element
spaces of differential forms. In this section, we briefly review the semidiscretization
of Maxwell’s equations using the elements of Nédélec [39,40], an approach that was
subsequently analyzed in a series of papers by Monk [35–37].

Galerkin semidiscretization of the variational problem (3a) restricts the trial and
test functions to some finite-dimensional subspace V 1

h ⊂ H̊(curl;�), resulting in a
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finite-dimensional system of ODEs. That is, we seek aC1 curve Ah : t �→ Ah(t) ∈ V 1
h

such that
∫

�

(

A′
h · (Ḋh + J ) − curl A′

h · Hh
) = 0, ∀A′

h ∈ V 1
h , (4)

where Eh := − Ȧh, Bh := curl Ah, Dh := εEh , and Hh := μ−1Bh . The discrete
versions of (1a) and (2a),

Ḃh = − curl Eh, div Bh = 0,

follow immediately. In fact, both hold strongly in L2, by the same argument as in
Sect. 2.2.1, since Eh ∈ V 1

h ⊂ H̊(curl;�) and Bh ∈ curl V 1
h ⊂ H̊(div;�). On the

other hand, we cannot conclude that Dh is in H(div;�), nor that Hh is in H(curl;�),
since (4) only holds for test functions in V 1

h and not all of H̊(curl;�).
Consequently, the charge conservation constraint (2b) is only preserved in the fol-

lowing, much weaker sense. Let V 0
h ⊂ H̊1(�) be a finite-dimensional subspace such

that grad V 0
h ⊂ V 1

h . Then, for all ξh ∈ V 0
h , taking A′

h = grad ξh in (4) and applying
ρ̇ + div J = 0 give

∫

�

(grad ξh · Ḋh + ξh ρ̇) = 0.

Hence, if the initial conditions satisfy
∫

�
(grad ξh · Dh + ξhρ) = 0, for all ξh ∈ V 0

h ,
then this is preserved by the flow of (4).

In particular, suppose now that � is polyhedral, and that Th is a triangulation of �

by 3-simplices (i.e., tetrahedra) K ∈ Th .Wemay take V 0
h to be the space of continuous

degree-r piecewise polynomials on Th vanishing on ∂�, corresponding to standard
Lagrange finite elements. For V 1

h , we may take either degree-r [39] edge elements
of the first kind [39] or degree-(r − 1) [40] edge elements of the second kind [40]
with vanishing degrees of freedom on ∂�. These are spaces of piecewise polynomial
vector fields in R

3 with tangential (but not necessarily normal) continuity between
neighboring simplices. These choices ensure that grad V 0

h ⊂ V 1
h , so the above weak

charge conservation argument holds.
Note, however, that

∫

�
(grad ξh · Dh + ξhρ) = 0 only says that div Dh = ρ holds in

an “averaged” sense, since (unlike in the infinite-dimensional case) nonzero ξh ∈ V 0
h

cannot be taken to have arbitrarily small support. We cannot even conclude that the
constraint holds in the sense that

∫

∂K Dh ·n = ∫

K ρ, since the indicator function 1K is
discontinuous and therefore not an admissible test function. (Christiansen andWinther
[20] give a compactness argument for why this weak form of the constraint “might be
just as good” as the strong form, in the limit as h → 0; see also Christiansen [19].)
This motivates our proposed hybrid approach, based on domain decomposition, for
which piecewise constants are admissible test functions.

Remark 4 The above method describes the evolution of Ah ∈ V 1
h . Equivalently, one

may evolve Eh ∈ V 1
h and Bh ∈ curl V 1

h ⊂ V 2
h ⊂ H̊(div;�) by augmenting (4) with
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Ḃh = − curl Eh . This is the original approach described by Nédélec [39], where V 2
h

is given by face elements on Th .

3 Domain Decomposition Preliminaries

In this section, we introduce an alternative variational formulation for Maxwell’s
equations, based on domain decomposition. Specifically, we decompose the problem
on � into a collection of problems on K ∈ Th , weakly enforcing internal continuity
and external boundary conditions using Lagrange multipliers. This is similar in spirit
to the standard approach to domain decomposition for Poisson’s equation, cf. Brezzi
and Fortin [13]. We show that the Lagrange multipliers enforcing these conditions on
A and ϕ correspond to the traces of H and D, respectively, and we show that the latter
satisfies an appropriate version of the charge conservation constraint.

3.1 Function Spaces

Webegin by introducing the following discontinuous function spaces, which are larger
than the spaces used in the previous variational formulation:

H1(Th) := {

u ∈ L2(�) : u|K ∈ H1(K ), for all K ∈ Th
}

,

H(curl;Th) := {

u ∈ L2(�,R3) : u|K ∈ H(curl; K ), for all K ∈ Th
}

,

H(div;Th) := {

u ∈ L2(�,R3) : u|K ∈ H(div; K ), for all K ∈ Th
}

.

Brezzi and Fortin [13, Proposition III.1.1] show that

H̊1(�) = {

u ∈ H1(Th) : ∑

K∈Th

∫

∂K uλ · n = 0, for all λ ∈ H(div;�)
}

.

That is, H̊1(�) is the subspace of H1(Th) where internal continuity and external
boundary conditions are enforced by Lagrange multipliers λ ∈ H(div;�). Likewise,
Brezzi and Fortin [13, Proposition III.1.2] show that

H(div;�) = {

u ∈ H(div;Th) : ∑

K∈Th

∫

∂K uλ · n = 0, for all λ ∈ H̊1(�)
}

.

