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Abstract
This paper presents convergence analysis of kernel-based quadrature rules in misspec-
ified settings, focusing on deterministic quadrature in Sobolev spaces. In particular,
we deal with misspecified settings where a test integrand is less smooth than a Sobolev
RKHS based on which a quadrature rule is constructed.We provide convergence guar-
antees based on two different assumptions on a quadrature rule: one on quadrature
weights and the other on design points. More precisely, we show that convergence
rates can be derived (i) if the sum of absolute weights remains constant (or does not
increase quickly), or (ii) if the minimum distance between design points does not
decrease very quickly. As a consequence of the latter result, we derive a rate of con-
vergence for Bayesian quadrature in misspecified settings. We reveal a condition on
design points to make Bayesian quadrature robust to misspecification, and show that,
under this condition, it may adaptively achieve the optimal rate of convergence in the
Sobolev space of a lesser order (i.e., of the unknown smoothness of a test integrand),
under a slightly stronger regularity condition on the integrand.
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1 Introduction

This paper discusses the problem of numerical integration (or quadrature), which has
been a fundamental task in numerical analysis, statistics, computer science including
machine learning and other areas. Let P be a (known) Borel probability measure on
the Euclidian space R

d with support contained in an open set Ω ⊂ R
d and f be an

integrand on Ω . Suppose that the integral
∫

f (x)dP(x) has no closed-form solution.
We consider quadrature rules that provide an approximation of the integral, in the form
of a weighted sum of function values

n∑

i=1

wi f (Xi ) ≈
∫

f (x)dP(x), (1)

where X1, . . . , Xn ∈ Ω are design points andw1, . . . , wn ∈ R are quadratureweights.
Throughout this paper, the integral of f and its quadrature estimate are denoted by
P f and Pn f , respectively; namely,

P f :=
∫

f (x)dP(x), Pn f :=
n∑

i=1

wi f (Xi ). (2)

Examples of such quadrature rules include Monte Carlo methods, which make use
of a random sample from a suitable proposal distribution as X1, . . . , Xn and impor-
tance weights as w1, . . . , wn . A limitation of standard Monte Carlo methods is that a
huge number of design points (i.e., large n) may be needed for providing an accurate
approximation of the integral; this comes from the fact that the rate of convergence of
Monte Carlomethods is typically of the orderE[|P f −Pn f |] = O(n−1/2) as n → ∞,
where E[·] denotes the expectation with respect to the random sample. The need for
large n is problematic, when an evaluation of the function value f (x) is expensive for
each input x . Such situations appear in modern scientific and engineering problems
where the mapping x �→ f (x) involves complicated computer simulation. In applica-
tions to time-series forecasting, for instance, x may be a parameter of an underlying
system, f (x) a certain quantity of interest in future and P a prior distribution on x .
Then, the target integral

∫
f (x)dP(x) is the predictive value of the future quantity.

The evaluation of f (x) for each x may require numerically solving an initial value
problem for the differential equation, which results in time-consuming computation
[7]. Similar examples can be seen in applications to statistics and machine learning,
as mentioned below. In these situations, one can only use a limited number of design
points, and thus, it is desirable to have quadrature rules with a faster convergence rate,
in order to obtain a reliable solution [46].

1.1 Kernel-Based Quadrature Rules

How can we obtain a quadrature rule whose convergence rate is faster than O(n−1/2)?
In practice, one often has prior knowledge or belief on the integrand f , such as
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smoothness, periodicity and sparsity. Exploiting such knowledge or assumption in
constructing a quadrature rule {(wi , Xi )}ni=1 may achieve faster rates of convergence,
and such methods have been extensively studied in the literature for decades; see, e.g.,
[17] and [9] for review.

This paper deals with quadrature rules using reproducing kernel Hilbert spaces
(RKHS) explicitly or implicitly to achieve fast convergence rates; we will refer to such
methods as kernel-based quadrature rules or simply kernel quadrature. As discussed
in Sect. 2.4, notable examples include quasi-Monte Carlo methods [17,18,26,42],
Bayesian quadrature [9,48] and kernel herding [5,10,11]. These methods have been
studied extensively in recent years [4,8,30,45,46,55,62] and have recently found appli-
cations in, for instance, machine learning and statistics [3,9,21,31,32,43,50].

In kernel quadrature, we make use of available knowledge on properties of the
integrand f by assuming that f belongs to a certain RKHS Hk that possesses those
properties (where k is the reproducing kernel) and then constructing weighted points
{(wi , Xi )}ni=1 such that the worst-case error in the RKHS

en(P;Hk) := sup
f ∈Hk :‖ f ‖Hk≤1

|P f − Pn f | (3)

is made small, where ‖ · ‖Hk is the norm ofHk . The use of RKHS is beneficial when
compared to other function spaces, as it leads to a closed-form expression of worst-
case error (3) in terms of the kernel, and thus, one may explicitly use this expression
for designing {(wi , Xi )}ni=1 (see Sect. 2.3).

Note that, in a well-specified case, that is, the integrand f satisfies f ∈ Hk , the
quadrature error is bounded as

|Pn f − P f | ≤ ‖ f ‖Hk en(P;Hk).

This guarantees that if a quadrature rule satisfies en(P;Hk) = O(n−b) as n → ∞
for some b > 0, then the quadrature error also satisfies |Pn f − P f | = O(n−b). Take
a Sobolev space Hr (Ω) of order r > d/2 on Ω as the RKHS Hk , for example. It is
known that optimal quadrature rules achieve en(P;Hk) = O(n−r/d) [40], and thus,
|Pn f − P f | = O(n−r/d) holds for any f ∈ Hk . As we have r/d > 1/2, this rate is
faster than Monte Carlo integration; this is the desideratum that has been discussed.

1.2 Misspecified Settings

This paper focuses on situations where the assumption f ∈ Hk is violated, that is,mis-
specified settings. As explained above, convergence guarantees for kernel quadrature
rules often assume that f ∈ Hk . However, in practice one may lack the full knowledge
on the properties on the integrand, and therefore, misspecification of the RKHS (via
the choice of its reproducing kernel k) may occur, that is, f /∈ Hk .

Suchmisspecification is likely to happenwhen the integrand is a black box function.
An illustrative example can be found in applications to computer graphics such as the
problem of illumination integration (see, e.g., [9]), where the task is to compute the
total amount of light arriving at a camera in a virtual environment. This problem
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is solved by quadrature, with integrand f (x) being the intensity of light arriving at
the camera from a direction x (angle). However, the value of f (x) is only given by
simulation of the environment for each x , so the integrand f is a black box function.
Similar situations can be found in application to statistics and machine learning. A
representative example is the computation of marginal likelihood for a probabilistic
model, which is an important but challenging task required for model selection (see,
e.g., [47]). In modern scientific applications where complex phenomena are dealt
with (e.g., climate science), we often encounter situations where the evaluation of a
likelihood function, which forms the integrand in marginal likelihood computation,
involves an expensive simulationmodel, making the integrand complex and even black
box.

If the integrand is a black box function, there is a trade-off between the risk of mis-
specification and gain in the rate of convergence for kernel-based quadrature rules; for
a faster convergence rate, onemaywant to use a quadrature rule for a narrowerHk such
as of higher-order differentiability, while such a choice may cause misspecification of
the function class. Therefore, it is of great importance to elucidate their convergence
properties in misspecified situations, in order to make use of such quadrature rules in
a safe manner.

1.3 Contributions

This paper provides convergence rates of kernel-based quadrature rules inmisspecified
settings, focusing on deterministic rules (i.e., without randomization). The focus of
misspecification is placed on the order of Sobolev spaces: The unknown order s of the
integrand f is overestimated as r , that is, s ≤ r .

Let Ω ⊂ R
d be a bounded domain with a Lipschitz boundary (see Sect. 3 for

definition). For r > d/2, consider a positive definite kernel kr on Ω that satisfies the
following assumption;

Assumption 1 The kernel kr onΩ satisfies kr (x, y) := Φ(x− y), whereΦ : R
d → R

is a positive definite function such that

C1(1 + ‖ξ‖2)−r ≤ Φ̂(ξ) ≤ C2(1 + ‖ξ‖2)−r

for some constants C1,C2 > 0, where Φ̂ is the Fourier transform of Φ. The RKHS
Hkr (Ω) is the restriction of Hkr (R

d) to Ω (see Sect. 2).

The resultingRKHSHkr (Ω) is norm-equivalent to the standardSobolev space Hr (Ω).
The Matérn and Wendland kernels satisfy Assumption 1 (see Sect. 2).

Consider a quadrature rule {(wi , Xi )}ni=1 with the kernel kr such that

en(P;Hkr (Ω)) = O(n−b) (n → ∞). (4)

We do not specify how the weighted points are generated, but assume (4) aiming for
wide applicability. Suppose that an integrand f : Ω → R has partial derivatives up to
order s and they are bounded and uniformly continuous. If s ≤ r , the integrand may
not belong to the assumed RKHS Hkr , in which case a misspecification occurs.
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Under this misspecified setting, two types of assumptions on the quadrature rule
{(wi , Xi )}ni=1 will be considered: one on the quadratureweightsw1, . . . , wn (Sect. 4.1)
and the other on the design points X1, . . . , Xn (Sect. 4.2). In both cases, a rate of
convergence of the form

|Pn f − P f | = O(n−bs/r ) (n → ∞) (5)

will be derived under some additional conditions. The results guarantee the conver-
gence in themisspecified setting, and the rate is determined by the ratio s/r between the
true smoothness s and the assumed smoothness r . As discussed in Sect. 2, the optimal
rate of deterministic quadrature rules for the Sobolev space Hr (Ω) is O(n−r/d) [40].
If a quadrature rule satisfies this optimal rate (i.e., b = r/d), then rate (5) becomes
O(n−s/d) for an integrand f ∈ Hs(Ω) (s < r ), which matches the optimal rate for
Hs(Ω).

The specific results are summarized as follows:

– In Sect. 4.1, it is assumed that
∑n

i=1 |wi | = O(nc) as n → ∞ for some constant
c ≥ 0. Note that c = 0 is taken if the weights satisfy maxi=1,...,n |wi | = O(n−1),
an example of which is the equal weights w1 = · · · = wn = 1/n. Under this
assumption and other suitable conditions, Corollary 2 shows

|Pn f − P f | = O(n−bs/r+c(r−s)/r ) (n → ∞).

The rate O(n−bs/r ) in (5) holds if c = 0. Therefore, this result provides con-
vergence guarantees in particular for equal-weight quadrature rules, such as
quasi-Monte Carlo methods and kernel herding, in the misspecified setting.

