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Abstract The aim of this paper is a quantitative analysis of the solution set of a system
of polynomial nonlinear differential equations, both in the ordinary and partial case.
Therefore, we introduce the differential counting polynomial, a common generaliza-
tion of the dimension polynomial and the (algebraic) counting polynomial. Undermild
additional assumptions, the differential counting polynomial decides whether a given
set of solutions of a system of differential equations is the complete set of solutions.
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1 Introduction

Many systems of differential equations do not admit closed-form solutions in “elemen-
tary” functions and hence cannot be solved symbolically. Despite this, increasingly
good heuristics are implemented in computer algebra systems to find solutions [3,4].
Given such a set of closed-form solutions returned by a computer algebra system, the
question remains whether this set is the complete solution set. More generally, the
goal of this paper is to “measure” the sizes of solution sets U ⊆ V in order to decide
whether U = V .
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There are many classical measures of the size of the solution set (cf. [19] for an
overview), the strongest1 of which is Kolchin’s dimension polynomial [10,13]. How-
ever, the dimensionpolynomial canonly describe solution sets givenby characterizable
differential ideals and only the dimension of such solution sets, but no finer details (cf.
Example 4.9). It was a great surprise to the author that such finer details can appear in
the solution set of a differential equation, for example countable infinite exceptional
sets (cf. Example 4.8).

This paper introduces the differential counting polynomial, amore detailed descrip-
tion of a solution set of a system of differential equations. If it exists, it generalizes
the dimension polynomial (Theorem 4.5) and decides in many cases whether solution
sets are equal (Theorem 4.3 and Proposition 4.4).

The idea of the differential counting polynomial originates fromPlesken’s algebraic
counting polynomial [16]. The algebraic counting polynomial is an element c(V ) ∈
Z[∞] which describes the size of a constructible set V in affine n-space. Here, ∞
is a free indeterminate, which can be thought of as representing the cardinality of an
affine 1-space. For example, the algebraic counting polynomial of an affine i-space
is ∞i ∈ Z[∞], and if V is a j-fold unramified cover of W , then c(V ) = j · c(W ) ∈
Z[∞]. Two constructible sets U ⊆ V are equal if and only if their algebraic counting
polynomials c(U ) and c(V ) coincide.

The differential counting polynomial is the algebraic counting polynomial for the
different Taylor polynomials of degree � of all formal power series solutions. We
restrict to formal power series solutions as they exist in a formally consistent system
of differential equations for any formal power series given as initial data. Similar
results hold for analytic [18] but not for smooth initial data (cf. Lewy’s example [15]).

Determining the differential counting polynomial of a set of differential equations
is not algorithmic in general. Even in the case of a single inhomogeneous linear
differential equation, the problem of the existence of formal power series solutions
can be reduced to Hilbert’s unsolvable tenth problem about Diophantine equations [5].
Also, the existence of the differential counting polynomial is still an open problem.
However, the author succeeded in computing the differential counting polynomial
using Theorem 4.6 and inductive proofs similar to Examples 4.8 and 4.9 for all of the
various classes of examples of differential equations he encountered.

So, it is hard to determine the differential counting polynomial from a set of dif-
ferential equations without explicitly knowing the corresponding full set of solutions
V . In contrast, the differential counting polynomial c(U ) of an explicitly given set
of solutions U can be computed more easily by determining how unrestrictedly the
power series coefficients of elements in U are choosable (cf. Example 4.9). Once the
differential counting polynomial c(V ) of V is known, one can often decide whether
an explicitly given set of solutions U is equal to the complete set of solutions V by
comparing c(U ) and c(V ).

Sections 2 and 3 recapitulate simple systems and Plesken’s algebraic counting
polynomial, respectively, and generalize them for our needs. In Sect. 4, we define the
differential counting polynomial, state its basic properties, and give examples. The

1 It implies other descriptions like Cartan characters or Einstein’s strength.
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author’s PhD thesis [14] contains additional (classes of) examples. The proofs follow
in Sect. 5.

2 Simple σ -Systems

Simple systems stratify constructible sets into sets with convenient geometric proper-
ties. Such systems underlie Plesken’s counting polynomial. This section recapitulates
simple systems and generalizes them to describe differential equations.

Let R := C[y1, . . . , yn] be a polynomial ring.We fix the total order, called ranking,
y1 < y2 < · · · < yn on {y1, . . . , yn}. The <-greatest variable ld(p) occurring in
p ∈ R \C is called leader of p. The coefficient ini(p) of the highest power of ld(p) in
p is called the initial of p. For S ⊂ R \C define ld(S) := {ld(p)|p ∈ S} and similarly
ini(S). Denote by S<yi , S≤yi , and Syi the sets S ∩ C[y1, . . . , yi−1], S ∩ C[y1, . . . , yi ],
and {p ∈ S | ld(p) = yi }, respectively, for all 1 ≤ i ≤ n.

We call a set of finitely many equations and countably many inequations a σ -
system. If this set is finite, we call it system. Let S be a σ -system over R. We denote
the set of solutions in C

n of S by Sol(S). Call S weakly triangular if it contains no
equation or inequation inC and it contains either atmost one equation or arbitrarymany
inequations of leader yi for each 1 ≤ i ≤ n. We say that S has non-vanishing initials
if no initial vanishes when substituting an a ∈ Sol(S). Substituting all indeterminates
yi �= ld(p) in p ∈ S by an ai ∈ C results in a univariate polynomial. If all these
univariate polynomials resulting from the p ∈ S and a ∈ Sol(S) are square-free, then
we call S square-free. We call S a simple σ -system if it is weakly triangular, has
non-vanishing initials, and is square-free.

A set {S1 . . . , Sl} of simple σ -systems with disjoint solution sets is called an alge-
braic Thomas decomposition of a σ -system S ifSol(S) = ⊎

1≤i≤l Sol(Si ). Such a
Thomas decomposition is called comprehensive with respect to an indeterminate yk
if Sol((Si )≤yk ) ∩ Sol((S j )≤yk ) ∈ {∅,Sol(Si )} for all 1 ≤ i, j ≤ l.

