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Abstract
This paper addresses the optimal control problem known as the linear quadratic regu-
lator in the case when the dynamics are unknown.We propose a multistage procedure,
called Coarse-ID control, that estimates a model from a few experimental trials, esti-
mates the error in that model with respect to the truth, and then designs a controller
using both the model and uncertainty estimate. Our technique uses contemporary
tools from random matrix theory to bound the error in the estimation procedure. We
also employ a recently developed approach to control synthesis called System Level
Synthesis that enables robust control design by solving a quasi-convex optimization
problem. We provide end-to-end bounds on the relative error in control cost that are
optimal in the number of parameters and that highlight salient properties of the system
to be controlled such as closed-loop sensitivity and optimal control magnitude. We
show experimentally that the Coarse-ID approach enables efficient computation of a
stabilizing controller in regimes where simple control schemes that do not take the
model uncertainty into account fail to stabilize the true system.
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1 Introduction

Having surpassed human performance in video games [41] and Go [51], there has
been a renewed interest in applying machine learning techniques to planning and
control. In particular, there has been a considerable amount of effort in developing
new techniques for continuous control where an autonomous system interacts with
a physical environment [16,34]. A tremendous opportunity lies in deploying these
data-driven systems in more demanding interactive tasks including self-driving vehi-
cles, distributed sensor networks, and agile robotics. As the role of machine learning
expands to more ambitious tasks, however, it is critical these new technologies be safe
and reliable. Failure of such systems could have severe social and economic conse-
quences including the potential loss of human life. How can we guarantee that our
new data-driven automated systems are robust?

Unfortunately, there are no clean baselines delineating the possible control perfor-
mance achievable given a fixed amount of data collected from a system. Such baselines
would enable comparisons of different techniques and would allow engineers to trade
off between data collection and action in scenarios with high uncertainty. Typically, a
key difficulty in establishing baselines is in proving lower bounds that state the min-
imum amount of knowledge needed to achieve a particular performance, regardless
of method. However, in the context of controls, even upper bounds describing the
worst-case performance of competing methods are exceptionally rare. Without such
estimates, we are left to compare algorithms on a case-by-case basis, and we may
have trouble diagnosing whether poor performance is due to algorithm choice or some
other errors such as a software bug or a mechanical flaw.

In this paper, we attempt to build a foundation for a theoretical understanding of how
machine learning interfaces with control by analyzing one of the most well-studied
problems in classical optimal control, the Linear Quadratic Regulator (LQR). Here
we assume that the system to be controlled obeys linear dynamics, and we wish to
minimize some quadratic function of the system state and control action. This problem
has been studied for decades in control: it has a simple, closed-form solution on the
infinite time horizon and an efficient, dynamic programming solution on finite-time
horizons. When the dynamics are unknown, however, there are far fewer results about
achievable performance.

Our contribution is to analyze the LQR problem when the dynamics of the system
are unknown, and we can measure the system’s response to varied inputs. A naïve
solution to this problem would be to collect some data of how the system behaves
over time, fit a model to this data, and then solve the original LQR problem assuming
this model is accurate. Unfortunately, while this procedure might perform well given
sufficient data, it is difficult to determine how many experiments are necessary in
practice. Furthermore, it is easy to construct examples where the procedure fails to
find a stabilizing controller.

As an alternative, we propose a method that couples our uncertainty in estimation
with the control design. Our main approach uses the following framework of Coarse-
ID control to solve the problem of LQR with unknown dynamics:

1. Use supervised learning to learn a coarse model of the dynamical system to be
controlled. We refer to the system estimate as the nominal system.
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2. Using either prior knowledge or statistical tools like the bootstrap, build proba-
bilistic guarantees about the distance between the nominal system and the true,
unknown dynamics.

3. Solve a robust optimization problem over controllers that optimizes performance
of the nominal systemwhile penalizing signals with respect to the estimated uncer-
tainty, ensuring stable and robust execution.

Wewill show that for a sufficient number of observations of the system, this approach is
guaranteed to return a control policywith small relative cost. In particular, it guarantees
asymptotic stability of the closed-loop system. In the case of LQR, step 1 of Coarse-ID
control simply requires solving a linear least squares problem, step 2 uses a finite sam-
ple theoretical guarantee or a standard bootstrap technique, and step 3 requires solving
a small semidefinite program. Analyzing this approach, on the other hand, requires
contemporary techniques in nonasymptotic statistics and a novel parameterization of
control problems that renders nonconvex problems convex [38,59].

We demonstrate the utility of our method on a simple simulation. In the presented
example, we show that simply using the nominal system to design a control policy
frequently results in unstable closed-loop behavior, even when there is an abundance
of data from the true system. However, the Coarse-ID approach finds a stabilizing
controller with few system observations.

1.1 Problem Statement and Our Contributions

The standard optimal control problem aims to find a control sequence that minimizes
an expected cost. We assume a dynamical system with state xt ∈ R

n can be acted on
by a control ut ∈ R

p and obeys the stochastic dynamics

xt+1 = ft (xt , ut , wt ) (1)

where wt is a random process with wt independent of wt ′ for all t �= t ′. Optimal
control then seeks to minimize

minimize E

[
1
T

∑T
t=1 ct (xt , ut )

]

subject to xt+1 = ft (xt , ut , wt )
. (2)

Here, ct denotes the state-control cost at every time step, and the input ut is allowed
to depend on the current state xt and all previous states and actions. In this general-
ity, problem (2) encapsulates many of the problems considered in the reinforcement
learning literature.

The simplest optimal control problem with continuous state is the linear quadratic
regulator (LQR), in which costs are a fixed quadratic function of state and control and
the dynamics are linear and time-invariant:

minimize E

[
1
T

∑T
t=1 x

∗
t Qxt + u∗

t−1Rut−1

]

subject to xt+1 = Axt + But + wt
. (3)

123



636 Foundations of Computational Mathematics (2020) 20:633–679

Here Q (resp. R) is a n × n (resp. p × p) positive definite matrix, A and B are called
the state-transition matrices, and wt ∈ R

n is Gaussian noise with zero mean and
covariance �w. Throughout, M∗ denotes the Hermitian transpose of the matrix M .

In what follows, we will be concerned with the infinite time horizon variant of
the LQR problem where we let the time horizon T go to infinity and minimize the
average cost.When the dynamics are known, this problemhas a celebrated closed-form
solution based on the solution of matrix Riccati equations [64]. Indeed, the optimal
solution sets ut = Kxt for a fixed p × n matrix K , and the corresponding optimal
cost will serve as our gold-standard baseline to which we will compare the achieved
cost of all algorithms.

In the case when the state-transition matrices are unknown, fewer results have
been established about what cost is achievable. We will assume that we can conduct
experiments of the following form: given some initial state x0, we can evolve the
dynamics for T time steps using any control sequence {u0, . . . , uT−1}, measuring the
resulting output {x1, . . . , xT }. If we run N such independent experiments, what infinite
time horizon control cost is achievable using only the data collected? For simplicity
of bookkeeping, in our analysis we further assume that we can prepare the system in
initial state x0 = 0.

In what follows, we will examine the performance of the Coarse-ID control frame-
work in this scenario. We will estimate the errors accrued by least squares estimates
( Â, B̂) of the system dynamics. This estimation error is not easily handled by standard
techniques because the design matrix is highly correlated with the model to be esti-
mated. Regardless, for theoretical tractability, we can build a least squares estimate
using only the final sample (xT , xT−1, uT−1) of each of the N experiments. Indeed,
in Sect. 2 we prove the following

Proposition 1 Define the matrices

GT = [
AT−2B AT−3B . . . B

]
and FT = [

AT−2 AT−3 . . . In
]

. (4)

Assume we collect data from the linear, time-invariant system initialized at x0 = 0,

using inputs ut
i.i.d.∼ N (0, σ 2

u Ip) for t = 0, . . . , T − 1, with T ≥ 2. Suppose that the

process noise is wt
i.i.d.∼ N (0, σ 2

w In) and that

N ≥ 8(n + p) + 16 log(4/δ) .

Then, with probability at least 1 − δ, the least squares estimator using only the final
sample of each trajectory satisfies both the inequality

‖ Â − A‖2 ≤ 16σw√
λmin(σ 2

u GT G∗
T + σ 2

wFT F∗
T )

√
(2n + p) log(36/δ)

N
, (5)

and the inequality

‖B̂ − B‖2 ≤ 16σw

σu

√
(2n + p) log(36/δ)

N
. (6)
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The details of the estimation procedure are described in Sect. 2. Note that this
estimation result seems to yield an optimal dependence in terms of the number of
parameters: (A, B) together have n(n+ p) parameters to learn and each measurement
consists of n values. Moreover, this proposition further illustrates that not all linear
systems are equally easy to estimate. The matrices GTG∗

T and FT F∗
T are finite-time

controllability Gramians for the control and noise inputs, respectively. These are stan-
dard objects in control: each eigenvalue/vector pair of such a Gramian characterizes
how much input energy is required to move the system in that particular direction
of the state space. Therefore, λmin

(
σ 2
u GT G∗

T + σ 2
wFT F∗

T

)
quantifies the least con-

trollable, and hence most difficult to excite and estimate, mode of the system. This
property is captured nicely in our bound, which indicates that for systems for which
all modes are easily excitable (i.e., all modes of the system amplify the applied inputs
and disturbances), the identification task becomes easier.

While we cannot compute the operator norm error bounds (5) and (6) without
knowing the true systemmatrices (A, B), we present a data-dependent bound in Propo-
sition 3.Moreover, aswe show in Sect. 2.3, a simple bootstrap procedure can efficiently
upper bound the errors εA := ‖A − Â‖2 and εB := ‖B − B̂‖2 from simulation.

With our estimates ( Â, B̂) and error bounds (εA, εB) in hand, we can turn to the
problem of synthesizing a controller. We can assert with high probability that A =
Â + �A and B = B̂ + �B , for ‖�A‖2 ≤ εA and ‖�B‖2 ≤ εB , where the size of
the error terms is determined by the number of samples N collected. In light of this,
it is natural to pose the following robust variant of the standard LQR optimal control
problem (3), which computes a robustly stabilizing controller that seeks to minimize
the worst-case performance of the system given the (high probability) norm bounds
on the perturbations �A and �B :

minimize sup
‖�A‖2≤εA‖�B‖2≤εB

limT→∞ 1
T

∑T
t=1 E

[
x∗
t Qxt + u∗

t−1Rut−1
]

subject to xt+1 = ( Â + �A)xt + (B̂ + �B)ut + wt

. (7)

Although classic methods exist for computing such controllers [21,45,53,60], they
typically require solving nonconvex optimization problems, and it is not readily obvi-
ous how to extract interpretable measures of controller performance as a function of
the perturbation sizes εA and εB . To that end, we leverage the recently developed
System Level Synthesis (SLS) framework [59] to create an alternative robust synthe-
sis procedure. Described in detail in Sect. 3, SLS lifts the system description into a
higher-dimensional space that enables efficient search for controllers. At the cost of
some conservatism, we are able to guarantee robust stability of the resulting closed-
loop system for all admissible perturbations and bound the performance gap between
the resulting controller and the optimal LQR controller. This is summarized in the
following proposition.

Proposition 2 Let ( Â, B̂) be estimated via the independent data collection scheme
used in Proposition 1 and ̂K synthesized using robust SLS. Let Ĵ denote the infinite
time horizon LQR cost accrued by using the controller ̂K and J� denote the optimal
LQR cost achieved when (A, B) are known. Then the relative error in the LQR cost is
bounded as
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Ĵ − J�
J�

≤ O
(
CLQR

√
(n + p) log(1/δ)

N

)
(8)

with probability 1 − δ provided N is sufficiently large.

The complexity term CLQR depends on the rollout length T , the true dynamics,
the matrices (Q, R) which define the LQR cost, and the variances σ 2

u and σ 2
w of the

control and noise inputs, respectively. The 1−δ probability comes from the probability
of estimation error from Proposition 1. The particular form of CLQR and concrete
requirements on N are both provided in Sect. 4.

Though the optimization problem formulated by SLS is infinite dimensional, in
Sect. 5 we provide two finite-dimensional upper bounds on the optimization that
inherit the stability guarantees of the SLS formulation. Moreover, we show via numer-
ical experiments in Sect. 6 that the controllers synthesized by our optimization do
indeed provide stabilizing controllers with small relative error. We further show that
settings exist wherein a naïve synthesis procedure that ignores the uncertainty in the
state-space parameter estimates produces a controller that performs poorly (or has
unstable closed-loop behavior) relative to the controller synthesized using the SLS
procedure.

