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Abstract
The Cauchy problem for the complete Euler system is in general ill-posed in the class
of admissible (entropy producing) weak solutions. This suggests that there might be
sequences of approximate solutions that develop fine-scale oscillations. Accordingly,
the concept of measure-valued solution that captures possible oscillations is more
suitable for analysis. We study the convergence of a class of entropy stable finite
volume schemes for the barotropic and complete compressible Euler equations in the
multidimensional case. We establish suitable stability and consistency estimates and
show that theYoungmeasure generated by numerical solutions represents a dissipative
measure-valued solution of the Euler system. Here dissipative means that a suitable
form of the second law of thermodynamics is incorporated in the definition of the
measure-valued solutions. In particular, using the recently established weak-strong
uniqueness principle, we show that the numerical solutions converge pointwise to the
regular solution of the limit systems at least on the lifespan of the latter.
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1 Introduction

The Euler equations of compressible fluid flow represent the simplest possible model
that incorporates all fundamental principles of thermodynamics including the second
law usually expressed in terms of the entropy balance appended as an admissibility
condition to the system. The entropy should be produced by any physically realistic
process, and this criterion is supposed to rule out the unphysical solutions that may
still satisfy the basic system in the sense of distributions. In addition, the entropy
balance provides crucial a priori bounds, in particular, positivity of the pressure when
the system is written in the so-called conservative variables.

Another characteristic feature of the Euler system is that discontinuities may
develop after a finite time even if the initial data are smooth. It is therefore quite natural
to look for aweaker representation of solutions, for instance theweak solutions that sat-
isfy the underlying equations in the sense of distributions, see [18,29,30,36,41,44,50]
and the references therein. It is also a well-known fact that such weak solutions may
fail to be unique, and, consequently, the second law of thermodynamics has been
proposed as a selection criterion. Although the entropy production principle has been
efficient in the case of scalar multidimensional hyperbolic conservation laws as well as
the one-dimensional systems, see [5,6,35,40], it completely fails for multidimensional
systems. Recently, it has been shown by De Lellis and Székelyhidi [20] and by Chio-
daroli et al. [14] that infinitely many weak entropy solutions can be constructed for the
multidimensional barotropic Euler equations, see also [19] for similar non-uniqueness
results for the incompressible Euler equations. These results have been extended in
Feireisl et al. [28] to the complete multidimensional Euler system in the class of L∞
weak admissible solutions. In particular, these solutions satisfy the energy balance
together with the entropy inequality; whence they are compatible with both the first
and the second law of thermodynamics.

Inspired by the previous results as well as by the numerical analysis performed in
[32], we examine stability and convergence of certain numerical schemes in the class
of so-called dissipative measure-valued solutions. The concept of measure-valued
solutions for conservation laws is not new, see, e.g. [12,23,24,42,46,49,51] and the
references therein. However, the recently introduced class of dissipative measure-
valued solutions is particularly suitable since the weak–strong uniqueness holds and
the dissipative measure-valued solution coincides with the classical solution as far
as the latter exists [12,13,37]. Similar concept has been adopted by Tzavaras et al.
[15,21], in the context of elastodynamics, thermoelasticity, and other related problems.
In the context of incompressible Euler equations, we would like to mention the related
results by DiPerna andMajda [25] where themeasure-valued solutions have been used
to study the vanishing viscosity limit of the Leray–Hopf weak solutions, by Brenier,
De Lellis and Székelyhidi [11] for the measure-valued–strong principle and by Lions
[45] where the concept of dissipative solutions has been introduced.

As is well known, the entropy stability of a numerical scheme plays a crucial role in
the convergence analysis of numerical solutions. Construction of entropy conservative
schemes has been introduced by Tadmor in a seminal paper [52]. This concept has
been later used to study the entropy stability of numerical schemes; we refer the reader
to [1,7,8,16,32,34,43,53] and the references therein.
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There is a considerable body of literature dealingwith the convergence of numerical
schemes for multidimensional hyperbolic conservation laws. Though the chosen tech-
niques depend on the assumptions imposed on exact solutions, a certain form of the
discrete entropy inequality is indispensable. Let usmention, for example, the results of
Bouchut and Betherlin [7,8,10], where the kinetic flux-splitting method has been used.
Relying on the fully discrete entropy inequality and applying the method of DiPerna
[23] andTartar’s results on compensated compactness, they proved strong convergence
of fully discrete kinetic flux-splitting scheme to the bounded weak entropy solution
of isentropic Euler equations (or the shallow water equations [9]) provided numerical
solutions satisfies L∞-bounds and the vacuum does not appear.

In [39] Jovanović and Rohde assumed the existence of a classical solution to the
Cauchy problem of a general multidimensional hyperbolic conservation law.Applying
the stability result for classical solutions in the class of entropy solutions due to Dafer-
mos [17] and DiPerna’s method [22,23], they derived error estimates for the explicit
finite volume schemes satisfying the discrete entropy inequality and thus proved that
the numerical solutions convergence strongly to the exact classical solution.

In view of the fact that the classical solutions of hyperbolic conservation laws
may not exist in general and in view of the recent results on non-uniqueness of weak
entropy solutions [14,19,20], Fjordholm, Mishra and Tadmor revisited recently the
question of convergence and proved that the semi-discrete entropy stable finite volume
schemes converge to a measure-valued solution provided numerical solutions satisfy
L∞-bounds, coefficients of numerical viscosity are uniformly bounded from below by
a positive constant, and the entropy Hessian is strictly positive definite, see [31–34].

In contrast with the above works that are mostly devoted to general hyperbolic
systems, we focus on the specific problems in fluid mechanics represented through
the complete Euler system, or its simplified barotropic analogue. Our framework is
the dissipative measure-valued solutions introduced in [26] and [12,13] for the com-
pressible Navier–Stokes and the Euler equations, respectively, see also the related
numerical study for the isentropic Navier–Stokes equations [27]. In comparison with
the previously used concept ofmeasure-valued solutions, the existence ofwhich is con-
ditioned by mostly rather unrealistic assumptions of boundedness of certain physical
quantities and the corresponding fluxes, the new framework accommodates the solu-
tions generated by approximate sequences satisfying only the general energy bounds.
Indeed, assuming only uniform lower bound on the density and uniform upper bound
on the energy, we show that the Lax–Friedrichs-type finite volume schemes generate
a dissipative measure-valued solution to the complete Euler equations.

The rest of the paper is organized as follows. In Sect. 2 we introduce the class of
dissipativemeasure-valued (DMV) solutions to the barotropic and complete Euler sys-
tems and formulate the corresponding (DMV)–strong uniqueness results. In Sect. 3 we
recall a general concept of entropy stable finite volume schemes and introduce the local
and global Lax–Friedrichs-type finite volumemethods for the barotropic and complete
Euler systems, respectively. Positivity of the pressure is studied in Sect. 4. Sections 5
and 6 are devoted to the stability and consistency of our numerical schemes. Finally, the
limitingprocess is studied inSect. 7.Wewill show that the numerical solutions generate
a weakly-(∗) convergent subsequence and a Young measure that represents a (DMV)
solution to the corresponding Euler system. Moreover, employing the (DMV)–strong
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uniqueness principle, we will obtain strong (pointwise) convergence to the unique
classical solution as long as the latter exists.

2 Dissipative Measure-Valued Solutions for the Euler System

We consider the complete Euler system describing the time evolution of a general
compressible fluid and its isentropic (or more general barotropic) analogue that may
be seen as the particular case when the entropy of the system is constant. We start
with the simpler barotropic system. For the sake of simplicity, we will systematically
use the space-periodic boundary conditions throughout the whole text. This means the
underlying spatial domain can be identified with the flat torus

Ω = ([0, 1]|{0,1}
)N

, N = 1, 2, 3. (2.1)

Note that, on a bounded domain the physicallymore relevant impermeability or no-flux
boundary condition

u · n|∂Ω = 0

can be accommodated in a direct fashion.

2.1 Dissipative Measure-Valued Solutions for the Barotropic Euler System

Neglecting the influence of temperature fluctuations, we can describe the motion of
a compressible fluid by means of only two basic state variables, the mass density
� = �(t, x) and the velocity field u = u(t, x). The resulting barotropic Euler system
reads

∂t� + divx (�u) = 0,

∂t (�u) + divx (�u ⊗ u) + ∇x p(�) = 0,
(2.2)

where p = p(�) is the pressure. In what follows we focus on the polytropic pressure–
density state equation

p(�) = a�γ , γ > 1. (2.3)

Moreover, it is more convenient to study (2.2) in the conservative variables [�,m =
�u]:

∂t� + divxm = 0,

∂tm + divx

(
m ⊗ m

�

)
+ ∇x p(�) = 0.

(2.4)
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Here, the well-known problem is that there are basically no a priori bounds for the
velocity itself but rather for the momentumm. To recover u, a lower bound on � must
be available. We will discuss this issue later in Sect. 4.

2.1.1 Weak Formulation

The weak formulation of problem (2.2), (2.1) written in the conservative variables
reads:

[∫

Ω

�ϕ dx

]t=τ

t=0
=
∫ τ

0

∫

Ω

[
�∂tϕ + m · ∇xϕ

]
dx dt

for any τ ∈ [0, T ], ϕ ∈ C1([0, T ] × Ω);
[∫

Ω

m · ϕ dx

]t=τ

t=0
=
∫ τ

0

∫

Ω

[
m · ∂tϕ + m ⊗ m

�
: ∇xϕ + p(�)divxϕ

]
dx dt

for any τ ∈ [0, T ], ϕ ∈ C1([0, T ] × Ω; RN ).

(2.5)

Remark 1 We tacitly assume that �, m are weakly continuous in time. Note that the
weak formulation (2.5) already includes satisfaction of the initial conditions

�(0, ·) = �0, m(0, ·) = m0 (2.6)

for a given sufficiently regular pair of functions �0, m0.

Let

P(�) := �

∫ �

1

p(z)

z2
dz (2.7)

be the so-called pressure potential. The weak formulation (2.5), (2.6) is usually sup-
plemented by the energy inequality

[∫

Ω

(
1

2

|m|2
�

+ P(�)

)
ϕ dx

]t=τ

t=0

≤
∫ τ

0

∫

Ω

[(
1

2

|m|2
�

+ P(�)

)
∂tϕ +

(
1

2

|m|2
�

+ P(�)

)
m
�

· ∇xϕ + p(�)
m
�

· ∇xϕ

]
dx dt

for a.a. τ ∈ [0, T ] and any ϕ ∈ C1([0, T ] × Ω), ϕ ≥ 0.
It is easy to deduce, taking ϕ ≡ 1 in the first equation in (2.5), that the total mass,

∫

Ω

�(τ, ·) dx =
∫

Ω

�0 dx, τ ∈ [0, T ]

is a conserved quantity. In particular, one may replace P , given by (2.7), by

a

γ − 1
�γ
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in the energy inequality as long as the flow is isentropic.

2.1.2 Dissipative Measure-Valued Solutions

The concept of measure-valued solution to (2.4) was introduced by Gwiazda,
Świerczewska-Gwiazda, and Wiedemann [37] in the framework of Alibert and Bou-
chitté [2]. There is also a general framework for a hyperbolic system assuming L∞
a priori bounds by Brenier et al. [4]. Here, we prefer a simpler and more versa-
tile approach proposed in [26]. Although the measure-valued solutions are generally
thought of as the Young measures, with the associated concentration defect, linked to
sequences of approximate/exact solutions, we do not insist on this interpretation and
introduce (DMV) solutions as objects independent of any approximating sequence.