Using a similar argument, we now prove the corresponding result for the H(curl)
spaces. For smooth vector fields u, λ, we have the integration by parts formula

∫

∂K
(u × λ) · n =

∫

K
(curl u · λ − u · curl λ).

Although the right-hand side is defined even if we only have u, λ ∈ H(curl; K ), their
traces are generally only in H−1/2 on ∂K , so the integral on the left-hand side must
be replaced by a dual pairing 〈u, λ〉∂K , cf. Buffa and Ciarlet [14,15] and Buffa et al.
[16]. We abuse notation by writing

∫

∂K (u × λ) · n := 〈u, λ〉∂K for this dual pairing,
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even when it is not strictly an integral, and likewise for the dual pairing of H(curl;�)

vector fields on ∂�.

Proposition 1 H̊(curl;�) = {

u ∈ H(curl;Th) : ∑

K∈Th

∫

∂K (u × λ) · n =
0, for all λ ∈ H(curl;�)

}

.

Proof If u ∈ H̊(curl;�) ⊂ H(curl;Th), then for any λ ∈ H(curl;�), we have

∑

K∈Th

∫

∂K
(u × λ) · n =

∑

K∈Th

∫

K
(curl u · λ − u · curl λ)

=
∫

�

(curl u · λ − u · curl λ)

=
∫

∂�

(u × λ) · n
= 0,

so the forward inclusion (⊂) holds. To get the reverse inclusion (⊃), suppose that u ∈
H(curl;Th) satisfies the above condition, and let λ ∈ C∞

c (�,R3). Then, integrating
by parts, we have

∣

∣

∣

∣

∫

�

u · curl λ
∣

∣

∣

∣

=
∣

∣

∣

∣

∑

K∈Th

∫

K
curl u · λ −

∑

K∈Th

∫

∂K
(u × λ) · n

∣

∣

∣

∣

=
∣

∣

∣

∣

∑

K∈Th

∫

K
curl u · λ

∣

∣

∣

∣

≤
(

∑

K∈Th

‖curl u‖2L2(K ,R3)

)1/2

‖λ‖L2(�,R3),

where the last line uses the triangle and Cauchy–Schwarz inequalities. It follows
that curl u ∈ L2(�,R3), so u ∈ H(curl;�). This implies that

∫

∂�
(u × λ) · n =

∑

K∈Th

∫

∂K (u × λ) · n = 0 for all λ ∈ H(curl;�). Hence, u × n|∂� = 0 in the trace
sense, which completes the proof. ��
Remark 5 A variant of this result is stated in Boffi et al. [8, Proposition 2.1.3], where
λ is taken to be in H1(�,R3) rather than H(curl;�). This avoids the technicality of
using the dual pairing instead of an integral, but the version given here is more natural
for the purpose of the hybrid methods discussed in Sect. 4.

3.2 Domain Decomposition of the LagrangianVariational Principle

We now introduce a new Lagrangian forMaxwell’s equations, which allows the poten-
tials to live in the discontinuous function spaces defined in the previous section,
enforcing continuity and boundary conditions using Lagrange multipliers.
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Let A(t) ∈ H(curl;Th) and ϕ(t) ∈ H1(Th), and introduce the Lagrange multi-
pliers ̂H(t) ∈ H(curl;�) and ̂D(t) ∈ H(div;�). We adopt the notation, often seen
in the literature on discontinuous Galerkin and hybrid methods, of placing hats over
variables that act like weak traces/fluxes. As before, suppose that t �→ A(t) is C1 and
that t �→ ϕ(t) is C0, such that t �→ D(t) ∈ L2(�,R3) is C1. Furthermore, suppose
that t �→ ̂H(t) and t �→ ̂D(t) are both C0. Define the Lagrangian

L(A, ϕ, ̂H , ̂D, Ȧ, ϕ̇, ˙̂H , ˙̂D) =
∑

K∈Th

[∫

K

(

1

2
E · D − 1

2
B · H + A · J − ϕρ

)

+
∫

∂K
(A × ̂H + ϕ ̂D) · n

]

.

The Euler–Lagrange equations are then

∫

K

(

A′ · (Ḋ + J )−curl A′ · H)+
∫

∂K
(A′ × ̂H) · n = 0, ∀A′ ∈ H(curl; K ), (5a)

∫

K
(grad ϕ′ · D + ϕ′ρ) −

∫

∂K
ϕ′

̂D · n = 0, ∀ϕ′ ∈ H1(K ), (5b)

∑

K∈Th

∫

∂K
(A × ̂H ′) · n = 0, ∀ ̂H ′ ∈ H(curl;�), (5c)

∑

K∈Th

∫

∂K
ϕ ̂D′ · n = 0, ∀̂D′ ∈ H(div;�), (5d)

where (5a) and (5b) hold for all K ∈ Th . We now relate this to the classical variational
form of Maxwell’s equations, stated in (3).

Proposition 2 Suppose that t �→ A(t) ∈ H(curl;Th) is C1 and t �→ ϕ(t) ∈ H1(Th)

is C0, such that t �→ D(t) ∈ L2(�,R3) is C1. Furthermore, suppose that t �→
̂H(t) ∈ H(curl;�) and t �→ ̂D(t) ∈ H(div;�) are both C0. Then (A, ϕ, ̂H , ̂D) is a
solution to (5) if and only if (A, ϕ) is a solution to (3) with ̂H ×n|∂K = H ×n|∂K and
̂D · n|∂K = D · n|∂K . In particular, if (A, ϕ) is a solution to (3), then (A, ϕ, H , D) is
a solution to (5).

