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Abstract The aim of applied topology is to use and develop topological methods
for applied mathematics, science and engineering. One of the main tools is persistent
homology, an adaptation of classical homology, which assigns a barcode, i.e., a col-
lection of intervals, to a finite metric space. Because of the nature of the invariant,
barcodes are not well adapted for use by practitioners in machine learning tasks. We
can circumvent this problem by assigning numerical quantities to barcodes, and these
outputs can then be used as input to standard algorithms. It is the purpose of this paper
to identify tropical coordinates on the space of barcodes and prove that they are stable
with respect to the bottleneck distance and Wasserstein distances.

Keywords Persistent homology · Coordinatizing the barcode space ·
Tropical polynomials

Mathematics Subject Classification 55 · 15A80

1 Introduction

In the past two decades, with the emergence of ‘big data,’ topology started playing a
more prominent role in data analysis [5,6]. Topological ideas have inspired methods
for visualizing complex datasets [28] as well as ‘measuring’ the shape of data. Using

Communicated by Herbert Edelsbrunner.

B Sara Kališnik
sara.kalisnik@mis.mpg.de; skalisnikver@wesleyan.edu

1 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

2 Wesleyan University, Middletown, CT, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-018-9379-y&domain=pdf


102 Found Comput Math (2019) 19:101–129

the most famous example of the latter, persistent homology [8,17], researchers have
solved problems in sensor networks [3,21], medicine [2,19], neuroscience [11,15,22]
and gained insights into texture images [26].

The output of persistent homology is a barcode, i.e., a collection of intervals. The
unusual structure of the invariant makes the method hard to combine with standard
algorithms within machine learning. For this reason, various attempts have been made
to assign numerical quantities to barcodes or to send these objects into a Hilbert
space through a feature map, where computations are easier [1,4,9,10,16,18,27]. For
example, Di Fabio and Ferri [16,18] assign complex vectors to barcodes, Bubenik [4]
persistence landscapes.

Adcock et al. [1] identified an algebra of polynomials on the barcode space that can
be used as coordinates. The problemwith these functions is that they are not stable (i.e.,
Lipschitz) with respect to the Bottleneck and Wasserstein p-distances usually used.
This prompted us to search for other types of coordinates. All the aforementioned
distances on the barcode space are defined by matching intervals from one barcode
to another and computing penalties that involve taking maxima. For this reason, the
max and min functions, i.e., tropical functions, seemed like a natural choice, and as it
turns out, they are indeed more suitable given the underlying structure of the barcode
space.

We represent a barcode with exactly n intervals as a vector (x1, d1, x2, d2, . . . ,
xn, dn), where xi denotes the left endpoint of the i th interval and di its length. We
assume that xi ≥ 0 for all i . This is not unreasonable sincewhen constructing simplicial
complexes from point clouds, the parameter is radius, which is nonnegative. This
condition is also crucial later on in the construction when taking filtered inverse limits
as it ensures a good behavior of certain maps when appropriately restricted. Since the
ordering of the intervals does not matter, we take the orbit space, Bn , of the action of
the symmetric group on n letters on the product ([0,∞)×[0,∞))n given by permuting
the coordinates. The barcode space, B, is the quotient

∐

n

Bn/∼,

where ∼ is generated by equivalences of the form

{(x1, d1), (x2, d2), . . . , (xn, dn)} ∼ {(x1, d1), (x2, d2), . . . , (xn−1, dn−1)},

whenever dn = 0.
After a short review of tropical algebra and persistent homology in Sects. 2 and 3,

Sect. 4 is devoted to establishing the properties of 2-symmetric max-plus polynomials
that respect this equivalence relation. In particular, Theorem 4.5 provides a list of
generators for this semiring. Unfortunately, this condition is so limiting that the only
functions satisfying it involve only lengths of intervals. While we prove that these are
individually stable with respect to the bottleneck and Wasserstein distances, there are
not enough of them to separate the barcodes. In fact, in contrast to ordinary polyno-
mials, no finite set exists that separates barcodes in Bn (Theorem 6.1). This forces us
to expand the semiring of observed functions to tropical rational functions. We find a
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countable generating set (Theorem 6.7) that separates the barcodes and prove that each
function in this set is stable with respect to the bottleneck and Wasserstein distances
(Theorems 7.1 and 7.3). These functions and their sums, minima and maxima can be
used by researchers interested in analyzing datasets of shapes. In Sect. 8, we give an
example that demonstrates how they can be used to classify digits from the MNIST
dataset.

Of course, a natural question that arises is how to select finitely many functions
from this infinite family that we identify. In the case when we deal with barcodes
whose birth and death times only take finitely many values, it is not hard to find
finitely many functions that separate them (this is further discussed in Sect. 8 on a
particular example). Even here we might run into trouble because the vectors we
obtain might be very high-dimensional. We are currently working on automating this
step and using machine learning methods (for example, the Lasso method) on this
collection of coordinate functions to select their weights.

2 Tropical Functions

This section reviews the material that first appeared in symmetric and r -symmetric
tropical polynomials and rational functions [7].

2.1 Min-plus and Max-plus Polynomials

Tropical algebra is based on the study of the tropical semiring (R ∪ {∞},⊕,�). In
this semiring, addition and multiplication are defined as follows:

a ⊕ b := min (a, b) and a � b := a + b.

Both are commutative and associative. The times operator � takes precedence when
plus ⊕ and times � occur in the same expression. The distributive law holds:

a � (b ⊕ c) = a � b ⊕ a � c.

Moreover, the Frobenius identity (Freshman’sDream) holds for all powers n in tropical
arithmetic:

(a ⊕ b)n = an ⊕ bn . (2.1)

Both arithmetic operations have a neutral element. Infinity is the neutral element
for addition, and zero is the neutral element for multiplication:

x ⊕ ∞ = x and x � 0 = x .

Related to the tropical semiring is the arctic semiring (R ∪ {−∞},�,�), where
multiplication of two elements is defined as before, but adding means taking their
maximum instead of the minimum:

a � b := max (a, b) and a � b := a + b.
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Its operations are associative, commutative and distributive as in the tropical semiring.
Let x1, x2, . . . , xn be variables representing elements in the max-plus semiring. A

max-plus monomial expression is any product of these variables, where repetition is
allowed. By commutativity, we can sort the product and write monomial expressions
with the variables raised to exponents.

Amax-plus polynomial expression is a finite linear combination of max-plus mono-
mial expressions:

p(x1, x2, . . . , xn) = a1 � x
a11
1 x

a12
2 . . . x

a1n
n � a2 � x

a21
1 x

a22
2 . . . x

a2n
n

� . . . � am � x
am1
1 x

am2
2 . . . x

amn
n ,

Here the coefficients a1, a2, . . . am are real numbers and the exponents aij for
1 ≤ j ≤ n and 1 ≤ i ≤ m are nonnegative integers.

The total degree of a max-plus expression p(x1, x2, . . . , xn) is

deg p = max
1≤i≤m

(ai1 + ai2 + . . . + ain).

The passage from max-plus polynomial expressions to functions is not one-to-one.
For example,

x21 � x22 = x21 � x22 � x1x2

for all x1, x2, and therefore, the functions defined by x21 � x22 and x21 � x22 � x1x2 are
the same, though the expressions are formally different.

Considered as a function, p : Rn → R has the following three properties:

• p is continuous,
• p is piecewise linear, where the number of pieces is finite, and
• p is convex.

Max-plus monomials are the linear functions with nonnegative integer coefficients.
Let p and q be max-plus polynomial expressions. If

p(x1, x2, . . . , xn) = q(x1, x2, . . . , xn)

for all (x1, x2, . . . , xn) ∈ (R ∪ ∞)n , then p and q are functionally equivalent. We
write p ∼ q.