3 Algebraic Counting Polynomials

This section recapitulates Plesken’s algebraic counting polynomial for constructible
sets [16,17] and generalizes it to be suitable for describing differential equations. We
consider the affine n-space C

n with projections πi : C
n → C

i : (a1, . . . , an) �→
(a1, . . . , ai ).

Definition 3.1 The following four axioms iteratively2 applied to a constructible set
V ⊆ C

n yield its algebraic counting polynomial, an element in the univariate poly-
nomial ring Z[∞].
(1) c(V ) = |V | if V is finite.
(2) c(V ) = ∞ for an affine 1-space V over C.
(3) c(V � W ) = c(V ) + c(W ) for disjoint constructible sets V,W ⊂ C

n .

2 This is independent of the order in which the axioms are applied [16, Prop. 3.3].
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(4) If V ⊂ C
n is constructible and for some 1 ≤ i ≤ n each non-empty fiber W of

πi has the same value under c, then c(V ) = c(W ) · c(πi (V )).

The algebraic Thomas decomposition makes the computation of the algebraic
counting polynomial algorithmic [16]. The following theorem shows how the alge-
braic counting polynomial can be used to compare constructible sets. Our goal is a
similar theorem for solution sets of differential equations.

Theorem 3.2 [16, Cor. 3.4] Let U ⊆ V ⊆ C
n be constructible sets. Then U = V if

and only if c(U ) = c(V ).

In solution sets of differential equations, countable exceptional sets appear natu-
rally (cf. Example 4.8). To describe these sets, we generalize the algebraic counting
polynomial.

Definition 3.3 Let V ⊆ C
n . Then, call any element c(V ) in the polynomial ring

Z[∞,ℵ0] constructed by iteratively applying the four axioms from Definition 3.1
above and the following fifth axiom an algebraic counting polynomial of V .

(5) c(C1 \ M) = ∞ − ℵ0 for M ⊂ C
1 is countably infinite.

Remark 3.4 In general, the algebraic counting polynomial is not unique. For example,
the set Sol({x − i �= 0|i ∈ Z≥0}) = Sol({x − i �= 0|i ∈ Z≥1}) � {0} can have
both algebraic counting polynomial ∞ − ℵ0 and ∞ − ℵ0 + 1. Hence, Theorem 3.2,
which states that the algebraic counting polynomial decides equality of contained
constructible sets, cannot hold in general, but it holds for the important special case
of well-fibered sets (cf. Theorem 3.6).

Even worse, it is not clear in which cases an algebraic counting polynomial exists,
i.e., that there exists a way to apply the axioms terminating in an element inZ[∞,ℵ0].
Simple algebraic σ -systems are a first examplewhere existence (and some uniqueness)
holds.

Theorem 3.5 Let S ⊂ C[y1, . . . , yn] be a simple algebraic σ -system. Then an alge-
braic counting polynomial of Sol(S) exists.

Consider countingpolynomials as polynomials in the indeterminate∞. Thendegree
and leading coefficient of any algebraic counting polynomial c(Sol(S)) are equal to
those of the (unique, cf. [16, Prop. 3.3]) counting polynomial c(Sol(S)) of its Zariski
closure Sol(S). In particular, the degree of c(Sol(S)) is equal to the dimension of
Sol(S).

In particular, the degrees and leading coefficients of these algebraic counting poly-
nomials arewell defined and the leading coefficients are natural numbers.We postpone
the proof of this theorem to p. 14.

Countable exceptional sets complicate the use of the algebraic counting polynomial
for σ -systems in applications. However, the counting polynomial is well behaved
for well-fibered sets, which we define as sets with a counting polynomial in Z[∞].
These sets behave similarly as constructible sets with regard to algebraic counting
polynomials; in particular the algebraic countingpolynomial is strong enough to decide
equality of such sets contained in each other.

123



Found Comput Math (2018) 18:291–308 295

Theorem 3.6 Let U ⊆ V ⊆ C
n be two well-fibered sets. Then U = V if and only

if c(U ) = c(V ). In particular, the counting polynomial of well-fibered sets is well
defined in the sense that it is unique.

We postpone the proof of this theorem to p. 15.
Even when ℵ0 appears in algebraic counting polynomials of two sets U ⊆ V , one

might be able to proveU �= V by estimating the algebraic counting polynomial. First,
any subset of C

1 with a countably infinite complement can be enlarged to a set with
finite complement. Second, any subset ofC

1 with a countably infinite complement can
be shrunk to a finite set. Thus, for p(ℵ0,∞) ∈ Z[ℵ0,∞] and q(∞) ∈ Z[∞]we define
p ≺ q if p(∞ − k,∞) = q(∞) and p � q if p(k,∞) = q(∞) for some k ∈ Z≥0.
Additionally, we use the total order q < q ′ if there exists an x0 with q(x) < q ′(x) for
all x > x0 for q, q ′ ∈ Q[∞].
Proposition 3.7 Let U ⊆ V ⊆ C

n have algebraic counting polynomials p1(ℵ0,∞)

:= c(U ) and p2(ℵ0,∞) := c(V ). If there exist q1, q2 ∈ Z[∞] with p1 ≺ q1 � q2 ≺
p2, then U �= V .

The proof of this proposition is a natural generalization of one implication of the
proof of [16, Cor. 3.4].

4 The Differential Counting Polynomial

This section defines the differential counting polynomial and states some of its prop-
erties. Beforehand, we fix some notation.