Proof Suppose (A, ϕ, ̂H , ̂D) is a solution to (5). By Proposition 1, (5c) implies A(t) ∈
H̊(curl;�), so taking A′ ∈ H̊(curl;�) and summing (5a) over K ∈ Th , the integrals
over ∂K cancel, yielding (3a). As previously stated, (3a) implies curl H = Ḋ + J , so
substituting this into (5a) gives

∫

∂K
(A′ × ̂H) · n =

∫

K
(curl A′ · H − A′ · curl H)

=
∫

∂K
(A′ × H) · n, ∀A′ ∈ H(curl; K ),
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so ̂H×n|∂K = H×n|∂K . Similarly, (5d) impliesϕ(t) ∈ H̊1(�), so takingϕ′ ∈ H̊1(�)

and summing (5b) over K ∈ Th yields (3b). This implies div D = ρ, and substituting
into (5b) gives ̂D · n|∂K = D · n|∂K .

Conversely, suppose (A, ϕ) is a solution to (3). Since A(t) ∈ H̊(curl;�) and
ϕ(t) ∈ H̊1(�), it follows that (5c) and (5d) hold. Furthermore, (3) implies that Ḋ+J =
curl H and div D = ρ, so (5a) and (5b) hold with ̂H × n|∂K = H × n|∂K and
̂D · n|∂K = D · n|∂K . In particular, we could take ̂H = H and ̂D = D. ��
Remark 6 Note that, in addition to (5b) implying that div D = ρ, we also see by taking
ϕ′ = 1K that ̂D satisfies the conservation law

∫

∂K
̂D · n = ∫

K ρ, for all K ∈ Th .

3.3 Temporal Gauge Fixing and the Charge Conservation Constraint

As in Sect. 2.2, if (A, ϕ, ̂H , ̂D) is a solution to (5), then so is (A+grad ξ, ϕ− ξ̇ , ̂H , ̂D)

for any C1 curve t �→ ξ(t) ∈ H̊1(�). Therefore, we perform temporal gauge fixing
by taking ϕ = 0. This yields the gauge-fixed Lagrangian

L(A, ̂H , Ȧ, ˙̂H) =
∑

K∈Th

[∫

K

(

1

2
E · D − 1

2
B · H + A · J

)

+
∫

∂K
(A × ̂H) · n

]

,

where we recall that D = εE = −ε Ȧ and B = μH = curl A. The Euler–Lagrange
equations are simply (5a) and (5c). Of course, (5d) is satisfied trivially, since ϕ = 0.
The next result shows that the charge conservation constraint (5b) is automatically
preserved, for an appropriately defined ̂D.

Proposition 3 Let (A, ̂H) be a solution to (5a) and (5c). Suppose initial values for

D, ̂D satisfy (5b), and let ̂D be the solution to ˙̂D + J = curl ̂H. Then (A, 0, ̂H , ̂D) is
a solution to (5).

Proof As we have already mentioned, ϕ = 0 trivially satisfies (5d), so it suffices to
show that (5b) holds. Let ϕ′ ∈ H1(K ) be arbitrary. Taking A′ = grad ϕ′ in (5a) and
integrating by parts gives

0 =
∫

K
grad ϕ′ · (Ḋ + J ) +

∫

∂K
(grad ϕ′ × ̂H) · n

=
∫

K
(grad ϕ′ · Ḋ − ϕ′ div J ) +

∫

∂K
ϕ′(J − curl ̂H) · n

=
∫

K
(grad ϕ′ · Ḋ + ϕ′ρ̇) −

∫

∂K
ϕ′ ˙̂D · n,

so if (5b) holds at the initial time, then it holds for all time. ��
Remark 7 As in Remark 6, taking ϕ′ = 1K implies

∫

∂K
̂D · n = ∫

K ρ. Furthermore,
if the initial conditions also satisfy div ̂D = ρ, then we have div ̂D = ρ for all time,
since div ˙̂D = div curl ̂H − div J = 0 + ρ̇. Finally, if ̂H = H , and if the initial
conditions for ̂D equal those for D, then we recover ̂D = D.
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Finally, we express this variational problem in the standard notation used for mixed
and hybrid finite element methods, in terms of a pair of bilinear forms [13, Chapter
II]. We will make use of this notation throughout the subsequent sections. Defining

a : H(curl;Th) × H(curl;Th) → R, a(A, A′) :=
∑

K∈Th

∫

K
curl A′ · μ−1 curl A,

b : H(curl;Th) × H(curl;�) → R, b(A′, ̂H) := −
∑

K∈Th

∫

∂K
(A′ × ̂H) · n,

we seek t �→ A(t) ∈ H(curl;Th) and t �→ ̂H(t) ∈ H(curl;�) such that

〈Ḋ + J , A′〉 = a(A, A′) + b(A′, ̂H), ∀A′ ∈ H(curl;Th), (6a)

0 = b(A, ̂H ′), ∀ ̂H ′ ∈ H(curl;�), (6b)

where 〈·, ·〉 is the L2(�,R3) inner product. Defining the map B : H(curl;Th) →
H(curl;�)∗, A �→ b(A, ·), we see that (6) is equivalent to evolving A(t) ∈ kerB by

〈Ḋ + J , A′〉 = a(A, A′), ∀A′ ∈ kerB,

and subsequently solving for ̂H satisfying (6a). Indeed, these are equivalent since (6b)
says that A ∈ kerB, while taking A′ ∈ kerB causes the b(A′, ̂H) term to vanish on
the right-hand side of (6a). Since kerB = H̊(curl;�) by Proposition 1, it follows
that A solves the non-domain-decomposed problem (3a).