The minimal representation of a max-plus polynomial p is such a max-plus expres-
sion

a1 � x
i11
1 x

i12
2 . . . x

i1n
n � a2 � x

i21
1 x

i22
2 . . . x

i2n
n � · · · � am � x

im1
1 x

im2
2 . . . x

imn
n

functionally equivalent to p that for each 1 ≤ j ≤ m there exists a point
(x1, x2, . . . , xn) ∈ R

n , so that

a j + i j1 x1 + . . . + i jn xn > max
1≤s≤m,s �= j

(as + i s1x1 + . . . + i snxn).
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Definition 2.2 Max-plus polynomials are the semiring of equivalence classes of max-
plus polynomial expressions with respect to ∼. In the case of n variables, we denote
the semiring by MaxPlus[x1, x2, . . . , xn].

We define min-plus polynomials expression as max-plus with� replaced by⊕. We
define the degree of a min-plus polynomial expression analogously.

Definition 2.3 Min-plus polynomials are the semiring of equivalence classes of min-
plus polynomial expressions with respect to functional equivalence relation ∼. In the
case of n variables we denote the semiring by MinPlus[x1, x2, . . . , xn].

It can be shown that degrees of all max-plus (min-plus) expressions in the same
equivalence class are the same and that it is therefore possible to define the degree of
a max-plus (min-plus) polynomial.

2.2 Rational Tropical Functions

A tropical rational expression r is a quotient

r(x1, . . . , xn)= p(x1, . . . , xn) � q(x1, . . . , xn)
−1 = p(x1, . . . , xn) − q(x1, . . . , xn),

where p and q are min-plus polynomial expressions.

Definition 2.4 The semiring of equivalence classes of tropical rational expressions
with respect to the functional equivalence relation is RTrop[x1, x2, . . . , xn] and is
called the semiring of rational tropical functions.

We will need the following statement later on.

Lemma 2.5 A tropical rational function r in n variables gives a decomposition ofRn

into a family of closures of open sets on which the function is affine, and the boundaries
of these domains are piecewise linear.

Proof Amin-plus polynomial p is a piecewise linear concave function, and its domains
of linearity consist of the cells in a polyhedral subdivision �p as in [24, Definition
2.5.5]. A tropical rational function r has the form p − q where p and q are both min-
plus polynomials. Let � = �p ∧�q be the common refinement of the corresponding
polyhedral decompositions of Rn , as defined prior to [24, equation (2.3.1)]. Then,
p−q is linear on each cell of�, and the boundaries of these cells are polyhedral balls
or spheres. �

Since

−min(a, b) = max(−a,−b),

tropical rational expressions are composedby takingfinitelymanymaximaandminima
of linear functions, i.e., the set of tropical rational expressions is the smallest subset of
functions Rn → R containing all constant maps and projections that is closed under
taking finitely many +, min and max.
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Conversely, any function from the latter set can be represented by an expression of
the form p�q−1, where p and q are tropical polynomial expressions. The algorithm to
produce p and q is the usual one of adding fractions by finding a common denominator,
but performed in tropical arithmetic [7].

Example 2.6 Let r(x1, x2) = x2x
−1
1 ⊕ (x2)−1 ⊕ (x2x1 ⊕ x1)−1. We can write

r(x1, x2) = x2x
−1
1 ⊕ (x2)

−1 ⊕ (x2x1 ⊕ x1)
−1

= x22 (x2 ⊕ 0)(x1x2(x2 ⊕ 0))−1 ⊕ (x1(x2 ⊕ 0))(x1x2(x2 ⊕ 0))−1

⊕(x2(x2x1 ⊕ x1))
−1

= (x32 ⊕ x22 ⊕ x1x2 ⊕ x1 ⊕ x2)(x1x
2
2 ⊕ x1x2)

−1

= (x32 ⊕ x1 ⊕ x2) � (x1x
2
2 ⊕ x1x2)

−1.

As a consequence, any tropical rational expression (or equivalently, any map com-
posed by taking finitely many maxima and minima of linear functions) in x1, . . . , xn
can be written in ordinary arithmetic as

max
i=1,...,l1

(

n∑

k=1

ak,i xk + ci ) − max
j=1,...,l2

(

n∑

k=1

sk, j xk + u j )

for some ak,i , ci , sk, j and u j where k ∈ {1, . . . , n}, i ∈ {1, . . . , l1} and j ∈ {1, . . . , l2}.
The functions contained in either MinPlus[x1, x2, . . . , xn], MaxPlus[x1, x2,

. . . , xn] or RTrop[x1, x2, . . . , xn] are called tropical functions.

2.3 Symmetric and 2-Symmetric Tropical Functions

Definition 2.7 A tropical function f is symmetric if

f (x1, . . . , xn) = f (xπ(1), . . . , xπ(n))

for every permutation π ∈ Sn .

Given variables x1, . . . , xn , we define the elementary symmetric max-plus polyno-
mials σ1, . . . , σn ∈ MaxPlus[x1, x2, . . . , xn] by the formulas

σ1 = x1 � . . . � xn,
...

σk = �π∈Sn xπ(1) � . . . � xπ(k),
...

σn = x1 � x2 � . . . � xn .

The following version of the Fundamental Theorem of Symmetric Polynomials
holds.
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Theorem 2.8 (Fundamental Theorem of Symmetric Max-Plus Polynomials) [7]
Every symmetric max-plus polynomial in MaxPlus[x1, x2, . . . , xn] can be written as
amax-plus polynomial in the elementary symmetric max-plus polynomials σ1, . . . , σn.

A tropical function in n variables is symmetric if it is invariant under the action of
Sn that permutes the variables. We can generalize this definition as follows: a tropical
function in nr variables, divided into n blocks of r variables each, is r -symmetric if it
is invariant under the action of Sn that permutes the blocks while preserving the order
of the variables within each block. We state the results for r = 2 because persistence
barcodes are collections of intervals.

Definition 2.9 A tropical function p is 2-symmetric if

p(x1,1, x1,2, . . . , xn,1, xn,2) = p(xπ(1),1, xπ(1),2, . . . , xπ(n),1, xπ(n),2)

for every permutation π ∈ Sn .

Fix n. Let the symmetric group Sn act on the matrix of indeterminates

X =

⎛

⎜⎜⎜⎝

x1,1 x1,2
x2,1 x2,2
...

...

xn,1 xn,2

⎞

⎟⎟⎟⎠

by left multiplication. Let

En =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜⎝

e1,1 e1,2
e2,1 e2,2
...

...

en,1 en,2

⎞

⎟⎟⎟⎠ �= [0]2n | ei, j ∈ {0, 1} for i = 1, 2, . . . , n, and j = 1, 2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

A matrix

⎛

⎜⎜⎜⎝

e1,1 e1,2
e2,1 e2,2
...

...

en,1 en,2

⎞

⎟⎟⎟⎠ ∈ En determines a max-plus monomial P(E) = x
e1,1
1,1 x

e1,2
1,2 . . .

x
en,1
n,1 x

en,2
n,2 . We denote the set of orbits under the row permutation action on En by

En/Sn . Each orbit {E1, E2, . . . Em} determines a 2-symmetric max-plus polynomial

P(E1) � P(E2) � . . . � P(Em).

Including the [0]2n matrix in the definition of monomials would have been redundant as
the 0 function can be expressed in terms of other 2-symmetric max-plus polynomials
(by simply raising them to 0).
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Definition 2.10 We call the 2-symmetric max-plus polynomials that arise from orbits
En/Sn elementary. We let σ(e1,1,e1,2),...,(en,1,en,2) denote the tropical polynomial that
arises from the orbit

⎡

⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

e1,1 e1,2
e2,1 e2,2
...

...

en,1 en,2

⎞

⎟⎟⎟⎠

⎤

⎥⎥⎥⎦ .