Definition 1 Let

F =
{
[�,m]

∣∣
∣ � ≥ 0, m ∈ RN

}
.

We say that a parametrized family of probability measures
{
Vt,x

}
(t,x)∈(0,T )×Ω

defined
on the space F is a dissipative measure-valued (DMV) solution of problem (2.2) with
the initial conditions

V0,x ∈ P(F),

P denoting the set of (Borel) probability measures, if

• (t, x) 
→ Vt,x is weakly-(*) measurable mapping from the physical space (0, T )

×Ω into P(F);

• [∫

Ω

〈
Vt,x ; �

〉
ϕ dx

]t=τ

t=0
=
∫ τ

0

∫

Ω

[〈
Vt,x ; �

〉
∂tϕ + 〈

Vt,x ;m
〉 · ∇xϕ

]
dx dt

+
∫ τ

0

∫

Ω

∇xϕ · dμ1
C

(2.8)

for a.a. τ ∈ (0, T ), ϕ ∈ C1([0, T ] × Ω);
[∫

Ω

〈
Vt,x ;m

〉 · ϕ dx

]t=τ

t=0

=
∫ τ

0

∫

Ω

[〈
Vt,x ;m

〉 · ∂tϕ +
〈
Vt,x ; m ⊗ m

�

〉
: ∇xϕ + 〈

Vt,x ; p(�)
〉
divxϕ

]
dx dt

+
∫ τ

0

∫

Ω

∇xϕ : dμ2
C

for a.a. τ ∈ (0, T ), ϕ ∈ C1([0, T ] × Ω; RN ), where

μ1
C ∈ M([0, T ] × Ω; RN ), μ2

C ∈ M([0, T ] × Ω; RN×N )
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are signed vector-valued concentration measures defined on the physical space
[0, T ] × Ω;

• the energy inequality

[∫

Ω

〈
Vt,x ;

(
1

2

|m|2
�

+ P(�)

)〉
dx

]t=τ

t=0
≤ 0 (2.9)

holds for a.a. τ ∈ (0, T ); we denote

D(τ ) := −
[∫

Ω

〈
Vt,x ;

(
1

2

|m|2
�

+ P(�)

)〉
dx

]t=τ

t=0

the dissipation defect—a non-negative L∞ function;
• the dissipation defect dominates the concentration measures μ1

C , μ
2
C :

∫

Ω

1 d|μ1
C | +

∫

Ω

1 d|μ2
C | <∼ D a.a. in (0, T ). (2.10)

Here and hereafter the symbol A � Bmeans A ≤ cB for a generic positive constant
c.

Remark 2 The precise meaning of (2.10) is

sup
‖ϕ‖C(Ω;RN )

≤1

∫ T

0

∫

Ω

ψϕ · dμ1
C + sup

‖ϕ‖C(Ω;RN×N )
≤1

∫ T

0

∫

Ω

ψϕ : dμ2
C

<∼
∫ T

0
Dψ dt

for any ψ ∈ C[0, T ], ψ ≥ 0. Relation (2.10) can be replaced by a weaker stipulation

∫ τ

0

∫

Ω

1 d|μ1
C | +

∫ τ

0

∫

Ω

1 d|μ2
C | <∼

∫ τ

0
D dt for any τ ∈ (0, T ).

Remark 3 We tacitly assume that all expressions in (2.8)–(2.9) are at least integrable
on the physical space (0, T ) × Ω .

The key result is the (DMV)–strong uniqueness principle shown in Gwiazda et al.
[37]:

Proposition 1 Let the initial data {V0,x }x∈Ω be given as

V0,x = δ�0(x),m0(x) for a.a. x ∈ Ω;

where

�0 ∈ C1(Ω), m0 ∈ C1(Ω; RN ), �0(x) > 0 for all x ∈ Ω.

Suppose that the problem (2.2), (2.1) admits a strong solution � ∈ C1([0, T ] ×
Ω), m ∈ C1([0, T ] × Ω; RN ) defined in [0, T ], with the initial data �0, m0. Let
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{
Vt,x

}
(t,x)∈(0,T )×Ω

be a (DMV) solution of the same problem in the sense specified in
Definition 1, with the initial data V0,x .

Then

Vt,x = δ�(t,x),m(t,x) for a.a. (t, x) ∈ (0, T ) × Ω.

Remark 4 Strictly speaking Proposition 1was proved for themeasure-valued solutions
in the sense of Alibert and Bouchitté [2], but the result formulated above directly
follows also for the (DMV) solutions in the sense of Definition 1. We refer a reader to
[55] for a nice overview on theweak–strong uniqueness results for the Euler equations.

2.2 Dissipative Measure-Valued Solutions for the Complete Euler System

Similarly to the preceding section,wemay introduce (DMV) solutions for the complete
Euler system

∂t� + divx (�u) = 0,

∂t (�u) + divx (�u ⊗ u) + ∇x p(�, ϑ) = 0,

∂t

(
1

2
�|u|2 + �e(�, ϑ)

)
+ divx

[(
1

2
�|u|2 + �e(�, ϑ)

)
u
]

+ divx (p(�, ϑ)u) = 0

(2.11)

supplemented with the periodic boundary conditions, meaning Ω can be identified
with the flat torus

Ω = ([0, 1]|{0,1}
)N

. (2.12)

Here, the new variable is the absolute temperature ϑ . The third equation in (2.11)
expresses the conservation of the total energy,where e = e(�, ϑ) is the specific internal
energy. In addition, we suppose that p and e are interrelated to the specific entropy
s = s(�, ϑ) via Gibbs’ equation

ϑDs = De + PD

(
1

�

)
. (2.13)

Accordingly, if all quantities in (2.11) are smooth, the entropy satisfies a conservation
law

∂t (�s) + divx (�su) = 0.

In the context of weak solutions, the entropy equation is replaced by an inequality

∂t (�s) + divx (�su) ≥ 0

that may be seen as a mathematical formulation of the second law of thermodynamics.
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Similarly to the preceding section, the concept of (DMV) solution uses the con-
servative variables: the density �, the momentum m = �u, and the total energy
E = 1

2�|u|2 + �e(�, ϑ). In addition, we suppose a relation between the pressure and
the internal energy,

p = (γ − 1)�e, with γ > 1. (2.14)

Under these circumstances, we have

s = S

(
(γ − 1)e

�γ−1

)
= S

(
p

�γ

)

for a certain function S. Accordingly, the system (2.11) rewrites as

∂t� + divxm = 0,

∂tm + divx

(
m ⊗ m

�

)
+ (γ − 1)∇x

(
E − 1

2

|m|2
�

)
= 0,

∂t E + divx

[(
E + (γ − 1)

(
E − 1

2

|m|2
�

))
m
�

]
= 0,

(2.15)

together with the associated entropy inequality

∂t

⎛

⎝�S

⎛

⎝(γ − 1)
E − 1

2
|m|2
�

�γ

⎞

⎠

⎞

⎠+ divx

⎡

⎣S

⎛

⎝(γ − 1)
E − 1

2
|m|2
�

�γ

⎞

⎠m

⎤

⎦ ≥ 0.

(2.16)

In addition, we may use, formally, the equation of continuity, to replace (2.16) by a
more restrictive stipulation

∂t

⎛

⎝�Sχ

⎛

⎝(γ − 1)
E − 1

2
|m|2
�

�γ

⎞

⎠

⎞

⎠+ divx

⎡

⎣Sχ

⎛

⎝(γ − 1)
E − 1

2
|m|2
�

�γ

⎞

⎠m

⎤

⎦ ≥ 0,

(2.17)

where

Sχ = χ ◦ S, χ : R → R is an increasing concave function, χ ≤ χ. (2.18)

Inequality (2.17) may be seen as a renormalized variant of (2.16), see also Harten
[38] where a similar entropy renormalization for the polytropic Euler equations with
a slightly different condition on χ was firstly introduced. For the sake of simplicity,
we focus on the constitutive equations of a perfect gas, specifically

p(�, ϑ) = �ϑ, e(�, ϑ) = cvϑ, s(�, ϑ) = log

(
ϑcv

�

)
, (2.19)
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where cv = 1
γ−1 is the (constant) specific heat at constant volume. Consequently,

S (Z) = 1

γ − 1
log (Z) , and entropies η = �χ

(
1

γ − 1
log

(
p

�γ

))
(2.20)

for χ as in (2.18). We are ready to state the definition of a (DMV) solution for the
complete Euler system (2.15) with (2.12), cf. [12].

Definition 2 Let

F =
{
[�,m, E]

∣∣∣ � ≥ 0, m ∈ RN , E ≥ 0
}

.

Wesay that a parameterized family of probabilitymeasures
{
Vt,x

}
(t,x)∈(0,T )×Ω

defined
on the space F is a dissipative measure-valued (DMV) solution of problem (2.15),
(2.12) with the initial conditions

V0,x ∈ P(F)

if

• (t, x) 
→ Vt,x is weakly-(*) measurable mapping from the physical space (0, T )

×Ω into P(F);

• [∫

Ω

〈
V0,x ; �

〉
ϕ dx

]t=τ

t=0
=
∫ τ

0

∫

Ω

[〈
Vt,x ; �

〉
∂tϕ + 〈

Vt,x ;m
〉 · ∇xϕ

]
dx dt

for a.a. τ ∈ (0, T ), ϕ ∈ C1([0, T ] × Ω);
• [∫

Ω

〈
V0,x ;m

〉 · ϕ dx

]t=τ

t=0

=
∫ τ

0

∫

Ω

[〈
Vt,x ;m

〉 · ∂tϕ +
〈
Vt,x ; m ⊗ m

�

〉
: ∇xϕ

+(γ − 1)

〈
Vt,x ; E − 1

2

|m|2
�

〉
divxϕ

]
dx dt

+
∫ τ

0

∫

Ω

∇xϕ : dμC

for a.a. τ ∈ (0, T ), ϕ ∈ C1([0, T ] × Ω; RN ), where μC is a (vectorial) signed
concentration measure on the physical space [0, T ] × Ω;

• the energy inequality

∫

Ω

〈
Vτ,x ; E

〉
dx ≤

∫

Ω

〈
V0,x ; E

〉
dx holds for a.a. τ ∈ (0, T );
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the dissipation defect is given by

D(τ ) = −
[∫

Ω

〈
Vτ,x ; E

〉
dx

]t=τ

t=0
=
∫

Ω

[ 〈
V0,x ; E

〉− 〈
Vτ,x ; E

〉 ]
dx;

• [∫

Ω

〈
V0,x ; �Sχ (�,m, E)

〉
ϕ dx

]t=τ

t=0

≥
∫ τ

0

∫

Ω

[〈
Vt,x ; �Sχ (�,m, E)

〉
∂tϕ + 〈

Vt,x ;Sχ (�,m, E)m
〉 · ∇xϕ

]
dx dt

for a.a. τ ∈ (0, T ), ϕ ∈ C1([0, T ]×Ω),ϕ ≥ 0, and anyχ defined on R, increasing
concave such that χ(Z) ≤ χ for all Z ;

• the dissipation defect dominates the concentration measures μC :
∫ τ

0

∫

Ω

1d |μC | ≤ c(N , γ )

∫ τ

0

∫

Ω

[ 〈
V0,x ; E

〉− 〈
Vt,x ; E

〉 ]
dx dt for a.a. τ ∈ (0, T ).