4.1 Preliminaries

Let F ⊇ C be a field of meromorphic functions in n complex variables x1, . . . , xn ,
and � = {∂x1, . . . , ∂xn } the corresponding set of partial differential operators. Let

U := {u(1), . . . , u(m)} be a set of differential indeterminates and define u( j)
μ := ∂μu( j)

for ∂μ := ∂
μ1
x1 . . . ∂

μn
xn , μ ∈ (Z≥0)

n . The differential polynomial ring F{U } is the

infinitely generated polynomial ring in the indeterminates {U }� := {u( j)
μ |1 ≤ j ≤

m, μ ∈ (Z≥0)
n}. Denote by F{U }≤� its subring of elements of order at most � The

derivations ∂xi : F → F extend to ∂xi : F{U } → F{U } via additivity and Leibniz
rule. Let sep(p) be the separant of p ∈ F{U }. A ranking of F{U } is a total ordering
< of {U }� satisfying the two properties (1) u( j)

μ < ∂u( j)
μ and (2) u( j)

μ < u( j ′)
μ′ implies

∂u( j)
μ < ∂u( j ′)

μ′ for all u( j)
μ , u( j ′)

μ′ ∈ {U }� and ∂ ∈ �. A ranking < is called orderly if

|μ| < |μ′| implies u( j)
μ < u( j ′)

μ′ , where |μ| := μ1 + · · · + μn . In what follows, we fix
an orderly ranking < on F{U }.

Now, we extend the formalism of differential algebra to incorporate algebraic con-
straints for power series coefficients. We consider the set

G := G(U,�) :=
{
g( j)
μ | μ ∈ Z

n≥0, 1 ≤ j ≤ m
}
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of indeterminates and call the polynomial ring C[G] the polynomial ring of power
series coefficients. The bijection ρ : {U }� → G(U,�) : u( j)

μ �→ g( j)
μ extends the

orderly ranking< on F{U } to an (algebraic) ranking onC[G]. For � ∈ Z≥0 letC[G]≤�

be the subring generated by all indeterminates g( j)
μ of order |μ| ≤ �.

We call a union of finitelymany differential equations in F{U }, finitelymany power
series coefficient equations in C[G], and countably many power series coefficient
inequations in C[G] an algebraically restricted σ -system of differential equations
and an algebraically restricted system of differential equations if it is finite.

We are concerned with power series solutions in the power series ring Pζ :=
C[[x1 − ζ1, . . . , xn − ζn]] centered around ζ = (ζ1, . . . , ζn) ∈ C

n . We interpret
equations in F{U } as equations for functions, e.g., u(1)

(0,...,0) = 0 implies that u(1) is
the zero function, whereas equations in C[G] are equations for single power series
coefficients, e.g., g(1)

(0,...,0) = 0 implies that u(1) has a zero at its center of expansion
ζ . More precisely, a solution of power series coefficient equations or inequations is
defined as a tuple of power series f ∈ PU

ζ
∼= ⊕

U Pζ that evaluates to zero or non-zero,

respectively, when substituting g( j)
μ by the coefficient of (x1 − ζ1)

μ1 . . . (xn − ζn)
μn

in f (u( j)). Our definition of a solution of a differential equation in F{U }, where all
coefficients are holomorphic in ζ , is the usual one. Denote the set of formal power
series solutions of an algebraically restricted σ -system of differential equations S
around ζ by Solζ (S) ⊆ PU

ζ .

We consider Taylor polynomials which extend to a Taylor series. Let PU
ζ,>� be

the Pζ -submodule of PU
ζ generated by the u( j) �→ (x1 − ζ1)

μ1 . . . (xn − ζn)
μn for

μ ∈ Z
n≥0 with |μ| > �. Define the set Solζ (S)≤� of formal power series solutions

of S around ζ truncated at order � as the image ofSolζ (S) in PU
ζ /PU

ζ,>� under the

natural epimorphism PU
ζ � PU

ζ /PU
ζ,>�.

4.2 Definition of the Differential Counting Polynomial

The algebraic Thomas decomposition computes the algebraic counting polynomial.
For differential equations, there is a similar decomposition.

Theorem 4.1 Let S be an algebraically restricted system of differential equations,
such that the center of expansion ζ ∈ C

n is not a pole of any coefficient of a differential
equation. Let � ∈ Z≥0. There exists a countable set C of simple algebraic σ -systems
in C[G]≤� with

Solζ (S)≤� =
⊎

S̃∈C
Solζ (S̃)≤�.

We postpone the proof of this theorem to p. 16. This theorem justifies the following
definition of the differential counting polynomial.

Definition 4.2 Let S be an algebraically restricted system of differential equations.
LetC� be a countable set of algebraicσ -systemswithSolζ (S)≤� = ⊎

S̃∈C�
Solζ (S̃)≤�

for each � ∈ Z≥0.
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If an algebraic counting polynomial exists for C�, then define an �-th differential
counting polynomial of S as c(C�) ∈ Z[∞,ℵ0]. If an �th differential counting
polynomial exists for all �, then define a counting sequence c(S) ∈ Z[∞,ℵ0]Z≥0 of
S (or Solζ (S)) as

c(S) : � �→ c(C�).

If there exists a p ∈ Q[�,ℵ0,∞,∞�,∞ �2
2! , . . . ,∞ �n

n! ] such that c(S)(�) = p for
ultimately all �, then call p a differential counting polynomial of S (or Solζ (S))
and denote it by c̄(S). For a differential ideal I = 〈p1, . . . , pk〉� define c(I ) :=
c({p1, . . . , pk}) and c̄(I ) := c̄({p1, . . . , pk}).

We write ∞�2 instead of (∞ �2
2! )2 and use similar simplifications.

The existence of a differential counting sequence or a differential counting poly-
nomial is not clear, in general.

4.3 Deciding Equality of Sets

The following theorem and proposition use counting sequences and differential count-
ing polynomials to decide equality of sets contained in each other.

Theorem 4.3 Let S1, S2 be two algebraically restricted systems of differential equa-
tions with Solζ (S1) ⊆ Solζ (S2).

1 Assume that both counting sequences c(S1) and c(S2) exist and that c(S1)(�),
c(S2)(�) ∈ Z[∞] for all � ∈ Z≥0. Then Solζ (S1) = Solζ (S2) if and only if
c(S1)(�) = c(S2)(�) for all � ∈ Z≥0. In particular, c(S1) is the unique counting
sequence of S1.