Example 2.11 Let n = 2. The 2-symmetric max-plus polynomials include

σ(1,0),(0,0)(x1, d1, x2, d2) = x1 � x2 = max{x1, x2}
σ(0,1),(0,0)(x1, d1, x2, d2) = d1 � d2 = max{d1, d2}
σ(0,1),(0,1)(x1, d1, x2, d2) = d1 � d2 = d1 + d2
σ(1,0),(1,0)(x1, d1, x2, d2) = x1 � x2 = x1 + x2
σ(1,1),(1,1)(x1, d1, x2, d2) = x1 � d1 � x2 � d2 = x1 + d1 + x2 + d2.

More generally, for n and k ≤ n, σ(0,1)k is the total length of the k longest bars and
σ(1,0)k is the sum of the k latest birth times.

There are enough 2-symmetric max-plus polynomials to separate the orbits. We
will need this piece of information to show that the functions we define in Sect. 6
separate barcodes.

Proposition 2.12 [7] Let {(x1, y1), . . . , (xn, yn)} and {(x ′
1, y

′
1), . . . , (x

′
n, y

′
n)} be two

orbits under the row permutation action of Sn on R
2n. If

σ({(x1, y1), . . . , (xn, yn)}) = σ({x ′
1, y

′
1), . . . , (x

′
n, y

′
n)})

for all elementary 2-symmetric max-plus polynomials σ , then

{(x1, y1), . . . , (xn, yn)} = {(x ′
1, y

′
1), . . . , (x

′
n, y

′
n)}.

We identified a finite set that generates symmetric max-plus polynomials. No such
statement holds in the case of 2-symmetric max-plus polynomials [7].

Proposition 2.13 The semiring of 2-symmetric max-plus polynomials in variables
x1,1, x1,2, x2,1, x2,2 is not finitely generated.

3 Persistent Homology

Classical topologists developed homology in order to ‘measure’ shape. In simplest
terms, homology counts the occurrences of patterns, such as the number of connected
components, loops and voids. The adaptation of homology to the study of point cloud
data and more generally filtrations of simplicial complexes is persistent homology [8,
17,20].
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The motivating idea is that the union of disks with radius r centered around points
from the dataset approximates the underlying shape of the point cloud.We do not know
a priori how to choose the radius. Persistent homology computes and keeps track of
the changes in the homology these unions of disks over a range of radii parameters
r . The output is a barcode, i.e., a collection of intervals. Each interval corresponds
to a topological feature which appears at the value of a parameter given by the left
endpoint of the interval and disappears at the value given by the right endpoint. These
barcodes play an analogous role as a histogram would in summarizing the shape of
the data—long intervals correspond to strong topological signals, and short ones may
correspond to noise.

3.1 Barcode Space, Bottleneck Distance, Wasserstein Distances

Each barcode with n intervals can be encoded as (x1, d1, x2, d2, . . . , xn, dn) where xi
is the left endpoint of the i th interval and di its length. Since the ordering of the intervals
does not matter, we consider the orbit space of the action of the symmetric group on
n letters on the product ([0,∞) × [0,∞))n given by permuting the coordinates. We
denote it by Bn .

The barcode space B is the quotient

∐

n

Bn/∼,

where ∼ is generated by equivalences of the form

{(x1, d1), (x2, d2), . . . , (xn, dn)} ∼ {(x1, d1), (x2, d2), . . . , (xn−1, dn−1)},

whenever dn = 0.
Before specifying the distance between two barcodes, we specify the distance

between any pair of intervals, as well as the distance between any interval and the
set of zero length intervals � = {(x, x) | 0 ≤ x < ∞}. Set

d∞((x1, d1), (x2, d2)) = max(|x1 − x2|, |d1 − d2 + x1 − x2|).

The distance between an interval and the set � is

d∞((x, d),�) = d

2
.

Let B1 = {Iα}α∈A and B2 = {Jβ}β∈B be barcodes. For finite sets A and B, and any
bijection θ from a subset A′ ⊆ A to B ′ ⊆ B, the penalty of θ , P∞(θ), is

P∞(θ) = max(max
a∈A′(d∞(Ia, Jθ(a))), max

a∈A\A′ d∞(Ia,�), max
b∈B\B′ d∞(Ib,�)).
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The bottleneck distance [12] is

d∞(B1,B2) = min
θ

P∞(θ),

where the minimum is over all possible bijections from subsets of A to subsets of B.
There are other metrics also commonly used for barcode spaces. Setting the penalty

for θ for p ≥ 1 to

Pp(θ) =
∑

a∈A′
d∞(Ia, Jθ(a))

p +
∑

a∈A\A′
d∞(Ia,�)p +

∑

b∈B\B′
d∞(Ib,�)p

yields the pth Wasserstein distance between B1, B2:

dp(B1,B2) = (min
θ

Pp(θ))
1
p .

4 Max-plus Polynomials on the Barcode Space

In this section, we find all max-plus polynomials that we can use as coordinates on
the barcode space and prove that they are stable with respect to the bottleneck and
Wasserstein distances.

The first step is to identify 2-symmetric max-plus polynomials on the image of
Bn → B. By abuse of notation, we denote it simply by Bn . It is the quotient of the
following equivalence relation: two multisets of n intervals each,

I = {(x1, d1), (x2, d2), . . . , (xn, dn)} and J = {(x1, d1), (x2, d2), . . . , (xn, dn)},

are equivalent if subsets A, B ⊆ {1, . . . , n} exist such that there is an equality of
multisets I \ {(xα, 0) : α ∈ A} = J \ {(xβ, 0) : β ∈ B}.

If W j ⊆ ([0,∞) × [0,∞))n is the subset of n-tuples of pairs (x1, d1, x2, d2, . . . ,
xn, dn), with 0 persistence, i.e., d j = 0, then these functions are precisely the 2-
symmetric max-plus polynomials whose restriction toW j is independent of x j for all
j .

Lemma 4.1 Let the minimal representation of a max-plus polynomial p(x1, d1, . . . ,
xn, dn) be

�i=1...,ma
i
0 � x

ai1
1 � d

bi1
1 � · · · � x

ain
n � d

bin
n .

Then, p restricted toW j is independent of x j if and only if aij = 0 for all i = 1, . . . ,m.

Proof The direction (⇐) follows immediately. We must show (⇒). Choose j and
assume that p restricted to W j is independent of x j . Suppose not all aij are 0. Let i0
be such that

ai0j = max
i=1,...,m

aij .
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If this maximum is attained in more than one value, we choose the i0 for which ai0 is

the biggest. Observe that p(0, . . . , 0, x j , 0, . . . , 0) = �i=1...,ma
i
0 � x

aij
j . If ai0j > 0,

then p(0, . . . , 0, x j , 0, . . . , 0) = ai00 � x
a
i0
j

j for all x j > max
{i | ai00 �=ai0}

ai0 − ai00
ai00 − ai0

. Here

we take the maximum over i for which ai00 �= ai0. For indices i when ai00 = ai0,

ai00 +ai0j x j ≥ ai0 +aij x j for our choice of i0. This shows that for a
i0
j > 0 the max-plus

polynomial p(x1, d1, . . . , xn, dn) depends on x j . By assumption ai0j ≥ 0. The only

way the expression does not depend on x j is if a
i0
j = 0. �

Corollary 4.2 The subsemiring of max-plus polynomials whose restriction to Wi is
independent of xi for all i contains precisely the max-plus polynomials of the form

�i=1...,ma
i
0 � d

bi1
1 � . . . � d

bin
n .

We denote this semiring by Dn .

Proposition 4.3 Let DSn
n denote the subring of elements of Dn which are invariant

under the action of Sn. Then, σ(0,1), σ(0,1)2 , . . . , σ(0,1)n generate D
Sn
n , in the sense that

any element of DSn
n is of the form

�i=1...,ma
i
0 � σ

bi1
(0,1) � · · · � σ

bin
(0,1)n ,

where ai0 ∈ R and all bij nonnegative integers.