1.2 RelatedWork

We first describe related work in the estimation of unknown dynamical systems and
then turn to connections in the literature on robust control with uncertain models. We
will end this review with a discussion of a few works from the reinforcement learning
community that have attempted to address the LQR problem and related variants.
Estimation of Unknown Dynamical Systems

Estimation of unknown systems, especially linear dynamical systems, has a long
history in the system identification subfield of control theory. While the text of Ljung
[36] covers the classical asymptotic results, our interest is primarily in nonasymp-
totic results. Early results [10,57] on nonasymptotic rates for parameter identification
featured conservative bounds which are exponential in the system degree and other
relevant quantities. More recently, Bento et al. [46] show that when the A matrix is
stable and induced by a sparse graph, then one can recover the support of A from
a single trajectory using 	1-penalized least squares. Furthermore, Hardt et al. [26]
provide the first polynomial-time guarantee for identifying stable linear systems with
outputs. Their guarantees, however, are in terms of predictive output performance of
the model and require an assumption on the true system that is more stringent than
stability. It is not clear how their statistical risk guarantee can be used in a downstream
robust synthesis procedure.

Next,we turnour attention to system identificationof linear systems in the frequency
domain. A comprehensive text on these methods (which differ from the aforemen-
tioned state-space methods) is the work by Chen and Gu [11]. For stable systems,
Helmicki et al. [29] propose to identify a finite impulse response (FIR) approxima-
tion by directly estimating the first r impulse response coefficients. This method is
analyzed in a nonadversarial probabilistic setting by [23,54], who prove that a poly-
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nomial number of samples are sufficient to recover a FIR filter which approximates
the true system in both 	p-norm and H∞-norm. However, transfer function methods
do not easily allow for optimal control with state variables, since they only model the
input/output behavior of the system.

In parallel with the system identification community, identification of auto-
regressive time-series models is a widely studied topic in the statistics literature (see,
e.g., Box et al. [7] for the classical results). Goldenshluger and Zeevi [24] show that
the coefficients of a stationary auto-regressive model can be estimated from a single
trajectory of length polynomial in 1/(1 − ρ) via least squares, where ρ denotes the
stability radius of the process. They also prove that their rate is minimax optimal.More
recently, several authors [33,39,42] have studied generalization bounds for non-i.i.d.
data, extending the standard learning theory guarantees for independent data. At the
crux of these arguments lie various mixing assumptions [63], which limits the analysis
to only hold for stable dynamical systems. Results in this line of research suggest that
systems with smaller mixing time (i.e., systems that are more stable) are easier to iden-
tify (i.e., take less samples). Our result in Proposition 1, however, suggests instead that
identification benefits from more easily excitable systems. While our analysis holds
when we have access to full state observations, empirical testing suggests that Propo-
sition 1 reflects reality more accurately than arguments based on mixing. In follow-up
work, we have begun to reconcile this issue for stable linear systems [52].
Robust Controller Design

For end-to-end guarantees, parameter estimation is only half the picture. Our proce-
dure provides us with a family of system models described by a nominal estimate and
a set of unknown but bounded model errors. It is therefore necessary to ensure that the
computed controller has stability and performance guarantees for any such admissible
realization. The problem of robustly stabilizing such a family of systems is one with
a rich history in the controls community. When modeling errors to the nominal sys-
tem are allowed to be arbitrary norm-bounded linear time-invariant (LTI) operators in
feedback with the nominal plant, traditional small-gain theorems and robust synthesis
techniques can be applied to exactly solve the problem [13,64]. However, when the
errors are known to havemore structure, there aremore sophisticated techniques based
on structured singular values and correspondingμ-synthesis techniques [15,19,44,62]
or integral quadratic constraints (IQCs) [40]. While theoretically appealing and much
less conservative than traditional small-gain approaches, the resulting synthesis meth-
ods are both computationally intractable (although effective heuristics do exist) and
difficult to interpret analytically. In particular, we know of no results in the literature
that bound the degradation in performance of controlling an uncertain system in terms
of the size of the perturbations affecting it.

To circumvent this issue, we leverage a novel parameterization of robustly stabiliz-
ing controllers based on the SLS framework for controller synthesis [59]. We describe
this framework in more detail in Sect. 3. Originally developed to allow for scaling
optimal and robust controller synthesis techniques to large-scale systems, the SLS
framework can be viewed as a generalization of the celebrated Youla parameterization
[61]. We show that SLS allows us to account for model uncertainty in a transparent
and analytically tractable way.
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PAC Learning and Reinforcement Learning
In terms of end-to-end guarantees for LQR, our work is most comparable to that

of Fiechter [22], who shows that the discounted LQR problem is PAC-learnable.
Fietcher analyzes an identify-then-control scheme similar to the one we propose, but
there are several key differences. First, our probabilistic bounds on identification are
much sharper, by leveraging modern tools from high-dimensional statistics. Second,
Fiechter implicitly assumes that the true closed-loop system with the estimated con-
troller is not only stable but also contractive. While this very strong assumption is
nearly impossible to verify in practice, contractive closed-loop assumptions are actu-
ally pervasive throughout the literature, as we describe below. To the best of our
knowledge, our work is the first to properly lift this technical restriction. Third, and
most importantly, Fietcher proposes to directly solve the discounted LQR problem
with the identified model and does not take into account any uncertainty in the con-
troller synthesis step. This is problematic for two reasons. First, it is easy to construct
an instance of a discounted LQR problemwhere the optimal solution does not stabilize
the true system (see, e.g., [47]). Therefore, even in the limit of infinite data, there is
no guarantee that the closed-loop system will be stable. Second, even if the optimal
solution does stabilize the underlying system, failing to take uncertainty into account
can lead to situations where the synthesized controller does not. We will demonstrate
this behavior in our experiments.

We are also particularly interested in the LQR problem as a baseline for more
complicated problems in reinforcement learning (RL). LQR should be a relatively
easy problem in RL because one can learn the dynamics from anywhere in the state
space, vastly simplifying the problem of exploration. Hence, it is important to establish
how well a pure exploration followed by exploitation strategy can fare on this simple
baseline.

There are indeed some related efforts inRLandonline learning.Abbasi-Yadkori and
Szepesvari [1] propose to use the optimism in the face of uncertainty (OFU) principle
for the LQR problem, by maintaining confidence ellipsoids on the true parameter, and
using the controller which, in feedback, minimizes the cost objective the most among
all systems in the confidence ellipsoid. Ignoring the computational intractability of this
approach, their analysis reveals an exponential dependence in the system order in their
regret bound and also makes the very strong assumption that the optimal closed-loop
systems are contractive for every A, B in the confidence ellipsoid. The regret bound
is improved by Ibrahimi et al. [30] to depend linearly on the state dimension under
additional sparsity constraints on the dynamics.

In response to the computational intractability of the OFU principle, researchers in
RL and online learning proposed the use of Thompson sampling [49] for exploration.
Abeille and Lazaric [2] show that the regret of a Thompson sampling approach for
LQR scales as Õ(T 2/3) and improve the result to Õ(

√
T ) in [3], where Õ(·) hides

poly-logarithmic factors. However, their results are only valid for the scalar n = d = 1
setting. Ouyang et al. [43] show that in a Bayesian setting, the expected regret can be
bounded by Õ(

√
T ). While this matches the bound of [1], the Bayesian regret is with

respect to a particular Gaussian prior distribution over the true model, which differs
from the frequentist setting considered in [1–3]. Furthermore, these works also make
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the same restrictive assumption that the optimal closed-loop systems are uniformly
contractive over some known set.

Jiang et al. [31] propose a general exploration algorithm for contextual decision
processes (CDPs) and show that CDPs with low Bellman rank are PAC-learnable; in
the LQR setting, they show the Bellman rank is bounded by n2. While this result is
appealing from an information-theoretic standpoint, the proposed algorithm is compu-
tationally intractable for continuous problems. Hazan et al. [27,28] study the problem
of prediction in a linear dynamical system via a novel spectral filtering algorithm.
Their main result shows that one can compete in a regret setting in terms of predic-
tion error. As mentioned previously, converting prediction error bounds into concrete
bounds on sub-optimality of control performance is an open question. Fazel et al. [20]
show that randomized search algorithms similar to policy gradient can learn the opti-
mal controller with a polynomial number of samples in the noiseless case; an explicit
characterization of the dependence of the sample complexity on the parameters of the
true system is not given.

2 System Identification Through Least Squares

To estimate a coarse model of the unknown system dynamics, we turn to the simple
and classical method of linear least squares. By running experiments in which the
system starts at x0 = 0 and the dynamics evolve with a given input, we can record the
resulting state observations. The set of inputs and outputs from each such experiment
will be called a rollout. For system estimation, we excite the system with Gaussian
noise for N rollouts, each of length T . The resulting dataset is {(x (	)

t , u(	)
t ) : 1 ≤ 	 ≤

N , 0 ≤ t ≤ T }, where t indexes the time in one rollout and 	 indexes independent
rollouts. Therefore, we can estimate the system dynamics by

( Â, B̂) ∈ arg min
(A,B)

N∑
	=1

T−1∑
t=0

1

2
‖Ax (	)

t + Bu(	)
t − x (	)

t+1‖22. (9)

For the Coarse-ID control setting, a good estimate of error is just as important as
the estimate of the dynamics. Statistical theory and tools allow us to quantify the error
of the least squares estimator. First, we present a theoretical analysis of the error in
a simplified setting. Then, we describe a computational bootstrap procedure for error
estimation from data alone.

2.1 Least Squares Estimation as a RandomMatrix Problem

We begin by explicitly writing the form of the least squares estimator. First, fixing
notation to simplify the presentation, let � := [

A B
]∗ ∈ R

(n+p)×n and let zt :=[
xt
ut

]
∈ R

n+p. Then, the system dynamics can be rewritten, for all t ≥ 0,

x∗
t+1 = z∗t � + w∗

t .

Then in a single rollout, we will collect
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X :=

⎡
⎢⎢⎢⎣

x∗
1
x∗
2
...

x∗
T

⎤
⎥⎥⎥⎦ , Z :=

⎡
⎢⎢⎢⎣

z∗0
z∗1
...

z∗T−1

⎤
⎥⎥⎥⎦ , W :=

⎡
⎢⎢⎢⎣

w∗
0

w∗
1
...

w∗
T−1

⎤
⎥⎥⎥⎦ . (10)

The system dynamics give the identity X = Z�+W . Resetting state of the system to
x0 = 0 each time, we can perform N rollouts and collect N datasets like (10). Having
the ability to reset the system to a state independent of past observations will be
important for the analysis in the following section, and it is also practically important
for potentially unstable systems. Denote the data for each rollout as (X (	), Z (	),W (	)).
With slight abuse of notation, let XN be composed of vertically stacked X (	), and
similarly for ZN and WN . Then, we have

XN = ZN� + WN .

The full data least squares estimator for� is (assuming for now invertibility of Z∗
N ZN ),

�̂ = (Z∗
N ZN )−1Z∗

N XN = � + (Z∗
N ZN )−1Z∗

NWN . (11)

Then the estimation error is given by

E := �̂ − � = (Z∗
N ZN )−1Z∗

NWN . (12)

The magnitude of this error is the quantity of interest in determining confidence sets
around estimates ( Â, B̂). However, since WN and ZN are not independent, this esti-
mator is difficult to analyze using standard methods. While this type of analysis is an
open problem of interest, in this paper we turn instead to a simplified estimator.

2.2 Theoretical Bounds on Least Squares Error

In this section, we work out the statistical rate for the least squares estimator which
uses just the last sample of each trajectory (x (	)

T , x (	)
T−1, u

(	)
T−1). This estimation pro-

cedure is made precise in Algorithm 1. Our analysis ideas are analogous to those
used to prove statistical rates for standard linear regression, and they leverage recent
tools in nonasymptotic analysis of random matrices. The result is presented above in
Proposition 1.

In the context of Proposition 1, a single data point from each T -step rollout is used.
We emphasize that this strategy results in independent data, which can be seen by
defining the estimator matrix directly. The previous estimator (11) is amended as
follows: the matrices defined in (10) instead include only the final time step of each

trial, XN =
[
x (1)
T x (2)

T . . . x (N )
T

]∗
, and similar modifications are made to ZN andWN .