4 Hybrid Semidiscretization

We now perform Galerkin semidiscretization of the domain-decomposed variational
problem with temporal gauge fixing, as introduced in the previous section. This
results in a hybrid method for Maxwell’s equations, where “hybrid” means that the
Lagrange multipliers ̂Hh and their test functions ̂H ′

h are both restricted to a subspace
of H(curl;�). We then show that a suitably defined ̂Dh satisfies the charge conser-
vation constraint in a strong sense, as opposed to the much weaker sense in which
Dh was seen to satisfy this constraint in Sect. 2.3. Finally, we discuss how certain
choices of elements yield a hybridized version of Nédélec’s method, while others give
nonconforming methods, and we remark on how this framework also applies to the
2-D Maxwell equations.

4.1 Semidiscretization of the Variational Problem

For each K ∈ Th , let V 1
h (K ) ⊂ H(curl; K ) be a finite-dimensional subspace, so

V 1
h := ∏

K∈Th
V 1
h (K ) ⊂ H(curl;Th), and let ̂V 1

h ⊂ H(curl;�). We seek Ah : t �→
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Ah(t) ∈ V 1
h and ̂Hh : t �→ ̂Hh(t) ∈ ̂V 1

h such that

∫

K

(

A′
h · (Ḋh+ J ) − curl A′

h · Hh
)+

∫

∂K
(A′

h × ̂Hh) · n = 0, ∀A′
h ∈ V 1

h (K ), (7a)

∑

K∈Th

∫

∂K
(Ah × ̂H ′

h) · n = 0, ∀ ̂H ′
h ∈ ̂V 1

h , (7b)

where (7a) holds for all K ∈ Th . These are the semidiscretized versions of (5a) and
(5c). As before, Eh := − Ȧh , Bh := curl Ah , Dh := εEh , and Hh := μ−1Bh .

Remark 8 Since (7b) only holds for test functions in ̂V 1
h , but not necessarily an arbitrary

test function in H(curl;�), in general a solutionwill have Ah(t) /∈ H̊(curl;�). Hence,
this method is generally not curl-conforming and is distinct from the conforming
methods discussed in Sect. 2.3.

In terms of the bilinear forms a(·, ·) and b(·, ·), this method may be written as

〈Ḋh + J , A′
h〉 = a(Ah, A

′
h) + b(A′

h,
̂Hh), ∀A′

h ∈ V 1
h , (8a)

0 = b(Ah, ̂H ′
h), ∀ ̂H ′

h ∈ ̂V 1
h . (8b)

Defining the operator Bh : V 1
h → (̂V 1

h )∗, Ah �→ b(Ah, ·)|̂V 1
h
, we see that (8) is

equivalent to evolving Ah(t) ∈ kerBh by solving the second-order system of ODEs

〈Ḋh + J , A′
h〉 = a(Ah, A

′
h), ∀A′

h ∈ kerBh, (9)

and subsequently solving for ̂Hh satisfying (8a). As with the infinite-dimensional
problem, this equivalence holds since (8b) implies Ah ∈ kerBh and A′

h ∈ kerBh

causes the b(A′
h,

̂Hh) term to vanish on the right-hand side of (8a).
Since V 1

h is finite-dimensional, we may apply Banach’s closed range theorem to
deduce that 〈Ḋh + J , ·〉 − a(Ah, ·) ∈ (kerBh)

⊥ is in the range of B∗
h , so a solution

̂Hh exists, although generally not uniquely. A natural choice is to find the solution ̂Hh

minimizing ‖Hh − ̂Hh‖2+‖Ḋh + J −curl ̂Hh‖2, which in a weak sense minimizes the
H(curl;�) distance between Hh and ̂Hh . This existence without uniqueness is typical
of hybrid methods, and one may formally resolve this by replacing ̂V 1

h by the quotient
space ̂V 1

h / kerB∗
h (cf. Brezzi and Fortin [13, IV.1.3]). In practice, the evolution on

kerBh specified by (9) is the essence of the method, and solving for ̂Hh may be seen
as an optional post-processing step.

4.2 Preservation of the Charge Conservation Constraint

In order to discuss the charge conservation constraint, we first suppose that V 0
h (K ) ⊂

H1(K ) are such that 1K ∈ V 0
h (K ) and grad V 0

h (K ) ⊂ V 1
h (K ) for all K ∈ Th . We
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consider whether the following discretization of (5b) is preserved,

∫

K
(grad ϕ′

h · Dh + ϕ′
hρ) −

∫

∂K
ϕ′
h
̂Dh · n = 0, ∀ϕ′

h ∈ V 0
h (K ), (10)

for ̂Dh : t �→ ̂Dh(t) ∈ H(div;�) suitably defined.

Theorem 1 Let (Ah, ̂Hh) be a solution to (7). Suppose initial values for Dh, ̂Dh satisfy

(10), and let ̂Dh be the solution to
˙̂Dh + J = curl ̂Hh. Then (10) holds for all time. In

particular,
∫

∂K
̂Dh · n = ∫

K ρ. Moreover, if div ̂Dh = ρ holds at the initial time, then
it holds for all time.