Proof According to Lemma 4.1 the 2-symmetric max-plus polynomials on Bn are
precisely symmetric max-plus polynomials in variables d1, . . . , dn . We can therefore
apply Theorem 2.8 with σ(0,1)k playing the same role of σk . �

Now that we have identified functions for each Bn separately, andwemust assemble
them to get functions on the barcode space. When n ≥ m, the natural inclusion

Bm → Bn

{(x1, d1), . . . , (xm, dm)} �→ {(x1, d1), . . . , (xm, dm), (0, 0), . . . , (0, 0)}

induces jn,m : Dn → Dm , defined by

jn,m( f )((x1, d1), . . . , (xm, dm)) = f ((x1, d1), . . . , (xm, dm), (0, 0), . . . , (0, 0)),

The map jn,m is Sm-equivariant (Sm acts by permuting the first m pairs of variables).
It follows that we may construct composites

imn : DSn
n ↪→ DSm

n
i Smn,m−−→ DSm

m

123



112 Found Comput Math (2019) 19:101–129

and an inverse system

. . .
in+1
n−−→ DSn

n

inn−1−−→ DSn−1
n−1

in−1
n−2−−→ . . .

i21−−→ DS1
1 .

Observe that

inn−1(σ(0,1)k ) = inn−1(σ(0, 1), ..., (0, 1)
︸ ︷︷ ︸

k

)

= σ(0,1)k for k �= n and inn−1(σ(0,1)n ) = σ(0,1)n−1 .

Therefore, inn−1 are surjections for all positive integers n. We do not wish to include
functions with infinitely many variables, such as maxi∈N xi , and for this reason, we
take a filtered inverse limit of these objects instead of the inverse limit. The total degree
is the filter we use. Recall that Deg p of a max-plus polynomial

p(x1, x2, . . . , xn) = a1 � x
i11
1 x

i12
2 . . . x

i1n
n � a2 � x

i21
1 x

i22
2 . . . x

i2n
n

� . . . � am � x
im1
1 x

im2
2 . . . x

imn
n

is max1≤ j≤m(i j1 + i j2 + . . . + i jn ). Let

k Dn = {p ∈ Dn |Deg p ≤ k}

Map inn−1 induces kinn−1 : k D
Sn
n

k inn−1−−−→ k D
Sn−1
n−1 . We denote the inverse limit of this

systembyDk . The space ofmax-plus polynomials on the barcode space,D , is precisely
∞⋃

k=1

Dk .

Definition 4.4 A semiring (R,+, ·) is called filtered if there exists such a family of
subsemirings {Rd}d∈N of (R,+, ·) for operation + that

• Rd ⊂ Rd ′ for d ≤ d ′,
• R = ⋃

d Rd ,
• Rd · Rd ′ ⊂ Rd+d ′ for all d, d ′ ∈ N.

Theorem 4.5 Max-plus polynomials on the barcode space, D , have the structure of
a filtered semiring. They are generated by elements of the form σ(0,1)n , where n is a
positive integer.

5 Stability of Max-plus Polynomials

Stability is the key property that coordinate functions should satisfy. In this section,
we prove that the functions from D are stable with respect to the bottleneck and
Wasserstein distances.
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Theorem 5.1 (Bottleneck stability of max-plus polynomials) Let D be the filtered
semiring of max-plus polynomials (see Theorem 4.5). If F ∈ D , then a constant C
exists such that

|F(B1) − F(B2)| ≤ Cd∞(B1,B2)

for any pair of barcodes B1 and B2.

Lemma 5.2 For any pair of barcodes B1 and B2 and any n ∈ N, the difference
between the total length of the longest n bars in B1 and B2 can be bounded from
above by 2nd∞(B1,B2):

|σ(0,1)n (B1) − σ(0,1)n (B2)| ≤ 2nd∞(B1,B2).

Proof LetB1 = {(x1, d1), . . . , (xl1 , dl1)} andB2 = {(x ′
1, d

′
1), . . . , (x

′
l2
, d ′

l2
)} be such

that B1 �= B2 and d1 ≥ d2 ≥ . . . ≥ dl1 ≥ 0.
Without loss of generality, assume that σ(0,1)n (B1) ≥ σ(0,1)n (B2). If n > l1 or

n > l2, we add 0 length intervals toB1,B2 to achieve that their length is n.
Let θ be abijectionwhere thepenalty isminimal, i.e.,where P∞(θ) = d∞(B1,B2).

Assume that θ matches (x1, d1) with (x ′
1, d

′
1), (x2, d2) with (x ′

2, d
′
2), …, (xn, dn) with

(x ′
n, d

′
n) (some of these intervals might be 0 length intervals). Of course, we might

have to relabel bars inB2 for this to hold. Note that for those i , for which either di or
d ′
i equals 0, we automatically have

|di − d ′
i

2
| ≤ d∞(B1,B2).

For all other 1 ≤ i ≤ n in this matching,

|di − d ′
i

2
| ≤ max(|xi − x ′

i |, |di − d ′
i + xi − x ′

i |) ≤ d∞(B1,B2). (5.3)

By the definition of a minimal matching max
i=1,...,m

(|xi − x ′
i |, |di − d ′

i + xi − x ′
i |) ≤

d∞(B1,B2). So we must only prove the first inequality. Notice that if | di−d ′
i

2 | ≤
|xi − x ′

i |, this follows automatically. If | di−d ′
i

2 | > |xi − x ′
i |, then

|di − d ′
i

2
| ≤ |di − d ′

i + xi − x ′
i |,

proving Inequality 5.3.
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Then,

nd∞(B1,B2) ≥
n∑

i=1

(di − d ′
i )

2

= 1

2
(

n∑

i=1

di −
n∑

i=1

d ′
i )

= 1

2
(σ(0,1)n (B1) −

n∑

i=1

d ′
i )

≥ 1

2
(σ(0,1)n (B1) − σ(0,1)n (B2)).

The last inequality holds since
∑n

i=1 d
′
i ≤ σ(0,1)n (B2). Also note that we chose

d1, . . . , dn in a way that σ(0,1)n (B1) = ∑n
i=1 di .

We deduce that

|σ(0,1)n (B1) − σ(0,1)n (B2)| ≤ 2nd∞(B1,B2),

proving that σ(0,1)n is Lipschitz with constant 2n. �
Proof of Theorem 5.1 Suppose F1 and F2 are such that C1 and C2 exist such that

|F1(B1) − F1(B2)| ≤ C1d∞(B1,B2)

and

|F2(B1) − F2(B2)| ≤ C2d∞(B1,B2)

for any pair of barcodes B1 and B2.
Let H = F1 + F2. Then,

|H(B1) − H(B2)| = |F1(B1) + F2(B1) − F1(B2) − F2(B2)|
≤ |F1(B1) − F1(B2)| + |F2(B1) − F2(B2)|
≤ C1d∞(B1,B2) + C2d∞(B1,B2)

≤ (C1 + C2)d∞(B1,B2).

Let H = max(F1, F2). Then,

F1(B2) ≤ F1(B1) + |F1(B2) − F1(B1)| ≤ H(B1) + |F1(B2) − F1(B1)|,

and similarly F2(B2) ≤ H(B1) + |F2(B2) − F2(B1)|. It follows that

H(B2) ≤ H(B1) + max(|F1(B2) − F1(B1)|, |F2(B2) − F2(B1)|),
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and by symmetry we conclude that

|H(B1) − H(B2)| ≤ max(C1,C2)d∞(B1,B2).