– Section 4.2 uses an assumption on design points Xn := {X1, . . . , Xn} in terms of
separation radius qXn , which is defined by

qXn := 1

2
min
i �= j

‖Xi − X j‖. (6)

Corollary 3 shows that, if qXn = Θ(n−a) as n → ∞ for some a > 0, under other
regularity conditions,

|Pn f − P f | = O(n−min(b−a(r−s),as)) (n → ∞). (7)

The best possible rate is O(n−bs/r ) when a = b/r . This result provides a conver-
gence guarantee for quadrature rules that obtain the weights w1, . . . , wn to give
O(n−b) for the worst-case error with X1, . . . , Xn fixed beforehand. We demon-
strate this result by applying it to Bayesian quadrature, as explained below. Our
result may also provide the following guideline for practitioners: in order to make
a kernel quadrature rule robust to misspecification, one should specify the design
points so that the spacing is not too small.

– Section 5 discusses a convergence rate for Bayesian quadrature under the mis-
specified setting, demonstrating the results of Sect. 4.2. Given design points

123



160 Foundations of Computational Mathematics (2020) 20:155–194

Xn = {X1, . . . , Xn}, Bayesian quadrature defines weights w1, . . . , wn as the
minimizer of worst-case error (3), which can be obtained by solving a linear equa-
tion (see Sect. 2.4 for more detail). For points Xn = {X1, . . . , Xn} in Ω , the fill
distance hXn ,Ω is defined by

hXn ,Ω := sup
x∈Ω

min
i=1,...,n

‖x − Xi‖. (8)

Assume that there exists a constant cq > 0 independent of Xn such that

hXn ,Ω ≤ cqqXn , (9)

and that hXn ,Ω = O(n−1/d) as n → ∞. Then, Corollary 4 shows that with
Bayesian quadrature weights based on the kernel kr we have

|Pn f − P f | = O(n−s/d) (n → ∞).

Note that the rate O(n−s/d) matches the minimax optimal rate for deterministic
quadrature rules in the Sobolev space of order s [40], which implies that Bayesian
quadrature can be adaptive to the unknown smoothness s of the integrand f . The
adaptivity means that it can achieve the rate O(n−s/d) without the knowledge of
s; it only requires the knowledge of the upper bound of the true smoothness s ≤ r .

– Section 3 establishes a rate of convergence for Bayesian quadrature in the well-
specified case, which serves as a basis for the results in the misspecified case
(Sect. 5). Corollary 1 asserts that if the design points satisfy hXn ,Ω = O(n−1/d)

as n → ∞, then

en(P;Hkr (Ω)) = O(n−r/d) (n → ∞).

This rate O(n−r/d) is minimax optimal for deterministic quadrature rules in
Sobolev spaces. To the best of our knowledge, this optimality of Bayesian quadra-
ture has not been established before, while recently there has been extensive
theoretical analysis on Bayesian quadrature [4,8,9,44].

This paper is organized as follows. Section 2 provides various definitions, nota-
tion and preliminaries including reviews on kernel-based quadrature rules. Section 3
then establishes a rate of convergence for the worst-case error of Bayesian quadrature
in a Sobolev space. Section 4 presents the main contributions on the convergence
analysis in misspecified settings, and Sect. 5 demonstrates these results by applying
them to Bayesian quadrature. We illustrate the obtained theoretical results with simu-
lation experiments in Sect. 6. Finally Sect. 7 concludes the paper with possible future
directions.

Preliminary results This paper expands on preliminary results reported in a confer-
ence paper by the authors [29]. Specifically, this paper is a complete version of the
results presented in Section 5 of [29]. The current paper contains significantly new
topics mainly in the following points: (i) We establish the rate of convergence for
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Bayesian quadrature with deterministic design points and show that it can achieve
minimax optimal rates in Sobolev spaces (Sect. 3); (ii) we apply our general conver-
gence guarantees in misspecified settings to the specific case of Bayesian quadrature
and reveal the conditions required for Bayesian quadrature to be robust to misspecifi-
cation (Sect. 5); to make the contribution (ii) possible, we derive finite sample bounds
on quadrature error in misspecified settings (Sect. 4). These results are not included
in the conference paper.

We alsomention that this paper does not contain the results presented in Section 4 of
the conference paper [29], which deal with randomized design points. For randomized
design points, theoretical analysis can be done based on an approximation theory
developed in the statical learning theory literature [12]. On the other hand, the analysis
in the deterministic case makes use of the approximation theory developed by [37],
which is based on Calderón’s decomposition formula in harmonic analysis [19]. This
paper focuses on the deterministic case, and we will report a complete version of the
randomized case in a forthcoming paper.

Related work The setting of this paper is complementary to that of [45], in which the
integrand is smoother than assumed. That paper proposes to apply the control func-
tional method by [46] to quasi-Monte Carlo integration, in order to make it adaptable
to the (unknown) greater smoothness of the integrand.

Another related line of research is the proposals of quadrature rules that are adaptive
to less smooth integrands [14–16,20,23]. For instance, [20] proposed a kernel-based
quadrature rule on a finite-dimensional sphere. Their method is essentially a Bayesian
quadrature using a specific kernel designed for spheres. They derive convergence
rates for this method in both well-specified andmisspecified settings and obtain results
similar to ours. The currentwork differs from [20] inmainly two aspects: (i)Quadrature
problems are considered in standard Euclidean spaces, as opposed to spheres; (ii) a
generic framework is presented, as opposed to the analysis of a specific quadrature
rule. See also a recent work by [62], in which Bayesian quadrature for vector-valued
numerical integration is proposed and its adaptability to the less smooth integrands is
discussed.

Quasi-Monte Carlo rules based on a certain digit interlacing algorithm [14–16,23]
are also shown to be adaptive to the (unknown) lower smoothness of an integrand.
These papers assume that an integrand is in an anisotropic function class in which
every function possesses (square-integrable) partial mixed derivatives of order α ∈ N

in each variable. Examples of such spaces include Korobov spaces, Walsh spaces and
Sobolev spaces of dominating mixed smoothness (see, e.g., [17,42]). In their notation,
an integer d, which is a parameter called an interlacing factor, can be regarded as
an assumed smoothness. Then, if an integrand belongs to an anisotropic function
class with smoothness α ∈ N such that α ≤ d, the rate of the form O(n−α+ε)

(or O(n−α−1/2+ε) in a randomized setting) is guaranteed for the quadrature error for
arbitrary ε > 0. The present work differs from these works in that (i) isotropic Sobolev
spaces are discussed, where the order of differentiability is identical in all directions
of variables, and that (ii) theoretical guarantees are provided for generic quadrature
rules, as opposed to analysis of specific quadrature methods.
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2 Preliminaries

2.1 Basic Definitions and Notation

We will use the following notation throughout the paper. The set of positive integers
is denoted by N, and N0 := N ∪ {0}. For α := (α1, . . . , αd)

T ∈ N
d
0 , we write

|α| := ∑d
i=1 αi . The d-dimensional Euclidean space is denoted by R

d , and the closed
ball of radius R > 0 centered at z ∈ R

d by B(z, R). For a ∈ R, 
a� is the greatest
integer that is less than a. For a set Ω ⊂ R

d , diam(Ω) := supx,y∈Ω ‖x − y‖ is the
diameter of Ω .

Let p > 0 and μ be a Borel measure on a Borel set Ω in R
d . The Banach space

L p(μ) of p-integrable functions is defined in the standard way with norm ‖ f ‖L p(μ) =
(
∫ | f (x)|pdμ(x))1/p, and L∞(Ω) is the class of essentially bounded measurable
functions on Ω with norm ‖ f ‖L∞(Ω) := ess supx∈Ω | f (x)|. If μ is the Lebesgue
measure on Ω ⊂ R

d , we write L p(Ω) := L p(μ) and further L p := L p(R
d) for

p ∈ N ∪ {∞}. For f ∈ L1(R
d), its Fourier transform f̂ is defined by

f̂ (ξ) :=
∫

Rd
f (x)e−iξT xdx, ξ ∈ R

d ,

where i := √−1.
For s ∈ N and an open set Ω in R

d , Cs(Ω) denotes the vector space of all
functions on Ω that are continuously differentiable up to order s, and Cs

B(Ω) ⊂
Cs(Ω) the Banach space of all functions whose partial derivatives up to order s are
bounded and uniformly continuous. The norm of Cs

B(Ω) is given by ‖ f ‖Cs
B (Ω) :=

∑
α∈Nd

0 :|α|≤s supx∈Ω |∂α f (x)|, where ∂α is the partial derivative with multi-index

α ∈ N
d
0 . The Banach space of the continuous functions that vanish at infinity is

denoted by C0 := C0(R
d) with sup norm. Let Cs

0 := Cs
0(R

d) := C0(R
d) ∩ Cs

B(Rd)

be a Banach space with the norm ‖ f ‖Cs
0(R

d ) := ‖ f ‖Cs
B (Rd ).

For function f and ameasureμ onR
d , the support of f andμ is denoted by supp( f )

and supp(μ), respectively. The restriction of f to a subsetΩ ∈ R
d is denoted by f |Ω .

Let F and F∗ be normed vector spaces with norms ‖ · ‖F and ‖ · ‖F∗ , respectively.
Then, F and F∗ are said to be norm-equivalent, if F = F∗ as a set, and there exist
constants C1,C2 > 0 such that C1‖ f ‖F∗ ≤ ‖ f ‖F ≤ C2‖ f ‖F∗ for all f ∈ F . For a
Hilbert space H with inner product 〈·, ·〉H, the norm of f ∈ H is denoted by ‖ f ‖H.

2.2 Sobolev Spaces and Reproducing Kernel Hilbert Spaces

Here we briefly review key facts regarding Sobolev spaces necessary for stating and
proving our contributions; for details, we refer to [1,6,59]. We first introduce repro-
ducing kernel Hilbert spaces. For details, see, e.g., [58, Section 4] and [61, Section
10].
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Let Ω be a set. A Hilbert space H of real-valued functions on Ω is a reproducing
kernel Hilbert space (RKHS) if the functional f �→ f (x) is continuous for any x ∈ Ω .
Let 〈·, ·〉H be the inner product of H. Then, there is a unique function kx ∈ H such
that f (x) = 〈 f , kx 〉H. The kernel defined by k(x, y) := kx (y) is positive definite and
called reproducing kernel of H. It is known (Moore–Aronszajn theorem [2]) that for
every positive definite kernel k : Ω × Ω → R there exists a unique RKHS H with k
as the reproducing kernel. Therefore, the notationHk is used to the RKHS associated
with k.

In the following, we will introduce two definitions of Sobolev spaces, i.e., (10) and
(11), as both will be used throughout our analysis.

For a measurable set Ω ⊂ R
d and r ∈ N, a Sobolev space Wr

2 (Ω) of order r on Ω

is defined by

Wr
2 (Ω) := { f ∈ L2(Ω) : Dα f ∈ L2(Ω) exists for all α ∈ N

d
0 with |α| ≤ r}, (10)

where Dα f denotes the α-th weak derivative of f . This is a Hilbert space with inner
product

〈 f , g〉Wr
2 (Ω) =

∑

|α|≤r

〈Dα f , Dαg〉L2(Ω), f , g ∈ Wr
2 (Ω).