2 Assume both differential counting polynomials c̄(S1) and c̄(S2) exist and c̄(S1),

c̄(S2) ∈ Q[�,∞,∞�,∞ �2
2! , . . . ,∞ �n

n! ] holds. Then Solζ (S1) = Solζ (S2) if and
only if c̄(S1) = c̄(S2). In particular, c̄(S1) is the unique differential counting poly-
nomial of S1.

The setsSolζ (S1)≤� andSolζ (S2)≤� of formal power series solutions truncated at
order � are well-fibered under the conditions of (4.3) and well-fibered for high enough
� under the conditions of (4.3). Thus, this theorem is a corollary of Theorem 3.6.

Remark 3.4 indicates that a stronger version of this theorem is unlikely.However,we
can show that two sets are not equal in the differential case similar to Proposition 3.7,
by using the total order < and the estimation ≺, both defined before Proposition 3.7.

Proposition 4.4 Let S1, S2 be two algebraically restricted systems of differential
equations with Solζ (S1) ⊆ Solζ (S2) such that the counting sequences c(S1) and
c(S2) exist. If there exist an � ∈ Z≥0 and q1, q2 ∈ Z[∞] with c(S1)(�) ≺ q1 � q2 ≺
c(S2)(�), then Solζ (S1) �= Solζ (S2).

This proposition follows from Proposition 3.7 just as Theorem 4.3 follows from
Theorem 3.6.
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4.4 Comparison to the Differential Dimension Polynomial

The counting sequence and the differential counting polynomial are connected to
the differential dimension polynomial (cf. [9,10,12,13]) in the version defined for
characterizable differential ideals (cf. [6,7]).

For the following theorem, we consider an �th differential counting polynomial as
a polynomial in the indeterminate∞ and coefficients in Z[ℵ0]. Similarly, we consider

a differential counting polynomial as a polynomial in the indeterminates ∞ �i
i ! for

0 ≤ i ≤ n and coefficients in Q[ℵ0, �]. We order the indeterminates ∞ �n
n! > · · · >

∞ �2
2! > ∞� > ∞.

Theorem 4.5 Let I := 〈S〉� : (ini(S) ∪ sep(S))∞ be a characterizable differential
ideal given by a regular chain S. Denote by

	I : Z≥0 �→ Z≥0 : � �→ dim(F{U }≤�/(I ∩ F{U }≤�))

its differential dimension function and by ωI (l) its dimension polynomial, the unique
polynomial that agrees with the dimension function for all large enough �. If an �th
differential counting polynomial c(I )(�) of I exists, then its leading term is

⎛

⎜
⎜
⎜
⎝

∏

p∈S
ord(p)≤�

degld(p) p

⎞

⎟
⎟
⎟
⎠

· ∞	I (�).

If a differential counting polynomial c̄(I ) of I exits, then its leading term is

⎛

⎝
∏

p∈S
degld(p) p

⎞

⎠ · ∞ωI (�).

We postpone the proof to p. 17.
Under the assumptions of this theorem, the differential counting polynomial implies

the same invariants of differential birationalmaps as the differential dimension polyno-
mial. In particular, the differential type, typical dimension, and differential dimension
can be read off the exponent of∞ in the leading term. This exponent is a polynomial in
� equal to the differential dimension polynomial. The differential type t is the degree
of this exponent, and when writing it as

∑n
i=0 ai

(
�+i
i

)
the typical dimension is at and

the differential dimension is an (cf. [13, Theorem 1.1]).

4.5 Simple Differential Systems without Inequations

For semilinear systems of differential equations there exists a closed formula for
the differential counting polynomial that holds once all differential consequences are
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obvious from the system (such systems are called passive [8], involutive [2] or coherent
[11]). It follows from this formula that the differential counting polynomial of such
systems does not involve ℵ0. This holds for the more general class of differential
equations given by a simple differential system S without inequations [2, Def. 3.5].
Let I(S) := 〈T 〉� : q∞ be the corresponding characterizable differential ideal, where
T are the equations in S and q is the product of the initials and separants of T . Let	I(S)

denote its differential dimension function and ωI(S) its dimension polynomial [13].

Theorem 4.6 Let S = {p1, . . . , ps} be a simple differential system in F{U } without
inequations. Consider formal power series solutions around a point ζ ∈ C

n such that
neither evaluating the coefficients of S at ζ yields a pole nor any initial or separant
vanishes identically. Then, its unique counting sequence is

c(S) : l �→

⎛

⎜
⎜
⎝

∏

1≤i≤s
ord(pi )≤�

degld(pi )(pi )

⎞

⎟
⎟
⎠ · ∞	I(S)(�),

and its differential counting polynomial is

c̄(S) =
⎛

⎝
∏

1≤i≤s

degld(pi )(pi )

⎞

⎠ · ∞ωI(S)(�).

We postpone the proof to p. 17.
Differential inequations in the sense of Thomas (cf. [2]) are not well-suited to

count power series solutions, as u(x) �= 0 just implies that at least one power series
coefficient of u is non-zero.

Many examples of systems of differential equations yield a Thomas decomposition
into a single simple differential system without inequations. Examples are systems of
linear differential equations and semilinear formally integrable systems of differential
equations. We show an example of the latter class.

Example 4.7 Let F = C, � = {∂x , ∂y, ∂z, ∂t }, U = {u, v, w, p}, and fix a ranking,
such that the leaders are the underlined indeterminates. The incompressible Navier–
Stokes equations are

S := {ut + uux + vuy + wuz + px − (
uxx + uyy + uzz

) = 0,

vt + uvx + vvy + wvz + py − (
vxx + vyy + vzz

) = 0,

wt + uwx + vwy + wwz + pz − (
wxx + wyy + wzz

) = 0,

ux + vy + wz = 0}.