Any function F from the filtered semiring of max-plus polynomialsD is generated
by taking maxima and sums of σ(0,1)n and constants. Since stability is preserved under
these two operations and since σ(0,1)n are stable according to Lemma 5.2, F is also
stable. �
Theorem 5.4 (Wasserstein stability of max-plus polynomials) Let D be the filtered
semiring of max-plus polynomials. For F ∈ D and p ≥ 1, a constant C exists such
that

|F(B1) − F(B2)| ≤ C dp(B1,B2)

for any pair of barcodes B1 and B2.

Proof LetB1 = {(x1, d1), . . . , (xl1 , dl1)} andB2 = {(x ′
1, d

′
1), . . . , (x

′
l2
, d ′

l2
)} be such

that B1 �= B2 and d1 ≥ d2 ≥ . . . ≥ dl1 ≥ 0.
Without loss of generality, assume that σ(0,1)n (B1) ≥ σ(0,1)n (B2). If n > l1 or

n > l2, we add 0 length intervals toB1,B2 to achieve that their length is n.
Let θ be a bijection where the penalty is minimal, i.e., where Pp(θ) = dp(B1,B2).

Assume that θ matches (x1, d1) with (x ′
1, d

′
1), (x2, d2) with (x ′

2, d
′
2), …, (xn, dn) with

(x ′
n, d

′
n) (some of these intervals might be 0 length intervals).

Note that for those i , for which either di or d ′
i equals 0, we automatically have

|di − d ′
i

2
| ≤ d∞(B1,B2).

For all other i in this matching,

|di − d ′
i

2
|p ≤ (max |xi − x ′

i |, |di − d ′
i + xi − x ′

i |)p

since x �→ x p is increasing for x > 0 (note that p ≥ 1). Then,

(σ(0,1)n (B1) − σ(0,1)n (B2))
p ≤ (σ(0,1)n (B1) −

n∑

i=1

d ′
i )

p

= (

n∑

i=1

di −
n∑

i=1

d ′
i )

p

≤ 2p(
n∑

i=1

|di − d ′
i

2
|)p

≤ 2p(n)p−1(

n∑

i=1

|di − d ′
i

2
|p)
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≤ 2p(n)p−1Pp(θ)p

= 2pn p−1dp(B1,B2)
p.

The first inequality holds since
∑n

i=1 d
′
i ≤ σ(0,1)n (B2). Also note that we chose

d1, . . . , dn in a way that σ(0,1)n (B1) = ∑n
i=1 di . To bound

∑n
i=1 | di−d ′

i
2 |p, we use

Hőlder’s inequality.
It follows from here that

|σ(0,1)n (B1) − σ(0,1)n (B2)| ≤ 2n
p−1
p dp(B1,B2).

The statement of the theorem now follows from the same argument as in the proof of
Theorem 4.5. �

6 Tropical Rational Functions on the Barcode Space

While the functions belonging to D are stable and can be used to assign vectors to
barcodes, they do not separate points in the barcode space, because they are composed
by taking sums and maxima of lengths of intervals and constants. One example is
{(1, 2), (2, 2)} and {(2, 2), (3, 2)}. We can easily convince ourselves of this by evalu-
ating σ(0,1)n on these barcodes.

Because there simply are not enough functions among max-plus polynomials to
separate points, we expand the set of functions we observe to all tropical rational
functions. Let

((x1, d1), . . . , (xn, dn)), ((x
′
1, d

′
1), . . . , (x

′
n, d

′
n)) ∈ [0,∞)2n .

Without loss of generality, we assume that they are lexicographically ordered.
The tropical rational functions that respect the equivalence classes of Bn must

respect the following equivalence relation ∼ on [0,∞)2n :

((x1, d1), . . . , (xn, dn)) ∼ ((x ′
1, d

′
1), . . . , (x

′
n, d

′
n))

⇔ (∀i : (di = d ′
i ∧ (xi = x ′

i ∨ di = 0))).

We denote the semiring of such functions by Rn .

Theorem 6.1 No finite subset of Rn exists which separates nonequivalent points in
Bn.

Proof Assume { f1, . . . , fm} ∈ Rn separates nonequivalent points in Bn . Let �x =
(x1, d1, . . . , xn, dn) and �x ′ = (x ′

1, d
′
1, . . . , x

′
n, d

′
n). We define

g(�x, �x ′) = max{| f1(�x) − f1(�x ′)|, . . . , | fm(�x) − fm(�x ′)|}.
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The function g is the L∞-distance between vectors ( f1(�x), . . . , fm(�x)) and ( f1(�x ′),
. . . , fm(�x ′)). Thus, g(�x, �x ′) = 0 if and only if �x and �x ′ are equivalent points.

Since |x | = max(x,−x), g is a tropical rational function and as demonstrated in
Sect. 2.2, we can write g(�x, �x ′) as

max
i=1,...,l1

(

n∑

k=1

(ak,i xk + bk,i dk) +
n∑

k=1

(a′
k,i x

′
k + b′

k,i d
′
k) + ci )

− max
j=1,...,l2

(

n∑

k=1

(sk, j xk + tk, j dk) +
n∑

k=1

(s′
k, j x

′
k + t ′k, j d ′

k) + u j ).

For any x ≥ 0, define �px = (x, 0, . . . , x, 0). Since �px and �py are equivalent for any
x, y ≥ 0 with respect to the relation defined before the statement of Theorem 6.1,
g( �px , �py) = 0 and consequently

max
i=1,...,l1

(x
n∑

k=1

ak,i + y
n∑

k=1

a′
k,i + ci ) = max

j=1,...,l2
(x

n∑

k=1

sk, j + y
n∑

k=1

s′
k, j + u j ).

Both max
i=1,...,l1

(x
n∑

k=1

ak,i +y
n∑

k=1

a′
k,i +ci ) and max

j=1,...,l2
(x

n∑

k=1

sk, j +y
n∑

k=1

s′
k, j +u j )

are piecewise linear functions defined on R
2. Each function defines a decomposi-

tion of R2 into maximal closed domains over which this function is linear on every
domain (Lemma 2.5). Let

Di = {(x, y) ∈ [0,∞)2 | x
n∑

k=1

ak,i + y
n∑

k=1

a′
k,i + ci > x

n∑

k=1

ak, j + y
n∑

k=1

a′
k, j

+ c j for all j �= i},

Ei = {(x, y) ∈ [0,∞)2 | x
n∑

k=1

sk,i + y
n∑

k=1

s′
k,i + ui > x

n∑

k=1

sk, j + y
n∑

k=1

s′
k, j

+ u j for all j �= i}.

These sets are open. Two linear functions on an non-empty open set are the same if
and only if their coefficients are the same. This implies that

∑n
k=1 ak,i = ∑n

k=1 sk, j ,∑n
k=1 a

′
k,i = ∑n

k=1 s
′
k, j and ci = u j for all i and j for which Di ∩ E j �= ∅.

We also define

Si = {(�x, �x ′) ∈ [0,∞)2n × [0,∞)2n |
n∑

k=1

(ak,i xk + bk,i dk)

+
n∑

k=1

(a′
k,i x

′
k + b′

k,i d
′
k) + ci

>

n∑

k=1

(ak, j xk + bk, j dk) +
n∑

k=1

(a′
k, j x

′
k + b′

k, j d
′
k) + c j for all j �= i}
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and

Ti = {(�x, �x ′) ∈ [0,∞)2n × [0,∞)2n |
n∑

k=1

(sk,i xk + tk,i dk) +
n∑

k=1

(s′
k,i x

′
k

+ t ′k,i d ′
k) + ui

>

n∑

k=1

(sk, j xk + tk, j dk) +
n∑

k=1

(s′
k, j x

′
k + t ′k, j d ′

k) + u j for all j �= i}.

⋃
Si and

⋃
Ti are open and dense in [0,∞)2n × [0,∞)2n . In particular

[0,∞)2n × [0,∞)2n =
⋃

i, j

Si ∩ Tj .