Proof The proof is essentially similar to that of Proposition 3. Given ϕ′
h ∈ V 0

h (K ),
taking A′

h = grad ϕ′
h ∈ V 1

h (K ) in (7a) and integrating by parts,

0 =
∫

K
grad ϕ′

h · (Ḋh + J ) +
∫

∂K
(grad ϕ′

h × ̂Hh) · n

=
∫

K
(grad ϕ′

h · Ḋh − ϕ′
h div J ) +

∫

∂K
ϕ′
h(J − curl ̂Hh) · n

=
∫

K
(grad ϕ′

h · Ḋh + ϕ′
h ρ̇) −

∫

∂K
ϕ′
h

˙̂Dh · n,

so if (10) holds at the initial time, then it holds for all time. The conclusion that
∫

∂K
̂Dh · n = ∫

K ρ follows by taking ϕ′
h = 1K , and div ˙̂Dh = div curl ̂Hh − div J =

0 + ρ̇ implies that if div ̂Dh = ρ holds at the initial time, then it holds for all time. ��
Remark 9 Preservation of div ̂Dh = ρ is immediate from ˙̂Dh + J = curl ̂Hh , without
appealing to (10). However, it is only a meaningful statement about solutions to (7)
when (10) holds. By contrast, if ̂Dh were instead to satisfy ˙̂Dh + J = 0, then div ̂Dh =
ρ would still be preserved, but thiswould not say anything about the numerical solution
(Ah, ̂Hh).

The next result addresses the existence of initial conditions for ̂Dh satisfying the
hypotheses of the previous theorem. Let V 0

h := ∏

K∈Th
V 0
h (K ) ⊂ H1(Th).

Proposition 4 Suppose that the initial value of Dh satisfies

∑

K∈Th

∫

K
grad ϕ′

h · Dh +
∫

�

ϕ′
hρ = 0, ∀ϕ′

h ∈ V 0
h ∩ H̊1(�).

Then there exists an initial value for ̂Dh ∈ H(div;�) such that (10) holds for all
K ∈ Th and div ̂Dh = ρ.

Proof The first part of the argument is similar to the one we used for the existence of
̂Hh . Define the bilinear form

βh : V 0
h × H(div;�) → R, βh(ϕ

′
h,

̂Dh) :=
∑

K∈Th

∫

∂K
ϕ′
h
̂Dh · n,
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and consider the map V 0
h → H(div;�)∗ defined by ϕ′

h �→ βh(ϕ
′
h, ·). By Brezzi and

Fortin [13, Proposition III.1.1], we have βh(ϕ
′
h, ·) = 0 if and only if ϕ′

h ∈ H̊1(�), so
V 0
h ∩ H̊1(�) is precisely the kernel of this map. Now, the hypothesis of this proposition

says that the functional ϕ′
h �→ ∑

K∈Th

∫

K grad ϕ′
h · Dh + ∫

�
ϕ′
hρ annihilates the

kernel V 0
h ∩ H̊1(�), so by the closed range theorem, it is in the range of the adjoint

̂Dh �→ βh(·, ̂Dh). Hence, there exists an initial value for ̂Dh satisfying (10) for all
K ∈ Th .

Next, suppose ̂Dh satisfies (10), but not necessarily div ̂Dh = ρ. Then, on each
K ∈ Th , replace ̂Dh by ̂Dh + grad u, where u is the solution to −
u = div ̂Dh − ρ

with Neumann boundary conditions grad u · n = 0 on ∂K and
∫

K u = 0. This
solution exists, since taking ϕ′

h = 1K in (10) implies the compatibility condition
∫

K (div ̂Dh − ρ) = ∫

∂K
̂Dh · n − ∫

K ρ = 0. Replacing ̂Dh by ̂Dh + grad u leaves the
normal traces of ̂Dh unchanged, since grad u ·n = 0, so the result is still in H(div;�)

and satisfies (10), as desired. ��
Remark 10 The computation of ̂Dh , like that of ̂Hh , can be seen as an optional post-
processing step after computing the solution Ah to (9). The key point of Theorem 1 is
that the evolution of Ah is conservative, in the sense that it is consistent with a charge-
conserving numerical flux ̂Dh , whether or not one chooses to actually compute ̂Dh .

4.3 Hybridization of Nédélec’s Method

As in Sect. 2.3, let� be polyhedral andTh be a simplicial triangulation. Let V 0
h (K ) be

the space of degree-r polynomials on K and V 1
h (K ) be either degree-r Nédélec edge

elements of the first kind or degree-(r−1)Nédélec edge elements of the second kind on
K . Then V 0

h ⊂ H1(Th) and V 1
h ⊂ H(curl;Th) correspond to discontinuous Lagrange

and Nédélec elements, respectively. Note that discontinuous Nédélec elements of the
second kind are just discontinuous piecewise polynomial vector fields.

Now, taking ̂V 1
h = H(curl;�), it follows that kerBh = V 1

h ∩kerB ⊂ H̊(curl;�),
which corresponds precisely to curl-conforming Nédélec elements with tangential
inter-element continuity and boundary conditions. It follows that (9) agrees precisely
with Nédélec’s method (4). In fact, it is not necessary to take ̂V 1

h infinite-dimensional:
It suffices to take a large enough finite-dimensional subspace (e.g., Nédélec elements
of sufficiently high degree) such that (7b) imposes all the inter-element continuity and
boundary conditions on degrees of freedom of V 1

h . (Having ̂V 1
h infinite-dimensional

is not a problem if one is only interested in Ah , but a finite-dimensional subspace
is required if one wishes to compute ̂Hh .) From these observations, we obtain the
following corollary of Theorem 1 and Proposition 4.