Finally, we formulate an analogue of the (DMV)–strong uniqueness result stated
in Proposition 1. To this end, we recall the hypothesis of thermodynamic stability:

∂ p(�, ϑ)

∂�
> 0,

∂e(�, ϑ)

∂ϑ
> 0 for all �, ϑ > 0, (2.21)

or, in terms of the conservative variables,

(�,m, E) 
→ �S

⎛

⎝(γ − 1)
E − 1

2
|m|2
�

�γ

⎞

⎠ is a concave upper semi-continuous

function on F ,

see [13] for details.

Remark 5 It follows from [13] that the entropy η = �Sχ withSχ as in (2.18) is concave
for any function S satisfying

(γ − 1)S′(Z) + γ S′′(Z)Z < 0 for all Z > 0.

In particular it holds for S in (2.20).

We are ready to state the (DMV)–strong uniqueness result, see [12, Theorem 3.3].

Proposition 2 Let the thermodynamic functions p, e, and s satisfy the hypotheses
(2.13), (2.14), (2.21). Suppose that the Euler system (2.11), (2.12) admits a continu-
ously differentiable solution (�̃, ϑ̃, ũ) in [0, T ] × Ω emanating from the initial data

�̃0 > 0, ϑ̃0 > 0 in Ω.
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Assume that {Vt,x }(t,x)∈(0,T )×Ω is a (DMV) solution of the system (2.15), (2.12) in the
sense specified in Definition 2, such that

V0,x = δ�̃0(x),�̃0ũ0(x), 12 �̃0(x)|ũ0(x)|2+�̃0e(�̃0,ϑ̃0)(x) for a.a. x ∈ Ω.

Then

Vt,x = δ�̃(t,x),�̃ũ(t,x), 12 �̃(x)|ũ(x)|2+�̃e(�̃,ϑ̃)(t,x) for a.a. (t, x) ∈ (0, T ) × Ω.

Remark 6 We would like to point out that the concept of (DMV) solutions introduced
in Definitions 1 and 2 for the barotropic and the complete Euler system, respectively,
requires minimum conditions that imply the (DMV)–strong uniqueness results. Thus,
for the complete Euler system we need to require that the entropy inequality holds.
On the other hand in both cases we may relax energy equation asking only that the
total energy dissipates in time.

3 Entropy Stable Finite Volume Schemes for Conservation Laws

We start with recalling the concept of entropy stable finite volume schemes for a
general multidimensional system of hyperbolic conservation laws

∂t U + divx f(U) = 0, in Ω × (0, T )

U(0, ·) = U0, in Ω.
(3.1)

HereU, f(U) denote the vectors of conservative variables and the flux function, respec-
tively. The system (3.1) is usually accompanied with suitable boundary conditions.
As agreed above, we will exclusively use the periodic boundary conditions. Through-
out the paper we will confine ourselves to semi-discrete schemes. Specifically, the
time will remain continuous, the discretization applied to the space variable only. The
question of time discretization is more subtle. As is well known the implicit time dis-
cretization gives rise to the entropy production and thus the correct sign in the entropy
inequality. Consequently, the resulting fully implicit scheme will be entropy stable
once its semi-discrete variant was entropy stable. On the other hand, the explicit time
discretization which is a natural choice for hyperbolic conservation laws may actually
reduce the (physical) entropy, and the interplay between the spatial entropy production
and temporal entropy dissipation has to be taken into account in practical applications,
see, e.g. [8,43,53].

3.1 Spatial Discretization

The relevant domain for the space discretization is Ω ≡ Ωh ⊂ RN , N = 1, 2, 3,
where Ωh := [0, 
]N , 
 > 0, being divided into finite volume cells K , i.e.

Ωh :=
⋃

K∈Th
K .
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Mesh Th is a regular quadrilateral grid. For instance, in two space dimensions, cell K ,

its centre SK , and the uniform mesh size h are given by

K :=
[
xi+ 1

2 , j , xi− 1
2 , j

)
×
[
yi, j+ 1

2
, yi, j− 1

2

)
,

SK := (xi , y j ) =
(
xi− 1

2 , j + xi+ 1
2 , j

h
,
yi, j− 1

2
+ yi, j+ 1

2

h

)

,

and h := xi+ 1
2 , j − xi− 1

2 , j = yi, j+ 1
2

− yi, j− 1
2
, respectively.

Remark 7 Note that the usual relabelling (x1, x2) 
→ (x, y)has been taken into account
in the above example. It is also possible to consider the rectangular cells with hx =
chy, where c is a positive constant and hx , hy are fixed mesh sizes in x- and y-
direction, respectively. An analogous generalization of the three mesh sizes hx , hy,

hz is applicable for N = 3 as well. For the sake of simplicity, we keep the mesh size
fixed in all space directions.

Let X(Th) denote the space of piecewise constant functions defined on mesh Th .
For gh ∈ X(Th) we set gK := gh|K . Then it holds that

∫

Ω

gh dx = hN
∑

K∈Th
gK .

Further, we define the projection

Πh : L1(Ω) → X(Th), (Πh(φ))K := 1

hN

∫

K
φ(x) dx .

Boundary ∂K of a cell K is created by faces σ. The face between two neighbouring
cells K and L shall be denoted by σ = K |L. By E we denote the set of all faces
σ of all cells K ∈ Th . The value of Gh on the face σ shall be denoted by Gσ , and
analogously for faces σ, s± of cell K in ±es direction. Note that es is the unit basis
vector in the s-th space direction, s = 1, . . . , N . For gh,Gh ∈ X(Th) we define the
following discrete operators

(
∂̃shgh

)

K
:= gL − gJ

2h
,
(
∂s+h gh

)
K := gL − gK

h
,
(
∂s−h gh

)
K := gK − gJ

h
,

L = K + hes, J = K − hes,
(
∂shGh

)
K := Gσ,s+ − Gσ,s−

h
, s = 1, . . . , N .

LetN (K ) denote the set of all neighbouring cells of the cell K . The discrete Laplace
and divergence operators are defined as follows

(Δh gh)K := 1

h2
∑

L∈N (K )

(gL − gK ) =
N∑

s=1

(
Δs

h gh
)
K ,
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(
˜divh gh

)

K
:=

N∑

s=1

(
∂̃shg

s
h

)

K
, (divh Gh)K :=

N∑

s=1

(
∂shG

s
h

)
K .

Furthermore, on a face σ = K |L ∈ E we define the jump and mean value operators

�gh�σ := gLn
+
K + gKn

−
K , (gh)σ := gK + gL

2
, L = K + hes, s = 1, . . . , N ,

respectively. Heren+
K ,n−

K ≡ n+
L denote the unit outer normal to K and L, respectively.

Note that in our case the mesh is a regular quadrilateral grid, and thus n±
K ||es for some

s = 1, . . . , N . Finally, we introduce the mean value of gh ∈ X(Th) in a cell K in the
direction of es by

(g̃h)
s
K := gL + gJ

2
, L = K + hes, J = K − hes .

3.2 Entropy Stable Numerical Scheme

By Uh(t) ∈ X(Th)M , M > 1, we denote the solution of a semi-discrete finite volume
scheme

d

dt
UK (t) + (divh Fh(t))K = 0, t > 0, K ∈ Th,

UK (0) = (Πh(U0))K , K ∈ Th .
(3.2)

Recall that Uh(t)|K = UK (t) is the value of a finite volume approximation Uh(t) in a
cell K . The numerical flux function Fh quantifies the flux across the interfaces σ ∈ E .

For σ = K |L we have Fσ ≡ Fh(UK ,UL). In what follows we formulate assumptions
on admissible numerical fluxes.

Firstly, the numerical flux Fh is assumed to be consistent with the physical flux f in
the sense that Fh(w,w) = f(w) for allw ∈ RM . Moreover, it is assumed to be locally
Lipschitz continuous, i.e. for every compact set D ⊂ RM there exists a C > 0 such
that

‖Fσ (t) − f(UK (t))‖
≡ ‖Fh(UK (t),UL(t)) − f(UK (t))‖ ≤ C‖UK (t) − UL(t)‖, σ = K |L,

whenever UK (t), UL(t) ∈ D for t ∈ [0, T ]. Note that all numerical fluxes discussed
below are consistent and locally Lipschitz continuous.

The discrete entropy inequality plays a crucial role in obtaining stability results for
Uh(t). Let (η,q) be an entropy pair associated with system (3.1), i.e. (η,q) : RM →
R × RN such that η is concave and q satisfies for all w ∈ RM the compatibility
condition

∇wq
s(w)T = ∇wη(w)T∇w f s(w), s = 1, . . . , N .
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Scheme (3.2) is then said to be entropy stable if it satisfies the discrete entropy inequal-
ity

d

dt
η(UK (t)) + (divh Qh(t))K ≥ 0, K ∈ Th, t > 0. (3.3)

If, in particular, equality holds in (3.3), we say the scheme (3.2) is entropy conserva-
tive. Here Qh denotes the numerical entropy flux function that is a function of two
neighbouring values, i.e. Qσ ≡ Qh(UK ,UL) for σ = K |L. It is assumed to be con-
sistent with the differential entropy flux q, i.e. Qh(w,w) = q(w) for all w ∈ RM .

Following the work of Tadmor et al. [32,53], entropy fluxQh can be explicitly written
in terms of the vector of entropy variables V, the numerical flux Fh and the potential
function ψ = ψ(U(V)), as

Qσ := (Vh)σFσ − (ψ(Vh))σ . (3.4)

We shall omit the dependence on time whenever there is no confusion. Further, we
say that solution Uh(t) of scheme (3.2) satisfies the weak BV (bounded variation)
condition if

∫ T

0

∑

σ∈E
λσ

∣
∣�Uh(t)�σ

∣
∣hN dt → 0 as h → 0+, (3.5)

where λσ is the numerical viscosity coefficient that will be introduced in (3.6).

Remark 8 In the literature (mathematical) convex entropy, −η, is often used, see, e.g.
[32,53]. Here we prefer to work with (physical) entropy that is a concave function on
its effective domain, cf. Remark 5.

Remark 9 For the complete Euler system (2.15), the vector of entropy variables is
given in terms of conservative variables U by

V := ∇Uη(U) = χ ′(S(U))

p

⎛

⎝
E + p

γ−1

(
(γ − 1) χ(S(U))

χ ′(S(U))
− γ − 1

)

−m
�

⎞

⎠ .

Substituting for pressure p = (γ − 1)

(
E − 1

2

|m|2
�

)
, we obtain

V = χ ′(S(U))

(γ − 1)
(
E − 1

2
|m|2
�

)

⎛

⎜
⎝

E
(
(γ − 1) χ(S(U))

χ ′(S(U))
− γ

)
− 1

2
|m|2
�

(
(γ − 1) χ(S(U))

χ ′(S(U))
− γ − 1

)

−m
�

⎞

⎟
⎠ .

The potential function for the complete Euler system readsψ(U(V)) = −χ ′(S(U))m.

For the barotropic Euler system, the corresponding entropy variables and the entropy
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potential are given by

V =
(

aγ
γ−1�

γ−1 − |m|2
2�2

m
�

)

, ψ(U(V)) = aγ �γ−1m.