Estimator (11) uses these modified matrices, which now contain independent rows.
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Algorithm 1 Estimation of linear dynamics with independent data
1: for 	 from 1 to N do
2: x(	)

0 = 0
3: for t from 0 to T − 1 do
4: x(	)

t+1 = Ax(	)
t + Bu(	)

t + w
(	)
t with w

(	)
t

i.i.d.∼ N (0, σ 2
w In) and u(	)

t
i.i.d.∼ N (0, σ 2

u Ip).
5: end for
6: end for
7: ( Â, B̂) ∈ argmin(A,B)

∑N
	=1

1
2 ‖Ax(	)

T−1 + Bu(	)
T−1 − x(	)

T ‖22

To see this, recall the definition of GT and FT from (4),

GT = [
AT−2B AT−3B . . . B

]
, FT = [

AT−2 AT−3 . . . In
]

,

defined for T ≥ 2. We can unroll the system dynamics and see that

xT−1 = GT

⎡
⎢⎢⎢⎣

u0
u1
...

uT−2

⎤
⎥⎥⎥⎦ + FT

⎡
⎢⎢⎢⎣

w0
w1
...

wT−2

⎤
⎥⎥⎥⎦ . (13)

Using Gaussian excitation, ut ∼ N (0, σ 2
u Ip) gives

[
xT−1
uT−1

]
∼ N

(
0,

[
σ 2
u GT G∗

T + σ 2
wFT F∗

T 0
0 σ 2

u Ip

])
. (14)

Since FT F∗
T  0, as long as both σu, σw are positive, this is a nondegenerate distri-

bution.
Therefore, bounding the estimation error can be achieved via proving a result on

the error in random design linear regression with vector-valued observations. First, we
present a lemma which bounds the spectral norm of the product of two independent
Gaussian matrices.

Lemma 1 Fix a δ ∈ (0, 1) and N ≥ 2(n + m) log(1/δ). Let fk ∈ R
m, gk ∈ R

n be
independent random vectors fk ∼ N (0, � f ) and gk ∼ N (0, �g) for 1 ≤ k ≤ N.
With probability at least 1 − δ,

∥∥∥∥∥
N∑

k=1

fkg
∗
k

∥∥∥∥∥
2

≤ 4‖� f ‖1/22 ‖�g‖1/22

√
N (m + n) log(9/δ) .

We believe this bound to be standard and include a proof in the appendix for
completeness. Lemma 1 shows that if X is n1 × N with i.i.d.N (0, 1) entries and Y is
N ×n2 with i.i.d.N (0, 1) entries, and X and Y are independent, then with probability
at least 1 − δ we have

‖XY‖2 ≤ 4
√
N (n1 + n2) log(9/δ) .
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Next, we state a standard nonasymptotic bound on the minimum singular value of a
standard Wishart matrix (see, e.g., Corollary 5.35 of [56]).

Lemma 2 Let X ∈ R
N×n have i.i.d. N (0, 1) entries. With probability at least 1 − δ,

√
λmin(X∗X) ≥ √

N − √
n − √

2 log(1/δ) .

We combine the previous lemmas into a statement on the error of random design
regression.

Lemma 3 Let z1, . . . , zN ∈ R
n be i.i.d. from N (0, �) with � invertible. Let Z∗ :=[

z1 ... zN
]
. Let W ∈ R

N×p with each entry i.i.d.N (0, σ 2
w) and independent of Z. Let

E := (Z∗Z)†Z∗W, and suppose that

N ≥ 8n + 16 log(2/δ) . (15)

For any fixed matrix Q, we have with probability at least 1 − δ,

‖QE‖2 ≤ 16σw‖Q�−1/2‖2
√

(n + p) log(18/δ)

N
.

Proof First, observe that Z is equal in distribution to X�1/2, where X ∈ R
N×n has

i.i.d. N (0, 1) entries. By Lemma 2, with probability at least 1 − δ/2,

√
λmin(X∗X) ≥ √

N − √
n − √

2 log(2/δ) ≥ √
N/2 .

The last inequality uses (15) combined with the inequality (a + b)2 ≤ 2(a2 + b2).
Furthermore, by Lemma 1 and (15), with probability at least 1 − δ/2,

‖X∗W‖2 ≤ 4σw

√
N (n + p) log(18/δ) .

Let E denote the event which is the intersection of the two previous events. By a union
bound, P(E) ≥ 1 − δ. We continue the rest of the proof assuming the event E holds.
Since X∗X is invertible,

QE = Q(Z∗Z)†Z∗W = Q(�1/2X∗X�1/2)†�1/2X∗W = Q�−1/2(X∗X)−1X∗W .

Taking operator norms on both sides,

‖QE‖2 ≤ ‖Q�−1/2‖2‖(X∗X)−1‖2‖X∗W‖2 = ‖Q�−1/2‖2 ‖X∗W‖2
λmin(X∗X)

.

Combining the inequalities above,

‖X∗W‖2
λmin(X∗X)

≤ 16σw

√
(n + p) log(18/δ)

N
.

The result now follows. ��
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Using this result on random design linear regression, we are now ready to ana-
lyze the estimation errors of the identification in Algorithm 1 and provide a proof of
Proposition 1.

Proof Consider the least squares estimation error (12) with modified single-sample-
per-rollout matrices. Recall that rows of the design matrix ZN are distributed as
independent normals, as in (14). Then applying Lemma 3 with QA = [

In 0
]
so

that QAE extracts only the estimate for A, we conclude that with probability at least
1 − δ/2,

‖ Â − A‖2 ≤ 16σw√
λmin(σ 2

u GT G∗
T + σ 2

wFT F∗
T )

√
(2n + p) log(36/δ)

N
, (16)

as long as N ≥ 8(n + p) + 16 log(4/δ). Now applying Lemma 3 under the same
condition on N with QB = [

0 Ip
]
, we have with probability at least 1 − δ/2,

‖B̂ − B‖2 ≤ 16σw

σu

√
(2n + p) log(36/δ)

N
. (17)

The result follows by application of the union bound. ��

There are several interesting points to make about the guarantees offered by Propo-
sition 1. First, as mentioned in the introduction, there are n(n + p) parameters to
learn and our bound states that we need O(n + p) measurements, each measurement
providing n values. Hence, this appears to be an optimal dependence with respect to
the parameters n and p. Second, note that intuitively, if the system amplifies the con-
trol and noise inputs in all directions of the state space, as captured by the minimum
eigenvalues of the control and disturbance Gramians GTG∗

T or FT F∗
T , respectively,

then the system has a larger “signal-to-noise” ratio, and the system matrix A is easier
to estimate. On the other hand, this measure of the excitability of the system has no
impact on learning B. Unlike in Fiechter’s work [22], we do not need to assume that
GTG∗

T is invertible. As long as the process noise is not degenerate, it will excite all
modes of the system.

Finally, we note that Proposition 1 offers a data-independent guarantee for the
estimation of the parameters (A, B). We can also provide data-dependent guarantees,
which will be less conservative in practice. The next result shows how we can use the
observed states and inputs to obtain more refined confidence sets than the ones offered
by Proposition 1. The proof is deferred to Appendix B.

Proposition 3 Assume we have N independent samples (y(	), x (	), u(	)) such that

y(	) = Ax (	) + Bu(	) + w(	),

where w(	) are i.i.d. N (0, σ 2
w In) and are independent from x (	) and u(	). Also, let us

assume that N ≥ n + p. Then, with probability 1 − δ, we have
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[
( Â − A)�
(B̂ − B)�

] [
( Â − A) (B̂ − B)

] � C(n, p, δ)

(
N∑

	=1

[
x (	)

u(	)

] [
(x (	))� (u(	))�

])−1

,

where C(n, p, δ) = σ 2
w(

√
n + p + √

n + √
2 log(1/δ))2. If the matrix on the right-

hand side has zero as an eigenvalue, we define the inverse of that eigenvalue to be
infinity.

Proposition 3 is a general result that does not require the inputs u(	) to be normally
distributed and it allows the states x (	) to be arbitrary as long as all the samples
(y(	), x (	), u(	)) are independent and the process noise w(	) is normally distributed.
Nonetheless, both Propositions 1 and 3 require estimating (A, B) from independent
samples. In practice, one would collect rollouts from the system, which consist of
many dependent measurements. In that case, using all the data is preferable. Since
the guarantees offered in this section do not apply in that case, in the next section we
study a different procedure for estimating the size of the estimation error.

2.3 EstimatingModel Uncertainty with the Bootstrap

In the previous sections, we offered theoretical guarantees on the performance of the
least squares estimation of A and B from independent samples. However, there are
two important limitations to using such guarantees in practice to offer upper bounds on
εA = ‖A− Â‖2 and εB = ‖B − B̂‖2. First, using only one sample per system rollout
is empirically less efficient than using all available data for estimation. Second, even
optimal statistical analyses often do not recover constant factors that match practice.
For purposes of robust control, it is important to obtain upper bounds on εA and εB
that are not too conservative. Thus, we aim to find ε̂A and ε̂B such that εA ≤ ε̂A and
εB ≤ ε̂B with high probability.

We propose a vanilla bootstrap method for estimating ε̂A and ε̂B . Bootstrap meth-
ods have had a profound impact in both theoretical and applied statistics since their
introduction [18]. These methods are used to estimate statistical quantities (e.g., confi-
dence intervals) by sampling synthetic data from an empirical distribution determined
by the available data. For the problem at hand, we propose the procedure described in
Algorithm 2.1

For ε̂A and ε̂B estimated by Algorithm 2, we intuitively have

P(‖A − Â‖2 ≤ ε̂A) ≈ 1 − δ and P(‖B − B̂‖2 ≤ ε̂B) ≈ 1 − δ.

There are many known guarantees for the bootstrap, particularly for the parametric
version we use. We do not discuss these results here; for more details, see texts by Van
Der Vaart and Wellner [55], Shao and Tu [50], and Hall [25]. Instead, in Appendix F
we show empirically the performance of the bootstrap for our estimation problem.
For mission critical systems, where empirical validation is insufficient, the statistical

1 We assume that σu and σw are known. Otherwise, they can be estimated from data.
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Algorithm 2 Bootstrap estimation of εA and εB

1: Input: confidence parameter δ, number of trials M , data {(x(i)
t , u(i)

t )}1≤i≤N
1≤t≤T

, and ( Â, B̂) a minimizer

of
∑N

	=1
∑T−1

t=0
1
2 ‖Ax(	)

t + Bu(	)
t − x(	)

t+1‖22.
2: for M trials do
3: for 	 from 1 to N do
4: x̂(	)

0 = x(	)
0

5: for t from 0 to T − 1 do
6: x̂(	)

t+1 = Âx̂(	)
t + B̂û(	)

t + ŵ
(	)
t with ŵ

(	)
t

i.i.d.∼ N (0, σ 2
w In) and û(	)

t
i.i.d.∼ N (0, σ 2

u Ip).
7: end for
8: end for
9: ( Ã, B̃) ∈ argmin(A,B)

∑N
	=1

∑T−1
t=0

1
2 ‖Ax̂(	)

t + Bû(	)
t − x̂(	)

t+1‖22.
10: record ε̃A = ‖ Â − Ã‖2 and ε̃B = ‖B̂ − B̃‖2.
11: end for
12: Output: ε̂A and ε̂B , the 100(1 − δ)th percentiles of the ε̃A’s and the ε̃B ’s.

error bounds presented in Sect. 2.2 give guarantees on the size of εA, εB . In general,
data-dependent error guarantees will be less conservative. In follow-up work, we offer
guarantees similar to the ones presented in Sect. 2.2 for estimation of linear dynamics
from dependent data [52].

3 Robust Synthesis

With estimates of the system ( Â, B̂) and operator norm error bounds (εA, εB) in hand,
we now turn to control design. In this section, we introduce some useful tools from
System Level Synthesis (SLS), a recently developed approach to control design that
relies on a particular parameterization of signals in a control system [38,59].We review
the main SLS framework, highlighting the key constructions that we will use to solve
the robust LQR problem. As we show in this and the following section, using the
SLS framework, as opposed to traditional techniques from robust control, allows us to
(a) compute robust controllers using semidefinite programming and (b) provide sub-
optimality guarantees in terms of the size of the uncertainties on our system estimates.

3.1 Useful Results from System Level Synthesis

The SLS framework focuses on the system responses of a closed-loop system. As
a motivating example, consider linear dynamics under a fixed static state-feedback
control policy K , i.e., let uk = Kxk . Then, the closed-loop map from the disturbance
process {w0, w1, . . . } to the state xk and control input uk at time k is given by

xk = ∑k
t=1(A + BK )k−twt−1 ,

uk = ∑k
t=1 K (A + BK )k−twt−1 .