Corollary 1 Given V 0
h and V 1

h as above, there exists ̂V 1
h such that solutions Ah to

Nédélec’s method (4) are equivalent to solutions (Ah, ̂Hh) to the hybrid method (7).
Consequently, given a solution to Nédélec’s method, there exists ̂Dh satisfying ˙̂Dh +
J = curl ̂Hh, which preserves the charge conservation constraints (10) and div ̂Dh =
ρ.
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Remark 11 In contrast, if ̂V 1
h is not sufficiently large, we will have kerBh �⊂ kerB =

H̊(curl;�), so (9) is a nonconforming finite element method forMaxwell’s equations.

4.4 Remarks on the Two-Dimensional Case

This framework may also be adapted to two-dimensional electromagnetics with minor
modifications, where the two-dimensional cross product is (u1, u2) × (v1, v2) :=
u1v2 − u2v1.

For the non-domain-decomposed problem on � ⊂ R
2, the potential A ∈

H̊(curl;�) remains a vector field, although curl A ∈ L2(�) becomes a scalar field.
Consequently, E and D remain vector fields (and ε remains a tensor), while B and
H become scalar fields (and μ becomes scalar). The two-dimensional version of the
weak problem (3a) is nearly identical, except the dot product curl A′ · H is replaced
by the ordinary product (curl A′)H . For the Galerkin semidiscretization discussed
in Sect. 2.3, one simply replaces the Nédélec edge elements of the first and second
kind with Raviart–Thomas (RT) [41] and Brezzi–Douglas–Marini (BDM) [12] edge
elements, respectively. These two-dimensional H(curl) elements are just the RT and
BDM H(div) elements rotated by 90◦, so that tangential traces of the former corre-
spond to normal traces of the latter.

For domain decomposition, Proposition 1 is easily modified to show that

H̊(curl;�) = {

u ∈ H(curl;Th) :
∑

K∈Th

∫

∂K
uλ × n = 0, for all λ ∈ H1(�)

}

.

Alternatively, this can be seen to follow from the corresponding result for H̊(div;�),
where the vector fields are rotated by 90◦. Hence, the domain-decomposed variational
problem in temporal gauge is to find t �→ A(t) ∈ H(curl;Th) and t �→ ̂H(t) ∈
H1(�) such that

∫

K

(

A′ · (Ḋ + J ) − (curl A′)H
) +

∫

∂K
A′

̂H × n = 0, ∀A′ ∈ H(curl; K ),

∑

K∈Th

∫

∂K
A ̂H ′ × n = 0, ∀ ̂H ′ ∈ H1(�),

for all K ∈ Th . Hybrid methods may then be obtained by restricting this variational
problem to subspaces V 1

h = ∏

K∈Th
V 1
h (K ) ⊂ H(curl;Th) and ̂V 0

h ⊂ H1(�). As in

Sect. 4.2, one obtains ̂Dh(t) ∈ H(div;�) by solving ˙̂Dh + J = curl ̂Hh (where the
curl of a scalar field is its gradient rotated by 90 degrees, i.e., v ·curl ̂Hh := v×grad ̂Hh

for v ∈ R
2), and the charge-conserving properties follow in the same manner.

For the finite element spaces, one may take V 0
h to be discontinuous degree-r

Lagrange elements and V 1
h to be discontinuous degree-r RT edge elements or discon-

tinuous degree-(r − 1) BDM edge elements. (Note that discontinuous BDM elements
are just discontinuous piecewise polynomial vector fields.) In this case, it is much
easier to see which ̂V 0

h ⊂ H1(�) yield conforming methods, since each edge degree
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of freedom either is shared by exactly two triangles or lies on the boundary. Both
the degree-r RT and degree-(r − 1) BDM elements have r degrees of freedom per
edge, which match up precisely with those for degree-(r + 1) Lagrange elements.
Hence, taking ̂V 0

h corresponding to degree-(r +1) or higher Lagrange elements yields
a conforming method. On the other hand, a straightforward counting argument shows
that degree-r Lagrange elements have fewer than r × #edges degrees of freedom on
element boundaries (unless Th consists of a single triangle). Since it is impossible
to enforce all of the inter-element and boundary conditions in this case, the resulting
method is nonconforming.

5 Numerical Examples

This section gives numerical illustrations for the simple test problem

Ä + curl curl A = 0, (11)

which corresponds to the case where ε and μ are positive constants with εμ = 1 and
J = 0, as discussed at the end of Sect. 2.1. As before, A is taken to have vanish-
ing tangential component on the boundary. Preservation of the charge conservation
constraint is equivalent to the condition div Ä = 0.

In the frequency domain, denoting angular frequency by ω, time differentiation
becomes multiplication by iω, so (11) becomes the eigenvalue problem

curl curl A = ω2A. (12)

In this setting, preservation of the charge conservation constraint becomes ω2 div A =
0, i.e., eigenfunctions with nonzero eigenvalue are divergence-free.

The examples below demonstrate the constraint-preserving properties of the curl-
conforming hybridized Nédélec method from Sect. 4.3, both in the time domain and
in the frequency domain. For the 2-D frequency domain problem, we also observe
superconvergence of ̂Hh → H . All finite element computations were performed using
FEniCS [1,33]. For the post-processing step of computing ̂Hh , whose solution is not
unique, we find the solution ̂Hh minimizing ‖Hh − ̂Hh‖2 + ‖Ḋh + J − curl ̂Hh‖2, as
previously discussed in Sect. 4.1.