The specific form of V, as well as the flux function used in the discretization of
the complete Euler system discussed below, immediately reveals a peculiar difficulty
connected with the development of the vacuum state � = 0 in finite time. Indeed the
fluxes are not correctly defined as soon as � = 0, while the corresponding Lipschitz
constant may blow up for � → 0. We discuss this problem in Sect. 4.

3.2.1 Examples of Entropy Stable Numerical Schemes

• Rusanov/Lax–Friedrichs schemes
Following [53] the Rusanov scheme with the following numerical flux is entropy
stable.

Fσ := (f(Uh))σ − dσ �Uh�σ ,

where dσ = 1

2
max

s=1,...,N
(|λs(UK )|, |λs(UL)|), σ = K |L and λs is the s-th

eigenvalue of the corresponding Jacobian matrix f ′(Uh). In the case that dσ =
1

2
max

s=1,...,N
max
K∈Th

|λs(UK )|, we obtain the Lax–Friedrichs scheme that is entropy

stable, too.
• entropy stable Roe scheme
The following entropy stable version of the Roe scheme has been proposed in [53]

Fσ := (f(Uh))σ − Dσ �Uh�σ .

Denoting Aσ the Roe matrix that satisfies �Fh�σ ≡ Aσ �Uh�σ , we define the
viscosity matrix Dσ = d(Aσ ) with the function d(λ

s
) = max(|λs |, kCσ �Uh�σ ).

Here k > 0 is the upper bound of d2η(U)

dU2 andCσ is chosen such thatmin
s

(λs(Qσ )) ≥
Cσ |�Vh�σ |, Qσ is the viscosity matrix with respect to the entropy variables Vh ,
see [53, Theorem 5.3, Example 5.8].

• Lax–Wendroff scheme
In [34] the entropy stableLax–Wendroff schemehas beenpresented.Thenumerical
flux reads

Fσ := F̃rσ − dσ |�Vh�σ |r−1�Vh�σ ,

where F̃rσ is a r -th-order entropy conservative numerical flux, see [53], dσ is a
positive number. In [31] it has been shown that this scheme is formally r -th-order

accurate, entropy stable and under the assumptions that d2η(U)

dU2 ≥ η > 0 (for
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convex mathematical entropy) and dσ ≥ c > 0 the scheme satisfies the weak BV
estimates (3.5) with λσ ≡ 1.

• TeCNO scheme
In [33] essential non-oscillatory entropy stable (TeCNO) schemes for system of
conservation laws have been introduced. The numerical flux has the form

Fσ := F̃rσ − 1

2
Dσ (V−

L − V+
K ),

where F̃rσ is a r -th-order entropy conservative numerical flux as above, Dσ is
a positive definite matrix and V−

L , V
+
K are the cell interface values of a r -th-

order accurate ENO reconstruction. The scheme is formally r -th-order accurate,
entropy stable and satisfies weak BV estimates (3.5) under the above-mentioned

assumptions on d2η(U)

dU2 , see [33,34].

3.3 Numerical Schemes for the Barotropic Euler System

Our aim is to prove the convergence of some entropy stable finite volume schemes
for the multidimensional Euler equations. More precisely, we show that a sequence of
numerical solutions generates a Young measure that represents a dissipative measure-
valued solution. To illustrate the ideas we will consider scheme (3.2) with a Lax–
Friedrichs-type numerical flux Fh whose value on a face σ = K |L is given by

Fσ := (f(Uh))σ − λσ �Uh�σ . (3.6)

Here the global diffusion coefficient is λσ ≡ λ := max
s=1,...,N

max
K∈Th

|λs(UK )|, while
the local diffusion coefficient is λσ := max

s=1,...,N
max(|λs(UK )|, |λs(UL)|). As already

mentioned aboveλs is the s-th eigenvalue of the corresponding Jacobianmatrix f ′(Uh).
Finite volume scheme with the local diffusion coefficient is in the literature also called
the Rusanov scheme.

Substituting U = [�,m]T and f(U) = [m, m⊗m
�

+ pI]T , p = a�γ , into (3.6), we
derive the semi-discrete finite volume scheme for the barotropic Euler system:

d

dt
�K (t) +

(
˜divh mh(t)

)

K
− 1

h

∑

σ∈∂K

λσ ��h(t)�σ (n+
K · es) = 0, (3.7a)

d

dt
mK (t) +

(
˜divh

(
mh(t) ⊗ mh(t)

�h(t)
+ ph(t)I

))

K

− 1

h

∑

σ∈∂K

λσ �mh(t)�σ (n+
K · es) = 0, t > 0, K ∈ Th . (3.7b)
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Note that (n+
K · es) determines whether the jump belongs to in- or outgoing fluxes. For

the global numerical diffusion coefficient (3.6) gives

d

dt
�K (t) +

(
˜divh mh(t)

)

K
− λh (Δh �h(t))K = 0, (3.8a)

d

dt
mK (t) +

(
˜divh

(
mh(t) ⊗ mh(t)

�h(t)
+ ph(t)I

))

K
− λh (Δh mh(t))K = 0,

t > 0 K ∈ Th . (3.8b)

Recall that ph(t) = p(�h(t)) = a�
γ

h (t), γ > 1, a > 0, cf. (2.3). The initial conditions
for the schemes (3.7) and (3.8) are prescribed as follows

(�K (0),mK (0))T = ((Πh�
0)K , (Πhm0)K )T , K ∈ Th .

3.4 Numerical Schemes for the Complete Euler System

Analogously as above, we insert the corresponding vector of conservative variables

U = [�,m, E]T and the flux function f(U) =
[
m, m⊗m

�
+ pI, m

�
(E + p)

]T
, p =

(γ − 1)(E − 1
2

|m|2
�

), into the definition of the Lax–Friedrichs-type numerical flux
(3.6) to obtain the finite volume scheme

d

dt
�K (t) +

(
˜divh mh(t)

)

K
− 1

h

∑

σ∈∂K

λσ ��h(t)�σ (n+
K · es) = 0, (3.9a)

d

dt
mK (t) +

(
˜divh

(
mh(t) ⊗ mh(t)

�h(t)
+ ph(t)I

))

K

− 1

h

∑

σ∈∂K

λσ �mh(t)�σ (n+
K · es) = 0, (3.9b)

d

dt
EK (t) +

(
˜divh

(
mh(t)

�h(t)
(Eh(t) + ph(t))

))

K

− 1

h

∑

σ∈∂K

λσ �Eh(t)�σ (n+
K · es) = 0, t > 0, K ∈ Th . (3.9c)

The global numerical viscosity coefficient yields analogously as above

d

dt
�K (t) +

(
˜divh mh(t)

)

K
− λh (Δh �h(t))K = 0, (3.10a)

d

dt
mK (t) +

(
˜divh

(
mh(t) ⊗ mh(t)

�h(t)
+ ph(t)I

))

K
− λh (Δh mh(t))K = 0,

(3.10b)

d

dt
EK (t) +

(
˜divh

(
mh(t)

�h(t)
(Eh(t) + ph(t))

))

K
− λh (Δh Eh(t))K = 0, t > 0,
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K ∈ Th . (3.10c)

Recall that ph(t) = (γ − 1)
(
Eh(t) − 1

2
|mh(t)|2
�h(t)

)
. Finite volume schemes (3.9) and

(3.10) are equipped with the initial conditions

(�K (0),mK (0), EK (0))T = ((Πh�
0)K , (Πhm0)K , (Πh E

0)K )T , K ∈ Th .

Note that all finite volume schemes for the Euler systems defined above require the
positivity of �h(t), t > 0.

4 Positivity of the Discrete Density and Pressure

As observed above, positivity of the discrete density is necessary for the scheme to be
properly defined. Starting from a positive initial density �h(0) > 0, the semi-discrete
scheme admits the unique solution defined on a maximal time interval [0, Tmax),
Tmax > 0. In general, Tmax may even depend on h and shrink to zero for h → 0. In
order to avoid this difficulty, suitable a priori bounds that would guarantee �h(t) being
bounded below away from zero must be established. This problem has been treated
for the relevant fully discrete schemes by, e.g. Perthame and Shu [48]. Note that these
results are always conditioned by a kind of CFL stability condition or other relevant
restrictions. Seen from this perspective, the existence of an unconditional result for
the semi-discrete scheme seems to be out of reach both at the discrete level and for the
limit Euler system. To eliminate this problem, we shall therefore impose positivity of
�h as our principal working hypothesis:

�h(t) ≥ � > 0 uniformly for t ∈ [0, T ], h → 0 (4.1)

for a positive constant �.
Positivity of the density at the discrete level, meaning with the lower bound �

h
depending on the discretization parameter h, can be achieved by adding lower order
“damping” terms to the right-hand side of the momentum equation (3.9b) and the
energy equation (3.9c), namely

−hα mh(t)

�h(t)
and − hα

∣∣∣
∣
mh(t)

�h(t)

∣∣∣
∣

2

.

Indeed adding these terms would:

• leave the entropy balance in the same form;
• produce a uniform upper bound on the discrete velocity

uh(t) ≡ mh(t)

�h(t)
, specifically uh ∈ L2(0, T ; L∞(Ω; RN )), (4.2)

resulting from boundedness of the discrete total energy Eh(t).
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In the next section, we show how the positivity of the discrete density can be
obtained under the hypothesis (4.2).

4.1 Conditional Positivity of the Discrete Density

In this section, we show the positivity of the discrete density under the extra hypothesis
on the approximate velocity,

uh ≡ mh(t)

�h(t)
∈ L2(0, T ; L∞(Ω)). (4.3)

We restrict ourselves to the case of constant numerical viscosities. Thus the first two
equations of the numerical scheme for the Euler system read,

d

dt
�K (t) +

(
˜divh (�h(t)uh(t))

)

K
− λh (Δh �h(t))K = 0, (4.4a)

d

dt
(�K (t)uK (t)) +

(
˜divh

(
�h(t)(uh(t) ⊗ uh(t)) + ph(t)I

))

K

− λh (Δh (�h(t)uh(t)))K = 0, (4.4b)

equipped with the relevant initial conditions.

Lemma 1 Let �h(0) > 0, and let a couple (�h(t),uh(t)), t > 0, satisfy the discrete
continuity equation (4.4a), where uh belongs to the class (4.3).

Then

�K (t) > �
h

> 0, t ∈ [0, T ], K ∈ Th .

Proof Let �K (t) be such that �K (t) ≤ �L(t) for all L ∈ Th . Equation (4.4a) can be
rewritten as

d

dt
�K (t) = −

N∑

s=1

(
∂̃sh�h

)

K
(ũsh)

s
K − �K

(
˜divh uh

)

K

−
N∑

s=1

(
Δs

h �
)
K

(
h2

2

(
∂̃shu

s
h

)

K
− λh

)
.

(4.5)

By the definition of λ and the minimality of �K (t), we can conclude that

−
(
∂̃sh�h

)

K
(ũsh)

s
K = −1

2

[(
∂s+h �h

)
K + (

∂s−h �h
)
K

]
(ũsh)

s
K

≥ −λ

2

[(
∂s+h �h

)
K − (

∂s−h �h
)
K

] = −λh

2

(
Δs

h �h
)
K ,

− (Δs
h �h

)
K

(
h2

2

(
∂̃shu

s
h

)

K
− λh + λh

2

)
= −h

4

(
Δs

h �h
)
K

(
usL − λ

)+ h

4

(
Δs

h �h
)
K

(
usJ + λ

) ≥ 0,
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and, consequently, Eq. (4.5) becomes

d

dt
�K (t) ≥ −�K

(
˜divh uh

)

K
.