The closures Si ∩ Tj have piecewise linear boundaries by Lemma 2.5 since g is a
tropical rational function. We claim that there exist indices i and j and ε, a > 0 such
that the points

A := ((0, 0, . . . , 0, 0), (0, 0, . . . , 0, 0)),
B := ((0, ε, 0, ε, . . . , 0, ε), (0, ε, 0, ε, . . . , 0, ε)),
C := ((0, ε, 0, ε, . . . , 0, ε), (a, ε, a, ε, . . . , a, ε))

belong to Si ∩ Tj . We will show that g(C) = 0 although (0, ε, 0, ε, . . . , 0, ε) and
(a, ε, a, ε, . . . , a, ε) are not equivalent points. This will lead to a contradiction.

The point A, together with vectors

((0, 1, 0, 1, . . . , 0, 1), (0, 1, 0, 1, . . . , 0, 1)) and ((0, 0, . . . , 0, 0), (1, 0, . . . , 1, 0)),

determines a plane; denote its intersectionwith [0,∞)2n×[0,∞)2n by P . The decom-
position of [0,∞)2n × [0,∞)2n on Si ∩ Tj determines a decomposition of P on sets
Si ∩ Tj ∩ P – their boundaries (considered within P) are then also piecewise linear.

We set

�v := ((0, 1, 0, 1, . . . , 0, 1), (0, 1, 0, 1, . . . , 0, 1))

and

�w = ((0, 0, . . . , 0, 0), (1, 0, . . . , 1, 0)).

If A is in the interior (relative to P) of some Si ∩ Tj ∩ P , then we can clearly find
the required ε and a. If A is in a boundary, consider what lies in the direction �v. If
it is the interior of some Si ∩ Tj ∩ P , then A is in Si ∩ Tj ∩ P , and we can again
find suitable ε and a. Suppose now that A lies in a boundary � which continues in the
direction of �v. Let ε be small enough that � does not yet end at ε�v and such that the
line segment open at A joining A and A + ε�v does not intersect any boundaries other
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than �; we then let B = A + ε�v. Since this boundary did not yet end at B, the vector
�w with the origin point in B must point into the interior of some Si ∩ Tj ∩ P; choose
a small enough a so that C = B + a �w, and indeed the line segment joining B and C
lies within Si ∩ Tj ∩ P .

Now we calculate

0 = g((0, ε, . . . , 0, ε), (0, ε, . . . , 0, ε))

= ε

n∑

k=1

(bk,i + b′
k,i ) + ci − (ε

n∑

k=1

(tk, j + t ′k, j ) + u j )

= a
n∑

k=1

a′
k,i + ε

n∑

k=1

(bk,i + b′
k,i )

+ ci − (a
n∑

k=1

s′
k, j + ε

n∑

k=1

(tk, j + t ′k, j ) + u j )

= g((0, ε, . . . , 0, ε), (a, ε, . . . , a, ε))

�= 0,

which is a contradiction. �
Theorem 6.1 states that no finite subset of symmetric min-plus, max-plus or tropical

rational functions exists that separates barcodes. In this section,we identify a countable
set of tropical rational functions on the barcode space that does.

Theorem 6.3 Let {σ(e1,1,e1,2),...,(en,1,en,2)} be the set of elementary 2-symmetric max-
plus polynomials from Definition 2.10. Functions, defined by

Em,(e1,1,e1,2),...,(en,1,en,2)(x1, d1, . . . , xn, dn) := σ(e1,1,e1,2),...,(en,1,en,2)

(x1 ⊕ dm1 , d1, . . . , xn ⊕ dmn , dn),

for m ∈ N are contained in Rn. Furthermore, they separate nonequivalent points in
Bn.

Proof Restricted to di = 0 for i ∈ N≤n , expressions xi ⊕ dmi are 0 and
therefore independent of xi and consequently so are their post-compositions with
e(e1,1,e1,2),...,(en,1,en,2). This implies that Em,(e1,1,e1,2),...,(en,1,en,2)(x1, d1, . . . , xn, dn) is
contained in Rn .

Wemust show that if (x1, d1, . . . , xn, dn) and (x ′
1, d

′
1, . . . , x

′
n, d

′
n) are not equivalent

in Bn , we can find such Em,(e1,1,e1,2),...,(en,1,en,2) that

Em,(e1,1,e1,2),...,(en,1,en,2)(x1, d1, . . . , xn, dn)

�= Em,(e1,1,e1,2),...,(en,1,en,2)(x
′
1, d

′
1, . . . , x

′
n, d

′
n).

Let (x1, d1, . . . , xn, dn) and (x ′
1, d

′
1, . . . , x

′
n, d

′
n) be nonequivalent. Without loss of

generality, assume that d1 ≤ · · · ≤ dn and d ′
1 ≤ · · · ≤ d ′

n .
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Some of the d’s, say d1, . . . , dk−1 = 0 can be 0 (if k = 1 none of d’s is 0). The
point (x1, 0, . . . , xk−1, 0, xk, dk, . . . xn, dn) is equivalent to (0, 0, . . . , 0, 0, xk, dk, . . .
xn, dn) and consequently

Em,(e1,1,e1,2),...,(en,1,en,2)(x1, 0, . . . , xk−1, 0, xk, dk, . . . xn, dn)

= Em,(e1,1,e1,2),...,(en,1,en,2)(0, 0, . . . , 0, 0, xk, dk, . . . xn, dn) (6.4)

for all m and (e1,1, e1,2), . . . , (en,1, en,2). Similarly, if d ′
1, . . . , d

′
l−1 = 0, then

(x ′
1, 0, . . . , x

′
l−1, 0, x

′
l , d

′
l , . . . x

′
n, d

′
n) ∼ (0, 0, . . . , 0, 0, x ′

l , d
′
l , . . . x

′
n, d

′
n)

and consequently

Em,(e1,1,e1,2),...,(en,1,en,2)(x
′
1, 0, . . . , x

′
l−1, 0, x

′
l , d

′
l , . . . x

′
n, d

′
n)

= Em,(e1,1,e1,2),...,(en,1,en,2)(0, 0, . . . , 0, 0, x
′
l , d

′
l , . . . x

′
n, d

′
n) (6.5)

for all m and (e1,1, e1,2), . . . , (en,1, en,2).
Choose m ∈ N such that

m > max( max
k≤i≤n

xi
di

, max
l≤i≤n

x ′
i

d ′
i
).

For this m,

(x1 ⊕ dm1 , d1, . . . , xn ⊕ dmn , dn) = (0, 0, . . . , 0, 0, xk, dk, . . . xn, dn)

and

(x ′
1 ⊕ d

′m
1 , d ′

1, . . . , x
′
n ⊕ d

′m
n , dn) = (0, 0, . . . , 0, 0, x ′

l , d
′
l , . . . x

′
n, d

′
n)

Proposition 2.12 guarantees existence of e ∈ {σ(e1,1,e1,2),...,(en,1,en,2)} such that

e(0, 0, . . . , 0, 0, xk, dk, . . . xn, dn) �= e(0, 0, . . . , 0, 0, x ′
l , d

′
l , . . . x

′
n, d

′
n).

Therefore, we see that for this choice of m and this e,

Em,e(x1, d1, . . . xn, dn) �= Em,e(x
′
1, d

′
1, . . . , x

′
n, d

′
n)

and we are done. �
It is hard to characterize all tropical rational functions on Bn , so we work with a

subsemiring of functions obtained by takingmaxima, adding and subtracting functions
from {Em,(e1,1,e1,2),...,(en,1,en,2)}. We denote this subsemiring by Gn or GSn

n when we
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wish to stress that all the functions contained in it are symmetric. We have restriction
maps in,m : Gn → Gm , when n ≥ m, induced by

in,m( f )(x1, d1, . . . , xm, dm, . . . , xn, dn) = f (x1, d1, . . . , xm, dm, 0, 0, . . . , 0, 0),

The map in,m is Sm-equivariant, where Sm acts by permuting the first m pairs of
variables.