(18)

Letting �x (k) := (A + BK )k−1 and �u(k) := K (A + BK )k−1, we can rewrite
Eq. (18) as
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[
xk
uk

]
=

k∑
t=1

[
�x (k − t + 1)
�u(k − t + 1)

]
wt−1 , (19)

where {�x (k),�u(k)} are called the closed-loop system response elements induced
by the static controller K .

Note that even when the control is a linear function of the state and its past history
(i.e., a linear dynamic controller), expression (19) is valid. Though we conventionally
think of the control policy as a function mapping states to input, whenever such a
mapping is linear, both the control input and the state can be written as linear functions
of the disturbance signal wt . With such an identification, the dynamics require that
the {�x (k),�u(k)} must obey the constraints

�x (k + 1) = A�x (k) + B�u(k) , �x (1) = I , ∀k ≥ 1 , (20)

As we describe in more detail below in Theorem 1, these constraints are in fact both
necessary and sufficient. Working with closed-loop system responses allows us to cast
optimal control problems as optimization problems over elements {�x (k),�u(k)},
constrained to satisfy the affine Eq. (20). Comparing Eqs. (18) and (19), we see that
the former is nonconvex in the controller K , whereas the latter is affine in the elements
{�x (k),�u(k)}.

As we work with infinite horizon problems, it is notationally more convenient
to work with transfer function representations of the above objects, which can be
obtained by taking a z-transform of their time-domain representations. The frequency-
domain variable z can be informally thought of as the time-shift operator, i.e.,
z{xk, xk+1, . . . } = {xk+1, xk+2, . . . }, allowing for a compact representation of LTI
dynamics. We use boldface letters to denote such transfer functions signals in the
frequency domain, e.g., �x (z) = ∑∞

k=1 �x (k)z−k . Then, constraints (20) can be
rewritten as

[
z I − A −B

] [�x

�u

]
= I ,

and the corresponding (not necessarily static) control law u = Kx is given by
K = �u�

−1
x . The relevant frequency-domain connections for LQR are illustrated

in Appendix C.
We formalize our discussion by introducing notation that is common in the controls

literature. For a thorough introduction to the functional analysis commonly used in
control theory, see Chapters 2 and 3 of [64]. LetT (resp.D) denote the unit circle (resp.
open unit disk) in the complex plane. The restriction of the Hardy spacesH∞(T) and
H2(T) to matrix-valued real-rational functions that are analytic on the complement
of D will be referred to as RH∞ and RH2, respectively. In controls parlance, this
corresponds to (discrete-time) stable matrix-valued transfer functions. For these two
function spaces, theH∞ and H2 norms simplify to

‖G‖H∞ = sup
z∈T

‖G(z)‖2 , ‖G‖H2 =
√

1

2π

∫

T

‖G(z)‖2F dz . (21)
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Finally, the notation 1
zRH∞ refers to the set of transfer functions G such that zG ∈

RH∞. Equivalently, G ∈ 1
zRH∞ if G ∈ RH∞ and G is strictly proper.

The most important transfer function for the LQR problem is the map from the
state sequence to the control actions: the control policy. Consider an arbitrary transfer
function K denoting the map from state to control action, u = Kx. Then the closed-
loop transfer matrices from the process noise w to the state x and control action u
satisfy

[
x
u

]
=
[

(z I − A − BK)−1

K(z I − A − BK)−1

]
w. (22)

We then have the following theorem parameterizing the set of stable closed-loop
transfer matrices, as described in Eq. (22), that are achievable by a given stabilizing
controller K.

Theorem 1 (State-Feedback Parameterization [59]) The following are true:

– The affine subspace defined by

[
z I − A −B

] [�x

�u

]
= I , �x ,�u ∈ 1

z
RH∞ (23)

parameterizes all system responses (22) from w to (x,u), achievable by an inter-
nally stabilizing state-feedback controller K.

– For any transfer matrices {�x ,�u} satisfying (23), the controller K = �u�
−1
x is

internally stabilizing and achieves the desired system response (22).

Note that in particular, {�x ,�u} = {(z I − A − BK)−1,K(z I − A − BK)−1}
as in (22) are elements of the affine space defined by (23) whenever K is a causal
stabilizing controller.

We will also make extensive use of a robust variant of Theorem 1.

Theorem 2 (Robust Stability [38]) Let�x and�u be two transfer matrices in
1
zRH∞

such that

[
z I − A −B

] [�x

�u

]
= I + �. (24)

Then the controllerK = �u�
−1
x stabilizes the system described by (A, B) if and only

if (I + �)−1 ∈ RH∞. Furthermore, the resulting system response is given by

[
x
u

]
=
[
�x

�u

]
(I + �)−1w. (25)

Corollary 1 Under the assumptions of Theorem 2, if ‖�‖ < 1 for any induced norm
‖ · ‖, then the controller K = �u�

−1
x stabilizes the system described by (A, B).

Proof Follows immediately from the small-gain theorem, see for example Sect. 9.2 in
[64]. ��
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3.2 Robust LQR Synthesis

We return to the problem setting where estimates ( Â, B̂) of a true system (A, B)

satisfy

‖�A‖2 ≤ εA, ‖�B‖2 ≤ εB

where �A := Â − A and �B := B̂ − B and where we wish to minimize the LQR
cost for the worst instantiation of the parametric uncertainty.

Before proceeding, we must formulate the LQR problem in terms of the system
responses {�x (k),�u(k)}. It follows from Theorem 1 and the standard equivalence
between infinite horizon LQR and H2 optimal control that, for a disturbance process

distributed as wt
i .i .d.∼ N (0, σ 2

w I ), the standard LQR problem (3) can be equivalently
written as

minimize
�x ,�u

σ 2
w

∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
�x

�u

]∥∥∥∥∥
2

H2

s.t. Eq. (23). (26)

Weprovide a full derivation of this equivalence inAppendixC.Going forward,we drop
the σ 2

w multiplier in the objective function as it affects neither the optimal controller
nor the sub-optimality guarantees that we compute in Sect. 4.

We begin with a simple sufficient condition under which any controller K that sta-
bilizes ( Â, B̂) also stabilizes the true system (A, B). To state the lemma, we introduce
one additional piece of notation. For a matrix M , we let RM denote the resolvent

RM := (z I − M)−1 . (27)

We now can state our robustness lemma.

Lemma 4 Let the controller K stabilize ( Â, B̂) and (�x ,�u) be its corresponding
system response (22) on system ( Â, B̂). Then if K stabilizes (A, B), it achieves the
following LQR cost

J (A, B,K) :=
∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
�x

�u

](
I + [

�A �B
] [�x

�u

])−1
∥∥∥∥∥H2

. (28)

Furthermore, letting

�̂ := [
�A �B

] [�x

�u

]
= (�A + �BK)R Â+B̂K . (29)

a sufficient condition for K to stabilize (A, B) is that ‖�̂‖H∞ < 1.

Proof Follows immediately from Theorems 1, 2 and Corollary 1 by noting that for
system responses (�x ,�u) satisfying
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[
z I − Â −B̂

] [�x

�u

]
= I ,

it holds that

[
z I − A −B

] [�x

�u

]
= I + �̂

for �̂ as defined in Eq. (29). ��
We can therefore recast the robust LQR problem (7) in the following equivalent form

minimize
�x ,�u

sup
‖�A‖2≤εA‖�B‖2≤εB

J (A, B,K)

s.t.
[
z I − Â −B̂

] [�x

�u

]
= I , �x ,�u ∈ 1

z
RH∞ .

(30)

The resulting robust control problem is one subject to real-parametric uncertainty,
a class of problems known to be computationally intractable [8]. Although effective
computational heuristics (e.g.,DK iteration [64]) exist, the performanceof the resulting
controller on the true system is difficult to characterize analytically in terms of the
size of the perturbations.

To circumvent this issue, we take a slightly conservative approach and find an upper
bound to the cost J (A, B,K) that is independent of the uncertainties�A and�B . First,
note that if ‖�̂‖H∞ < 1, we can write

J (A, B,K) ≤ ‖(I + �̂)−1‖H∞ J ( Â, B̂,K) ≤ 1

1 − ‖�̂‖H∞
J ( Â, B̂,K). (31)

Because J ( Â, B̂,K) captures the performance of the controller K on the nominal
system ( Â, B̂), it is not subject to any uncertainty. It therefore remains to compute a
tractable bound for ‖�̂‖H∞ , which we do using the following fact.

Proposition 4 For any α ∈ (0, 1) and �̂ as defined in (29)

‖�̂‖H∞ ≤
∥∥∥∥∥

[
εA√
α
�x

εB√
1−α

�u

]∥∥∥∥∥H∞

=: Hα(�x ,�u) . (32)

Proof Note that for any block matrix of the form
[
M1 M2

]
, we have

∥∥[M1 M2
]∥∥

2 ≤
(
‖M1‖22 + ‖M2‖22

)1/2
. (33)

To verify this assertion, note that
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∥∥[M1 M2
]∥∥2

2 = λmax(M1M
∗
1 + M2M

∗
2 )

≤ λmax(M1M
∗
1 ) + λmax(M2M

∗
2 ) = ‖M1‖22 + ‖M2‖22 .

With (33) in hand, we have

∥∥∥∥
[
�A �B

] [�x

�u

]∥∥∥∥H∞
=
∥∥∥∥∥
[√

α

εA
�A

√
1−α
εB

�B

] [ εA√
α
�x

εB√
1−α

�u

]∥∥∥∥∥H∞

≤
∥∥∥
[√

α

εA
�A

√
1−α
εB

�B

]∥∥∥
2

∥∥∥∥∥

[
εA√
α
�x

εB√
1−α

�u

]∥∥∥∥∥H∞

≤
∥∥∥∥∥

[
εA√
α
�x

εB√
1−α

�u

]∥∥∥∥∥H∞

,

completing the proof. ��
The following corollary is then immediate.

Corollary 2 Let the controllerK and resulting system response (�x ,�u) be as defined
in Lemma 4. Then if Hα(�x ,�u) < 1, the controller K = �u�

−1
x stabilizes the true

system (A, B).

Applying Proposition 4 in conjunction with bound (31), we arrive at the following
upper bound to the cost function of the robust LQR problem (7), which is independent
of the perturbations (�A,�B):

sup
‖�A‖2≤εA‖�B‖2≤εB

J (A, B,K) ≤
∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
�x
�u

]∥∥∥∥∥H2

1

1 − Hα(�x , �u)
= J ( Â, B̂,K)

1 − Hα(�x , �u)
.

(34)

The upper bound is only valid when Hα(�x ,�u) < 1, which guarantees the stability
of the closed-loop system as in Corollary 2. We remark that Corollary 2 and the bound
in (34) are of interest independent of the synthesis procedure forK. In particular, they
can be applied to the optimal LQR controller K̂ computed using the nominal system
( Â, B̂).

As the next lemma shows, the right-hand side ofEq. (34) canbe efficiently optimized
by an appropriate decomposition. The proof of the lemma is immediate.

Lemma 5 For functions f : X → R and g : X → R and constraint set C ⊆ X ,
consider

min
x∈C

f (x)

1 − g(x)
.

Assuming that f (x) ≥ 0 and 0 ≤ g(x) < 1 for all x ∈ C, this optimization problem
can be reformulated as an outer single-variable problem and an inner-constrained
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optimization problem (the objective value of an optimization over the emptyset is
defined to be infinity):

min
x∈C

f (x)

1 − g(x)
= min

γ∈[0,1)
1

1−γ
min
x∈C { f (x) | g(x) ≤ γ }

Then combining Lemma 5 with the upper bound in (34) results in the following
optimization problem:

minimizeγ∈[0,1)
1

1 − γ
min

�x ,�u

∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
�x

�u

]∥∥∥∥∥H2

subject to
[
z I − Â −B̂

] [�x

�u

]
= I ,

∥∥∥∥∥

[
εA√
α
�x

εB√
1−α

�u

]∥∥∥∥∥H∞

≤ γ

�x ,�u ∈ 1

z
RH∞.

(35)

We note that this optimization objective is jointly quasi-convex in (γ,�x ,�u). Hence,
as a function of γ alone the objective is quasi-convex and furthermore is smooth in the
feasible domain. Therefore, the outer optimization with respect to γ can effectively be
solved with methods like golden section search.We remark that the inner optimization
is a convex problem, though an infinite-dimensional one. We show in Sect. 5 that a
simple finite impulse response truncation yields a finite-dimensional problem with
similar guarantees of robustness and performance.