As uh satisfies (4.3), we easily deduce a bound on the discrete divergence,

(
˜divh uh

)

K
∈ L2(0, T ; L∞(Ω)).

Thus, the Gronwall inequality together with the assumption �K (0) > 0, K ∈ Th,
finally yields for all L ∈ Th that �L(t) ≥ �K (t) > 0, t ∈ [0, T ]. ��

Under the hypothesis (4.3), settingmh ≡ �huh and comparing (4.4a) with (3.8a) or
(3.10a), we realize that both formulations are equivalent. Analogous results hold for
the schemes (3.7) and (3.9) with the local Lax–Friedrichs flux for both Euler systems,
respectively.

4.2 Positivity of the Discrete Pressure

Recall the entropy η(Uh) = �hSχ (Uh) is a concave function as mentioned in
Remark 8. The discrete entropy inequality (3.3) holds, cf. [38], and may be used
similarly to [54] for showing the minimal entropy principle. In particular, the rela-
tion between the initial density and temperature is time invariant and gives rise to the
positivity of pressure.

Lemma 2 Let the initial density and temperature for the complete Euler system satisfy

0 < �K (0) ≤ C(ϑK (0))1/(γ−1), C > 0, for all K ∈ Th, (4.6)

where ϑK (0) = (γ − 1)

�K (0)

(
EK (0) − 1

2

|mK (0)|2
�K (0)

)
.

Then, for all K ∈ Th, it holds that

0 < �K (t) ≤ C(ϑK (t))1/(γ−1), t ∈ [0, T ], (4.7)

whereϑK (t) = (γ − 1)

�K (t)

(
EK (t) − 1

2

|mK (t)|2
�K (t)

)
. In particular, pK (t) = �K (t)ϑK (t)

> 0, t ∈ [0, T ].
Proof Recall that the renormalized entropy in our case, cf. (2.18)–(2.20), can be rewrit-
ten as

η = �Sχ = �χ

(
log

(
(γ − 1)

�γ

(
E − 1

2

|m|2
�

)))
.
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Following [12] we now take a function χ satisfying (2.18) to be such that

χ ′(z) ≥ 0, χ(z)

{
< 0, z < z0
= 0, z ≥ z0,

, z0 = (γ − 1) ln(1/C). (4.8)

Under the assumption (4.6), it holds that

log

(
(γ − 1)

�K (0)γ

(
EK (0) − 1

2

|mK (0)|2
�K (0)

))
= log

(
(ϑK (0))1/(γ−1)

�K (0)

)

≥ z0,

which combined with (4.8) implies η(UK (0)) = 0. Thus, the sum of the discrete
entropy inequality (3.3) integrated in time yields

∑

K∈Th
η(UK (t)) ≥

∑

K∈Th
η(UK (0)) = 0, t ∈ [0, T ]. (4.9)

From inequality (4.9), it directly follows that

∑

K∈Th
�K (t)χ

(
log

(
(γ − 1)

�K (t)γ

(
EK (t) − 1

2

|mK (t)|2
�K (t)

)))

=
∑

K∈Th
�K (t)χ

(

log

(
(ϑK (t))1/(γ−1)

�K (t)

))

≥ 0.

Consequently, employing (4.8) and the positivity of �K (t), we get that

log

(
(γ − 1)

�K (t)γ

(
EK (t) − 1

2

|mK (t)|2
�K (t)

))
= log

(
(ϑK (t))1/(γ−1)

�K (t)

)

≥ z0, t ∈ [0, T ],

which concludes the proof. ��

Lemma 3 Let Uh = [�h,mh, Eh] be a solution of the complete Euler system con-
structed via the numerical schemes (3.9) or (3.10). In addition, suppose that

0 < � ≤ �h(t), Eh(t) ≤ E uniformly for h → 0, t ∈ [0, T ]

for some constants �, E .

Then there exist constants �, ϑ, ϑ, p, p, m such that

�h(t) ≤ �, |mh(t)| ≤ m, 0 < ϑ ≤ ϑh(t) ≤ ϑ, 0 < p ≤ ph(t)

≤ p uniformly for h → 0, t ∈ [0, T ]. (4.10)
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Proof Since we already know that the pressure ph is positive, we have

0 < ph = (γ − 1)

(
Eh − 1

2

|mh |2
�h

)
≤ E,

which yields the existence of p satisfying (4.10). From Lemma 2 we also have

0 < �h ≤ C(ϑh)
1/(γ−1).

Therefore,

0 < �γ ≤ �
γ

h ≤ C
γ−1

�hϑh = C
γ−1

ph ≤ C
γ−1

E,

which gives the existence of �, p, ϑ, ϑ. Finally,

|mh |2 ≤ 2�h Eh ≤ 2�E .

��

5 Stability of Numerical Schemes

We show the stability of the numerical schemes defined in Sect. 3 by deriving a priori
estimates.

5.1 A Priori Estimates for the Barotropic Euler System

Firstly, we sum up the continuity equation (3.8a) (or (3.7a)) multiplied by hN for all
K ∈ Th and integrate in time to get

∫

Ω

�h(t) dx =
∫

Ω

�h(0) dx .

The positivity of �h(t) then indicates �h ∈ L∞(0, T ; L1(Ω)). Further we know that
our entropy stable finite volume scheme (3.8) directly yields the discrete entropy
inequality. It is important to point out that for barotropic flow the energy plays the role
of the entropy (with a negative sign). Denoting

η(UK ) = 1

2

|mK |2
�K

+ P(�K ) (5.1)

we obtain for the entropy stable finite volume schemes the discrete energy inequality

d

dt
η(UK (t)) + (divh Qh(t))K ≤ 0, K ∈ Th . (5.2)
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Since the numerical entropy flux given by (3.4) is conservative, i.e.
∑

K∈Th
(divh Qh)K =

0, the integral of (5.2) yields

∫

Ω

η(Uh(t)) dx ≤
∫

Ω

η(Uh(0)) dx .

Similarly as above, the latter inequality gives rise to η(Uh) ∈ L∞(0, T ; L1(Ω)).

Noting also (2.3) and (2.7), we conclude the a priori estimates for the barotropic Euler
equations:

�h ∈ L∞(0, T ; Lγ (Ω)), γ > 1, ph ∈ L∞(0, T ; L1(Ω)),
√

�huh ∈ L∞(0, T ; L2(Ω)), and mh = �huh ∈ L∞(0, T ; Lr (Ω)),

r = 2γ

1 + γ
> 1.

(5.3)

5.2 A Priori Estimates for the Complete Euler System

We sum up equation of continuity (3.10a) (or (3.9a)) and energy equation (3.10c) (or
(3.9c)) multiplied by hN over K ∈ Th . Due to the periodic boundary conditions we
get

∫

Ω

�h(t) dx =
∫

Ω

�h(0) dx,
∫

Ω

Eh(t) dx =
∫

Ω

Eh(0) dx . (5.4)

In Sect. 4,we have shown that�h(t), ph(t) > 0, and thus also Eh(t) > 0 for t ∈ [0, T ].
The conservation of mass and energy (5.4) combined with (4.7) implies the a priori
estimates for the complete Euler system. Namely,

�h ∈ L∞(0, T ; Lγ (Ω)), γ > 1, ph ∈ L∞(0, T ; L1(Ω)), Eh ∈ L∞(0, T ; L1(Ω))

√
�huh ∈ L∞(0, T ; L2(Ω)), and mh = �huh ∈ L∞(0, T ; Lr (Ω)), r = 2γ

1 + γ
> 1.

(5.5)

6 Consistency

In this section, our aim is to show consistency of the entropy stable finite volume
schemes (3.7), (3.8) and (3.9), (3.10).We derive suitable formulations of the continuity
and momentum equations that are the same for the barotropic and the complete Euler
systems. In addition, for the complete Euler system, we also show consistency of the
entropy inequality.
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6.1 Consistency Formulation of Continuity andMomentum Equations

Let us multiply the continuity equations (3.7a) or (3.8a) (for the barotropic Euler) and
(3.9a) or (3.10a) (for the complete Euler) by hN (Πhϕ(t))K ,with ϕ ∈ C3([0, T ]×Ω),

and the momentum equations (3.7b) or (3.8b) (for the barotropic Euler) and (3.9b) or
(3.10b) (for the complete Euler) by hN (Πhϕ(t))K ,withϕ ∈ C3([0, T ]×Ω; RN ).We
sum the resulting equations over K ∈ Th and integrate in time. The a priori estimates
(5.3) or (5.5) for both the barotropic and the complete Euler systems combined with
some boundedness assumptions specified below shall allow us to show the consistency.

6.1.1 Time Derivative

Integration by parts with respect to time leads to

hN
∫ T

0

d

dt

∑

K∈Th
�K (t)(Πhϕ(t))K dt

=
∫ T

0

d

dt

∫

Ω

�K (t)ϕ(t, x) dx dt

=
[∫

Ω

�h(τ )ϕ(τ, ·) dx
]τ=T

τ=0
−
∫ T

0

∫

Ω

�h(t)∂t ϕ(t, x) dx dt

in the continuity equations, and similarly to

hN
∫ T

0

d

dt

∑

K∈Th
mK (t) · (Πhϕ(t))K dt

=
[∫

Ω

mh(τ ) · ϕ(τ, x) dx

]τ=T

τ=0
−
∫ T

0

∫

Ωh

mh(t) · ∂t ϕ(t, x) dx dt

in the momentum equations.

6.1.2 Convective Terms

To treat the convective terms in the continuity equations, we use the discrete integration
by parts and the Taylor expansion to get

hN
∫ T

0

∑

K∈Th

(
˜divh mh(t)

)

K
(Πhϕ(t))K dt

= −hN
∫ T

0

∑

K∈Th

N∑

s=1

ms
K (t)

(∫

K

ϕ(t, x + hes) − ϕ(t, x − hes)
2h

dx

)
dt

= −
∫ T

0

∫

Ω

mh(t) · ∇x ϕ(t, x) dx dt + r1,
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where term r1 is estimated as follows

r1 � h

∥∥∥
∥
d2ϕ

dx2
(x̂)

∥∥∥
∥
C(0,T )

‖mh‖L∞(L1) , where
d2ϕ

dx2
:=

(
∂2ϕ

∂xi∂x j

)N

i, j=1
. (6.1)

Point x̂ appears in the remainder of the Taylor expansion and lies either between the
points x + hes and x or the points x and x − hes .

We proceed analogously with the convective term in the momentum equations, i.e.

hN
∫ T

0

∑

K∈Th

(
˜divh

(
mh(t) ⊗ mh(t)

�h(t)
+ ph(t)I

))

K
(Πhϕ(t))K dt

= −hN
∫ T

0

∑

K∈Th

N∑

s=1

N∑

z=1

(
ms

h(t)m
z
h(t)

�h(t)
+ ph(t)

)(∫

K

ϕz(t, x + hes) − ϕz(t, x − hes)
2h

dx

)
dt

= −
∫ T

0

∫

Ω

(
mh(t) ⊗ mh(t)

�h(t)
+ ph(t)I

)
· ∇x ϕ(t, x) dx dt + r2,

where term r2 is bounded by

r2 � h

∥∥∥∥
d2ϕ

dx2
(x̂)

∥∥∥∥
C(0,T )

{∥∥∥
√

�h(t)uh(t)
∥∥∥
L∞(L2)

+ ‖ph(t)‖L∞(L1)

}
.