A differential Thomas decomposition for S is given by the one system

S ∪
{
2uyvx + 2uzwx + 2vzwy + u2x + v2y + w2

z + pxx + pyy + pzz = 0
}

,
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where the Poisson pressure equation is added to S. In particular, the Thomas decom-
position of S does not contain any inequation. A combinatorial calculation shows that
the differential counting polynomial of the incompressible Navier–Stokes equations

is ∞�3+ 11
2 �2+ 17

2 �+4.

4.6 Examples

To transform a differential equation into an equation for a single power series coef-
ficient, we define the partial map ρ : F{U } → C[G] as additive, multiplicative,
mapping u( j)

μ to g( j)
μ , and mapping any meromorphic f ∈ F to f (ζ ) ∈ C if it has no

pole in ζ .
We call the following the postponing of a differential equation p ∈ F{U }: Replace

p by its first derivatives {∂x1 p, . . . , ∂xn p} and ρ(p); this does not change the solution
set.

In the following example, there is a power series coefficient that can be cho-
sen arbitrarily except for a countable infinite exceptional set for a solution to exist.
This exceptional set corresponds to the indeterminate ℵ0 in the differential count-
ing polynomial. In particular, there exists a set of differential equations for which
the indeterminate ℵ0 appears in the differential counting polynomial. This countable
exceptional set carries over from the set of formal power series solutions to the set
analytical solutions, as all formal power series solutions in this example have a positive
radius of convergence. The author did not find a similar set of differential equations
which describes natural phenomena or appears in the scientific literature.

Example 4.8 Let U = {u(1), u(2)}, � = {∂t }, F = C(t), and < the orderly ranking
with u(1) > u(2). We show the following. For all � ≥ 1

c̄(S) = c(S)(�) = ∞3 − ∞2 + ∞ − ℵ0

for formal power series solutions of S := {p := u(2)u(1)
1 − u(1) + 1

t = 0, u(2)
2 = 0}

centered around ζ ∈ C \ {0}. Each of these solutions is locally convergent and S has
no solutions centered around 0.

Use the ansatz u(1)(t) = ∑∞
i=0 g

(1)
i

(t−ζ )i

i ! and u(2)(t) = ∑∞
i=0 g

(2)
i

(t−ζ )i

i ! . Adding

g(2)
0 �= 0 to S yields T := {p = 0, u(2)

2 = 0, g(2)
0 �= 0}. It has �th differential counting

polynomial c(T )(�) = ∞3 −∞2 for every order � ≥ 1. This follows by means of the
proof of Theorem 4.6 on p. 17; the inequation g(2)

0 �= 0 ensures that the initials of the
derivatives of p are non-zero after applying ρ.

The system S∪{g(2)
0 = 0}, which is complementary to the previously treated system

S ∪ {g(2)
0 �= 0}, is equivalent to

S1 := {∂t p = u(2)u(1)
2 + (u(2)

1 − 1)u(1)
1 − 1

t2
= 0, u(2)

2 = 0,

g(1)
0 − 1

ζ
= 0, g(2)

0 = 0},
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by postponing p. This system S1 belongs to the family

Sk := {qk := u(2)u(1)
k+1 + (ku(2)

1 − 1)u(1)
k + (−1)k

k!
tk+1 = 0, u(2)

2 = 0,

(ig(2)
1 − 1)g(1)

i + (−1)i
i !

ζ i+1 = 0 ∀ 0 ≤ i < k,

∏k−1
i=1 (ig(2)

1 − 1) �= 0, g(2)
0 = 0}

of systems. Here qk results from differential reduction of ∂kt p by u
(2)
2 . After application

of ρ and reduction with elements in Sk , the differential equations qk yield (kg(2)
1 −

1)g(1)
k + (−1)k k!

ζ k+1 . To ensure a non-zero initial, we add (kg(2)
1 − 1) �= 0 to Sk . Then,

postponing qk , which after reduction by u(2)
2 results in qk+1, yields the system Sk+1.

Complementary, when adding kg(2)
1 − 1 = 0 to Sk , the system is inconsistent, since

reducing ∂t qk by u(2)
2 results in qk+1. Then

ρ(qk+1) = g(2)
0 g(1)

k+2 + (kg(2)
1 − 1)g(1)

k+1 + (−1)k+1 (k + 1)!
ζ k+2 = 0

yields the contradiction (−1)k+1 (k+1)!
ζ k+2 = 0 by using the relations g(2)

0 = 0 and

kg(2)
1 − 1 = 0.

Study the remaining system S∞ := ⋃∞
i=1 Si . The equations (kg(2)

1 − 1)g(1)
k +

(−1)k k!
ζ k+1 = 0make p superfluous. Furthermore, g(2)

1 cannot equal 1k for any k ∈ Z≥1.
Thus, there exists a countable infinite set of exceptional values for the power series
coefficient g(2)

1 for which no solution exists. This results in

T∞ := {u(2)
2 = 0, g(2)

0 = 0,

(kg(2)
1 − 1)g(1)

k + (−1)k
k!

ζ k+1 = 0 ∀ k ∈ Z≥0,

kg(2)
1 − 1 �= 0 ∀ k ∈ Z≥1}.

Hence, Solζ (S) = Solζ (T ) � Solζ (T∞).

For order � = 0, this system has one solution {g(1)
0 = 1

ζ
, g(2)

0 = 0} and thus its
differential counting polynomial is 1. Its solution set is disjoint with that of T , which
has differential counting polynomial ∞2 − ∞. Thus, the zeroth differential counting
polynomial is ∞2 − ∞ + 1 for � = 0. Now assume � ≥ 1. The only choice in the
special case system T∞ is for g(2)

1 and it may be chosen freely in C \ { 1
k

∣
∣ k ∈ Z≥1

}
.