For a positive real r > 0, another definition of Sobolev space of order r on R
d is

given by

Hr (Rd) :=
{

f ∈ L2(R
d) :

∫
| f̂ (ξ)|2Φ̂(ξ)−1dξ < ∞

}

, (11)

where the function Φ̂ : R
d → R is defined by

Φ̂(ξ) := (1 + ‖ξ‖2)−r , ξ ∈ R
d .

The inner product of Hr (Rd) is defined by

〈 f , g〉Hr (Rd ) :=
∫

f̂ (ξ)ĝ(ξ)Φ̂(ξ)−1dξ, f , g ∈ Hr (Rd),

where ĝ(ξ) denotes the complex conjugate of ĝ(ξ).
For ameasurable setΩ inR

d , the (fractional order) Sobolev space Hr (Ω) is defined
by the restriction of Hr (Rd); namely (see, e.g., [59, Eq. (1.8) and Definition 4.10])

Hr (Ω) :=
{
f : Ω → R : f = g|Ω, ∃ g ∈ Hr (Rd)

}

with its norm defined by

‖ f ‖Hr (Ω) := inf
{
‖g‖Hr (Rd ) : g ∈ Hr (Rd) s.t. f = g|Ω

}
.
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If r ∈ N andΩ is an open set with Lipschitz boundary (see Definition 3), then Hr (Ω)

is norm-equivalent to Wr
2 (Ω) (see, e.g., [59, Eqs. (1.8), (4.20)]).

If r > d/2, the Sobolev space Hr (Rd) is an RKHS [61, Section 10]. In fact, the
condition r > d/2 guarantees that the function Φ̂(ξ) = (1 + ‖ξ‖2)−r is integrable,
so that Φ̂(ξ) has a (inverse) Fourier transform

Φ(x) = 21−r

Γ (r)
‖x‖r−d/2Kr−d/2(‖x‖),

where Γ denotes the gamma function and Kr−d/2 is the modified Bessel function of
the third kind of order r − d/2. The function Φ is positive definite, and the kernel
Φ(x − y) gives Hr (Rd) as an RKHS. This kernel Φ(x − y) is essentially a Matérn
kernel [33,34] with specific parameters. AWendland kernel [60] also defines an RKHS
that is norm-equivalent to Hr (Rd).

2.3 Kernel-Based Quadrature Rules

We briefly review basic facts regarding kernel-based quadrature rules necessary to
describe our results. For details, we refer to [9,17].

Let Ω ⊂ R
d be an open set, k be a measurable kernel on Ω , and Hk(Ω) be the

RKHS of k with inner product 〈·, ·〉Hk (Ω). Suppose P is a Borel probability measure
on R

d with its support contained in Ω , and {(wi , Xi )}ni=1 ⊂ (R × Ω)n is weighted
points, which serve for quadrature. For an integrand f , define P f := ∫

f (x)dP(x)
and Pn f := ∑n

i=1 wi f (Xi ), respectively, as the integral and a quadrature estimate
as in (2). As mentioned in Sect. 1, a kernel quadrature rule aims at minimizing the
worst-case error

en(P;Hk(Ω)) := sup
f ∈Hk :‖ f ‖Hk (Ω)≤1

|P f − Pn f | . (12)

Assume
∫ √

k(x, x) dP(x) < ∞, and define mP ,mPn
1 ∈ Hk(Ω) by

mP (y) :=
∫

k(y, x)dP(x), mPn (y) :=
n∑

i=1

wi k(y, Xi ), y ∈ Ω, (13)

where the integral for mP is understood as the Bochner integral. It is easy to see that,
for all f ∈ H,

P f = 〈 f ,mP 〉Hk (Ω), Pn f = 〈 f ,mPn 〉Hk (Ω).

Worst-case error (12) can then be written as

en(P;Hk(Ω)) = ‖mP − mPn‖Hk (Ω), (14)

1 In the machine learning literature, the function mP is known as kernel mean embedding, and the worst-
case error is called themaximummean discrepancy, which have been used in a variety of problems including
two-sample testing [24,36,56].
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and for any f ∈ Hk(Ω)

|Pn f − P f | ≤ ‖ f ‖Hk (Ω)en(P;Hk(Ω)). (15)

It follows from (14) that

e2n(P;Hk(Ω)) =
∫ ∫

k(x, x̃)dP(x)dP(x̃) − 2
n∑

i=1

wi

∫
k(x, Xi )dP(x)

+
n∑

i=1

n∑

j=1

wiw j k(Xi , X j ). (16)

The integrals in (16) are known in closed form for many pairs of k and P (see, e.g.,
Table 1 of [9]); for instance, it is known if k is a Wendland kernel and P is the uniform
distribution on a ball in R

d . One can then explicitly use formula (16) in order to obtain
weighted points {(wi , Xi )} that minimizes worst-case error (12).

2.4 Examples of Kernel-Based Quadrature Rules

Bayesian quadrature This is a class of kernel-based quadrature rules that has
been studied extensively in the literature on statistics and machine learning [4,7–
9,13,22,25,27,35,46,48,49,51]. InBayesianquadrature, designpoints X1, . . . , Xn may
be obtained jointly in a deterministicmanner [9,13,35,48,51], sequentially (adaptively)
[8,25,27,49] or randomly [4,7,9,22,46]. For instance, [9] proposed to generate design
points randomly as a Markov chain Monte Carlo sample, or deterministically by a
quasi-Monte Carlo rule, specifically as a higher-order digital net [15].

Given the design points being fixed, quadrature weights w1, . . . , wn are then
obtained by the minimization of worst-case error (16), which can be done analyti-
cally by solving a linear system of size n. To describe this, let X1, . . . , Xn be design
points such that the kernel matrix K := (k(Xi , X j ))

n
i, j ∈ R

n×n is invertible. The
weights are then given by

w := (w1, . . . , wn)
T = K−1z ∈ R

n, (17)

where z := (mP (Xi ))
n
i=1 ∈ R

n , with mP defined in (13).
This way of constructing the estimate Pn f is called Bayesian quadrature, since

Pn f can be seen as a posterior estimate in a certain Bayesian inference problem with
f generated as sample of a Gaussian process (see, e.g., [27] and [9]).

Quasi-Monte CarloQuasi-Monte Carlo (QMC) methods are equal-weight quadrature
rules designed for the uniform distribution on a hypercube [0, 1]d [17]. Modern QMC
methods make use of RKHSs and the associated kernels to define and calculate the
worst-case error in order to obtain good design points (e.g., [14,18,26,54]). Therefore,
such QMC methods are instances of kernel-based quadrature rules; see [42] and [17]
for a review.

123



166 Foundations of Computational Mathematics (2020) 20:155–194

Kernel herding In the machine learning literature, an equal-weight quadrature rule
called kernel herding [11] has been studied extensively [5,27,28,32]. It is an algorithm
that greedily searches for design points so as to minimize the worst-case error in an
RKHS. In contrast to QMC methods, kernel herding may be used with an arbitrarily
distribution P on a generic measurable space, given that the integral

∫
k(·, x)dP(x)

admits a closed-form solution with a reproducing kernel k. It has been shown that
a fast rate O(n−1) is achievable for the worst-case error, when the RKHS is finite-
dimensional [11]. While empirical studies indicate that the fast rate would also hold
in the case of an infinite-dimensional RKHS, its theoretical proof remains an open
problem [5].

3 Convergence Rates of Bayesian Quadrature

This section discusses the convergence rates of Bayesian quadrature in well-specified
settings. It is shown thatBayesian quadrature can achieve theminimaxoptimal rates for
deterministic quadrature rules inSobolev spaces. The result also serves as a preliminary
to Sect. 5, where misspecified cases are considered.

Let Ω be an open set in R
d and Xn := {X1, . . . , Xn} ⊂ Ω . The main notion to

express the convergence rate is fill distance hXn ,Ω (8), which plays a central role in
the literature on scattered data approximation [61] and has been used in the theoretical
analysis of Bayesian quadrature in [9,44].

It is necessary to introduce some conditions on Ω . The first one is the interior cone
condition [61, Definition 3.6], which is a regularity condition on the boundary ofΩ . A
cone C(x, ξ(x), θ, R) with vertex x ∈ R

d , direction ξ(x) ∈ R
d (‖ξ(x)‖ = 1), angle

θ ∈ (0, 2π) and radius R > 0 is defined by

C(x, ξ(x), θ, R) := {x + λy : y ∈ R
d , ‖y‖ = 1, 〈y, ξ(x)〉 ≥ cos θ, λ ∈ [0, R]}.

Definition 1 (Interior cone condition) A setΩ ⊂ R
d is said to satisfy an interior cone

condition if there exist an angle θ ∈ (0, 2π) and a radius R > 0 such that every x ∈ Ω

is associated with a unit vector ξ(x) so that the cone C(x, ξ(x), θ, R) is contained in
Ω .

The interior cone condition requires that there is no ‘pinch point’ (i.e., a ≺-shape
region) on the boundary of Ω; see also [44].

Next, the notions of special Lipschitz domain [57, p.181] and Lipschitz boundary2

are defined as follows (see [57, p.189]; [6, Definition 1.4.4]).

Definition 2 (Special Lipschitz domain) For d ≥ 2, an open set Ω ⊂ R
d is called a

special Lipschitz domain, if there exists a rotation of Ω , denoted by Ω̃ , and a function
ϕ : R

d−1 → R that satisfy the following:

1. Ω̃ = {(x, y) ∈ R
d : y > ϕ(x)};

2 The definition of the Lipschitz boundary in [6] is identical to the definition of the minimally smooth
boundary in [57, p.189]. This boundary condition was introduced by Elias M. Stein to prove the so-called
Stein’s extension theorem for Sobolev spaces [57, p.181].
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2. ϕ is a Lipschitz function such that |ϕ(x) − ϕ(x ′)| ≤ M‖x − x ′‖ for all x, x ′ ∈
R
d−1, where M > 0.

The smallest constant M for ϕ is called the Lipschitz bound of Ω .

Definition 3 (Lipschitz boundary) LetΩ ⊂ R
d be an open set and ∂Ω be its boundary.

Then, ∂Ω is called a Lipschitz boundary, if there exist constants ε > 0, N ∈ N, M >
0, and open sets U1,U2, . . . ,UL ⊂ R

d , where L ∈ N ∪ {∞}, such that the following
conditions are satisfied:

1. For any x ∈ ∂Ω , there exists an index i such that B(x, ε) ⊂ Ui , where B(x, ε)
is the ball centered at x and radius ε;

2. Ui1 ∩ · · · ∩UiN+1 = ∅ for any distinct indices {i1, . . . , iN+1};
3. For each index i , there exists a special Lipschitz domain Ωi ⊂ R

d with Lipschitz
bound b such that Ui ∩ Ω = Ui ∩ Ωi and b ≤ M .

Examples of a setΩ having a Lipschitz boundary include: (i)Ω is an open bounded
set whose boundary ∂Ω is C1 embedded in R

d ; (ii) Ω is an open bounded convex set
[57, p.189].