6.1.3 Numerical Diffusion

Diffusive terms of the numerical schemes (3.7), (3.8) and (3.9), (3.10)will be computed
separately for the global and the local numerical diffusion coefficients λ and λσ ,
respectively.

For the global numerical diffusion coefficient, we can write

hN+1
∫ T

0
λ
∑

K∈Th
(Δh Uh(t))K (Πhϕ(t))K dt

= hN+1
∫ T

0
λ
∑

K∈Th
UK (t)

(∫

K

N∑

s=1

ϕ(x + hes) − 2ϕ(x) + ϕ(x − hes)
h2

dx

)

dt

= hN
∫ T

0
λ

∫

Ω

Uh(t)Δxϕ(t, x) dx dt + r3.

Similarly as in (6.1) the remainders of the Taylor expansions result in term r3 that is
bounded by

r3 � h

∥∥∥∥
d3ϕ

dx3
(x̃)

∥∥∥∥
C(0,T )

‖Uh‖L∞(L1)

∫ T

0
λ dt .
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Moreover, the term stemming from the numerical diffusion is of order O(h). Indeed,
we have

h
∫ T

0
λ

∫

Ω

Uh(t)Δxϕ(t, x) dx dt ≤ hT ‖Δxϕ‖∞ ‖Uh‖L∞(L1)

∫ T

0
λ dt .

Assuming a finite speed of waves propagation, i.e.

there exists λ > 0 such that λ ≤ λ,

the latter term goes to 0 as h → 0.
For the local numerical diffusion coefficient, we are able to prove consistency of the

numerical diffusion term without the assumption on the finite speed of propagation.
Indeed, considering the diffusion terms we obtain

hN−1
∫ T

0

∑

K∈Th

∑

σ∈∂K

λσ �Uh(t)�σ (n+
K · es) (Πhϕ(t))K dt . (6.2)

The terms belonging to an arbitrary but fixed face σ = K |L are

1

h

∫ T

0

(
λσ �Uh(t)�σ

∫

K
ϕ(t) dx − λσ �Uh(t)�σ

∫

L
ϕ(t) dx

)
dt . (6.3)

Let us now consider an arbitrary but fixed point x̃ ∈ σ ; w.l.o.g. let x̃ = (x̃s, x ′),
x ′ ∈ R

N−1, s = 1, . . . , N . The Taylor expansion for x = (xs, x ′) ∈ K with respect
to (x̃s, x ′) gives

ϕ(xs, x
′) = ϕ(x̃s, x

′) − ξ∂sϕ(x̃s, x
′) + O(h2),

where ξ ∈ (0, h). Analogously, we have for x = (x̃s, x ′) ∈ L

ϕ(xs, x
′) = ϕ(x̃s, x

′) + ξ∂sϕ(x̃s, x
′) + O(h2).

Substituting the above Taylor expansions in (6.3) we directly see that the terms mul-
tiplied by ϕ(x̃s, x ′) vanish. The resulting terms give

∣
∣∣
∣

∫ T

0
− 1

h
λσ �Uh�σ

∫ h

0

∫

σ

ξ∂sϕ(x̃s , x
′)dξdSx ′ + 1

h
λσ �Uh�σ

∫ h

0

∫

σ

−ξ∂sϕ(x̃s , x
′)dξdSx ′ dt

∣
∣∣
∣

≤ 2

h

∫ T

0

∣∣
∣λσ �Uh�σ

∫ h

0

∫

σ

ξ∂sϕ(x̃s , x
′)dξdSx ′

∣∣
∣ dt

� hN
∫ T

0
λσ

∣∣
∣�Uh�σ

∣∣
∣dt ‖ϕ‖C1([0,T ]×Ω) → 0 for h → 0.

The last convergence follows from the weak BV property (3.5) and implies the con-
sistency of the numerical diffusion term (6.2).
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Remark 10 (weak BV (3.5) holds for the finite volume schemes (3.7), (3.9)) In what
followswe show that the finite volume schemes (3.7) and (3.9)with the local numerical
diffusion satisfy the weak BV estimate (3.5). To unify the argumentation, we set in
this remark η := −�Sχ for the complete Euler equations in order to work with the
convex entropy for both the barotropic and complete Euler systems. Let us assume
that

• no vacuum appears, i.e.

∃ � > 0 : �h(t) ≥ � (6.4)

• entropy Hessian is strictly positive definite, i.e.

∃ η > 0 : d
2η(U)

dU2 ≥ ηI, I is a unit matrix. (6.5)

The entropy residual rσ arising in the discrete entropy inequality, that is obtained by
multiplying the conservation law (3.1) by ∇Uη(U), reads, see, e.g. [31,53],

rσ = −δσ �U�σ �V�σ .

Here δσ > λσ /2 > 0. For the Euler equations, it holds that λσ = max(|uK | +
cK , |uL | + cL), σ = K |L . Furthermore, we have for the barotropic and the complete
Euler equations c = √

γ �γ−1 and c = √
γ p/�, respectively.

It follows from the construction of the entropy stable schemes that the entropy
residual is negative, see [31,52,53]. Consequently, integrating the discrete entropy
inequality over Ω and over time interval (0, T ) yields

∫

Ω

η(Uh(T )) dx −
∫ T

0

∑

σ∈E
hN−1rσ dt ≤

∫

Ω

η(Uh(0)) dx ≤ const.

Furthermore, it holds that η(Uh(t)) ≥ η̃, t ∈ (0, T ). Indeed, for the barotropic Euler
system this bound holds due to (6.4) and thus (6.6) follows. For the complete Euler
system, it holds for any η = −�Sχ since χ is bounded from above and (6.4) holds.
Thus, passing to the limit with χ(Z) → Z in the entropy inequality we obtain

−
∫ T

0

∑

σ∈E
hNrσ dt → 0 for h → 0. (6.6)

Assumption (6.5) and the mean value theorem imply

�U�σ = U′(Ṽ)�V�σ =
(
d2(η(Ũ))

dU2

)−1

�V�σ
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and thus

η�Uh�σ ≤ �Vh�σ .

Consequently, we have

η

2

∫ T

0

∑

σ∈E
hNλσ �U�2σ dt ≤

∫ T

0

∑

σ∈E
hN δσ �U�σ �V�σ dt, (6.7)

where the last term tends to 0 for h → 0 according to (6.6). It remains to show that
the weak BV estimate (3.5) holds. Indeed,

∫ T

0

∑

σ∈E
hNλσ |�U�σ | dt ≤

(∫ T

0

∑

σ∈E
hNλσ dt

)1/2 (∫ T

0

∑

σ∈E
hNλσ |�U�σ |2 dt

)1/2

.(6.8)

The second term on the right-hand side of (6.8) tends to 0 due to (6.7) and (6.6). To
show the boundedness of the first term, we apply the discrete trace inequality, cf., e.g.
[27], that holds for arbitrary piecewise constant function fh ,

‖ fh‖L p(∂K ) ≤ h−1/p‖ fh‖L p(K ), 1 ≤ p ≤ ∞.

Thus,

∫ T

0

∑

σ∈Ein
hNλσ dt ≤ h

∫ T

0

∑

K∈Th

∑

σ∈∂K

∫

σ

λσdS dt

� h
∫ T

0

∑

K∈Th

1

h

∫

K
|λ(UK )| dx dt ≤ const., λ(UK )=|uK |+cK .

The last inequality follows from the assumption (6.4) and from a priori estimates
(5.3) and (5.5) for the barotropic and the complete Euler equations, respectively. In
conclusion, the weak BV estimate (3.5) holds for the finite volume schemes (3.7)
and (3.9) provided there is no vacuum and the entropy Hessian is strictly positive
definite for barotropic and strictly negative definite for the complete Euler equations,
respectively.

6.2 Consistency Formulation of the Entropy Inequality for the Complete Euler
System

For the complete Euler system, we shall also derive a suitable consistency formulation
of the discrete entropy inequality (3.3) for

η(Uh) = �hχ

⎛

⎝ 1

γ − 1
log

⎛

⎝(γ − 1)
Eh − 1

2
|mh |2
�h

�
γ

h

⎞

⎠

⎞

⎠ . (6.9)
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Due to a priori estimates (5.5), Lemma 2 and assumptions (2.18) on χ we know that
η(Uh) ∈ L∞(0, T ; Lγ (Ω)). By the same token, we know that

q(Uh) =mhχ

⎛

⎝ 1

γ − 1
log

⎛

⎝(γ − 1)
Eh − 1

2
|mh |2
�h

�
γ

h

⎞

⎠

⎞

⎠ ∈ L∞(0, T ; Lr (Ω)),

r = 2γ

γ + 1
. (6.10)

In what follows we assume that the numerical entropy flux Qh is globally Lipschitz
continuous, i.e. there exists a CL > 0 such that for any σ = K |L it holds that

‖Qσ (t) − q(UK (t))‖ ≡ ‖Qh(UK (t),UL(t)) − q(UK (t))‖ ≤ CL‖UK (t) − UL(t)‖,
L = K + hes . (6.11)

To derive the consistency formulation of the discrete renormalized entropy inequality,
wemultiple (3.3) by hN (Πhϕ(t))K , for any ϕ ∈ C2([0, T ]×Ω), ϕ ≥ 0, and integrate
in time to get:
Time derivative

hN
∫ T

0

∑

K∈Th

d

dt
η(UK (t))(Πhϕ(t))K dt

=
[∫

Ω

η(UK (τ ))ϕ(τ, ·) dx
]τ=T

τ=0
−
∫ T

0

∫

Ω

η(UK (t))∂t ϕ(t, x) dx dt .

Convective term discrete integration by parts yields

hN
∫ T

0

∑

K∈Th
(divh Qh(t))K (Πhϕ(t))K dt

= −hN
∫ T

0

N∑

s=1

∑

σ∈E
Qs

σ (t)
(
∂s+h (Πhϕ(t))

)
σ
dt =

= −hN
∫ T

0

N∑

s=1

∑

σ∈E

(
Qσ (t) − qs(UK (t))

) (
∂s+h (Πhϕ(t))

)
K dt −

−
∫ T

0

∫

Ω

q(UK (t)) · ∇xϕ(t, x) dx dt + R,

where the last two terms with

R � h
∥∥∇xϕ(x̂)

∥∥
C(0,T )

‖q(Uh)‖L∞(Lr )
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appeared as a result of the identity

hN (∂s+h (Πhϕ(t))
)
K =

∫

K

ϕ(t, x + hes) − ϕ(t, x)

h
dx

=
∫

K
∇xϕ(t, x) − h

2

d2ϕ(x̂)

dx2
dx .

What remains is to show that

−hN
∫ T

0

N∑

s=1

∑

σ∈E

(
Qσ (t) − qs(UK (t))

) (
∂s+h (Πhϕ(t))

)
K dt → 0 as h → 0.