Thus, c(T∞) = ∞ − ℵ0. This implies that the counting sequence of S is

c(S) = l �→
{

∞3 − ∞2 + ∞ − ℵ0, � ≥ 1

∞2 − ∞ + 1, � = 0.
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These exceptional values for g(2)
1 correspond to the indeterminateℵ0 in the differential

counting polynomial.
All formal power series solutions of this example converge. This is implied for the

ones of T by Riquier’s Existence Theorem [18]. For system T∞, the solutions of u(2)

are lines and the radius of convergence for the formal power series solutions of u(1) is
|ζ | by the ratio test:

∣
∣
∣
∣
∣

g(1)
k+1

(k + 1)g(1)
k

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

kg(2)
1 − 1

(k + 1)g(2)
1 − 1

∣
∣
∣
∣
∣
·
∣
∣
∣
∣
1

ζ

∣
∣
∣
∣ −→

∣
∣
∣
∣
1

ζ

∣
∣
∣
∣ , k → ∞

The following example demonstrates that the additional information contained in
the differential counting polynomial can be used to decide that a symbolic solver of
differential equations did not find all solutions.

Example 4.9 Let U = {u(1), u(2)}, � = {∂t }, F = C, and < the orderly ranking with
u(1) > u(2). We show the following. For all � ≥ 1

c̄(S) = c(S)(�) = ∞�+2 − ∞�+1 + (� + 1)∞� − �∞�−1

for formal power series solutions of S := {p := u(2)u(1)
1 − u(1) = 0} centered around

zero. The dimension polynomial is � + 2 (using Theorem 4.5 and the Low Power
Theorem [11, IV.§15]).

Maple’s dsolve [1] returns an arbitrary u(2)(t) and

u(1)(t) = a · e
∫ t
0

1
u(2)(h)

dh

for a constant a. This set of solutions depends on �+ 2 generically arbitrary constants
up to order �, in accordance with the dimension polynomial. The zeroth power series
coefficient of u(2)(t) cannot be zero, as otherwise the integral does not exist. Thus,
Maple’sdsolvefinds∞�+2−∞�+1 solutions up to order � and a subset of the solutions
with �th counting polynomial (� + 1)∞� − �∞�−1 is not found. The dimension
polynomial does not account for these additional solutions, some ofwhich are analytic.

Now we show the claims from above. Use the ansatz u(1)(t) = ∑∞
i=0 ai

ti
i ! and

u(2)(t) = ∑∞
i=0 bi

ti
i ! . Let

ρ : C{U } → C[ai , bi |i ∈ Z≥0] : u(1)
i �→ ai , u

(2)
i �→ bi .

Adding b0 �= 0 to S yields T := {p = 0, b0 �= 0} with �th differential counting
polynomial c(T )(�) = (∞ − 1)∞�+1 for every order � ≥ 1.

Complementary, the system {p = 0, b0 = 0} is equivalent to S1 := {∂t p = 0, a0 =
0, b0 = 0} by postponing p. It is part of the family
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Sk := {∂kt p = u(2)u(1)
k+1 + (ku(2)

1 − 1)u(1)
k + ∑k

i=2

(k
i

)
u(2)
i u(1)

k+1−i = 0,

a0 = · · · = ak−1 = b0 = 0,
∏k−1

i=1 (ib1 − 1) �= 0}

of systems. Consider the initial of the equation ρ(∂kt p), which is equal to (kb1 − 1)ak
after reduction in Sk . Adding its initial (kb1−1) �= 0 to Sk , and postponing ∂kt p results
in the system Sk+1. Complementary, adding (kb1 − 1) = 0 to Sk and postponing ∂kt p
yields the system

Tk := {∂k+1
t p = 0,

a0 = · · · = ak−1 = 0,

b0 = kb1 − 1 = 0}.

The inequations from Sk are superfluous in Tk because of the equation kb1 − 1 = 0.
The equation ρ(∂

k+1+ j
t p) reduces to 1

k ak+1+ j + (k+1+ j
2

)
b2ak+ j in the context of Tk

for all j ∈ Z≥0. This reduced form has the leader ak+1+ j for all j ∈ Z≥0; there is no
constraint for ak .

Consider the remaining system T∞ := ⋃∞
i=1 Si . The equations ak = 0 for all k ≥ 0

combine to the differential equation u(1) = 0; this makes the differential equation p
superfluous. Furthermore, b1 is not allowed to be of the form 1

i for any i ∈ Z≥1.
Summing up, the system T∞ := {u(1) = 0, b0 = 0, ib1 �= 1 ∀i ∈ Z≥1} describes
these remaining solutions.

We discuss the �th differential counting polynomials for � ≥ 1 of the sets of
solutions of T∞ and Tk , k ≥ 1. These systems have disjoint sets of solutions in orders
� ≥ 1, since b1 takes different values. The �th differential counting polynomial of
Tk for k ≤ � is ∞�, since the values for the indeterminates ak, b2, . . . , b� are freely
choosable and the other values are fixed. In the union

⊎
k>�,k=∞ Sol0(Tk)≤�, the value

for b1 can be freely chosen except for the � values 1
1 , . . . ,

1
�
. Then, the indeterminates

b2, . . . , b� have no constraint and the indeterminates ai are uniquely determined. Thus,

c
( ⊎

k>0,k=∞
Sol0(Tk)≤�

)
=

∑

1≤k≤�

c
(
Sol0(Tk)≤�

) + c
( ⊎

k>�,k=∞
Sol0(Tk)≤�

)
.

= � · ∞� + (∞ − �) · ∞�−1

= (� + 1)∞� − � · ∞�−1

Adding this �th counting polynomial to the one of T results in ∞�+2 − ∞�+1 + (� +
1)∞� − �∞�−1, as claimed above.