Proposition 1 LetΩ ⊂ R
d be a bounded open set such that an interior cone condition

is satisfied and the boundary ∂Ω is Lipschitz, and P be a probability distribution on
R
d with a bounded density function p such that supp(P) ⊂ Ω . For r ∈ R with


r� > d/2, kr is a kernel on R
d that satisfies Assumption 1 andHkr (Ω) is the RKHS

of kr restricted on Ω . Suppose that Xn := {X1, . . . , Xn} ⊂ Ω are finite points such
that G := (kr (Xi , X j ))

n
i, j=1 ∈ R

n×n is invertible, andw1, . . . , wn are the quadrature
weights given by (17). Then, there exist constants C > 0 and h0 > 0 independent of
Xn, such that

en(P;Hkr (Ω)) ≤ ChrXn ,Ω,

provided that hXn ,Ω ≤ h0, where en(P;Hkr (Ω)) is the worst-case error for the
quadrature rule {(wi , Xi )}ni=1.

Proof The proof idea is borrowed from [9, Theorem 1]. Let f ∈ Hkr (Ω) be arbitrary
and fixed. Define a function fn ∈ Hkr (Ω) by

fn :=
n∑

i=1

αi kr (·, Xi )

where α := (α1, . . . , αn)
T = K−1 f ∈ R

n and f := ( f (X1), . . . , f (Xn)) ∈ R
n .

This function is an interpolant of f on Xn such that f (Xi ) = fn(Xi ) for all Xi ∈ Xn

It follows from the norm equivalence that f ∈ Hr (Ω) and

‖ f ‖Hr (Ω) ≤ C1‖ f ‖Hkr (Ω), (18)

where C1 > 0 is a constant.
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We see that
∑n

i=1 wi f (Xi ) = ∫
fn(x)dP(x). In fact, recalling that the weights

w := (w1, . . . , wn)
T are defined as w = K−1z, where z := (z1, . . . , zn)T with

zi := ∫
kr (x, Xi )dP(x), it follows that

n∑

i=1

wi f (Xi ) = wT f = zT K−1 f = zTα

=
n∑

i=1

αi

∫
kr (x, Xi )dP(x) =

∫
fn(x)dP(x).

Using this identity, we have

∣
∣
∣
∣
∣

∫
f (x)dP(x) −

n∑

i=1

wi f (Xi )

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

∫
f (x)dP(x) −

∫
fn(x)dP(x)

∣
∣
∣
∣

≤ ‖ f − fn‖L1(Ω)‖p‖L∞(Ω)

≤ C0‖ f ‖Hr (Ω)h
r
Xn ,Ω‖p‖L∞(Ω) (19)

≤ C0C1‖ f ‖Hkr (Ω)h
r
Xn ,Ω‖p‖L∞(Ω), (20)

where (19) follows from Theorem 11.32 and Corollary 11.33 in [61] (where we set
m := 0, p := 2, q := 1, k := 
r� and s := r − 
r�), and (20) from (18). Note
that constant C0 depends only on r , d and the constants in the interior cone condition
(which follows from the fact that Theorem 11.32 in [61] is derived from Proposition
11.30 in [61]). Setting C := C0C1‖p‖∞ completes the proof. ��
Remark 1 – Typically, the fill distance hXn ,Ω decreases to 0 as the number n of

design points increases. Therefore, the upper bound ChrXnΩ provides a faster rate
of convergence for en(P;Wr

2 (Ω)) by a larger value of the degree r of smoothness.
– The condition hXn ,Ω ≤ h0 requires that the design points Xn = {X1, . . . , Xn}
must cover the set Ω to a certain extent in order to guarantee the error bound
to hold. This requirement arises since we have used a result from the scattered
data approximation literature [61, Corollary 11.33] to derive inequality (19) in our
proof. In the literature, such a condition is necessary and we refer an interested
reader to Section 11 of [61] and references therein.

– The constant h0 > 0 depends only on the constants θ and R in the interior
cone condition (Definition 1). The explicit form is h0 := Q(
r�, θ)R, where
Q(
r�, θ) := sin θ sinψ

8
r�2(1+sin θ)(1+sinψ)
with ψ := 2 arcsin sin θ

4(1+sin θ)
[61, p.199].

The following is an immediate corollary to Proposition 1.

Corollary 1 Assume that Ω , P and r satisfy the conditions in Proposition 1. Suppose
that Xn := {X1, . . . , Xn} ⊂ Ω are finite points such that G := (kr (Xi , X j ))

n
i, j=1 ∈

R
n×n is invertible and hXn ,Ω = O(n−α) for some 0 < α ≤ 1/d as n → ∞, and

w1, . . . , wn are the quadrature weights given by (17) based on Xn. Then, we have

en(P;Hkr (Ω)) = O(n−αr ) (n → ∞), (21)
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where en(P;Hkr (Ω)) is the worst-case error of the quadrature rule {(wi , Xi )}ni=1.

Remark 2 – Result (21) implies that the same rate is attainable for the Sobolev space
Hr (Ω) (instead of Hkr (Ω)):

en(P; Hr (Ω)) = O(n−αr ) (n → ∞) (22)

with (the sequence of) the same weighted points {(wi , Xi )}∞i=1. This follows from
the norm equivalence between Hkr (Ω) and Hr (Ω).

– If the fill distance satisfies hXn ,Ω = O(n−1/d) as n → ∞, then en(P; Hr (Ω)) =
O(n−r/d). This rate is minimax optimal for the deterministic quadrature rules for
the Sobolev space Hr (Ω) on a hypercube [40, Proposition 1 in Section 1.3.12].
Corollary 1 thus shows that Bayesian quadrature achieves the minimax optimal
rate in this setting.

– The decay rate for the fill distance hXn ,Ω = O(n−1/d) holds when, for example,
the design points Xn = {X1, . . . , Xn} are equally spaced grid points in Ω . Note
that this rate cannot be improved: If the fill distance decreased at a rate faster than
O(n−1/d), then en(P; Hr (Ω)) would decrease more quickly than the minimax
optimal rate, which is a contradiction.

4 Main Results

This section presents the main results on misspecified settings. Two results based on
different assumptions are discussed: one on the quadrature weights in Sect. 4.1 and the
other on the design points in Sect. 4.2. The approximation theory for Sobolev spaces
developed by [37] is employed in the results.

4.1 Convergence Rates Under an Assumption on QuadratureWeights

Theorem 1 LetΩ ⊂ R
d be anopen setwhose boundary is Lipschitz, P beaprobability

distribution on R
d with supp(P) ⊂ Ω , r be a real number with r > d/2, and s be a

natural number with s ≤ r . Let kr denote a kernel on R
d satisfying Assumption 1, and

Hkr (Ω) the RKHS of kr restricted on Ω . Then, for any {(wi , Xi )}ni=1 ∈ (R × Ω)n,
f ∈ Cs

B(Ω) ∩ Hs(Ω) ∩ L1(Ω), and σ > 0, we have

|Pn f − P f | ≤ c1

(
n∑

i=1

|wi | + 1

)

σ−s‖ f ‖Cs
B (Ω)

+ c2(1 + σ 2)
r−s
2 en(P;Hkr (Ω))‖ f ‖Hs (Ω), (23)

where c1, c2 > 0 are constants independent of {(wi , Xi )}ni=1, f and σ .

Proof We first derive some inequalities used for proving the assertion. It follows from
norm equivalence that f ∈ Ws

2 (Ω), where Ws
2 (Ω) is the Sobolev space defined via

weak derivatives. Since Ω has a Lipschitz boundary, Stein’s extension theorem [57,
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p.181] guarantees that there exists a bounded linear extension operator E : Ws
2 (Ω) →

Ws
2 (Rd) such that

E( f )(x) = f (x), ∀x ∈ Ω, (24)

‖E( f )‖Ws
2 (Rd ) ≤ C1‖ f ‖Ws

2 (Ω), (25)

where C1 is a constant independent of the choice of f . From the norm equivalence
and (25), there is a constant C2 such that

‖E f ‖Hs (Rd ) ≤ C2‖ f ‖Hs (Ω). (26)

Since f ∈ L1(Ω), the extension also satisfiesE( f ) ∈ L1(R
d) [57, p.181]. In addition,

by the construction of E [57, Eqs.(24)(31) on p.191], one can show [38, Section 3.2.2]
that E is also a linear bounded operator from Cs

B(Ω) to Cs
0(R

d), that is,

‖E f ‖Cs
0(R

d ) ≤ C3‖ f ‖Cs
B (Ω), (27)

for some constant C3 > 0. Below we write f̃ := E( f ) for notational simplicity.
Let gσ ∈ Hr (Rd) be the approximate function of f̃ defined as (B.10) by Calderón’s

formula (“Appendix B.2”; we set f := f̃ ). The property f̃ ∈ Cs
0(R

d) ∩ Hs(Rd) ∩
L1(R

d) enables the use of Proposition 3.7 of [37] (where we set k := s and α := 0;
see Proposition A.1 in “Appendix A” for a review), which gives in combination with
(27) that

‖ f̃ − gσ ‖L∞(Rd ) ≤ Cσ−s‖ f̃ ‖Cs
0(R

d ) ≤ C4σ
−s‖ f ‖Cs

B (Ω), (28)

for some constant C4 > 0 which is independent of f .
From f̃ ∈ Cs

0(R
d) ∩ Hs(Rd) ∩ L1(R

d), Lemma B.6 in “Appendix B.2” can be
applied, by which together with (26) we have

‖gσ ‖Hr (Rd ) ≤ C ′
5(1 + σ 2)

r−s
2 ‖ f̃ ‖Hs (Rd ) ≤ C5(1 + σ 2)

r−s
2 ‖ f ‖Hs (Ω) (29)

for some constants C5 and C ′
5, which are independent of σ and f̃ .

With the decomposition

|Pn f − P f | ≤ |Pn f − Pngσ |
︸ ︷︷ ︸

(A)

+ |Pngσ − Pgσ |
︸ ︷︷ ︸

(B)

+ |Pgσ − P f |
︸ ︷︷ ︸

(C)

,

each of the terms (A), (B) and (C) will be bounded in the following.
First, the term (A) is bounded as

(A) ≤
n∑

i=1

|wi | | f (Xi ) − gσ (Xi )|

=
n∑

i=1

|wi |
∣
∣
∣ f̃ (Xi ) − gσ (Xi )

∣
∣
∣ (∵ {Xi }ni=1 ⊂ Ω and (24))

123



Foundations of Computational Mathematics (2020) 20:155–194 171

≤
(

n∑

i=1

|wi |
)

‖ f̃ − gσ ‖L∞(Rd )

(28)≤ C4

(
n∑

i=1

|wi |
)

σ−s‖ f ‖Cs
B (Ω).