5.1 Time Domain

Before turning our attention to the test problem (11), we first describe a discrete time-
stepping scheme for the general case of Maxwell’s equations. After semidiscretizing
using the hybridized Nédélec method of Sect. 4.3, we discretize in time using the
following explicit “leapfrog” scheme:
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Fig. 1 Charge conservation error, as measured by the H(div;Th) seminorm of Dh and ̂Dh , over time, on
the 2-D square � = (0, π)2 (left) and 3-D cube � = (0, π)3 (right). Although Dh drifts away from the
constraint, ̂Dh preserves the constraint

– An+1/2 = An − 1
2
tε−1Dn .

– Dn+1 = Dn + 
t Ḋn+1/2, where Ḋn+1/2 ∈ kerBh is the solution to

〈Ḋn+1/2 + Jn+1/2, A
′
h〉 = a(An+1/2, A

′
h), ∀A′

h ∈ kerBh .

– ̂Dn+1 = ̂Dn + 
t(curl ̂Hn+1/2 − Jn+1/2), where ̂Hn+1/2 is the solution to

〈Ḋn+1/2 + Jn+1/2, A
′
h〉 = a(An+1/2, A

′
h) + b(A′

h,
̂Hn+1/2), ∀A′

h ∈ V 1
h ,

minimizing ‖Hn+1/2 − ̂Hn+1/2‖2 + ‖Ḋn+1/2 + Jn+1/2 − curl ̂Hn+1/2‖2, with
Hn+1/2 := μ−1 curl An+1/2.

– An+1 = An+1/2 − 1
2
tε−1Dn+1.

Here, An denotes the approximation to Ah(tn), where tn is the nth time step and 
t is
the time step size; similar notation is used for the other variables. This is essentially
the Störmer/Verlet method for the semidiscretized system of ODEs (9), augmented by
a hybrid post-processing step for ̂Hh and ̂Dh . Except for the hybrid post-processing
step, which is novel, such leapfrog schemes are widely used for both finite element
and finite difference time domain methods in computational electromagnetics (see
Yee [43], Monk [35, Section 5]). The Störmer/Verlet method also has particularly
desirable propertieswhen applied to Lagrangian andHamiltonian dynamics (cf. Hairer
et al. [24,25]).

Figure 1 shows the results of applying this method to the test problem (11) on the
2-D square � = (0, π)2 and 3-D cube � = (0, π)3, taking ε = μ = 1. For both
the 2-D and 3-D problems, we simulate over t ∈ [0, 2π ] for 1024 time steps of size

t = π/512.

For the 2-D problem, the initial conditions are taken to be D0 = ̂D0 = 0 and

A0(x, y) = (

y(π − y), x(π − x)
)

.
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A uniform triangular mesh is taken on a 16 × 16 grid, with 2 · 162 = 512 cells. The
space V 1

h consists of discontinuous piecewise linear vector fields, while ̂V 0
h consists

of cubic Lagrange elements, so that kerBh ⊂ V 1
h are linear BDM edge elements, as

described in Sect. 4.4 with r = 2.
For the 3-D problem, the initial conditions are taken to be D0 = ̂D0 = 0 and

A0(x, y, z) = (

y(π − y)z(π − z), z(π − z)x(π − x), x(π − x)y(π − y)
)

.

A uniform tetrahedral mesh is taken on an 8×8×8 grid, with 6 ·83 = 3072 cells. The
space V 1

h consists of discontinuous piecewise linear vector fields, while ̂V 1
h consists

of cubic Nédélec edge elements of the second kind, so that kerBh ⊂ V 1
h are linear

Nédélec edge elements of the second kind, as described in Sect. 4.3 with r = 2.
Although the exact solution satisfies div D = 0, the numerical solution Dh drifts

away from this constraint, as measured by the H(div;Th) seminorm,

|Dh |H(div;Th) :=
√

∑

K∈Th
‖div Dh‖2L2(K )

.

However, div ̂Dh = 0 holds tomachine precision, as explained byTheorem1. Looking
at Dh alone, one might think that this method fails to preserve the charge conserva-
tion constraint strongly. In fact, we have illustrated that it actually does preserve this
constraint, when expressed in terms of the numerical flux ̂Dh rather than Dh .

Remark 12 The constraint behavior of Dh and ̂Dh , observed in Fig. 1, is due to the finite
element semidiscretization, not the timediscretization. Indeed, the charge conservation
constraint is linear, so if it holds for the semidiscretized system of ODEs, then any
Runge–Kutta or partitioned Runge–Kutta method preserves it [25, Theorem IV.1.2].

5.2 Frequency Domain

We next apply the hybrid approach to the frequency domain, again assuming that ε

and μ are positive constants with εμ = 1 and J = 0. This is done by first approx-
imating the Maxwell eigenvalue problem (12) on kerBh and then applying hybrid
post-processing, as follows:

– Find eigenpairs (ω2
h, Ah) ∈ R

+ × kerBh satisfying

a(Ah, A
′
h) = ω2

h〈Ah, A
′
h〉, ∀A′

h ∈ kerBh,

and let Hh := μ−1 curl Ah and Dh := ε(−iωh Ah).
– Find ̂Hh minimizing ‖Hh − ̂Hh‖2 + ‖iωh Dh − curl ̂Hh‖2 such that

a(Ah, A
′
h) + b(A′

h,
̂Hh) = ω2

h〈Ah, A
′
h〉, ∀A′

h ∈ V 1
h ,

and let ̂Dh := −iω−1
h curl ̂Hh .