Riquier’s Existence Theorem [18] implies the convergence for the power series
solutions of system T for analytical initial conditions. System T∞ gives the zero power
series for u(1), which converges and only restricts the choice for the first two power
series coefficients of u(2), hence u(2) can be chosen to converge. The solutions of the
systems Tk can diverge even for analytical initial conditions. For example, consider
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system T1 and prescribe b0 = 0, b1 = 1, b2 = 1, bi = 0 for all i ≥ 3. By the ratio
test, the radius of convergence of the solution for u(1) is zero, as

∣
∣
∣
∣

ak+1

(k + 1)ak

∣
∣
∣
∣ = k − 1

k

∣
∣
∣
∣
∣

∑k
i=2

(k
i

) bi+1
i+1 ak+1−i

∑k
i=2

(k
i

)
biak+1−i

+ k

2
b2

∣
∣
∣
∣
∣
= k − 1

2
−→ ∞

for k → ∞. The analytical initial condition b0 = 0, b1 = 1, b2 = 0, bi = i !, for
i ≥ 3, gives 1 as radius of convergence by a similar computation.

5 Proofs

This section proves the theorems of the previous sections.

5.1 Proof of Theorem 3.5

By abuse of notation, let c denote the counting polynomials for subsets in C
k for all

1 ≤ k ≤ n.

Proof of existence Let S ⊂ C[y1, . . . , yn] be a simple algebraic σ -system. Further-
more, let τ(Syi ) be the degree of the equation if Syi is a singleton of an equation,
τ(S′) = ∏

p∈S′ degyi (p) if Syi is a finite set of inequations, and τ(Syi ) = ∞ − ℵ0 if
Syi is a countably infinite set of inequations. Then, the product

∏n
i=1 τ(Syi ) is a count-

ing polynomial. The correctness of this formula follows from the fibration structure
of simple systems as discussed in [16], which also holds for simple σ -systems. ��

Write T := Sol(S) and T for its Zariski closure. Let π : C
n → C

n−1 be the
projection to the first n−1 components. The projected set π(T ) is equal to the solution
set of the simple σ -system S<yn in C[y1, . . . , yn−1].
Proof of uniqueness For systems (instead of σ -systems), the claim is shown in [16,
Prop. 3.3]; in this case, Lazard’s Lemma implies that the degree of the algebraic
counting polynomial is equal to the dimension of the set of solutions.

In this proof, we can ignore sets of lower dimension, since any counting polynomial
of such a set is of lower degree and we can proceed by an induction on dim(T ). Any
partition of T into solution sets of algebraic σ -systems of the same dimension is
finite. Such a finite partition does not change the degree and leading coefficient of the
counting polynomial, by the same arguments as in step 3 of the proof of [16, Prop. 3.3].
Thus, in the following, we can always assume that a set is suitably partitioned into a
disjoint union of sets.

The claim is clear for n = 1. We show the claim for the dimension n of the
surrounding space under the assumption that it is shown for dimensions 0 up to n− 1.
The crux of the proof is that only axiom (3.1) in Definition 3.1 allows to increase this
dimension.

By the assumption on n − 1, the algebraic counting polynomials of the two projec-
tions π(T ) ⊆ π(T ) have the same degree, say d, and leading coefficients, say a, as
their Zariski closures coincide.
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As first case consider that Syn is a set of inequations. By Definition 3.1.(3.1), any
algebraic counting polynomial of T is an algebraic counting polynomial of π(T )

multiplied by ∞ − b for b ∈ Z[ℵ0]. In particular, any leading coefficient is a and
any degree is d + 1. Furthermore, T = π(T ) × C has a unique counting polynomial,
which is c(π(T )) · ∞ and also has leading coefficient a and degree d + 1.

As second case consider that Syn is an equation. In this case we do an induction
over dim(T ). The claim is clear for dim(T ) = 0, so assume that it is shown for all
dimensions from 0 to dim(T ) − 1.

On the one hand, by Definition 3.1.(3.1), the degree of any counting polynomial of
T is again d and any leading coefficient is a · degyn (Syn ).

On the other hand, consider T . The map π makes T an degyn (Syn )-sheeted cover

of π(T ). Denote by R ⊆ π(T ) the corresponding set of ramification points and
by U := π(T ) \ R the set of unramified points. To apply Definition 3.1.(3.1), one
needs to partition T into (a refinement of) π−1(R) and π−1(U ); thus, any algebraic
counting polynomial needs to be defined using this partition. As U and R are locally
closed, their algebraic counting polynomials exist and are unique. The Zariski closures
of U and π(T ) coincide, so by induction on n the leading coefficient of c(U ) is a
and deg∞(c(U )) = d. By Definition 3.1.(3.1), the algebraic counting polynomial of
π−1(U ) has the same degree and leading coefficient as that one of T , as π−1(U ) is an
unramified degyn (Syn )-sheeted cover of U and the set π−1(R) is of lower dimension

than T . ��

5.2 Proof of Theorem 3.6

The proof of Theorem 3.2 is given in [16, Cor. 3.4]. The following two lemmas directly
generalize this proof to showing Theorem 3.6. We call a set W ⊂ C

n elementarily
well-fibered if either n = 1 andW is constructible or n > 1,π(W ) ⊆ C

n−1 is elemen-
tarily well-fibered, and all fibers of π−1({w}) for w ∈ π(W ) are constructible with
equal algebraic counting polynomials. They admit an algebraic counting polynomial
in Z[∞] by definition.

Lemma 5.1 Let V be a well-fibered set. Then there exists a finite partition V =⊎k
i=1 Wi of V into elementarily well-fibered sets Wi .

Proof of uniqueness The claimclearly holds forn = 1.Theonly one of thefive axioms
for the algebraic counting polynomial that allows one to increase the dimension is
axiom (3.1). In general, one needs to partition V before applying axiom (3.1), but this
partition needs to be finite, as otherwise axiom (3.1) is not applicable to recombine the
resulting algebraic counting polynomials. Elementarily well-fibered sets are exactly
the sets for which axiom (3.1) is applicable without additional partitioning. ��
Lemma 5.2 Let V be a well-fibered set. Then, the algebraic counting polynomial of
V is unique.