We further remark that because γ ∈ [0, 1), any feasible solution (�x ,�u) to opti-
mization problem (35) generates a controllerK = �u�

−1
x satisfying the conditions of

Corollary 2 and hence stabilizes the true system (A, B). Therefore, even if the solution
is approximated, as long as it is feasible, it will be stabilizing. As we show in the next
section, for sufficiently small estimation error bounds εA and εB , we can further bound
the sub-optimality of the performance achieved by our robustly stabilizing controller
relative to that achieved by the optimal LQR controller K�.

4 Sub-optimality Guarantees

We now return to analyzing the Coarse-ID control problem. We upper bound the
performance of the controller synthesized using optimization (35) in terms of the size
of the perturbations (�A, �B) and a measure of complexity of the LQR problem
defined by A, B, Q, and R. The following result is one of our main contributions.

Theorem 3 Let J� denote the minimal LQR cost achievable by any controller for
the dynamical system with transition matrices (A, B), and let K� denote the optimal
controller. Let ( Â, B̂) be estimates of the transition matrices such that ‖�A‖2 ≤ εA,
‖�B‖2 ≤ εB. Then, if K is synthesized via (35) with α = 1/2, the relative error in
the LQR cost is
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J (A, B,K) − J�
J�

≤ 5(εA + εB‖K�‖2)‖RA+BK�‖H∞ , (36)

as long as (εA + εB‖K�‖2)‖RA+BK�‖H∞ ≤ 1/5.

This result offers a guarantee on the performance of the SLS synthesized con-
troller regardless of the estimation procedure used to estimate the transition matrices.
Together with our result (Proposition 1) on system identification from independent
data, Theorem 3 yields a sample complexity upper bound on the performance of the
robust SLS controllerK when (A, B) are not known. We make this guarantee precise
in Corollary 3. The rest of the section is dedicated to proving Theorem 3.

Recall that K� is the optimal LQR static state-feedbackmatrix for the true dynamics
(A, B), and let � := − [�A + �BK�]RA+BK� . We begin with a technical result.

Lemma 6 Define ζ := (εA + εB‖K�‖2)‖RA+BK�‖H∞ , and suppose that ζ < (1 +√
2)−1. Then (γ0, �̃x , �̃u) is a feasible solution of (35) with α = 1/2, where

γ0 =
√
2ζ

1 − ζ
, �̃x = RA+BK� (I + �)−1, �̃u = K�RA+BK� (I + �)−1. (37)

Proof By construction �̃x , �̃u ∈ 1
zRH∞. Therefore, we are left to check three con-

ditions:

γ0 < 1,
[
z I − Â −B̂

] [�̃x

�̃u

]
= I , and

∥∥∥∥∥

[
εA√
α
�̃x

εB√
1−α

�̃u

]∥∥∥∥∥H∞

≤
√
2ζ

1 − ζ
. (38)

The first two conditions follow by simple algebraic computations. Before we check
the last condition, note that ‖�‖H∞ ≤ (εA+εB‖K�‖2)‖RA+BK�‖H∞ = ζ < 1. Now
observe that,

∥∥∥∥∥

[
εA√
α
�̃x

εB√
1−α

�̃u

]∥∥∥∥∥H∞

= √
2

∥∥∥∥
[

εARA+BK�

εBK�RA+BK�

]
(I + �)−1

∥∥∥∥H∞

≤ √
2‖(I + �)−1‖H∞

∥∥∥∥
[

εARA+BK�

εBK�RA+BK�

]∥∥∥∥H∞

≤
√
2

1 − ‖�‖H∞

∥∥∥∥
[

εA I
εBK�

]
RA+BK�

∥∥∥∥H∞

≤
√
2(εA + εB‖K�‖2)‖RA+BK�‖H∞

1 − ‖�‖H∞
≤

√
2ζ

1 − ζ
.

��
Proof of Theorem 3 Let (γ�,�

�
x ,�

�
u) be an optimal solution to problem (35) and let

K = ��
u(�

�
x )

−1. We can then write

J (A, B,K) ≤ 1

1 − ‖�̂‖H∞
J ( Â, B̂,K) ≤ 1

1 − γ�

J ( Â, B̂,K),
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where the first inequality follows frombound (31), and the second follows from the fact
that ‖�̂‖H∞ ≤ γ� due to Proposition 4 and the constraint in optimization problem (35).

From Lemma 6, we know that (γ0, �̃x , �̃u) defined in Eq. (37) is also a feasible

solution. Therefore, because K� = �̃u�̃
−1
x , we have by optimality,

1

1 − γ�

J ( Â, B̂,K) ≤ 1

1 − γ0
J ( Â, B̂, K�) ≤ J (A, B, K�)

(1 − γ0)(1 − ‖�‖H∞)

= J�
(1 − γ0)(1 − ‖�‖H∞)

,

where the second inequality follows by the argument used to derive (31) with the
true and estimated transition matrices switched. Recall that ‖�‖H∞ ≤ ζ and that
γ0 = √

2ζ/(1 + ζ ). Therefore,

J (A, B,K) − J�
J�

≤ 1

1 − (1 + √
2)ζ

− 1 = (1 + √
2)ζ

1 − (1 + √
2)ζ

≤ 5ζ ,

where the last inequality follows because ζ < 1/5 < 1/(2 + 2
√
2). The conclusion

follows. ��
With this sub-optimality result in hand, we are now ready to give an end-to-end per-

formance guarantee for our procedure when the independent data estimation scheme
is used.

Corollary 3 Let λG = λmin(σ
2
u GT G∗

T + σ 2
wFT F∗

T ), where FT ,GT are defined in (4).
Suppose the independent data estimation procedure described in Algorithm 1 is used
to produce estimates ( Â, B̂) and K is synthesized via (35) with α = 1/2. Then, there
are universal constants C0 and C1 such that the relative error in the LQR cost satisfies

J (A, B,K) − J�
J�

≤ C0σw‖RA+BK�‖H∞

(
1√
λG

+ ‖K�‖2
σu

)√
(n + p) log(1/δ)

N
(39)

withprobability1−δ if N ≥ C1(n+p)σ 2
w‖RA+BK�‖2H∞(1/λG+‖K�‖22/σ 2

u ) log(1/δ).

Proof Recall from Proposition 1 that for the independent data estimation scheme, we
have

εA ≤ 16σw√
λG

√
(n + 2p) log(32/δ)

N
, and εB ≤ 16σw

σu

√
(n + 2p) log(32/δ)

N
, (40)

with probability 1 − δ, as long as N ≥ 8(n + p) + 16 log(4/δ).
To apply Theorem 3, we need (εA + εB‖K�‖2)‖RA+BK�‖H∞ < 1/5, which will

hold as long as N ≥ O
{
(n + p)σ 2

w‖RA+BK�‖2H∞(1/λG + ‖K�‖22/σ 2
u ) log(1/δ)

}
. A

direct plug in of (40) in (36) yields the conclusion. ��
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This result fully specifies the complexity term CLQR promised in the introduction:

CLQR := C0σw

(
1√
λG

+ ‖K�‖2
σu

)
‖RA+BK�‖H∞ .

Note that CLQR decreases as the minimum eigenvalue of the sum of the input and
noise controllability Gramians increases. This minimum eigenvalue tends to be larger
for systems that amplify inputs in all directions of the state space. CLQR increases as
function of the operator norm of the gain matrix K� and theH∞ norm of the transfer
function fromdisturbance to state of the closed-loop system.These two terms tend to be
larger for systems that are “harder to control.” The dependence on Q and R is implicit
in this definition since the optimal control matrix K� is defined in terms of these two
matrices. Note that when R is large in comparison with Q, the norm of the controller
K� tends to be smaller because large inputs are more costly. However, such a change
in the size of the controller could cause an increase in theH∞ norm of the closed-loop
system. Thus, our upper bound suggests an odd balance. Stable and highly damped
systems are easy to control but hard to estimate, whereas unstable systems are easy to
estimate but hard to control. Our theorem suggests that achieving a small relative LQR
cost requires for the system to be somewhere in the middle of these two extremes.

Finally, we remark that the above analysis holds more generally when we apply
additional constraints to the controller in the synthesis problem (35). In this case, the
sub-optimality bounds presented in Theorem 3 and Corrollary 3 are true with respect
to the minimal cost achievable by the constrained controller with access to the true
dynamics. In particular, the bounds hold unchanged if the search is restricted to static
controllers, i.e., ut = Kxt . This is true because the optimal controller is static and
therefore feasible for the constrained synthesis problem.

5 Computation

As posed, the main optimization problem (35) is a semi-infinite program, and we are
not aware of a way to solve this problem efficiently. In this section, we describe two
alternative formulations that provide upper bounds to the optimal value and that can
be solved in polynomial time.

5.1 Finite Impulse Response Approximation

An elementary approach to reducing the aforementioned semi-infinite program to
a finite-dimensional one is to only optimize over the first L elements of the transfer
functions�x and�u , effectively taking a finite impulse response (FIR) approximation.
Since these are both stable maps, we expect the effects of such an approximation to be
negligible as long as the optimization horizon L is chosen to be sufficiently large—in
what follows, we show that this is indeed the case.

By restricting our optimization to FIR approximations of �x and �u , we can cast
theH2 cost as a second-order cone constraint. The only difficulty arises in posing the
H∞ constraint as a semidefinite program. Though there are several ways to castH∞
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constraints as linear matrix inequalities, we use the formulation in Theorem 5.8 of
Dumitrescu’s text to take advantage of the FIR structure in our problem [17]. We note
that using Dumitrescu’s formulation, the resulting problem is affine in α when γ is
fixed, and hence, we can solve for the optimal value of α. Then the resulting system
response elements can be cast as a dynamic feedback controller usingTheorem2of [4].

5.1.1 Sub-optimality Guarantees

In this subsection, we show that optimizing over FIR approximations incurs only
a small degradation in performance relative to the solution to the infinite horizon
problem. In particular, this degradation in performance decays exponentially in the
FIR horizon L , where the rate of decay is specified by the decay rate of the spectral
elements of the optimal closed-loop system response RA+BK� .

Before proceeding, we introduce additional concepts and notation needed to for-
malize guarantees in the FIR setting. A linear-time-invariant transfer function is stable
if and only if it is exponentially stable, i.e., � = ∑∞

t=0 z
−t�(t) ∈ RH∞ if and only

if there exists positive values C and ρ ∈ [0, 1) such that for every spectral element
�(t), t ≥ 0, it holds that

‖�(t)‖2 ≤ Cρt . (41)

Inwhat follows,wepickC� andρ� to be any such constants satisfying‖RA+BK� (t)‖2 ≤
C�ρ

t
� for all t ≥ 0.

We introduce a version of the optimization problem (30) with a finite number of
decision variables:

minimizeγ∈[0,1)
1

1 − γ
min

�x ,�u ,V

∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
�x

�u

]∥∥∥∥∥H2

subject to
[
z I − Â −B̂

] [�x

�u

]
= I + 1

zL
V ,

∥∥∥∥∥

[
εA√
α
�x

εB√
1−α

�u

]∥∥∥∥∥H∞

+ ‖V ‖2 ≤ γ

�x =
L∑

t=1

1

zt
�x (t), �u =

L∑
t=1

1

zt
�u(t).

(42)

In this optimization problem, we search over finite response transfer functions�x and
�u . Given a feasible solution�x ,�u of problem (42), we can implement the controller
KL = �u�

−1
x with an equivalent state-space representation (AK , BK ,CK , DK ) using

the response elements {�x (k)}Lk=1 and {�u(k)}Lk=1 via Theorem 2 of [4].
The slack term V accounts for the error introduced by truncating the infinite

response transfer functions of problem (30). Intuitively, if the truncated tail is
sufficiently small, then the effects of this approximation should be negligible on per-
formance. The next result formalizes this intuition.
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Theorem 4 Set α = 1/2 in (42) and choose two real values C� > 0 and ρ� ∈ [0, 1)
such that ‖R(A+BK�)(t)‖2 ≤ C�ρ

t
� for all t ≥ 0. Then, if KL is synthesized via (42),

the relative error in the LQR cost is

J (A, B,KL ) − J�
J�

≤ 10(εA + εB‖K�‖2)‖RA+BK�‖H∞ ,

as long as

εA + εB‖K�‖2 ≤ 1 − ρ�

10C�

and L ≥
4 log

(
C�

(εA+εB‖K�‖2)‖RA+BK�‖H∞

)

1 − ρ�

.