123



1094 Foundations of Computational Mathematics (2021) 21:1075–1098

0 π/2 π
0

π/2

π

0.0

0.2

0.4

0.6

0 π/2 π
0

π/2

π

0.0

0.2

0.4

0.6

0 π/2 π
0

π/2

π

−0.050

−0.025

0.000

0.025

0.050

0 π/2 π
0

π/2

π

−1

0

1

×10−16

Fig. 2 Dh and div Dh (top row), compared to ̂Dh and div ̂Dh (bottom row), approximating the Maxwell
eigenmode with ω2 = 2. While Dh and ̂Dh are nearly indistinguishable (left column), Dh fails to be
strongly divergence-free and ̂Dh is divergence-free (right column)

Note that this last step is equivalent to iωh ̂Dh = curl ̂Hh , so ̂Hh can be seen as
minimizing ‖Hh − ̂Hh‖2 + ω2

h‖Dh − ̂Dh‖2.
We consider the 2-D square � = (0, π)2, where the exact eigenvalues are sums of

squares (ω2 = 1, 1, 2, 4, 4, . . .). For simplicity, we look at the approximation of the
following analytical solution with simple eigenvalue ω2 = 2, assuming ε = μ = 1:

A(x, y) =
√
2

π
(− cos x sin y, sin x cos y),

H(x, y) = 2
√
2

π
cos x cos y,

D(x, y) = 2i

π
(cos x sin y,− sin x cos y).

We take a uniform triangle mesh on an N ×N grid, which has 2N 2 cells. As described
in Sect. 4.4, we take V 1

h to consist of discontinuous piecewise degree-(r − 1) vector
fields and ̂V 0

h to consist of degree-(r + 1) Lagrange elements, so that kerBh ⊂ V 1
h

are degree-(r − 1) BDM edge elements.
Figure 2 shows Dh and ̂Dh , along with div Dh and div ̂Dh , for the case N = 16, r =

2. Here, by div Dh ∈ L2(Th), we mean the element-wise divergence (div Dh)|K :=
div(Dh |K ) for each K ∈ Th , sinceDh is inH(div;Th), but not inH(div;�).Although
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the vector fields Dh and ̂Dh appear very similar, they behave very differently with
respect to the charge conservation constraint: div Dh �= 0, while div ̂Dh = 0 to
machine precision. Note that these are purely imaginary when Ah is real, so the
imaginary parts are plotted.

Table 1 illustrates the convergence behavior of Hh , ̂Hh, Dh , and ̂Dh as the mesh
parameter h → 0, for elements of various degrees. Since Ah is simply obtained
by using degree-(r − 1) BDM edge elements for the Maxwell eigenvalue problem,
previous analyses of this problem (e.g., [3,6,7,26,32] and references therein) show that
‖Ah − A‖ = O(hr ) and ‖curl Ah − curl A‖ = O(hr−1), which imply the observed
rates ‖Dh − D‖ = O(hr ) and ‖Hh − H‖ = O(hr−1). Interestingly, for ̂Hh obtained
by hybrid post-processing, we observe the superconvergent rates ‖ ̂Hh − H‖ = O(hr )
for r = 2 and O(hr+1) for r > 2. For ̂Dh , we observe errors comparable to those for
Dh and the same convergence rate, ‖̂Dh − D‖ = O(hr ).

We note that the observed rates of superconvergence, including the reduced rate
in the lowest degree case, are the same as those obtained for scalar elliptic problems
by [12] in the original paper on the hybridized BDM method. On the other hand,
preliminary numerical experiments in 3-D do not show superconvergence. This leads
us to believe that this phenomenon arises in 2-D due to the fact that BDM H(curl)
elements are simply rotated H(div) elements, for which the results of [12] apply,
whereas there is no such identification of Nédélec edge and face elements in 3-D.

6 Conclusion

We have constructed a family of primal hybrid finite element methods for Maxwell’s
equations, where the Lagrange multipliers enforcing inter-element continuity and
boundary conditions correspond to a numerical trace ̂Hh of the magnetic field and
a numerical flux ̂Dh of the electric flux density. These methods strongly preserve the
constraints div Bh = 0 and div ̂Dh = ρ, the latter ofwhich corresponds to conservation
of charge. As a special case, these methods include hybridized versions of standard
methods using curl-conforming edge elements, which had previously been thought
only to be charge-conserving in a much weaker sense. We emphasize that these con-
servative properties hold even if the methods are not implemented in a hybrid fashion:
If desired, ̂Hh and ̂Dh may be recovered by an optional post-processing step.

There are several natural directions for futurework. First, the numerical experiments
in Sect. 5 focused on hybridized curl-conforming methods, due to the fact that their
stability and error analysis are already well established. However, as mentioned in
Remarks 8 and 11, this framework also includes constraint-preserving nonconforming
methods, which would be interesting to investigate. Second, we do not yet have a
complete explanation of the hybrid superconvergence phenomenon for ̂Hh → H
in 2-D; this is the subject of ongoing work. Third, the techniques developed here
might be applied to study constraint preservation in other families of hybrid methods,
particularly hybridizable discontinuous Galerkin (HDG) methods. Finally, we have
restricted our attention to problems where the current J is given, but it would be
interesting to investigate the extension to problems in conducting materials, where J
depends on the electric field.
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