Due to the global Lipschitz continuity ofQh, cf. (6.11),we get the following inequality

− hN
∫ T

0

N∑

s=1

∑

σ∈E

(
Qσ (t) − qs(UK (t))

) (
∂s+h (Πhϕ(t))

)
K dt

≤ CLh
N
∫ T

0

∑

K∈Th

[
∥∥UK (t) − UL(t)

∥∥
N∑

s=1

∣∣ (∂s+h (Πhϕ(t))
)
K

∣∣
]

dt

≤ CL

⎛

⎝hN
∫ T

0

∑

K∈Th

∥∥UK (t) − UL(t)
∥∥2 dt

⎞

⎠

1/2

(∫ T

0

∫

Ω

N∑

s=1

∣∣∣∣
dϕ

dxs
(x) − h

2

d2ϕ(x̃)

dxs2

∣∣∣∣

2

dx dt

)1/2

� CL

(∫ T

0

∑

σ∈E

∣∣�Uh(t)�σ

∣∣2 hN dt

)1/2 {
‖∇xϕ‖∞ + h

∥∥∥
∥
d2ϕ(x̃)

dx2

∥∥∥
∥
C(0,T )

}
.

(6.12)

To show that the first term in (6.12) goes to zero, we follow analogous arguments as
in Remark 10. We assume strict positivity of the density (6.4). Furthermore, for the
physical entropy we assume its uniform concavity, i.e. strict positive definiteness of
the Hessian for themathematical entropy, cf. (6.5). Applying Lemma 2we obtain from
the control of the entropy residual rσ that there exists λ > 0, such that

λη

2

∫ T

0

∑

σ∈E
hN �Uh(t)�

2
σ dt ≤

∫ T

0

∑

σ∈E
hN δσ �Uh(t)�σ �Vh(t)�σ dt → 0.

Finally, we have shown

− hN
∫ T

0

N∑

s=1

∑

σ∈E

(
Qσ (t) − qs(UK (t))

) (
∂s+h (Πhϕ(t))

)
K dt → 0 as h → 0.
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6.3 Summary of Consistency Results

Let us summarize the consistency results derived above.

6.3.1 Consistency Formulation for the Barotropic Euler System

The consistency formulationof the numerical schemes (3.7) and (3.8) for the barotropic
Euler equations reads

−
∫

Ω

�h(0)ϕ(0, ·) dx =
∫ T

0

∫

Ω

�h∂t ϕ + mh · ∇x ϕ dx dt + O(h)

for any ϕ ∈ C3
c ([0, T ) × Ω);

−
∫

Ω

mh(0) · ϕ(0, ·) dx =
∫ T

0

∫

Ω

mh · ∂t ϕ dx dt+

+
∫ T

0

∫

Ω

(
mh ⊗ mh

�h
+ phI

)
· ∇x ϕ dx dt + O(h)

for any ϕ ∈ C3
c ([0, T ) × Ω; RN );

[∫

Ω

η(Uh(t)) dx

]t=τ

t=0
≤ 0, for a.a. 0 ≤ τ ≤ T with η(Uh) = 1

2

|mh |2
�h

− P(�h).

(6.13)

Lemma 4 Let us assume that

(A1) no vacuum appears, i.e. there exists � > 0, such that �h(t) ≥ �, cf. (4.1)
(A2) if 1 < γ < 3, then there exists � > 0, such that �h(t) ≤ �.

Then the local Lax–Friedrichs scheme (3.7) is consistent with the barotropic Euler
equations (2.2) and the consistency formulation (6.13) holds. If we assume that

(A1) no vacuum appears, i.e. there exists � > 0, such that �h(t) ≥ �, cf. (4.1)

(A3) finite speed of propagation holds, i.e. there exists λ > 0, such that λ(Uh(t)) ≤ λ

uniformly for t ∈ [0, T ] and h → 0,

then the global Lax–Friedrichs scheme (3.8) is consistent with the barotropic Euler
equations (2.2) and the consistency formulation (6.13) holds.

Proof The only point to verify is to show that (A1) and (A2) imply strict positive
definiteness of the entropy Hessian. Indeed, we have for the barotropic Euler systems
that

d2η(U)

dU2 =
(
aγ �γ−2 + |m|2

�3
−|m|

�2

−|m|
�2

1
�

)

.

Direct calculation yields the determinant and the trace of the entropy Hessian, i.e.

det = aγ �γ−3 and tr = aγ �γ−2 + |m|2
�3 + 1

�
, respectively. Consequently, for γ ≥ 3

the Hessian is uniformly strictly positive if (A1) holds, for 1 < γ < 3 we need to
require (A1) and (A2). ��
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6.3.2 Consistency Formulation for the Complete Euler System

The consistency formulation of the numerical schemes (3.9) and (3.10) for the com-
plete Euler equations reads

−
∫

Ω

�h(0)ϕ(0, ·) dx

=
∫ T

0

∫

Ω

�h(t)∂t ϕ(t, x) + mh(t) · ∇x ϕ(t, x) dx dt + O(h)

for any ϕ ∈ C3
c ([0, T ) × Ω);

−
∫

Ω

mh(0) · ϕ(0, ·) dx

=
∫ T

0

∫

Ω

mh(t) · ∂t ϕ(t, x) dx dt+

+
∫ T

0

∫

Ω

(
mh(t) ⊗ mh(t)

�h(t)
+ ph(t)I

)
· ∇x ϕ(t, x) dx dt + O(h)

for any ϕ ∈ C3
c ([0, T ) × Ω; RN );

[∫

Ω

Eh(t) dx

]t=τ

t=0
= 0, for a.a. 0 ≤ τ ≤ T ;

−
∫

Ω

η(Uh(0))ϕ(0, ·) dx

≥
∫ T

0

∫

Ω

η(Uh(t)) · ∂t ϕ(t, x) + qh(t) · ∇x ϕ(t, x) dx dt + O(h),

with η(Uh) = �hχ

(

log

(
(γ − 1)

�
γ

h

(
Eh − 1

2

|mh |2
�h

)))

for any ϕ ∈ C2
c ([0, T ) × Ω), ϕ ≥ 0, and any increasing concave χ

defined on R, χ(Z) ≤ χ for all Z .

(6.14)

Lemma 5 Let us assume that

(A1) no vacuum appears, i.e. there exists � > 0, such that �h(t) ≥ �, cf. (4.1)
(A2) entropy Hessian is strictly negative definite, i.e. there exists η > 0, such that

d2η(U)

dU2 ≤ −ηI

(A3) numerical entropy flux Qh is globally Lipschitz continuous, cf. (6.11).

Then the local Lax–Friedrichs scheme (3.9) is consistent with the complete Euler
system (2.15) and the consistency formulation (6.14) holds. If we assume that

(A1) no vacuum appears, i.e. there exists � > 0, such that �h(t) ≥ �, cf. (4.1)
(A2) entropy Hessian is strictly negative definite, i.e. there exists η > 0, such that

d2η(U)

dU2 ≤ −ηI
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(A3) numerical entropy flux Qh is globally Lipschitz continuous, cf. (6.11)
(A4) finite speed of propagation holds, i.e. there exists λ > 0 such that λ(Uh(t)) ≤ λ

uniformly for t ∈ [0, T ] and h → 0,

then the global Lax–Friedrichs scheme (3.10) is consistent with the complete Euler
system (2.15) and the consistency formulation (6.14) holds.

Recalling Lemmas 3, 4 and 5 we derive the following results.

Corollary 1 Let Uh = [�h,mh] be a numerical solution of the barotropic Euler sys-
tem constructed by the global Lax–Friedrichs scheme (3.8). Suppose that there exist
positive constants �, �, m > 0 such that

0 < � ≤ �h ≤ �, |mh | ≤ m, uniformly for h → 0.

Then the assumptions (A1), (A3) of Lemma 4 are satisfied.
Let Uh = [�h,mh] be a numerical solution of the local Lax–Friedrichs scheme (3.7).
For γ ≥ 3 we suppose that there exists constant �, such that

0 < � ≤ �h uniformly for h → 0,

for 1 < γ < 3 we suppose that there exist constants �, �, such that

0 < � ≤ �h ≤ �, uniformly for h → 0.

Then the assumptions (A1), (A2) of Lemma 4 are satisfied. Consequently, the global
and the local Lax–Friedrichs schemes for the barotropic Euler equations satisfy the
consistency formulation (6.13).

Corollary 2 Let Uh = [�h,mh, Eh] be a numerical solution of the complete Euler
system constructed by the schemes (3.9) or (3.10). Suppose that there exist constants
�, E > 0 such that

� ≤ �h, Eh ≤ E, uniformly for h → 0.

Then the assumptions (A1)–(A4) of Lemma 5 are satisfied. In particular, the global
and the local Lax–Friedrichs schemes for the complete Euler equations satisfy the
consistency formulation (6.14).

7 Limit Process

Recall that for simplicity we assume that the computational domain is the flat torus
Ω = ([0, 1]|{0,1}

)N , N = 1, 2, 3, meaning we focus on spatially periodic solutions.
In addition, we prescribe regular initial data,

�0 ∈ C1(Ω), �0 > 0, m0 = C1(Ω; RN ), E0 ∈ C1(Ω),
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p0 = (γ − 1)

(
E0 − 1

2

|m0|2
�0

)
> 0. (7.1)

Under the perfect gas state equation, the last condition gives rise to the initial temper-
ature,

ϑ0 = (γ − 1)

�0

(
E0 − 1

2

|m0|2
�0

)
.

7.1 GeneratingMeasure-Valued Solutions

7.1.1 Equation of Continuity, Weak Limit

Let {�h,mh, Eh}h>0 be a family of numerical solutions computed by our finite volume
schemes.The energy estimates (5.3) and (5.5) canbeused todeduce, at least for suitable
subsequences,

�h → � weakly-(*) in L∞(0, T ; Lγ (Ω)), � ≥ 0,

mh → m weakly-(*) in L∞(0, T ; Lr (Ω; RN )), r = 2γ

γ + 1
> 1,

for both the barotropic and the complete Euler systems. In addition, it may be deduced
from (6.13) or (6.14) that the limit functions satisfy the equation of continuity in the
form

−
∫

Ω

�0ϕ(0, ·) dx =
∫ T

0

∫

Ω

[
�∂tϕ + m · ∇xϕ

]
dx dt (7.2)

for any test function ϕ ∈ C1
c ([0, T ) × Ω). Clearly,

� ∈ Cweak([0, T ];Ω)

and (7.2) can be rewritten in the form

[∫

Ω

�ϕ(t, ·) dx
]t=τ

t=0
=
∫ τ

0

∫

Ω

[
�∂tϕ + m · ∇xϕ

]
dx dt (7.3)

for any 0 ≤ τ ≤ T and any ϕ ∈ C1([0, T ] × Ω).

7.1.2 YoungMeasure Generated by Numerical Solutions

The entropy inequality (3.3) along with the consistency formulations (6.13) and (6.14)
provides a suitable platform for the use of the theory of dissipative measure-valued
solutions developed in [26]. Consider a family of numerical solutions {�h,mh}h>0
(barotropic Euler) or {�h,mh, Eh}h>0 (complete Euler). In accordance with the weak
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convergence statement derived in the preceding part and boundedness of the total
energy established in (5.4), these families generate a Young measure—a parametrized
measure

Vt,x ∈ L∞((0, T ) × Ω;P(F)) for a.a. (t, x) ∈ (0, T ) × Ω,

sitting on the phase space F , where the latter is

F =
{
[�,m] ∈ [0,∞) × RN

}

for the barotropic Euler system, and

F =
{
[�,m, E]

∣∣∣ [0,∞) × RN × [0,∞)
}

for the completeEuler system.Recall that, in accordancewith the fundamental theorem
of the theory of Young measures (see, e.g. Ball [3] or Pedregal [47]), we have

〈
Vt,x , g(U)

〉 = g(U)(t, x) for a.a. (t, x) ∈ (0, T ) × Ω,

whenever g ∈ Cc(F), and

g(Uh) → g(U) weakly in L1((0, T ) × Ω).