Proof of uniqueness The proof of [16, Prop. 3.3] regarding the uniqueness of algebraic
counting polynomials holds for well-fibered sets. One only needs to replace a partition
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into solution sets of simple systemswith a partition into elementarily well-fibered sets,
which exists by Lemma 5.1. ��

5.3 Proof of Theorem 4.1

Transform the algebraically restricted system of differential equations S by keeping all
equations and inequations in C[G] and apply ρ (cf. p. 10) to the differential equations
and all their (iterated) derivatives. Call the resulting set Q; it consists of infinitely
many equations and inequations in C[G] and has the same set of solutions as S.
Write G = {g1, g2, . . .} ordered by the ranking, i.e., gi < gi+1 for all i . Note that
Q ∩ C[g1, . . . , gi ] is finite for all i ∈ Z>0.

Let g j be the largest element inG of order �. Define the set L0 := Decompose(Q∩
C[g1, . . . , g j ]) of simple systems, where Decompose is the Thomas decomposition
algorithm from [2]. Iteratively, define the sets Lk of simple systems by making

{
Decompose(T ∪ (Q \ C[g1, . . . , g j+k−1]) ∩ C[g1, . . . , g j+k])|T ∈ Lk−1

}

comprehensive (cf. Sect. 2) with respect to g j for each k ∈ Z>0. Let L ′
k := {T ∩

C[g1, . . . , g j ] | T ∈ Lk} for each k ∈ Z≥0. The simple systems in L ′
k have disjoint

sets of solutions, as Lk is comprehensive w.r.t. g j .
For any power series which is not a solution of the input system S, there exists

a k large enough such that it is no longer the solution of any system in Lk , as each
constraint in Q is taken into account at some step.

Next we show that equations stabilize by looking at ideals. Let Jk := ⋂
T∈L ′

k
I(T )

be an ideal in the Noetherian ring C[G]≤� for each k ∈ Z≥0. This ideal is equal to
intersecting C[G]≤� with the vanishing ideal of Q ∩ C[g1, . . . , g j+k]. In particular,
this ascending chain of ideals does stabilize after a finite number k′ of steps. This
stable ideal is the vanishing ideal of all power series solutions truncated at order �.

By construction for each simple system Tk+1 ∈ L ′
k+1, there is a unique simple

system Tk ∈ L ′
k with Sol(Tk+1) ⊆ Sol(Tk); if additionally I(Tk+1) = I(Tk), then

call Tk+1 the (unique) heir of Tk . Define a successor as an element in the transitive
hull of heir.

As Jk′ is a radical ideal in the Noetherian ring C[G]≤�, it has a finite prime decom-
position. There is a minimal L ′′

k ⊆ L ′
k such that Jk′ = ⋂

T∈L ′′
k
I(T ) for each k ≥ k′.

By increasing k′ we may assume that the cardinality of each L ′′
k is equal for all k ≥ k′.

In particular, each Tk ∈ L ′′
k has an heir in L ′′

k+1.
A closer look at the algebraic Thomas decomposition algorithm Decompose

reveals that a system and all its successors do not only have equal ideals but also
equal sets of equations. In particular, a system and its heir only differ in their set of
inequations. We can slightly adapt the algebraic Thomas decomposition algorithm
Decompose such that the simple systems (and the candidate simple systems ST )
allow more than one inequation with the same leader, as long as the conditional gcd
of these inequations with the same leader have no common zero with the system. This
adaption changes nothing of the previous discussion. However, now the inequations
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of a simple system are a subset of the inequations of its heir, and thus the union of any
system in L ′′

k′ with all its successors is a simple algebraic σ -system.
This results in a finite set of algebraic σ -systems having truncated solutions that are

dense in the truncated solutions of S. The complement of this dense set is described
by a countable set of systems. Continue with these systems inductively. The ideals of
these complementary systems are strictly larger than the previous ideals. In particular,
descending chains of these systems are finite in length. Hence, the number of algebraic
σ -systems remains countable. ��

5.4 Proof of Theorem 4.5

The claim for the �th differential counting polynomial is a corollary to Theorem 3.5.
Thereby, we can assume without loss of generality that the set of solutionsSolζ (I )≤�

up to order � is constructible. Now, the claim follows directly from the definition of the
differential dimension function 	I : � �→ dim(F{U }≤�/I≤�) and that the dimension
coincides with the degree of the algebraic counting polynomial. The formula for the
coefficient also follows from the proof of Theorem 3.5; we do not need to consider
the degrees of the (quasilinear) derivatives of the equations.

The claim for the differential counting polynomial follows, as the dimension poly-
nomial ωI ultimately coincides with 	I .

5.5 Proof of Theorem 4.6

We prove this theorem by creating suitable simple algebraic systems S≤� ⊂ C[G]≤�,
which describe the formal power series solutions of S around a point ζ truncated at
order �.

For this, define S by applyingρ (cf. p. 10) to the equations in S and all their reductive
prolongations (cf. [2, §3]). Then, define S≤� := S ∩ C[G]≤�.

It is straightforward that S≤� is a simple algebraic system inC[G]≤�, e.g. derivatives
are square-free, as they are quasilinear and the initial of a derivative is the separant of
the original equation.

Next, we show that the formal power series solutions of S around a point ζ truncated
at order � are the same as those of S, i.e.,Solζ (S)≤� = Solζ (S≤�)≤�. This would be
clear if S contained all derivatives of equations in S and not only the reductive prolon-
gations. However, the non-reductive prolongations are redundant, as S is involutive
(cf. [2, 3.5]).

Finally, the existence proof of Theorem 3.5 on p. 14 allows to read off the counting
polynomial from S≤�: The number of free variables is equal to the value of the dif-
ferential dimension function at � (and to the value of the dimension polynomial for �

large enough). Furthermore, one needs to multiply the degrees of the equations to get
the coefficient; these degrees are one for all derivatives, and thus one is left with the
degrees of the equations in S.

The uniqueness follows from Theorem 4.3, as no ℵ0 appears. ��
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