The proof of this result, deferred to Appendix D, is conceptually the same as that
of the infinite horizon setting. The main difference is that care must be taken to ensure
that the approximation horizon L is sufficiently large so as to ensure stability and
performance of the resulting controller. From the theorem statement, we see that
for such an appropriately chosen FIR approximation horizon L , our performance
bound is the same, up to universal constants, to that achieved by the solution to the
infinite horizon problem. Furthermore, the approximation horizon L only needs to
grow logarithmically with respect to one over the estimation rate in order to preserve
the same statistical rate as the controller produced by the infinite horizon problem.
Finally, an end-to-end sample-complexity result analogous to that stated in Corollary 3
can be easily obtained by simply substituting in the sample-complexity bounds on εA
and εB specified in Proposition 1.

5.2 Static Controller and a Common Lyapunov Approximation

As we have reiterated above, when the dynamics are known, the optimal LQR control
law takes the form ut = Kxt for properly chosen static gain matrix K . We can
reparameterize the optimization problem (35) to restrict our attention to such static
control policies:

minimizeγ∈[0,1)
1

1 − γ
min

�x ,�u ,K

∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
�x

�u

]∥∥∥∥∥H2

subject to
[
z I − Â −B̂

] [�x

�u

]
= I ,

∥∥∥∥∥

[
εA√
α
�x

εB√
1−α

�u

]∥∥∥∥∥H∞

≤ γ

�x ,�u ∈ 1

z
RH∞ , K = �u�

−1
x .

(43)

Under this reparameterization, the problem is no longer convex. Here we present
a simple application of the common Lyapunov relaxation that allows us to find a
controller K using semidefinite programming.
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Note that the equality constraints imply:

I = [
z I − Â −B̂

] [�x

�u

]
= [

z I − Â −B̂
] [ I

K

]
�x = (z I − Â − B̂K )�x ,

revealing that we must have

�x = (z I − Â − B̂K )−1 and �u = K (z I − Â − B̂K )−1 .

With these identifications, (43) can be reformulated as

minimizeγ∈[0,1)
1

1 − γ
min
K

∥∥∥∥∥

[
Q

1
2 0

0 R
1
2 K

]
(z I − Â − B̂K )−1

∥∥∥∥∥H2

subject to

∥∥∥∥∥

[
εA√
α

εB√
1−α

K

]
(z I − Â − B̂K )−1

∥∥∥∥∥H∞

≤ γ

(44)

Using standard techniques from the robust control literature, we can upper bound
this problem via the semidefinite program

minimize
X ,Z ,W ,α,γ

1
(1−γ )2

{Trace(QW11) + Trace(RW22)}

subject to

⎡
⎣
X X Z∗
X W11 W12
Z W21 W22

⎤
⎦ � 0

⎡
⎢⎢⎣

X − I ( Â + B̂K )X 0 0
X( Â + B̂K )∗ X εAX εB Z∗

0 εAX αγ 2 I 0
0 εB Z 0 (1 − α)γ 2 I

⎤
⎥⎥⎦ � 0 .

(45)

Note that this optimization problem is affine inα when γ is fixed. Hence, in practicewe
can find the optimal value of α as well. A static controller can then be extracted from
this optimization problem by setting K = Z X−1. A full derivation of this relaxation
can be found in Appendix E. Note that this compact SDP is simpler to solve than
the truncated FIR approximation. As demonstrated experimentally in the following
section, the cost of this simplification is that the common Lyapunov approach provides
a controller with slightly higher LQR cost.

6 Numerical Experiments

We illustrate our results on estimation, controller synthesis, and LQR performance
with numerical experiments of the end-to-end Coarse-ID control scheme. The least
squares estimation procedure (9) is carried out on a simulated system in Python, and
the bootstrapped error estimates are computed in parallel using PyWren [32].
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(a) (b)

Fig. 1 The resulting errors from 100 repeated least squares identification experiments with rollout length
T = 6 is plotted against the number of rollouts. In (a), the median of the least squares estimation errors
decreases with N . In (b), the ratio of the bootstrap estimates to the true estimates hovers at 2. Shaded regions
display quartiles

All of the synthesis and performance experiments are run in MATLAB. We make
use of the YALMIP package for prototyping convex optimization [37] and use the
MOSEK solver under an academic license [5]. In particular, when using the FIR
approximation described in Sect. 5.1, we find it effective to make use of YALMIP’s
dualize function, which considerably reduces the computation time.

6.1 Estimation of Example System

We focus experiments on a particular example system. Consider the LQR problem
instance specified by

A =
⎡
⎣
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

⎤
⎦ , B = I , Q = 10−3 I , R = I . (46)

The dynamics correspond to a marginally unstable graph Laplacian system where
adjacent nodes are weakly connected, each node receives direct input, and input size
is penalized relatively more than state. Dynamics described by graph Laplacians arise
naturally in consensus and distributed averaging problems. For this system,weperform
the full data identification procedure in (9), using inputs with variance σ 2

u = 1 and
noise with variance σ 2

w = 1. The errors are estimated via the bootstrap (Algorithm 2)
using M = 2000 trials and confidence parameter δ = 0.05.

The behavior of the least squares estimates and the bootstrap error estimates is
illustrated inFig. 1. The rollout length is fixed to T = 6, and the number of rollouts used
in the estimation is varied. As expected, increasing the number of rollouts corresponds
to decreasing errors. For large enough N , the bootstrapped error estimates are of the
same order of magnitude as the true errors. In Appendix G, we show plots for the
setting in which the number of rollouts is fixed to N = 6, while the rollout length is
varied.
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6.2 Controller Synthesis on Estimated System

Using the estimates of the system in (46), we synthesize controllers using two robust
control schemes: the convex problem in 42 with filters of length L = 32 and V set to 0,
and the common Lyapunov (CL) relaxation of the static synthesis problem (43). Once
the FIR responses {�x (k)}Fk=1 and {�u(k)}Fk=1 are found, we need a way to implement
the system responses as a controller.We represent the dynamic controllerK = �u�

−1
x

by finding an equivalent state-space realization (AK , BK ,CK , DK ) via Theorem 2 of
[4]. Inwhat follows,we compare the performance of these controllerswith the nominal
LQR controller (the solution to (3) with Â and B̂ as model parameters), and explore
the trade-off between robustness, complexity, and performance.

The relative performance of the nominal controller is compared with robustly syn-
thesized controllers in Fig. 2. For both robust synthesis procedures, two controllers are
compared: one using the true errors on A and B, and the other using the bootstrap esti-
mates of the errors. The robust static controller generated via the common Lyapunov
approximation performs slightly worse than the more complex FIR controller, but it
still achieves reasonable control performance. Moreover, the conservative bootstrap
estimates also result in worse control performance, but the degradation of performance
is again modest.

Furthermore, the experiments show that the nominal controller often outperforms
the robust controllers when it is stabilizing. On the other hand, the nominal controller
is not guaranteed to stabilize the true system, and as shown in Fig. 2, it only does
so in roughly 80 of the 100 instances after N = 60 rollouts. It is also important to
note a distinction between stabilization for nominal and robust controllers. When the
nominal controller is not stabilizing, there is no indication to the user (though sufficient
conditions for stability can be checked using our result in Corollary 4 or structured
singular value methods [48]). On the other hand, the robust synthesis procedure will
return as infeasible, alerting the user by default that the uncertainties are too high. We
observe similar results when we fix the number of trials but vary the rollout length.
These figures are provided in Appendix G.

Figure 3 explores the trade-off between performance and complexity for the com-
putational approximations, both for FIR truncation and for the common Lyapunov
relaxation. We examine the trade-off in terms of both the bound on the LQR cost
(given by the value of the objective) and the actual achieved value. It is interesting
that for smaller numbers of rollouts (and therefore larger uncertainties), the benefit of
using more complex FIRmodels is negligible, in terms of both the actual costs and the
upper bound. This trend makes sense: as uncertainties decrease to zero, the best robust
controller should approach the nominal controller, which is associated with infinite
impulse response (IIR) transfer functions. Furthermore, for the experiments presented
here, FIR length of L = 32 seems to be sufficient to characterize the performance of
the robust synthesis procedure in (35). Additionally, we note that static controllers are
able to achieve costs of a similar magnitude.

The SLS framework guarantees a stabilizing controller for the true system, provided
that the computational approximations are feasible for any value of γ between 0 and
1, as long as the system errors (εA, εB) are upper bounds on the true errors. Figure 4
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(a) (b)

Fig. 2 Performance of controllers synthesized on the results of the 100 identification experiments is plotted
against the number of rollouts. Controllers are synthesis nominally, using FIR truncation, and using the
common Lyapunov (CL) relaxation. In (a), the median sub-optimality of nominal and robustly synthesized
controllers is compared, with shaded regions displaying quartiles, which go off to infinity in the case that
a stabilizing controller was not found. In (b), the frequency that the synthesis methods found stabilizing
controllers

(a) (b)

Fig. 3 Performance of controllers synthesized with varying FIR filter lengths on the results of 10 of the
identification experiments using true errors. The median sub-optimality of robustly synthesized controllers
does not appear to change for FIR lengths greater than 32, and the common Lyapunov (CL) synthesis tracks
the performance in both upper bound and actual cost

displays the controller performance for robust synthesis when γ is set to 0.999. Simply
ensuring a stable model and neglecting to optimize the nominal cost yields controllers
that perform nearly an order of magnitude better than those where we search for the
optimal value of γ . This observation aligns with common practice in robust control:
constraints ensuring stability are only active when the cost tries to drive the system up
against a safety limit. We cannot provide end-to-end sample-complexity guarantees
for this method and leave such bounds as an enticing challenge for future work.

7 Conclusions and FutureWork

Coarse-ID control provides a straightforward approach to merging nonasymptotic
methods from system identification with contemporary Systems Level Synthesis
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Fig. 4 Performance of
controllers synthesized on the
results of 100 identification
experiments is plotted against
the number of rollouts. The plot
compares the median
sub-optimality of nominal
controllers with fixed-γ robustly
synthesized controllers
(γ = 0.999)

approaches to robust control. Indeed, many of the principles of Coarse-ID control
were well established in the 1990s [11,12,29], but fusing together an end-to-end result
required contemporary analysis of random matrices and a new perspective on con-
troller synthesis. These results can be extended in a variety of directions, and we close
this paper with a discussion of some of the shortcomings of our approach and of several
possible applications of the Coarse-ID framework to other control settings.
Other Performance Metrics Though we focused exclusively on LQR in this paper, we
note that all of our results on robust synthesis and end-to-end performance analysis
extend to other metrics popular in control. Indeed, any norm on the system responses
{�x (k),�u(k)} can be solved robustly using our approach; Lemma 4 holds for any
norm. In turn,we canmimic the derivation in Sect. 3 to yield a constrained optimization
problem with respect to the nominal dynamics and a norm on the uncertainty �̂. This
means that our sub-optimality bound in Corollary 3 holds true when we replaceH2(T)

with H∞(T). Furthermore, similar results can be derived for other norms, so long as
care is placed on the associated sub-multiplicative properties of the norms in question.
For example, in follow-up work we analyze robustness under the L1 norm in the
context of constraints on the states and control signals [14].
Improving the End-to-End Analysis There are several places where our analysis could
be substantially improved. The most obvious is that in our estimator for the state-
transition matrices, our algorithm only uses the final time step of each rollout. This
strategy is data inefficient, and empirically, accuracy only improves when including all
of the data. Analyzing the full least squares estimator is nontrivial because the design
matrix strongly depends on data to be estimated. This poses a challenging problem in
random matrix theory that has applications in a variety of control and reinforcement
learning settings. In follow-up work, we have begun to address this issue for stable
linear systems [52].

In the context of SLS, we use a very coarse characterization of the plant uncertainty
to bound the quantity in Lemma 4 and to yield a tractable optimization problem.
Indeed, the only property we use about the error between our nominal system and the
true system is that the maps

x �→ (A − Â)x and u �→ (B − B̂)u
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are contractions. Nowhere do we use the fact that these are linear operators, or even
the fact that they are the same operator from time step to time step. Indeed, there
are stronger bounds that could be engineered using the theory of integral quadratic
constraints [40] that would take into account these additional properties. Such tighter
bounds could yield considerably less conservative control schemes in both theory and
practice.