7.1.3 Continuity Equation

Accordingly, the equation of continuity (7.3) can be written as

[∫

Ω

〈
Vt,x ; �

〉
ϕ(t, ·) dx

]t=τ

t=0
=
∫ τ

0

∫

Ω

[〈
Vt,x ; �

〉
∂tϕ + 〈

Vt,x ;m
〉 · ∇xϕ

]
dx dt

(7.4)

Note that there is no concentration measure in (7.4), i.e. μ1
C = 0.

7.1.4 Momentum Equation

We apply a similar treatment to the momentum equation (3.8b) and (3.10b). Using a
priori bounds (5.3) and (5.5) we obtain that

mh ⊗ mh

�h
is bounded in L∞(0, T ; L1(Ω; RN×N )),

and

ph is bounded in L∞(0, T ; L1(Ω)).
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Recall that the pressure is defined as

ph =
{
a�

γ

h in the barotropic case,

(γ − 1)
(
Eh − 1

2
|mh |2
�h

)
for the complete system.

Thus, passing to subsequences as the case may be, we deduce

mh ⊗ mh

�h
+ phI → mh ⊗ mh

�h
+ phI weakly-(*) in L∞(0, T ;M(Ω; RN×N )).

We set

μ2
C := m ⊗ m

�
+ pI −

〈
Vt,x ; m ⊗ m

�
+ pI

〉
∈ L∞(0, T ;M(Ω; RN×N )),

which is the concentration measure appearing in the limit momentum equation.
Letting h → 0 in (3.8b) and (3.10b), we conclude

[∫

Ω

〈Vt,x ;m
〉 · ϕ(0, ·) dx

]t=τ

t=0
=
∫ τ

0

∫

Ω

[ 〈Vt,x ;m
〉 · ∂tϕ

+
〈
Vt,x ; m ⊗ m

�

〉
: ∇xϕ + 〈Vt,x , p

〉
divxϕ

]
dx dt

+
∫ τ

0

∫

Ω

μ2
C : ∇xϕ dx dt

(7.5)

for any 0 ≤ τ ≤ T , ϕ ∈ C1([0, T ] × Ω; RN ).

7.1.5 Energy Inequality for the Barotropic Euler System

In the barotropic case, the energy plays the role of the entropy, cf. (5.1). A priori
estimates (5.3) indicate that the energy

η(Uh) = |mh |2
2�h

+ P(�h)

is uniformly bounded in L∞(0, T ; L1(Ω)). Letting h → 0 in (3.3) for the barotropic
Euler system, we obtain

[∫

Ω

〈
Vt,x ; η(Uh(t))

〉
dx

]t=τ

t=0
+ D(t) ≤ 0,

with the dissipation defect D ∈ L∞(0, T ), D(t) ≥ 0, see [26] for details. Moreover,
applying [26, Lemma 2.1.] for

F(Uh(t)) =
∫

Ω

mh(t) ⊗ mh(t)

�h(t)
+ ph(t)I dx,
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G(Uh(t)) =
∫

Ω

η(Uh(t)) dx, a.a. t ∈ (0, T ),

we get the compatibility condition (2.10), specifically

∫

Ω

1 d|μ2
C | <∼ D a.a. in (0, T ).

7.1.6 Entropy Inequality and Energy Balance for the Complete Euler System

7.1.7 Entropy Inequality

Due to a priori estimates the entropy pair {(η(Uh),q(Uh))}h>0 for the complete
Euler system, cf. (6.9) and (6.10), is uniformly bounded in [L∞(0, T ; Lγ (Ω))] ×
[L∞(0, T ; Lr (Ω))]N . Therefore, we have

η(Uh) → η(U) weakly-(*) in L∞(0, T ; Lγ (Ω)),

q(Uh) → q(U) weakly-(*) in L∞(0, T ; Lr (Ω)), r = 2γ

γ + 1
> 1.

Letting h → 0 in the equation (6.14), we get analogously as before,

[∫

Ω

〈
Vt,x ; η(U)

〉 · ϕ(0, ·) dx
]t=τ

t=0

≥
∫ τ

0

∫

Ω

[ 〈
Vt,x ; η(U)

〉 · ∂tϕ + 〈
Vt,x ;q(U)

〉 · ∇x ϕ
]
dx dt

(7.6)

for a.a. 0 ≤ τ ≤ T , and any ϕ ∈ C1([0, T ] × Ω), ϕ ≥ 0.

7.1.8 Energy Balance

Equation (3.10c) of the complete Euler system yields the discrete energy balance

[∫

Ω

Eh(t) dx

]t=τ

t=0
= 0. (7.7)

Letting h → 0 in (7.7) and taking into account that {Eh}h>0 is uniformly bounded in
L∞(0, T ; L1(Ω)) we obtain

[∫

Ω

〈
Vt,x ; Eh(t)

〉
dx

]t=τ

t=0
+ D(t) = 0,

where D ∈ L∞(0, T ), D ≥ 0. We again apply [26, Lemma 2.1.] for

F(Uh(t)) =
∫

Ω

mh(t) ⊗ mh(t)

�h(t)
+ ph(t)I dx,
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G(Uh(t)) =
∫

Ω

Eh(t) dx, a.a. t ∈ (0, T ),

to get that

∫

Ω

1 d|μ2
C | <∼ D a.a. in (0, T ).

Summarizing the discussion of this section, we are ready to formulate the following
result.

Theorem 1 Let the initial data satisfy (7.1). Let Uh = [�h,mh, Eh] be a numerical
solution of the complete Euler system constructed by the schemes (3.9) or (3.10). In
addition, suppose that there exist constants �, E > 0 such that

� ≤ �h, Eh ≤ E, uniformly for h → 0. (7.8)

Then {Uh}h>0 up to a subsequence generates a Young measure

Vt,x ∈ L∞
weak(∗)((0, T ) × Ω,P([0,∞) × RN × [0,∞)))

representing a (DMV) solution of the completeEuler system in the sense ofDefinition2.

Note that hypothesis (7.8) is considerably weaker than the standard stipulation

‖Uh‖L∞ ≤ C, 0 < � ≤ �h, 0 < E ≤ Eh, (7.9)

cf. [10,16,32,34,39]. The missing piece of information between (7.8) and (7.9) is
provided by the careful analysis of the renormalized entropy inequality in Sect. 4, see
Lemma 3.

Similar result can be shown in the context of the barotropic Euler system.

Theorem 2 Let the initial data�0,m0 be as in (7.1). LetUh = [�h,mh] be a numerical
solution of the barotropic Euler system constructed by the schemes (3.7) or (3.8). In
addition,

• if Uh is generated by the scheme (3.7) and γ ≥ 3,, we suppose

0 < � ≤ �h uniformly for h → 0, (7.10)

• if Uh is generated by the scheme (3.7) and 1 < γ < 3,, we suppose

0 < � ≤ �h ≤ � uniformly for h → 0, (7.11)

• if Uh is generated by the scheme (3.8), we suppose

0 < � ≤ �h ≤ �, |mh | ≤ m, uniformly for h → 0, (7.12)
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for certain positive constants �, � and m.
Then {Uh}h>0 up to a subsequence generates a Young measure

Vt,x ∈ L∞
weak(∗)((0, T ) × Ω,P([0,∞) × RN ))

representing a (DMV) solution of the barotropic Euler system in the sense of Defini-
tion 1.

It should be pointed out that for the barotropic Euler system the only available
mathematical entropy is the energy, and in addition, its flux cannot be controlled in
the asymptotic limit for h → 0 unless we assume (7.12).

7.2 Convergence to Regular Solution

We have proven that the numerical solutions {Uh}h>0 to (3.8) and (3.10) for the
barotropic and the complete Euler system converge to a dissipative measure-valued
solution defined in Definitions 1 and 2, respectively. Employing the corresponding
(DMV)–strong uniqueness results from [37] and [12] we can show the strong conver-
gence to the strong solution of the system on its lifespan.

Theorem 3 Suppose that the approximate solutions {Uh}h>0 to (3.9) or (3.10) for
the complete Euler system generate a (DMV) solution in the sense of Definition 2.
In addition, let the Euler equations (2.15) possess the unique strong (continuously
differentiable) solution U = [�,m, E], emanating form the initial data (7.1).
Then

Uh → U strongly in L1((0, T ) × Ω).

More precisely,

�h → � weakly-(*) in L∞(0, T ; Lγ (Ω)) and strongly in L1((0, T ) × Ω),

mh → m weakly-(*) in L∞(0, T ; L2γ /(γ−1)(Ω)) and strongly in L1((0, T ) × Ω; RN )),

Eh → E weakly-(*) in L∞(0, T ; L1(Ω)) and strongly in L1((0, T ) × Ω).

(7.13)

Remark 11 Recall that the strong solution of the complete Euler system conserves
energy, in particular, the dissipation defect D, and, accordingly, the concentration
measure μ2

C vanish. This also justifies the strong convergence of the total energy
claimed in (7.13).

In contrast with Theorem1 the results stated in Theorem3 is unconditional provided
that:

• the limit system admits a smooth solution.
• the numerical solution generates a (DMV) solution.

Exactly the same result can be obtained for the barotropic Euler system (2.2) and
the entropy stable finite volume schemes (3.7) and (3.8).
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8 Conclusions

We have shown convergence of the Lax–Friedrichs-type finite volume schemes for
multidimensional barotropic and complete Euler equations. Since multidimensional
Euler equations are ill-posed in the class of weak solutions for L∞-initial data [28], we
propose here to investigate the convergence in the class of dissipative measure-valued
(DMV) solutions. The latter has been introduced for the Euler equations recently in
[12,13], see also the relatedworks on the (DMV) solutions of the compressibleNavier–
Stokes equations [26,27]. The (DMV) solutions represent the most general class of
solutions that still satisfy the weak–strong uniqueness property. Thus, if the strong
solution exists, the (DMV) solution coincides with the strong one on its lifespan, cf.
[37] and [12] for the barotropic and complete Euler equations, respectively.

We build on the concept of entropy stable schemes that has been introduced by
Tadmor [52], see also [53] and the references therein. We work here with the Lax–
Friedrichs-type finite volume schemes (3.7), (3.8) and (3.9), (3.10) that are entropy
stable. Furthermore, using some refined a priori estimates for the numerical solutions
we have shown consistency of our entropy stable schemes. More precisely, assuming
only strict positivity of the density and the upper bound on the energy we have proven
the consistency for the complete Euler system, cf. Corollary 2. On the other hand,
the consistency of the local Lax–Friedrichs-type scheme (3.7) for the barotropic Euler
equations with γ ≥ 3 can be obtained assuming only the strict positivity of density,
cf. Lemma 4. In Theorems 1, 2 we have shown that numerical solutions given by
the Lax–Friedrichs-type finite volume schemes generate Young measures represent-
ing (DMV) solutions of the complete and barotropic Euler equations, respectively.
Employing the corresponding (DMV)–strong uniqueness results we have shown in
Theorem 3 the strong convergence to the strong solution of the complete Euler system
on its lifespan. Analogous strong convergence result holds for the barotropic Euler
equations, too.
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