Maps in,n−1 transform the generators of Gn as follows:

Em,(0,0) j (1,0)k(0,1)l (1,1)p

�→

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Em,(0,0) j−1(1,0)k(0,1)l (1,1)p if j �= 0
Em,(1,1)n−1 if j = 0, k = 0, l = 0
Em,(0,1)l−1(1,1)p if j = 0, k = 0, l ≥ 1
Em,(1,0)k−1(1,1)p if j = 0, k ≥, l = 0
Em,(1,0)k−1(0,1)l (1,1)p � Em,(1,0)k (0,1)l−1(1,1)p if j = 0, k ≥, l ≥ 1

Here p = n − l − k − j . Therefore, we in,n−1 is a surjection from Gn to Gn−1 and
we may construct composites

in−1
n : GSn

n ↪→ GSn−1
n

i
Sn−1
n,n−1−−−→ GSn−1

n−1 .

We cannot proceed as we did in the case of max-plus polynomials, since we cannot
define a degree of a tropical rational expression. However, recall that according to
Sect. 2.1 we can write any r ∈ Gn as

max
i=1,...,l1

(

n∑

k=1

(ak,i xk + bk,i dk) +
n∑

k=1

(a′
k,i x

′
k + b′

k,i d
′
k) + ci )

− max
j=1,...,l2

(

n∑

k=1

(sk, j xk + tk, j dk) +
n∑

k=1

(s′
k, j x

′
k + t ′k, j d ′

k) + u j ). (6.6)

Now set

kG
Sn
n ={r ∈Gn | r ∼ p ⊕ q−1, p, q are max-plus polynomials with deg p, deg q≤k}

Map in−1
n induces kin−1

n : kG
Sn
n

k in−1
n−−−→ kG

Sn−1
n−1 . We denote the inverse limit of this

system by G k . Let G = ∪∞
k=1G

k .

Theorem 6.7 Tropical rational functions in G form a filtered semiring, and they sep-
arate points in the barcode space. As a semiring G is generated by elements of the
form Em,(1,0)k (0,1)l (1,1)p where k, l, p are nonnegative integers and m is a positive
integer.
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7 Stability of Tropical Rational Functions in G

In this subsection, we prove that the rational functions that we identified are stable
with respect to the bottleneck and Wasserstein distances.

Theorem 7.1 (Bottleneck stability of functions in G ) If F ∈ G , then a constant C
exists such that

|F(B1) − F(B2)| ≤ Cd∞(B1,B2)

for any pair of barcodes B1 and B2.

Lemma 7.2 Let m ∈ N, mi = min{xi ,mdi } and m′
i = min{x ′

i ,md ′
i }. Then,

|mi − m′
i | ≤ 2mmax(|xi − x ′

i |, |di − d ′
i + xi − x ′

i |).

Proof If xi ≤ mdi and x ′
i ≤ md ′

i , then

|mi − m′
i | = |xi − x ′

i |.

If xi ≥ mdi and x ′
i ≥ md ′

i , then

|mi − m′
i | = |mdi − md ′

i | = m|di − d ′
i |.

Let xi ≤ mdi and x ′
i > md ′

i (the case when xi > mdi and x ′
i ≤ md ′

i is analogous).
Since 0 ≤ xi ≤ mdi ,

−md ′
i ≤ xi − md ′

i ≤ m(di − d ′
i ).

On the other hand −x ′
i < −md ′

i ≤ 0 and consequently

xi − x ′
i < xi − md ′

i ≤ xi .

It follows that

|xi − md ′
i | ≤ max{|xi − x ′

i |,m|di − d ′
i |}

and consequently

|mi − m′
i | ≤ max{|xi − x ′

i |,m|di − d ′
i |} ≤ mmax{|xi − x ′

i |, |di − d ′
i |}.

By triangle inequality

|di − d ′
i | ≤ |di − d ′

i + xi − x ′
i | + |xi − x ′

i | ≤ 2max(|xi − x ′
i |, |di − d ′

i + xi − x ′
i |).
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Finally, these two inequalities imply

max(|xi − x ′
i |, |di − d ′

i + xi − x ′
i |) ≤ 2mmax(|xi − x ′

i |, |di − d ′
i + xi − x ′

i |)

�
Proof of Theorem 7.1 Take E = Em,(0,1)l (1,0)k (1,1)p . Let B1 = {(x1, d1), . . . , (xl1 ,
dl1)} and B2 = {(x ′

1, d
′
1), . . . , (x

′
l2
, d ′

l2
)} be such that B1 �= B2. Define mi ,m′

i as in
Lemma 7.2.

Without loss of generality, assume that

Em,(0,1)l (1,0)k(1,1)p (B1) ≥ Em,(0,1)l (1,0)k(1,1)p (B2)

and

Em,(0,1)l (1,0)k(1,1)p (B1) =
p∑

i=1

(mi + di ) +
p+k∑

i=p+1

mi +
p+k+l∑

i=p+k+1

di .

If l1, l2 < p + k + l, we add 0 length intervals to both barcodes.
Let θ be abijectionwhere thepenalty isminimal, i.e.,where P∞(θ) = d∞(B1,B2).

Assume that θ matches (x1, d1) with (x ′
1, d

′
1), (x2, d2) with (x ′

2, d
′
2), …, (xp+k+l ,

dp+k+l) with (x ′
p+k+l , d

′
p+k+l). Recall that for all i in this matching,

|di − d ′
i

2
| ≤ max

i=1,...,m
(|xi − x ′

i |, |di − d ′
i + xi − x ′

i |).

Let’s also check what happens if d ′
i = 0. In this case, (xi , di ) is matched to a 0 length

barcode and

di ≤ 2d∞(B1,B2), mi ≤ mdi ≤ 2md∞(B1,B2)

and

di + mi ≤ (2 + 2m)d∞(B1,B2).

Let M = max{1,m}. Using Lemma 7.2 and the above inequalities

E(B1) − E(B2)

=
p∑

i=1

(mi + di ) +
p+k∑

i=p+1

mi +
p+k+l∑

i=p+k+1

di − E(B2)

≤
p∑

i=1

(mi − m′
i + di − d ′

i ) +
p+k∑

i=p+1

(mi − m′
i ) +

p+k+l∑

i=p+k+1

(di − d ′
i )
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= 2|
p∑

i=1

mi − m′
i

2
+

p∑

i=1

di − d ′
i

2
+

p+k∑

i=p+1

mi − m′
i

2
+

p+k+l∑

i=p+k+1

di − d ′
i

2
|

≤ 2(
p∑

i=1

|mi − m′
i

2
| +

p∑

i=1

|di − d ′
i

2
| +

p+k∑

i=p+1

|mi − m′
i

2
| +

p+k+l∑

i=p+k+1

|di − d ′
i

2
|)

≤ 2(2pMP∞(θ) + 2pP∞(θ) + 2kMP∞(θ) + 2l P∞(θ))

≤ 2(2pM + 2p + 2kM + 2l)d∞(B1,B2).

This proves that E is Lipschitz. In proof of Theorem 5.1, we showed that stable
functions on the barcode space are preserved under taking sums, maxima and minima
since Em,(e1,1,e1,2),...,(en,1,en,2) are stable as any F ∈ G is composed of taking sums,
maxima and minima of Em,(e1,1,e1,2),...,(en,1,en,2). �
Theorem 7.3 (Wasserstein stability of functions in G ) If F ∈ G , then a constant C
exists such that

|F(B1) − F(B2)| ≤ Cdq(B1,B2)

for any pair of barcodes B1 and B2.