Additionally, it would be of interest to understand the loss in performance incurred
by the common Lyapunov relaxation we use in our experiments. Empirically, we see
that the approximation leads to good performance, suggesting that it does not introduce
much conservatism into the synthesis task. Further, our numerical experiments suggest
that optimizing a nominal cost subject to robust stability constraints, as opposed to
directly optimizing the SLSupper bound, leads to better empirical performance. Future
work will seek to understand whether this is a phenomenological observation specific
to the systems used in our experiments, or if there is a deeper principle at play that
leads to tighter sub-optimality guarantees.
Lower Bounds Finding lower bounds for control problemswhen themodel is unknown
is an open question. Even for LQR, it is not at all clear how well the system (A, B)

needs to be known in order to attain good control performance. While we produce
reasonable worst-case upper bounds for this problem, we know of no lower bounds.
Such bounds would offer a reasonable benchmark for how well one could ever expect
to do with no priors on the linear system dynamics.
Integrating Coarse-IDControl in Other Control ParadigmsThe end-to-end Coarse-ID
control framework should be applicable in a variety of settings. For example, in model
predictive control (MPC), controller synthesis problems are approximately solved on
finite-time horizons, one step is taken, and then this process is repeated [6]. MPC is
an effective solution which substitutes fast optimization solvers for clever, complex
control design.We believe it will be straightforward to extend the Coarse-ID paradigm
to MPC, using a similar perturbation argument as in Sect. 3. The main challenges
in MPC lie in how to guarantee that safety constraints are maintained throughout
execution without too much conservatism in control costs.

Another interesting investigation lies in the area of adaptive control, wherewe could
investigate how to incorporate new data into coarse models to further refine constraint
sets and costs. Indeed, some work has already been done in this space. We propose
to investigate how to operationalize and extend the notion of optimistic exploration
proposed in the context of continuous control by Abbasi-Yadkori and Szepesvari [1].
The idea behind optimistic improvement is to select the model that would give the
best optimization cost if the current model was true. In this way, we fail fast, either
receiving a good cost or learning quickly that our model is incorrect. It would be worth
investigating whether the Coarse-ID framework can make it simple to update a least
squares estimate for the system parameters and then provide an efficient mechanism
for choosing the next optimistic control.

Finally, Coarse-ID control could be relevant to nonlinear control applications. In
nonlinear control, iterative LQR schemes are remarkably effective [35]. Hence, it
would be interesting to understand how parametric model errors can be estimated and
mitigated in a control loop that employs iterative LQR or similar dynamic program-
ming methods.
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Sample Complexities of Reinforcement Learning for Continuous Control Finally, we
imagine that the analysis in this paper may be useful for understanding popular
reinforcement learning algorithms that are also being tested for continuous control.
Reinforcement learning directly attacks a control cost in question without resorting to
any specific identification scheme.While this suffers from the drawback that generally
speaking, no parameter convergence can be guaranteed, it is ideally suited to ignoring
modes that do not affect control performance. For instance, it might not be important
to get a good estimate of very stable modes or of lightly damped modes that do not
substantially affect the performance.

There are two parallel problems here. First, it would be of interest to determine
system identification algorithms that are tuned to particular control tasks. In theCoarse-
ID control approach, the estimation and control are completely decoupled. However,
it may be beneficial to inform the identification algorithm about the desired cost,
resulting in improved sample complexity.

From a different perspective, policy gradient and Q-learning methods applied to
LQR could yield important insights about the pros and cons of suchmethods. There are
classic papers [9] on Q-learning for LQR, but these use asymptotic analysis. Recently,
the first such analysis for policy gradient has appeared, though the precise scaling with
respect to system parameters is not yet understood [20]. Providing clean nonasymp-
totic bounds here could help provide a rapprochement between machine learning and
adaptive control, with optimization negotiating the truce.
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A Proof of Lemma 1

First, recall Bernstein’s lemma. Let X1, . . . , X p be zero-mean independent r.v.s sat-
isfying the Orlicz norm bound ‖Xi‖ψ1 ≤ K . Then as long as p ≥ 2 log(1/δ), with
probability at least 1 − δ,

p∑
i=1

Xi ≤ K
√
2n log(1/δ) .

Next, let Q be an m × n matrix. Let u1, . . . , uMε be a ε-net for the m-dimensional 	2
ball, and similarly let v1, . . . , vNε be a ε covering for the n-dimensional 	2 ball. For
each ‖u‖2 = 1 and ‖v‖2 = 1, let ui , v j denote the elements in the respective nets
such that ‖u − ui‖2 ≤ ε and ‖v − v j‖2 ≤ ε. Then,

u∗Qv = (u − ui + ui )
∗Qv = (u − ui )

∗Qv + u∗
i Q(v − v j + v j )

= (u − ui )
∗Qv + u∗

i Q(v − v j ) + u∗
i Qv j .

Hence,
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u∗Qv ≤ 2ε‖Q‖2 + u∗
i Qv j ≤ 2ε‖Q‖2 + max

1≤i≤Mε,1≤ j≤Nε

u∗
i Qv j .

Since u, v are arbitrary on the sphere,

‖Q‖2 ≤ 1

1 − 2ε
max

1≤i≤Mε,1≤ j≤Nε

u∗
i Qv j .

Nowwe study the problemat hand.Choose ε = 1/4.By a standard volume comparison
argument, we have that Mε ≤ 9m and Nε ≤ 9n , and that

∥∥∥∥∥
N∑

k=1

fkg
∗
k

∥∥∥∥∥
2

≤ 2 max
1≤i≤Mε,1≤ j≤Nε

N∑
k=1

(u∗
i fk)(g

∗
k v j ) .

Note that u∗
i fk ∼ N (0, u∗

i � f ui ) and g∗
k v j ∼ N (0, v∗

j�gv j ). By independence of fk
and gk , (u∗

i fk)(g
∗
k v j ) is a zero mean sub-exponential random variable, and therefore,

‖(u∗
i fk)(g

∗
k v j )‖ψ1 ≤ √

2‖� f ‖1/22 ‖�g‖1/22 . Hence, for each pair ui , v j we have with
probability at least 1 − δ/9m+n ,

N∑
k=1

(u∗
i fk)(g

∗
k v j ) ≤ 2‖� f ‖1/22 ‖�g‖1/22

√
N (m + n) log(9/δ) .

Taking a union bound over all pairs in the ε-net yields the claim.

B Proof of Proposition 3

For this proof, we need a lemma similar to Lemma 1. The following is a standard
result in high-dimensional statistics [58], and we state it here without proof.

Lemma 7 Let W ∈ R
N×n be a matrix with each entry i.i.d. N (0, σ 2

w). Then, with
probability 1 − δ, we have

‖W‖2 ≤ σw(
√
N + √

n + √
2 log(1/δ)).

As before we use Z to denote the N × (n + p) matrix with rows equal to z�	 =[
(x (	))� (u(	))�

]
. Also, we denote by W the N × n matrix with columns equal to

w(	). Therefore, the error matrix for the ordinary least squares estimator satisfies

E =
[
( Â − A)�
(B̂ − B)�

]
= (Z�Z)−1Z�W ,

when the matrix Z has rank n+ p. Under the assumption that N ≥ n+ p we consider
the singular value decomposition Z = U�V�, where V ,� ∈ R

(n+p)×(n+p) and
U ∈ R

N×(n+p). Therefore, when � is invertible,

E = V (���)−1��U�W = V�−1U�W .
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This implies that

EE� = V�−1U�WW�U�−1V� � ‖U�W‖22V�−2V� = ‖U�W‖22(Z�Z)−1.

Since the columns of U are orthonormal, it follows that the entries of U�W are
i.i.d. N (0, σ 2

w). Hence, the conclusion follows by Lemma 7.

C Derivation of the LQR Cost as anH2 Norm

In this section,we consider the transfer function description of the infinite horizonLQR
optimal control problem. In particular, we show how it can be recast as an equivalent
H2 optimal control problem in terms of the system response variables defined in
Theorem 1.

Recall that stable and achievable system responses (�x ,�u), as characterized in
Eq. (23), describe the closed-loop map from disturbance signal w to the state and
control action (x,u) achieved by the controller K = �u�

−1
x , i.e.,

[
x
u

]
=
[
�x

�u

]
w.

Letting �x = ∑∞
t=1 �x (t)z−t and �u = ∑∞

t=1 �u(t)z−t , we can then equivalently
write for any t ≥ 1

[
xt
ut

]
=

t∑
k=1

[
�x (k)
�u(k)

]
wt−k . (47)

For a disturbance process distributed as wt
i.i.d.∼ N (0, σ 2

w In), it follows from Eq. (47)
that

E
[
x∗
t Qxt

] = σ 2
w

t∑
k=1

Tr(�x (k)
∗Q�x (k)) ,

E
[
u∗
t Rut

] = σ 2
w

t∑
k=1

Tr(�u(k)
∗R�u(k)) .

We can then write

lim
T→∞

1

T

T∑
t=1

E
[
x∗
t Qxt + u∗

t Rut
] = σ 2

w

[ ∞∑
t=1

Tr(�x (t)
∗Q�x (t)) + Tr(�u(t)

∗R�u(t))

]

= σ 2
w

∞∑
t=1

∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
�x (t)
�u(t)

]∥∥∥∥∥
2

F

= σ 2
w

2π

∫

T

∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
�x

�u

]∥∥∥∥∥
2

F

dz
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= σ 2
w

∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
�x

�u

]∥∥∥∥∥
2

H2

,

where the second to last equality is due to Parseval’s theorem.

D Proof of Theorem 4

To understand the effect of restricting the optimization to FIR transfer functions, we
need to understand the decay of the transfer functions R Â+B̂K�

and K�R Â+B̂K�
. To

this end, we consider C� > 0 and ρ� ∈ (0, 1) such that ‖(A + BK�)
t‖2 ≤ C�ρ

t
� for

all t ≥ 0. Such C� and ρ� exist because K� stabilizes the system (A, B). The next
lemma quantifies how well K� stabilizes the system ( Â, B̂) when the estimation error
is small.

Lemma 8 Suppose εA + εB‖K�‖2 ≤ 1−ρ�

2C�
. Then,

‖( Â + B̂K�)
t‖2 ≤ C�

(
1 + ρ�

2

)t

, for all t ≥ 0.

Proof Theclaim is obviouswhen t = 0. Fix an integer t ≥ 1anddenoteM = A+BK�.
Then, if � = �A + �BK�, we have Â + B̂K� = M + �.

Consider the expansion of (M + �)t into 2t terms. Label all these terms as Ti, j
for i = 0, . . . , t and j = 1, . . . ,

(t
i

)
where i denotes the degree of � in the term.

Since � has degree i in Ti, j , the term Ti, j has the form Mα1�Mα2� . . . �Mαi+1 ,
where each αk is a nonnegative integer and

∑
k αk = t − i . Then, using the fact that

‖Mk‖2 ≤ C�ρ
k
� for all k ≥ 0, we have ‖Ti, j‖2 ≤ Ci+1ρt−i‖�‖i2. Hence by triangle

inequality:

‖(M + �)t‖2 ≤
t∑

i=0

∑
j

‖Ti, j‖2

≤
t∑

i=0

(
t

i

)
Ci+1

� ρt−i
� ‖�‖i2

= C�

t∑
i=0

(
t

i

)
(C�‖�‖2)iρt−i

�

= C�(C�‖�‖2 + ρ�)
t

≤ C�

(
1 + ρ�

2

)t

,

where the last inequality uses the fact ‖�‖2 ≤ εA + εB‖K�‖2 ≤ 1−ρ�

2C�
. ��

For the remainder of this discussion, we use the following notation to denote the
restriction of a system response to its first L time steps:
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�x (1 : L) =
L∑

t=1

1

zt
�x (t), �u(1 : L) =

L∑
t=1

1

zt
�u(t). (48)

To prove Theorem 4, we must relate the optimal controller K� with the opti-
mal solution of the optimization problem (42). In the next lemma, we use K� to
construct a feasible solution for problem (42). As before, we denote ζ = (εA +
εB‖K�‖2)‖RA+BK�‖H∞ .

Lemma 9 Set α = 1/2 in problem (42), and assume that εA + εB‖K�‖2 ≤ 1−ρ�

2C�
,

ζ < 1/5, and

L ≥
4 log

(
C�

ζ

)

1 − ρ�

. (49)

Then, optimization problem (42) is feasible, and the following is one such feasible
solution:

�̃x = R Â+B̂K�
(1 : L), �̃u = K�R Â+B̂K�

(1 : L),

Ṽ = −R Â+B̂K�
(L + 1), γ̃ = 4ζ

1 − ζ
. (50)

Proof From Lemma 8 and the assumption on ζ , we have that ‖( Â + B̂K�)
t‖2 ≤

C�

(
1+ρ�

2

)t
for all t ≥ 0. In particular, since R Â+B̂K�

(L + 1) = ( Â + B̂K�)
L , we

have ‖Ṽ ‖ = ‖( Â + B̂K�)
L‖ ≤ C�

(
1+ρ�

2

)L ≤ ζ . The last inequality is true because

we assumed L is sufficiently large.
Once again, since R Â+B̂K�

(L + 1) = ( Â + B̂K�)
L , it can be easily seen that our

choice of �̃x , �̃u , and Ṽ satisfy the linear constraint of problem (42). It remains to
prove that

√
2

∥∥∥∥
[
εA�x

εB�u

]∥∥∥∥H∞
+ ‖Ṽ ‖2 ≤ γ̃ < 1.