For the term (B), it follows from the norm equivalence and restriction that for some
constant D

‖gσ |Ω‖Hkr (Ω) ≤ D‖gσ ‖Hr (Rd ). (30)

This inequality and (29) give

(B) ≤ ‖gσ |Ω‖Hkr (Ω)

∥
∥mPn − mP

∥
∥Hkr (Ω)

≤ D‖gσ ‖Hr (Rd )en(P;Hkr (Ω))

≤ DC5(1 + σ 2)
r−s
2 en(P;Hkr (Ω))‖ f ‖Hs (Ω).

Finally, the term (C) is bounded as

(C) ≤
∫ ∣

∣
∣gσ (x) − f̃ (x)

∣
∣
∣ dP(x) ≤ ‖gσ − f̃ ‖L∞(Rd )

(28)≤ C4σ
−s‖ f ‖Cs

B (Ω).

Combining these three bounds, the assertion is obtained. ��
Remark 3 – The integrand f is assumed to satisfy f ∈ Hs(Ω) ∩ Cs

B(Ω) ∩ L1(Ω),
which is slightly stronger than just assuming f ∈ Hs(Ω).

– In upper bound (23), the constant σ > 0 controls the trade-off between the
two terms: c2(1 + σ 2)

r−s
2 en(P;Hkr (Ω))‖ f ‖Hs (Ω) and c1

(∑n
i=1 |wi | + 1

) ·
σ−s‖ f ‖Cs

B (Ω). In the proof, the integrand f is approximated by a band-limited
function gσ ∈ Hr (Ω), where σ is the highest spectrum that gσ possesses. Thus,
the trade-off in the upper bound corresponds to the trade-off between the accuracy
of approximation of f by gσ and the penalty incurred on the regularity of gσ .

The following result, which is a corollary of Theorem 1, provides a rate of con-
vergence for the quadrature error in a misspecified setting. It is derived by assuming
certain rates for the quantity

∑n
i=1 |wi | and the worst-case error en(P;Hkr ).

Corollary 2 Let Ω , P, r , s, kr , and Hkr (Ω) be the same as Theorem 1. Suppose that
{(wi , Xi )}ni=1 ∈ (R × Ω)n satisfies en(P;Hkr (Ω)) = O(n−b) and

∑n
i=1 |wi | =

O(nc) for some b > 0 and c ≥ 0, respectively, as n → ∞. Then, for any f ∈
Cs
B(Ω) ∩ Hs(Ω) ∩ L1(Ω), we have

|Pn f − P f | = O(n−bs/r+c(r−s)/r ) (n → ∞). (31)

Proof Let σn := nθ > 0, where θ > 0 will be determined later. Plugging
en(P;Hkr (Ω)) = O(n−b) and

∑n
i=1 |wi | = O(nc) to (23) with σ := σn leads

|Pn f − P f | = O(nc−θs) + O(nθ(r−s)−b).

123



172 Foundations of Computational Mathematics (2020) 20:155–194

Setting θ = (b+ c)/r , which balances the two terms in the right-hand side, completes
the proof. ��
Remark 4 – The exponent of the rate in (31) consists of two terms: −bs/r and

c(r − s)/r . The first term −bs/r corresponds to a degraded rate from the original
O(n−b) by the factor of smoothness ratio s/r , while the second term c(r − s)/r
makes the rate slower. The effect of the second term increases as the constant c or
the gap (r − s) of misspecification becomes larger.

– The obtained rate recovers O(n−b) for r = s (well-specified case) regardless of
the value of c.

– Consider the misspecified case r > s. If c > 0, the term c(r − s)/r always
makes the rate slower. It is thus better to have c = 0, as in this case we have the
rate O(n−bs/r ) in the misspecified setting. The weights with maxi=1,...,n |wi | =
O(n−1), such as equal weights wi = 1/n, realize c = 0.

– As mentioned earlier, the minimax optimal rate for the worst-case error in the
Sobolev space Hr (Ω) with Ω being a cube in R

d and P being the Lebesgue
measure on Ω is O(n−r/d) [40, Proposition 1 in Section 1.3.12]. If design points
satisfy b = r/d and c = 0 in this setting, Corollary 2 provides the rate O(n−s/d)

for f ∈ Hs(Ω) ∩Cs
B(Ω) ∩ L1(Ω). This rate is the same as the minimax optimal

rate for Hs(Ω) and hence implies some adaptivity to the order of differentiability.
– The assumption

∑n
i=1 |wi | = O(nc) can be also interpreted from a probabilistic

viewpoint. Assume that the observation involves noise, Yi := f (Xi ) + εi (i =
1, . . . , n), where εi is independent noise with E[ε2i ] = σ 2

noise (σnoise > 0 is a
constant) for i = 1, . . . , n, and that Yi are used for numerical integration. The
expected squared error is decomposed as

Eε1,...,εn

⎡

⎣

(
n∑

i=1

wi Yi − P f

)2
⎤

⎦ = Eε1,...,εn

⎡

⎣

(

Pn f − P f +
n∑

i=1

wiεi

)2
⎤

⎦

= |Pn f − P f |2 + σ 2
noise

n∑

i=1

w2
i .

In the last expression, the first term |Pn f − P f |2 is the squared error in the noise-
less case, and the second term σ 2

noise

∑n
i=1 w2

i is the error due to noise. Since
∑n

i=1 w2
i ≤ (

∑n
i=1 |wi |)2 = O(n2c), the error in the second term may be larger

as c increases. Hence, quadrature weights having smaller c are preferable in terms
of robustness to the existence of noise; this in turn makes the quadrature rule more
robust to the misspecification of the degree of smoothness.

Theorem 1 and Corollary 2 require a control on the absolute sum of the quadrature
weights

∑n
i=1 |wi |. This is possible with, for instance, equal-weight quadrature rules

that seek for good design points. However, the control of
∑n

i=1 |wi | could be difficult
for quadrature rules that obtain the weights by optimization based on prefixed design
points. This includes the case of Bayesian quadrature that optimizes the weights with-
out any constraint. To deal with such methods, in the next section we will develop
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theoretical guarantees that do not rely on the assumption on the quadrature weights,
but on a certain assumption on the design points.

4.2 Convergence Rates Under an Assumption on Design Points

This subsection provides convergence guarantees in a misspecified settings under an
assumption on the design points. The assumption is described in terms of separation
radius (6), which is (the half of) the minimum distance between distinct design points.
The separation radius of points Xn := {X1, . . . , Xn} ⊂ R

d is denoted by qXn . Note
that if Xn ⊂ Ω for some Ω , then the separation radius lower bounds the fill distance,
i.e., qXn ≤ hXn ,Ω .

Henceforth, we will consider a bounded domain Ω , and without loss of generality,
we assume that it satisfies diam(Ω) ≤ 1.

Theorem 2 Let Ω ⊂ R
d be an open bounded set with diam(Ω) ≤ 1 such that the

boundary is Lipschitz, P be a probability distribution on R
d such that supp(P) ⊂ Ω ,

r be a real number with r > d/2, and s be a natural number with s ≤ r . Let kr denote
a kernel on R

d satisfying Assumption 1, andHkr (Ω) the RKHS of kr restricted on Ω .
For any {(wi , Xi )}ni=1 ∈ (R × Ω)n and f ∈ Cs

B(Ω) ∩ Hs(Ω), we have

|Pn f − P f | ≤ C max
(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

) (
q−(r−s)
Xn en(P;Hkr (Ω)) + qsXn

)
,

(32)
where C > 0 is a constant depending neither on {(wi , Xi )}ni=1 nor on the choice of f
and en(P;Hkr (Ω)) is the worst-case error inHkr (Ω) for {(wi , Xi )}ni=1.

Proof By the same argument as the first part of the proof for Theorem 1, there exists
an extension of f to f̃ ∈ Ws

2 (Rd) ∩ Cs
0(R

d) such that

f̃ (x) = f (x), ∀x ∈ Ω, (33)

‖ f̃ ‖Hs (Rd ) ≤ C1‖ f ‖Hs (Ω), (34)

‖ f̃ ‖Cs
0(R

d ) ≤ C2‖ f ‖Cs
B (Ω), (35)

for some positive constantsCi (i = 1, 2).Note also that f ∈ L1(Ω), since f ∈ Cs
B(Ω)

and Ω is bounded. This implies f̃ ∈ L1(R
d) [57, p.181].

From the above inequalities, there is a constant C3 > 0 independent of the choice
of f such that

max
(
‖ f̃ ‖Cs

0(R
d ), ‖ f̃ ‖Hs (Rd )

)
≤ C3 max

(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

)
. (36)

For notational simplicity, write

σn := Cd

qXn
(37)
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where Cd := 24(
√

π

3 Γ ( d+2
2 ))

2
d+1 with Γ being the Gamma function. From Theo-

rems A.1 and A.2 in “Appendix A” (which are restatements of Theorems 3.5 and 3.10
of [37]), there exists a function f̃σn ∈ Hr (Rd) such that

f̃σn (Xi ) = f̃ (Xi ), (i = 1, . . . , n), (38)

‖ f̃ − f̃σn‖L∞(Rd ) ≤ Cs,dσ
−s
n max(‖ f̃ ‖Cs

0(R
d ), ‖ f̃ ‖Hs (Rd )), (39)

where Cs,d is a constant depending only on s and d. Combining (39) and (36) obtains

‖ f̃ − f̃σn‖L∞(Rd ) ≤ C4σ
−s
n max

(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

)
, (40)

where C4 := Cs,dC3.
From Assumption 1 and f̃ ∈ Cs

B(Rd) ∩ Hs(Rd) ∩ L1(R
d), Lemma A.1 (see

“Appendix A”) gives

‖ f̃σn‖Hkr (Rd ) ≤ Cs,d,kr σ
r−s
n max(‖ f̃ ‖Cs

0(R
d ), ‖ f̃ ‖Hs (Rd )),

where Cs,d,kr is a constant only depending on r , s, d and kr . It follows from this
inequality and (36) that

‖ f̃σn‖Hkr (Rd ) ≤ C5σ
r−s
n max

(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

)
, (41)

where C5 := Cs,d,kr C3.
We are now ready to prove the assertion. In the decomposition

|Pn f − P f | = |Pn f̃ − P f̃ | ≤ |Pn f̃ − Pn f̃σn |︸ ︷︷ ︸
(A)

+ |Pn f̃σn − P f̃σn |︸ ︷︷ ︸
(B)

+ |P f̃σn − P f̃ |
︸ ︷︷ ︸

(C)

,

the term (A) is zero from (38).
With ‖ f̃σn |Ω‖Hkr (Ω) ≤ ‖ f̃σn‖Hkr (Rd ) ( [2], Section 5), the term (B) can be bounded

as

(B) =
∣
∣
∣
∣
∣

n∑

i=1

wi f̃σn |Ω(Xi ) −
∫

f̃σn |Ω(x)dP(x)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

〈
f̃σn |Ω,mPn − mP

〉

Hkr (Ω)

∣
∣
∣
∣ (∵ f̃σn |Ω ∈ Hkr (Ω))

≤
∥
∥
∥ f̃σn |Ω

∥
∥
∥Hkr (Ω)

en(P;Hkr (Ω))

≤
∥
∥
∥ f̃σn

∥
∥
∥Hkr (Rd )

en(P;Hkr (Ω))

(41)≤ C5σ
r−s
n max

(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

)
en(P;Hkr (Ω)).
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The term (C) is upper bounded as

(C) ≤ ‖ f̃σn − f̃ ‖L∞(Rd )

(39)≤ C4σ
−s
n max

(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

)
.