Proof We denote the function Em,(0,1)l (1,0)k (1,1)p by E . LetB1 = {(x1, d1), . . . , (xl1 ,
dl1)} andB2 = {(x ′

1, d
′
1), . . . , (x

′
l2
, d ′

l2
)} be such thatB1 �= B2. Without loss of gen-

erality, assume that

Em,(0,1)l (1,0)k(1,1)p (B1) ≥ Em,(0,1)l (1,0)k(1,1)p (B2)

and

Em,(0,1)l (1,0)k(1,1)p (B1) =
p∑

i=1

(mi + di ) +
p+k∑

i=p+1

mi +
p+k+l∑

i=p+k+1

di .

If l1, l2 < p + k + l, we add 0 length intervals to both barcodes.
Let θ be a bijectionwhere the penalty isminimal, i.e., where P∞(θ) = dq(B1,B2).

Assume that θ matches (x1, d1) with (x ′
1, d

′
1), (x2, d2) with (x ′

2, d
′
2), …, (xp+k+l ,

dp+k+l) with (x ′
p+k+l , d

′
p+k+l). Recall that for all i in this matching,

|di − d ′
i

2
|q ≤ max

i=1,...,m
(|xi − x ′

i |, |di − d ′
i + xi − x ′

i |)q

since x �→ xq is increasing for x > 0. As before, if d ′
i = 0, (xi , di ) is matched to a 0

length barcode and

di ≤ 2dq(B1,B2), mi ≤ mdi ≤ 2mdq(B1,B2)
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and

di + mi ≤ (2 + 2m)dq(B1,B2).

Let M = max{1,m}. Using Lemma 7.2 and the above inequalities, we get:

|E(B1) − E(B2)|q

= (

p∑

i=1

(mi + di ) +
p+k∑

i=p+1

mi +
p+k+l∑

i=p+k+1

di − E(B2))
q

≤ (

p∑

i=1

(mi − m′
i + di − d ′

i ) +
p+k∑

i=p+1

(mi − m′
i ) +

p+k+l∑

i=p+k+1

(di − d ′
i ))

q

= 2q |
p∑

i=1

mi − m′
i

2
+

p∑

i=1

di − d ′
i

2
+

p+k∑

i=p+1

mi − m′
i

2
+

p+k+l∑

i=p+k+1

di − d ′
i

2
|q

≤ 2q(
p∑

i=1

|mi − m′
i

2
| +

p∑

i=1

|di − d ′
i

2
| +

p+k∑

i=p+1

|mi − m′
i

2
| +

p+k+l∑

i=p+k+1

|di − d ′
i

2
|)q

≤ 2q(2p + k + l)q−1(2pM + 2p + 2kM + 2l)q Pq(θ)q

≤ 2q(2pM + 2p + 2kM + 2l)2qdq(B1,B2)
q .

The first inequality holds since
∑p

i=1(m
′
i + d ′

i ) + ∑p+k
i=p+1 m

′
i + ∑p+k+l

i=p+k+1 d
′
i ≤

E(B2). The last inequality uses Hőlder’s inequality. Taking the qth root finishes the
proof.

We conclude that E is Lipschitz. In proof of Theorem 5.1, we showed that stable
functions on the barcode space are preserved under taking sums, maxima and minima.
Since Em,(e1,1,e1,2),...,(en,1,en,2) are stable, F ∈ G is also stable as it is composed of
taking sums, maxima and minima of Em,(e1,1,e1,2),...,(en,1,en,2). �

8 Classifying Digits with Tropical Coordinates

Adcock et al. [1] used polynomial coordinates to classify digits from the MNIST
database [23] of handwritten digits. In this section, we compare classification
results they obtained with mine, which were classified using tropical coordinates.
Aaron Adcock provided the MATLAB code needed to convert digital images into
filtrations.

While homology itself cannot distinguish between the digits—1, 5 and 7 never have
loops, 0, 6, 9 always have loops, 8 has two loops, while 2, 3, 4 might or might not
have loops, depending on style—we can use persistent homology as a measurement of
shape. Figure 1 shows the first 100 digits of the database. The original black and white
images were first normalized, scaled into a 20 × 20 pixel bounding box and anti-
aliased, which introduced grayscale levels. Pixel values are 0–255, where 0 means
background (white), 255 means foreground (black).
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Fig. 1 The first 100 images of the MNIST database. Reproduced with permission from https://
stackoverflow.com/questions/27925358/pre-processing-before-digit-recognition-for-nn-cnntrained-with-
mnist-dataset

Following Collins et al. [13], we first threshold (setting pixel values greater than
100–1 and the rest to 0) to produce a binary image. We construct four filtrations as
follows. For each pixel, we add a vertex, for any pair of adjacent pixels (diagonals
included) an edge and for any triple of adjacent pixels a 2-simplex. We sweep across
the rows from the left and the right and across the columns from top to bottom and vice
versa. This adds spatial information into what would otherwise be a purely topological
measurement. We take both Betti 0 and Betti 1.

This extra spatial information reveals the location of various topological features.
For example, though a ‘9’ and ‘6’ both have one connected component and one loop,
the loop will appear at different locations in the 1-dimensional homology top-down
sweep for the ‘9’ and ‘6’ (see Fig. 2). In digits with no loops, 0-dimensional homology
right to left sweep distinguishes ‘3’ from other digits (see Fig. 3).

We can use different methods for turning barcodes into vectors. Adcock et al.
selected four features,

∑
i
xi (yi − xi )

∑
i

(ymax − yi )(yi − xi )
∑
i
x2i (yi − xi )4

∑
i

(ymax − yi )2(yi − xi )4

which when applied to the four sweeps, each with a 0-dimensional and 1-dimensional
barcode, give a feature vector of total size 32. We used command fitcecoc in
MATLAB to get an error-correcting output codes (ECOC) multiclass model [25].
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Fig. 2 0-dimensional homology right to left sweep for ‘1,’ ‘3,’ ‘4,’ ‘5’ and ‘7’. Reproduced with permission
from Aadcock et al. [1]

Fig. 3 1-dimensional homology bottom to top sweep for ‘0,’ ‘2,’ ‘6,’ ‘8’ and ‘9’. Reproduced with permis-
sion from Aadcock et al. [1]

Table 1 Classification accuracy
using ordinary polynomial
coordinates

1000 digits 5000 digits 10,000 digits

87.5% 90.04% 91.04%

This model was trained using support vector machine (SVM) [14]. We obtained the
best results using the Gaussian kernel. As is typical when using a SVM,we scaled each
coordinate such that the values were between 0 and 1. To measure the classification
accuracy, we used 100-fold cross-validation. See Table 1 for results.
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Table 2 Classification accuracy
using max-plus type coordinates

1000 digits 5000 digits 10,000 digits

87.70% 91.36% 92.41%

Fig. 4 Common misclassifications. Reproduced with permission from Aadcock et al. [1]

Using the following max-plus type coordinates

max
i

di max
i< j

(di + d j )

max
i< j<k

(di + d j + dk) max
i< j<k<l

(di + d j + dk + dl)
∑
i
di

∑
i
min(28di , xi )

∑
i

(max
i

(min(28di , xi ) + di ) − (min(28di , xi ) + di ))

yields slightly better results (see Table 2). Note that we used many functions involving
sums of lengths of intervals. These yielded the best results, which is perhaps not
surprising since when using persistent homology and interpreting the barcode, we
assign importance to features depending on over what range of parameters they persist.

This method just demonstrates how one can use persistent homology with other
machine learning algorithms and does not outperform existing classification algo-
rithms. Figure 4 shows examples of digits that were not correctly classified. The most
common confusion is between a ‘5’ and a ‘2’ written with no loop. Other common
confusions occur when topological changes occurred to the digit, for example when
‘8’ is written with no loops.

These examples also show the power of combining topology with geometry and in
particular demonstrate how coordinates can serve as a method for organizing the col-
lection of all barcodes and therefore any database whose members produce barcodes.
They are also stable with respect to the bottleneck and Wasserstein distances.
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