The second inequality holds because of our assumption on ζ . We already know that
‖Ṽ ‖2 ≤ ζ . Now, we bound:

∥∥∥∥
[
εA�̃x

εB�̃u

]∥∥∥∥H∞
≤ (εA + εB‖K�‖2)‖R Â+B̂K�

(1 : L)‖H∞

≤ (εA + εB‖K�‖2)(‖R Â+B̂K�
‖H∞ + ‖R Â+B̂K�

(L + 1 : ∞)‖H∞).

These inequalities follow from the definition of (�̃x , �̃u) and the triangle inequality.
We recall that R Â+B̂K�

= RA+BK� (I + �)−1, where � = −(�A +
�BK�)RA+BK� . Then, since ‖�‖H∞ ≤ ζ (due to Proposition 4), we have
‖R Â+B̂K�

‖H∞ ≤ 1
1−ζ

‖RA+BK�‖H∞ .
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We can upper bound

‖R Â+B̂K�
(L + 1 : ∞)‖H∞ ≤

∞∑
t=L+1

‖R Â+B̂K�
(t)‖2

≤ C�

(
1 + ρ�

2

)L ∞∑
t=0

(
1 + ρ�

2

)t

= 2C�

1 − ρ�

(
1 + ρ�

2

)L

.

Then, since we assumed that εA and εB are sufficiently small and that L is suffi-
ciently large, we obtain

(εA + εB‖K�‖2)‖R Â+B̂K�
(L + 1 : ∞)‖H∞ ≤ ζ.

Therefore,
∥∥∥∥
[
εA�̃x

εB�̃u

]∥∥∥∥H∞
≤ ζ

1 − ζ
+ ζ ≤ 2ζ

1 − ζ
.

The conclusion follows. ��
Proof of Theorem 4 As all of the assumptions of Lemma 9 are satisfied, optimization
problem (42) is feasible. We denote (��

x ,�
�
u, V�, γ�) the optimal solution of problem

(42). We denote

�̂ := �A��
x + �B��

u + 1

zL
V�.

Then, we have

[
z I − A −B

] [��
x

��
u

]
= I + �̂.

Applying the triangle inequality, and leveraging Proposition 4, we can verify that

‖�̂‖H∞ ≤ √
2

∥∥∥∥
[
εA��

x
εB��

u

]∥∥∥∥H∞
+ ‖V�‖2 ≤ γ� < 1,

where the last two inequalities are true because the optimal solution is a feasible point
of the optimization problem (42).

We now apply Lemma 4 to characterize the response achieved by the FIR approx-
imate controller KL on the true system (A, B):

J (A, B,KL) =
∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
��

x
��

u

]
(I + �̂)−1

∥∥∥∥∥H2

≤ 1

1 − γ�

∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
��

x
��

u

]∥∥∥∥∥H2

.
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Denote by (�̃x , �̃u, Ṽ , γ̃ ) the feasible solution constructed in Lemma 9, and let
JL( Â, B̂, K�) denote the truncation of the LQR cost achieved by controller K� on
system ( Â, B̂) to its first L time steps.

Then,

1

1 − γ�

∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
��

x
��

u

]∥∥∥∥∥H2

≤ 1

1 − γ̃

∥∥∥∥∥

[
Q

1
2 0

0 R
1
2

][
�̃x

�̃u

]∥∥∥∥∥H2

= 1

1 − γ̃
JL( Â, B̂, K�)

≤ 1

1 − γ̃
J ( Â, B̂, K�)

≤ 1

1 − γ̃

1

1 − ‖�‖H∞
J�,

where� = −(�A +�BK�)RA+BK� . The first inequality follows from the optimality
of (��

x ,�
�
u, V�, γ�), the equality and second inequality from the fact that (�̃x , �̃u)

are truncations of the response of K� on ( Â, B̂) to the first L time steps, and the final
inequality by following similar arguments to the proof of Theorem 3, and in applying
Theorem 2.

Noting that

‖�‖H∞ = ∥∥(�A + �BK�)RA+BK�

∥∥H∞ ≤ ζ < 1,

we then have that

J (A, B,KL ) ≤ 1

1 − γ̃

1

1 − ζ
J�,

Recalling that γ̃ = 4ζ
1−ζ

, we obtain

J (A, B,KL) − J�
J�

≤ 1 − ζ

1 − 5ζ

1

1 − ζ
− 1 = 5ζ

(1 − 5ζ )
≤ 10ζ,

where the last equality is true when ζ ≤ 1/10. The conclusion follows. ��

E A Common Lyapunov Relaxation for Proportional Control

We unpack each of the norms in (44) as linear matrix inequalities. First, by the KYP
Lemma, theH∞ constraint is satisfied if and only if there exists amatrix P∞ satisfying

[
( Â + B̂K )∗P∞( Â + B̂K ) − P∞ ( Â + B̂K )∗P∞

P∞( Â + B̂K ) P∞

]

+
⎡
⎢⎣γ −2

[
εA√
α

εB√
1−α

K

]∗ [ εA√
α

εB√
1−α

K

]
0

0 −I

⎤
⎥⎦ � 0 .
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Applying the Schur complement Lemma, we can reformulate this as the equivalent
matrix inequality

⎡
⎢⎢⎢⎢⎢⎣

−P−1∞ 0 0 ( Â + B̂K ) I
0 −γ 2 I 0 εA√

α
I 0

0 0 −γ 2 I εB√
1−α

K 0

( Â + B̂K )∗ εA√
α
I εB√

1−α
K ∗ −P∞ 0

I 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎦

� 0 .

Then, conjugating by the matrix diag(I , I , P−1∞ , I ) and setting X∞ = P−1∞ , we are
left with

⎡
⎢⎢⎢⎢⎢⎣

−X∞ 0 0 ( Â + B̂K )X∞ I
0 −γ 2 I 0 εA√

α
X∞ 0

0 0 −γ 2 I εB√
1−α

K X∞ 0

X∞( Â + B̂K )∗ εA√
α
X∞ εB√

1−α
X∞K ∗ −X∞ 0

I 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎦

� 0 .

Finally, applying the Schur complement lemma again gives themore compact inequal-
ity

⎡
⎢⎢⎢⎣

−X∞ + I 0 0 ( Â + B̂K )X∞
0 −γ 2 I 0 εA√

α
X∞

0 0 −γ 2 I εB√
1−α

K X∞
X∞( Â + B̂K )∗ εA√

α
X∞ εB√

1−α
X∞K ∗ −X∞

⎤
⎥⎥⎥⎦ � 0 .

For convenience, we permute the rows of this inequality and conjugate by diag(I , I ,√
α I ,

√
1 − α I ) and use the equivalent form

⎡
⎢⎢⎣

−X∞ + I ( Â + B̂K )X∞ 0 0
X∞( Â + B̂K )∗ −X∞ εAX∞ εB X∞K ∗

0 εAX∞ −αγ 2 I 0
0 εBK X∞ 0 −(1 − α)γ 2 I

⎤
⎥⎥⎦ � 0 .

For the H2 norm, we have that under proportional control K , the average cost is
given by Trace((Q + K ∗RK )X2) where X2 is the steady-state covariance. That is,
X2 satisfies the Lyapunov equation

X2 = ( Â + B̂K )X2( Â + B̂K )∗ + I .

But note that we can relax this expression to a matrix inequality

X2 � ( Â + B̂K )X2( Â + B̂K )∗ + I , (51)
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and Trace((Q + K ∗RK )X2) will remain an upper bound on the squared H2 norm.
Rewriting this matrix inequality with Schur complements and combining with our
derivation for the H∞ norm, we can reformulate (44) as a nonconvex semidefinite
program

minimize
X2,X∞,K ,γ

1

(1 − γ )2
Trace((Q + K ∗RK )X2)

subject to

[
X2 − I ( Â + B̂K )X2

X2( Â + B̂K )∗ X2

]
� 0

⎡
⎢⎢⎣

X∞ − I ( Â + B̂K )X∞ 0 0
X∞( Â + B̂K )∗ X∞ εAX∞ εB X∞K ∗

0 εAX∞ αγ 2 I 0
0 εBK X∞ 0 (1 − α)γ 2 I

⎤
⎥⎥⎦ � 0 . (52)

The common Lyapunov relaxation simply imposes that X2 = X∞. Under this iden-
tification, we note that the first LMI becomes redundant and we are left with the
SDP

minimize
X ,K ,γ

1
(1−γ )2

Trace((Q + K ∗RK )X)

subject to

⎡
⎢⎢⎣

X − I ( Â + B̂K )X 0 0
X( Â + B̂K )∗ X εAX εB XK ∗

0 εAX αγ 2 I 0
0 εBK X 0 (1 − α)γ 2 I

⎤
⎥⎥⎦ � 0 .

Now though this appears to be nonconvex, we can perform the standard variable
substitution Z = K X and rewrite the cost to yield (45).

F Numerical Bootstrap Validation

We evaluate the efficacy of the bootstrap procedure introduced in Algorithm 2. Recall
that even though we provide theoretical bounds in Proposition 1, for practical pur-
poses and for handling dependent data, we want bounds that are the least conservative
possible.

For given state dimension n, input dimension p, and scalar ρ, we generate upper
triangular matrices A ∈ R

n×n with all diagonal entries equal to ρ and the upper
triangular entries i.i.d. samples fromN (0, 1), clipped atmagnitude 1. By construction,
matrices will have spectral radius ρ. The entries of B ∈ R

n×p were sampled i.i.d.
from N (0, 1), clipped at magnitude 1. The variance terms σ 2

u and σ 2
w were fixed to

be 1.
Recall from Sect. 2.3 that M represents the number of trials used for the bootstrap

estimation, and ε̂A, ε̂B are the bootstrap estimates for εA, εB . To check the validity of
the bootstrap procedure, we empirically estimate the fraction of time A and B lie in
the balls BÂ (̂εA) and BB̂ (̂εB), where BX (r) = {X ′ : ‖X ′ − X‖2 ≤ r}.

Our findings are summarized in Figs. 5 and 6. Although not plotted, the theoretical
bounds found in Sect. 2 would be orders of magnitude larger than the true εA and εB ,
while the bootstrap bounds offer a good approximation.
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(a) (b)

(c) (d)

Fig. 5 In these simulations: n = 3, p = 1, ρ = 0.9, and M = 2000. In (a), the spectral distances to A
(shown in the solid lines) are compared with the bootstrap estimates (shown in the dashed lines). In (b), the
probability A lies in BÂ (̂εA) estimated from 2000 trials. In (c), the spectral distances to B∗ are compared
with the bootstrap estimates. In (d), the probability B lies in BB̂ (̂εB ) estimated from 2000 trials

G Experiments with Varying Rollout Lengths

Here we include results of experiments in which we fix the number of trials (N = 6)
and vary the rollout length. Figure 7 displays the estimation errors. The estimation
errors on A decrease more quickly than in the fixed rollout length case, consistent with
the idea that longer rollouts of easily excitable systems allow for better identification
due to higher signal-to-noise ratio. Figure 8 shows that stabilizing performance of the
nominal is somewhat better than in the fixed rollout length case (Fig. 2). This fact is
likely related to the smaller errors on the estimation of A (Fig. 7).
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(d)

(b)

(c)

(a)

Fig. 6 In these simulations: n = 6, p = 2, ρ = 1.01, and M = 2000. In (a), the spectral distances to A are
compared with the bootstrap estimates. In (b), the probability A lies in BÂ (̂εA) estimated from 2000 trials.
In (c), the spectral distances to B are compared with the bootstrap estimates. In (d), the probability B lies
in BB̂ (̂εB ) estimated from 2000 trials

(a) (b)

Fig. 7 The resulting errors from 100 identification experiments with a total of N = 6 rollouts are plotted
against the length rollouts. In (a), the median of the least squares estimation errors decreases with T . In (b),
the ratio of the bootstrap estimates to the true estimates. Shaded regions display quartiles
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(a) (b)

Fig. 8 Performance of controllers synthesized on the results of the 100 identification experiments is plotted
against the length of rollouts. In (a), the median sub-optimality of nominal and robustly synthesized con-
trollers are compared, with shaded regions displaying quartiles, which go off to infinity when stabilizing
controllers are not frequently found. In (b), the frequency synthesis methods found stabilizing controllers
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