These bounds complete the proof. ��
Remark 5 – From qXn ≤ hXn , the separation radius qXn typically converges to zero

as n → ∞. For the upper bound in (32), the factor q−(r−s)
Xn in the first term diverges

to infinity as n → ∞, while the second term goes to zero. Thus, qXn should decay
to zero in an appropriate speed depending on the rate of en(P;Hkr (Ω)), in order
to make the quadrature error small in the misspecified setting.

– Note that as the gap between r and s becomes large, the effect of the separation
radius becomes serious; this follows from the expression q−(r−s)

Xn .

Based on Theorem 2, we establish below a rate of convergence in a misspecified
setting by assuming a certain rate of decay for the separation radius as the number of
design points increases.

Corollary 3 Let Ω, P, r , s, kr ,Hkr (Ω) be the same as in Theorem 2. Suppose
{(wi , Xi )}ni=1 ∈ (R × Ω)n is design points such that en(P;Hkr (Ω)) = O(n−b)

and qXn = Θ(n−a) for some b > 0 and a > 0, respectively, as n → ∞. Then, for
any f ∈ Cs

B(Ω) ∩ Hs(Ω), we have

|Pn f − P f | = O(n−min(b−a(r−s),as)) (n → ∞). (42)

In particular, the rate in the right-hand side is optimized when a = b/r , which gives

|Pn f − P f | = O(n− bs
r ) (n → ∞). (43)

Proof Plugging en(P;Hkr (Ω)) = O(n−b) and qXn = Θ(n−a) into (32) yields

|Pn f − P f | = O(na(r−s)−b) + O(n−as) = O(n−min(b−a(r−s),as)),

which proves (42). The second assertion is obvious. ��
Remark 6 As stated in the assertion, the best rate for the bound is achieved when
a = b/r . The resulting rate in (43) coincides with that of Corollary 2 (see (31)) with
c = 0. Therefore, observations similar to those for Theorem 1 can be made with the
rate in (43).

5 Bayesian Quadrature in Misspecified Settings

To demonstrate the results of Sect. 4, a rate of convergence for Bayesian quadrature
in misspecified settings is derived. To this end, an upper bound on the integration
error of Bayesian quadrature is first provided, when the smoothness of an integrand is
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overestimated. It is obtained by combining Theorem 2 in Sect. 4 and Proposition 1 in
Sect. 3.

Theorem 3 Let Ω ⊂ R
d be a bounded open set with diam(Ω) ≤ 1 such that an

interior cone condition is satisfied and the boundary is Lipschitz, P be a probability
distribution on R

d with a bounded density function p such that supp(P) ⊂ Ω , r be
a real number with 
r� > d/2, and s be a natural number with s ≤ r . Suppose that
kr is a kernel on R

d satisfying Assumption 1, Xn := {X1, . . . , Xn} ⊂ Ω is design
points such that G := (kr (Xi , X j ))

n
i, j=1 ∈ R

n×n is invertible, andw1, . . . , wn are the
Bayesian quadrature weights in (17) based on kr . Assume that there exist constants
cq > 0 and δ > 0 independent of Xn, such that 1 − s/r < δ ≤ 1 and

hXn ,Ω ≤ cqq
δ
Xn . (44)

Then, there exist positive constants C and h0 independent of Xn, such that for any
f ∈ Cs

B(Ω) ∩ Hs(Ω), we have

|Pn f − P f | ≤ C max
(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

)
hr−(r−s)/δ
Xn ,Ω , (45)

provided that hXn ,Ω ≤ h0.

Proof Under the assumptions, Theorem 2 gives that

|Pn f − P f | ≤ C1 max
(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

) (
q−(r−s)
Xn en(P;Hkr (Ω)) + qsXn

)
,

(46)
whereC1 > 0 is a constant and en(P;Hkr (Ω)) is theworst-case error of {(wi , Xi )}ni=1
inHkr (Ω). On the other hand, Proposition 1 implies that there exist constants C2 > 0
and h0 > 0 independent of the choice of Xn , such that

en(P;Hkr (Ω)) ≤ C2h
r
Xn ,Ω, (47)

provided that hXn ,Ω ≤ h0. Note also that (44) implies that

q−1
Xn ≤ c1/δq h−1/δ

Xn ,Ω . (48)

From qXn ≤ hXn ,Ω and the above inequalities, it follows that

|Pn f − P f |
(46)≤ C1 max

(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

) (
q−(r−s)
Xn en(P;Hkr (Ω)) + qsXn

)

(47)≤ C1 max
(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

) (
C2q

−(r−s)
Xn hrXn ,Ω + qsXn

)

(48)≤ C1 max
(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

) (
C2c

(r−s)/δ
q hr−(r−s)/δ

Xn ,Ω + qsXn

)
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(�)≤ C1 max
(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

) (
C2c

(r−s)/δ
q hr−(r−s)/δ

Xn ,Ω + hsXn

)

(†)≤ C3 max
(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

)
hr−(r−s)/δ
Xn ,Ω ,

where C1,C2 andC3 are positive constants independent of the choice of design points
Xn , and we used qXn ≤ hXn ,Ω in (�), 0 < hXn ≤ 1 and 0 < r − (r − s)/δ ≤ s
in (†). ��
Remark 7 – Condition (44) implies that

c′h1/δXn ,Ω ≤ qXn ≤ hXn ,Ω, (49)

where c′ := c−1/δ
q is independent of Xn . This condition is stronger for a larger

value of δ, requiring that distinct design points should not be very close to each
other. Note that the lower bound 1 − s/r < δ is necessary for the upper bound of
error (45) to have a positive exponent, while the upper bound δ ≤ 1 follows from
qXn ≤ hXn ,Ω , which holds by definition. The constraint 1− s/r < δ and (49) thus
imply that a stronger condition is required for Xn as the degree of misspecification
becomes more serious (i.e., as the ratio s/r becomes smaller).

– If condition (44) is satisfied for δ = 1, then the design points Xn are called quasi-
uniform [53, Section 7.3]. In this case, the bound in (45) is

|Pn f − P f | ≤ C max
(
‖ f ‖Cs

B (Ω), ‖ f ‖Hs (Ω)

)
hsX ,Ω . (50)

This is the same order of approximation as that of Proposition 1 when r = s.
Proposition 1 provides an error bound for Bayesian quadrature in a well-specified
case, where one knows the degree of smoothness s of the integrand. Therefore,
(50) suggests that if the design points are quasi-uniform, then Bayesian quadrature
can be adaptive to the (unknown) degree of the smoothness s of the integrand f ,
even in a situation where one only knows its upper bound r ≥ s.

We obtain the following as a corollary of Theorem 3. The proof is obvious and
omitted.

Corollary 4 LetΩ, P, r , s, kr , Xn,G andwi (i = 1, . . . , n) be the same as Theorem 3.
Assume that there exist constants cq > 0 and δ > 0 independent of Xn, such that
1 − s/r < δ ≤ 1 and

hXn ,Ω ≤ cqq
δ
Xn ,

and further hXn ,Ω = O(n−α) as n → ∞ for some 0 < α ≤ 1/d. Then, for all
f ∈ Cs

B(Ω) ∩ Hs(Ω), we have

|Pn f − P f | = O(n−α[r−(r−s)/δ]) (n → ∞). (51)
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In particular, the best possible rate in the right-hand side is achieved when δ = 1 and
α = 1/d, giving that

|Pn f − P f | = O(n−s/d) (n → ∞). (52)

Remark 8 – The rate O(n−s/d) in (52) matches the minimax optimal rate of deter-
ministic quadrature rules for the worst-case error in the Sobolev space Hs(Ω)with
Ω being a cube [40, Proposition 1 in Section 1.3.12]. Therefore, it is shown that
the optimal rate may be achieved by Bayesian quadrature, even in the misspeci-
fied setting (under a slightly stronger assumption that f ∈ Hs(Ω) ∩ Cs

B(Ω)). In
other words, Bayesian quadraturemay achieve the optimal rate adaptively, without
knowing the degree s of smoothness of a test function: One just needs to know its
upper bound r ≥ s.

– The main assumptions required for the optimal rate (52) are that (i) hXn ,Ω =
O(n−1/d) and that (ii) hXn ,Ω ≤ cqqδ

Xn for δ = 1. Recall that (i) is the same
assumption that is required for the optimal rate O(n−r/d) in the well-specified
setting f ∈ Hr (Ω) (Corollary 1). On the other hand, (ii) is the one required for
the finite sample bound in Theorem 3. Both these assumptions are satisfied, for
instance, if X1, . . . , Xn are grid points in Ω .

6 Simulation Experiments

We conducted simulation experiments to empirically assess the obtained theoretical
results. MATLAB code for reproducing the results is available at https://github.com/
motonobuk/kernel-quadrature.We focus onBayesian quadrature in these experiments.

6.1 Problem Setting

Domain, distribution and design points The domain is Ω := [0, 1] ⊂ R, and the
measure of quadrature P is the uniform distribution over [0, 1]. For design points, we
consider the following two configurations:

– Uniform Xn = {X1, . . . , Xn} are equally spaced grid points in [0, 1] with X1 = 0
and Xn = 1, that is, Xi = (i − 1)/(n − 1) for i = 1, . . . , n.

– Non-uniform Xn = {X1, . . . , Xn} are non-equally spaced points in [0, 1], such
that Xi = (i − 1)/(n − 1) if i is odd, and Xi = Xi−1 + (n − 1)−2 if i is even.

For the uniform design points, both the fill distance hXn ,Ω and the separation radius
qXn ,Ω decay at the rate O(n−1). On the other hand, for the non-uniform points the
separation radius decays at the rate O(n−2), while the rate of the fill distance remains
the same O(n−1) as for the uniform points. Using these two different sets of design
points, we can observe the effect of the separation radius to the performance of kernel
quadrature.

Kernels As before, r denotes the assumed degree of smoothness used for comput-
ing quadrature weights, and s denotes the true smoothness of test integrands, both
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expressed in terms of Sobolev spaces. As kernels of the corresponding Sobolev spaces,
we usedWendland kernels [61, Definition 9.11], which are given as follows [61, Corol-
lary 9.14]. Define the following univariate functions:

φ1,0(t) := (1 − t)+, φ1,1(t) := (1 − t)3+(3t + 1),

φ1,2(t) := (1 − t)5+(24t + 15t + 3),

φ1,3(t) := (1 − t)7+(315t3 + 285t2 + 105t + 15), t ≥ 0,

where (x)+ := min(0, x). The Wendland kernel kr whose RKHS is norm-equivalent
to the Sobolev space Hr ([0, 1]) of order r (= 1, 2, 3, 4) is then defined by kr (x, y) :=
φd,r−1(|x − y|/δ) for x, y ∈ [0, 1] [61, Theorem 10.35], where δ is a scale parameter
and we set it to be 0.1.

Evaluation measure For each pair of r (= 1, 2, 3, 4) and s (= 1, 2, 3, 4), we first com-
puted quadratureweightsw1, . . . , wn byminimizing theworst-case error in Hr ([0, 1])
and then evaluated the quadrature rule (wi , Xi )

n
i=1 by computing the worst-case error

in Hs([0, 1]), that is, sup‖ f ‖Hs ([0,1])≤1 |Pn f − P f |. More concretely, we computed the
weights w1, . . . , wn by formula (17) for Bayesian quadrature using the kernel kr and
then evaluated worst-case error (12) by computing the square root of (16) using the
kernel ks . In this way, one can evaluate the performance of kernel quadrature under
various settings. For instance, the case s < r is a situation where the true smoothness s
is smaller than the assumed one r , the misspecified setting we have dealt in the paper.

6.2 Results

The simulation results are shown in Fig. 1 (Uniform design points) and Fig. 2 (Non-
uniform design points). In the figures, we also report the exponents in the empirical
rates of the fill distance hXn ,Ω , the separation radius qXn , and the absolute sum of
weights

∑n
i=1 |wi | in the top of each subfigure; see the captions of Figs. 1 and 2 for

details. Based on these, we can draw the following observations.

Optimal rates in the well-specified case In both Figs. 1 and 2, the black solid lines
are the worst-case errors in the well-specified case s = r . The empirical convergence
rates of these worst-case errors are very close to the optimal rates derived in Sect. 3
(see Corollary 1 and its remarks), confirming the theoretical results. Proposition 1 and
Corollary 1 also show that the worst-case error in the well-specified case is determined
by the fill distance and is independent of the separation radius. The simulation results
are consistent with this, since for both Figs. 1 and 2 the fill distance decays essentially
at the rate O(n−1), while the separation radius decays quicker for Fig. 2 than for Fig. 1.

Adaptability to lesser smoothness Let us look at Fig. 1 for the misspecified case s < r ,
i.e., where the true smoothness s is smaller than the assumed one r . For every pair
of s < r , the rates are very close to the optimal ones, showing that adaptation to the
unknown lesser smoothness in fact occurs. This is consistent with Corollaries 3 and 4,
which imply that adaptation occurs if the design points are quasi-uniform. Figure 2
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Fig. 1 Design points areUniform, i.e., equally spaced grid points in [0, 1]; see Sect. 6.1 for details. The solid
lines are the worst-case errors, and the dotted lines are the corresponding linear fits. The subfigures a–d
are, respectively, the results for the weights computed using the kernel kr with r = 1, 2, 3, 4. Black lines
are the worst-case errors for the well-specified case s = r (i.e., the worst-case error is evaluated in the same
Sobolev space where the weights are obtained). Note that black lines overlap the corresponding lines for
s = r (e.g., in the subfigure a the red line for s = 1 does not appear since the black line completely overlaps
it). In each legend, we report the exponents of the empirical rates of the worst-case errors. For instance, in
the subfigure d, the worst-case error for s = 1 decays at the rate O(n−1.055). On the top of each figure,
the exponents in the empirical rates of the fill distance hXn ,Ω , the separation radius qXn and the absolute
sum of weights

∑n
i=1 |wi | are shown. For instance, for the subfigure (d), we have hXn ,Ω = O(n−1.01),

qXn = O(n−1.01) and
∑n

i=1 |wi | = O(n0.00) (Color figure online)

shows also some adaptability, but the rates for s = 1 with r > s are slower than
the optimal one. This will be discussed below, in a discussion on the effect of the
separation radius.

Adaptability to greater smoothness While the case s > r is not covered by our theo-
retical analysis, Figs. 1 and 2 show some adaptation to the greater smoothness. This
phenomenon is also observed by Bach [4, Section 5], who showed (for quadrature
weights obtained with regularized matrix inversion) that if 2r ≥ s > r , then the opti-
mal rate is still attainable in an adaptive way. Bach [4, Section 6] verified this finding
in experiments with quadrature weights without regularization. In our experiments,
this phenomenon is observed for all cases of 2r ≥ s > r expect for the case r = 2
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Fig. 2 Design points areNon-uniform, i.e., non-equally spaced points in [0, 1]; see Sect. 6.1 for details. The
solid lines are the worst-case errors, and the dotted lines are the corresponding linear fits. The subfigures a–d
are, respectively, the results for the weights computed using the kernel kr with r = 1, 2, 3, 4. Black lines
are the worst-case errors for the well-specified case s = r (i.e., the worst-case error is evaluated in the same
Sobolev space where the weights are obtained). Note that black lines overlap the corresponding lines for
s = r (e.g., in the subfigure a the red line for s = 1 does not appear since the black line completely overlaps
it). In each legend, we report the exponents of the empirical rates of the worst-case errors. For instance, in
the subfigure d, the worst-case error for s = 1 decays at the rate O(n−0.748). On the top of each figure,
the exponents in the empirical rates of the fill distance hXn ,Ω , the separation radius qXn and the absolute
sum of weights

∑n
i=1 |wi | are shown. For instance, for the subfigure (d), we have hXn ,Ω = O(n−1.00),

qXn = O(n−1.98) and
∑n

i=1 |wi | = O(n0.47) (Color figure online)

and s = 4 in both Figs. 1 and 2. Note, however, that in [4], design points are assumed
to be randomly generated from a specific proposal distribution, so the results there are
not directly applicable to deterministic quadrature rules.

The effect of the separation radius In Fig. 1, the rate for s = 1, that is, O(n−1.052),
remains essentially the same for different values of r = 1, 2, 3, 4. This rate is essen-
tially the optimal rate for s = 1, thus showing the adaptability of Bayesian quadrature
to the unknown lesser smoothness (for r = 2, 3, 4). On the other hand, in Fig. 2 on
non-uniform design points, the rate for s = 1 becomes slower as r increases. That is,
the rates are O(n−1.035) for r = 1 (the well-specified case), O(n−0.945) for r = 2,
O(n−0.919) for r = 3 and O(n−0.748) for r = 4. This phenomenon may be attributed
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to the fact that the separation radius of the design points for Fig. 2 decays faster than
those for Fig. 1. Corollary 4 shows that the rates in the misspecified case s < r become
slower as the separation radius decays more quickly and/or as the gap r − s (or the
degree of misspecification) increases, and this is consistent with the simulation results.

The effect of theweightsWhile the sumof absoluteweights
∑n

i=1 |wi | remains constant
in Fig. 1, this quantity increases in Fig. 2. In the notation of Corollary 2,

∑n
i=1 |wi | =

O(nc) with c = 0 for Fig. 1 while c ≈ 0.5 for Fig. 2 with r = 2, 3, 4. Therefore,
the observation given in the preceding paragraph is also consistent with Corollary 2,
since it states that larger c makes the rates slower in the misspecified case. Note that
the separation radius and the quantity

∑n
i=1 |wi | are intimately related in the case of

Bayesian quadrature, since the weights are computed from the inverse of the kernel
matrix as (17) and thus affected by the smallest eigenvalue of the kernel matrix, while
this smallest eigenvalue strongly depends on the separation radius and the smoothness
of the kernel; see, e.g., [52] [61, Section 12] and references therein.

7 Discussion

In this paper, we have discussed the convergence properties of kernel quadrature rules
with deterministic design points inmisspecified settings. In particular, we have focused
on settings where quadrature weighted points are generated based on misspecified
assumptions on the degree of smoothness, that is, the situation where the integrand is
less smooth than assumed.

We have revealed conditions for quadrature rules under which adaptation to the
unknown lesser degree of smoothness occurs. In particular,we have shown that a kernel
quadrature rule is adaptive if the sum of absolute weights remains constant, or if the
spacing between design points is not too small (as measured by the separation radius).
Moreover, by focusing on Bayesian quadratures as working examples, we have shown
that they can achieve minimax optimal rates of the unknown degree of smoothness, if
the designpoints are quasi-uniform.Weexpect that this result provides a practical guide
for developing kernel quadratures that are robust to the misspecification of the degree
of smoothness; such robustness is important in modern applications of quadrature
methods, such as numerical integration in sophisticated Bayesian models, since they
typically involve complicated or black box integrands, and thus, misspecification is
likely to happen.

There are several important topics to be investigated as part of future work.

OtherRKHSsThis paper has dealtwith Sobolev spaces asRKHSs of kernel quadrature.
However, there are many other important RKHSs of interest where similar investiga-
tion can be carried out. For instance, Gaussian RKHSs (i.e., the RKHSs of Gaussian
kernels) have been widely used in the literature on Bayesian quadrature. Such an
RKHS consists of functions with infinite degree of smoothness. This makes theoret-
ical analysis challenging: Our analysis relies on the approximation theory developed
by Narcowich and Ward [37], which only applies to the standard Sobolev spaces.
Similarly, the theory of [37] is also not applicable to Sobolev spaces with dominating
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mixed smoothness, which have been popular in the QMC literature. In order to ana-
lyze quadrature rules in these RKHSs, we therefore need to extend the approximation
theory of [37] to such spaces. Overall, this is an important but challenging theoreti-
cal problem. (We also mention that relevant results are available in follow-up papers
[38,39]. While these results do not directly provide the desired generalizations due
to the same reasons mentioned above, these could still be potentially useful for our
purpose.)

Sequential (adaptive) quadrature Another important direction is the analysis for ker-
nel quadratures that sequentially select design points. Such methods are also called
adaptive, since the selection of the next point Xn+1 depends on the function values
f (X1), . . . , f (Xn) of the already selected points X1, . . . , Xn . Note that the adaptabil-
ity here is different from that of the current paper where we used it in the context of
adaptability of quadrature to unknown degree of smoothness. For instance, theWSABI
algorithm by [25] is an example of adaptive Bayesian quadrature which is considered
as state of the art for the application of Bayesian model evidence calculation. Such
adaptive methods have been known to be able to outperform non-adaptive methods in
the following case: The hypothesis space is imbalanced or non-convex (see, e.g., Sec-
tion 1 of [41]). In the worst-case error, the hypothesis space is the unit ball in the
RKHS H, which is balanced and convex and so adaptation does not help. In fact, it
is known that the optimal rate can be achieved without adaptation. However, if the
hypothesis space is imbalanced (i.e., f being in the hypothesis space does not imply
that − f is in the hypothesis space), then adaptive methods may perform better. For
instance, the WSABI algorithm focuses on nonnegative integrands, which means that
the hypothesis is imbalanced, and thus, adaptive selection helps. Our analysis in this
paper has focused on the worst-case error defined by the unit ball in an RKHS, which
is balanced and convex. A future direction is thus to consider the setting of imbalanced
or non-convex hypothesis spaces, such as the one consisting of nonnegative functions,
which will enable us to analyze the convergence behavior of sequential or adaptive
Bayesian quadrature in misspecified settings.

Random design pointsWehave focused on deterministic quadrature rules in this paper.
In the literature, however, the use of random design points has also been popular.
For instance, the design points of Bayesian quadrature might be i.i.d. with a certain
proposal distribution or generated as an MCMC sequence. Likewise, QMC methods
usually apply randomization to deterministic design points. Our forthcoming paper
will deal with such situations and provide more general results than the current paper.
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Appendix A: Key Results of Narcowich andWard [37]

Here we review some key results from [37], which are needed in the proofs for our
results. One reason for including this is that a certain assumption about a function of
interest, that is, its integrability, is lacking in the results of [37]; see Remark A.1 for
details. Therefore, for the sake of completeness (as well as for the ease of the reader),
we provide restatements of those results.

For σ > 0, below we denote by Bσ a subset of L2(R
d) such that each f ∈ Bσ has

a spectral density whose support is contained in the (closed) ball B(0, σ ) with radius
σ , i.e.,

Bσ :=
{
f ∈ L2(R

d) : supp( f̂ ) ⊂ B(0, σ )
}

.

This is a Paley–Weiner class of band-limited functions. Thus, the functions in Bσ

are analytic (and thus, they are continuous) and vanish at infinity. Therefore, Bσ ⊂
L2(R

d) ∩ C0(R
d).

The following theorem is a restatement of Theorem 3.5 of [37].

Theorem A.1 Let Xn := {X1, . . . , Xn} ⊂ R
d be n distinct points with separation

radius qXn := 1
2 mini �= j ‖Xi − X j‖, such that diam(Xn) := maxi, j ‖Xi − X j‖ ≤ 1.

Let σ > 0 be a constant such that

σ ≥ σ0 := 24

qXn

{√
π

3
Γ

(
d + 2

2

)} 2
d+2

.

Then, for any f ∈ C0(R
d) ∩ L2(R

d), there exists fσ ∈ Bσ that satisfies

f (Xi ) = fσ (Xi ), i = 1, . . . , n,

and

max
(‖ f − fσ ‖C0(Rd ), ‖ f − fσ ‖L2(Rd )

)

≤ Cd inf
g∈Bσ

max
(‖ f − g‖C0(Rd ), ‖ f − g‖L2(Rd )

)

with Cd := 5 + 2d+3.

In the above theorem, fσ is an interpolant of f on Xn . Thus, the theorem guarantees
that such a fσ can be taken as a band-limited function with a sufficiently large band-
length σ . More precisely, the lower bound σ0 for σ is proportional to the reciprocal of
the separation radius qXn . This means that the band-length σ should increase as the
minimum distance between distinct design points decreases.

The following proposition is a restatement of Proposition 3.7 of [37], which
establishes an upper bound on the L1-error for the approximate function defined in
(B.10)—see “Appendix B.2.”
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Proposition A.1 Let s ∈ N and α ∈ N
d
0 be a multi-index such that |α| < s. Suppose

f ∈ Cs
0(R

d)∩Hs(Rd)∩L1(R
d) and gσ is the approximate function defined in (B.10).

Then, for any σ > 0,

‖∂α f − ∂αgσ ‖L∞(Rd ) ≤ Cs−|α|σ |α|−s‖ f ‖Cs
0(R

d ),

where Ck−|α| > 0 is a constant depending only on the value of k−|α| and the function
ψ of Lemma B.2.

The following theorem, which is Theorem 3.10 in [37], provides an upper bound
on the approximation error of the interpolant fσ .

Theorem A.2 Let s ∈ N and α ∈ N
d
0 be a multi-index such that |α| < s. Suppose

f ∈ Cs
0(R

d)∩ Hs(Rd)∩ L1(R
d), fσ is the interpolant from TheoremA.1 with σ > 0

and Xn := {X1, . . . , Xn} satisfies the conditions in Theorem A.1. Then, there is a
constant C|α|,s,d that depends only on |α|, s and d such that

∥
∥∂α f − ∂α fσ

∥
∥
L∞(Rd )

≤ C|α|,s,dσ |α|−s max
(
‖ f ‖Cs

0(R
d ), ‖ f ‖Hs (Rd )

)
.

The following proposition, which is Proposition 3.11 in [37], provides an upper
bound on a Sobolev norm of the interpolant fσ .

Proposition A.2 Let s ∈ N. Suppose f ∈ Cs
0(R

d) ∩ Hs(Rd) ∩ L1(R
d), fσ is the

interpolant from Theorem A.1 with σ > 0 and Xn := {X1, . . . , Xn} satisfies the
conditions in Theorem A.1. Then, there is a constant Cs,d that depends only on s and
d such that

‖ fσ ‖Hs (Rd ) ≤ Cs,d max
(
‖ f ‖Cs

0(R
d ), ‖ f ‖Hs (Rd )

)
.

Remark A.1 We have the following comments on Propositions A.1, A.2 and Theo-
rem A.2.

– In the original statement of Proposition 3.7 in [37], the assumption f ∈ L1(R
d) is

missing. However, since this assumption is required for the function gσ to be well
defined (see Lemma B.5), we have included it in Proposition A.1. Since Theorem
3.10 and Proposition 3.11 of [37] depend on Proposition 3.7, we have included
the assumption f ∈ L1(R

d) in Theorem A.2 and Proposition A.2.
– In the original statement of Proposition 3.11 in [37], the condition σ ≥ 1 is
required. This condition is implicitly satisfied by σ in Proposition A.2 as the
condition on σ in Theorem A.1 implies σ ≥ 1, which can be seen from the fact
that qXn ≤ 1/2 (follows from the assumption diam(Xn) ≤ 1) and the definition
of the lower bound σ0 of σ .
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Appendix A.1: The Sobolev Norm of the Interpolant f�

Here we provide an upper bound on the Sobolev (RKHS) norm of the interpolant fσ
in Theorem A.1. The result essentially follows from an argument in p.298 of [37], but
we prove it for completeness.

Lemma A.1 Let r ∈ R, r > d/2 and s ∈ N, r ≥ s. Let kr be a kernel on R
d such that

kr (x, y) := Φ(x − y), where Φ : R
d → R satisfies

C1(1 + ‖ξ‖2)−r ≤ Φ̂(ξ), ξ ∈ R
d

for some constant C1 > 0 independent of ξ . Suppose f ∈ Cs
0(R

d)∩Hs(Rd)∩L1(R
d),

fσ is the interpolant from TheoremA.1 with σ > 0 and Xn := {X1, . . . , Xn} satisfies
the conditions in Theorem A.1. Then, we have

‖ fσ ‖Hkr
≤ Cs,d,kr σ

r−s max
(
‖ f ‖Cs

0(R
d ), ‖ f ‖Hs (Rd )

)
, (A.1)

where Cs,d,kr is a constant only depending on r, s, d, and kr (note that the dependency
on the kernel kr is via the constant C1).

Proof As in Remark A.1, we have σ ≥ 1. We then have

‖ fσ ‖2Hkr
=

∫

‖ξ‖≤σ

| f̂σ (ξ)|2Φ̂(ξ)−1dξ (∵ f ∈ Bσ )

≤ C−1
1

∫

‖ξ‖≤σ

| f̂σ (ξ)|2(1 + ‖ξ‖2)r dξ

≤ C−1
1 (1 + σ 2)r−s

∫

‖ξ‖≤σ

| f̂σ (ξ)|2(1 + ‖ξ‖2)sdξ (∵ r − s ≥ 0)

≤ C−1
1 (1 + σ 2)r−s‖ fσ ‖2Hs (Rd )

≤ C−1
1 2r−sσ 2(r−s)‖ fσ ‖2Hs (Rd )

(∵ σ ≥ 1).

Therefore, by using Proposition A.2, it follows that

‖ fσ ‖Hkr
≤ C−1/2

1 2(r−s)/2σ r−s‖ fσ ‖Hs (Rd )

≤ C−1/2
1 2(r−s)/2σ r−sCs,d max

(
‖ f ‖Cs

0(R
d ), ‖ f ‖Hs (Rd )

)
,

where Cs,d is a constant only depending on s and d. The proof completes by setting
Cs,d,kr := C−1/2

1 2(r−s)/2Cs,d . ��

Appendix B: Approximation in Sobolev Spaces

Appendix B.1: Fundamental Lemma

In the proof ofTheorem1,weusedProposition3.7 of [37],which assumes the existence
of a functionψ : R

d → R satisfying the properties in Lemma B.2. Since the existence
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of this function is not proved in [37],wewill first prove it for completeness. LemmaB.2
is a variant of Lemma 1.1 of [19], from which we borrowed the proof idea.

Lemma B.2 Let s ∈ N. Then, there exists a function ψ : R
d → R satisfying the

following properties:

(a) ψ is radial;
(b) ψ is a Schwartz function;
(c) supp(ψ̂) ⊂ B(0, 1);
(d)

∫
Rd xβψ(x)dx = 0 for every multi-index β satisfying |β| := ∑d

i=1 βi ≤ s, where

xβ := ∏d
i=1 x

βi
i ;

(e) ψ satisfies ∫ ∞

0
|ψ̂(tξ)|2 dt

t
= 1, ∀ξ ∈ R

d\{0}. (B.2)

Proof Define a function u ∈ L1(R
d) as the inverse Fourier transform of a function

û ∈ L1(R
d) defined by û(ξ) := exp

(−1/(1 − ‖ξ‖2)) if ‖ξ‖ < 1 and û(ξ) = 0
otherwise. Then, û is radial, Schwartz, and satisfies supp(û) ⊂ B(0, 1) [1, Sec. 2.28].
Also note that u is real valued, since û is symmetric.

Letm ∈ N satisfym > s/2. Define a function h : R
d → R by h := Δmu, whereΔ

denotes the Laplacian defined byΔ f := ∑d
i=1

∂2 f
∂x2i

. Note that we have (see, e.g., p.117

of [57])
ĥ(ξ) = Cm‖ξ‖2mû(ξ), (B.3)

where Cm is a constant depending only on m. From this expression, it follows that ĥ
is radial and Schwartz (and so is h) and that supp(ĥ) ⊂ B(0, 1). Thus, the function h
satisfies the required properties (a) (b) and (c). Later we will define the function ψ in
the assertion based on h.

We next show that h satisfies the property (d). Let β ∈ N
d
0 be any multi-index

satisfying |β| ≤ s, and let pβ(x) := xβ . It follows that pβh is Schwartz, and thus,
pβh ∈ L1(R

d). Then, we have

∫
xβh(x)dx = (̂pβh)(0), (B.4)

which follows from pβh ∈ L1(R
d) and from the definition of Fourier transform. Note

that we have p̂βh(ξ) = i |β|∂β ĥ(ξ), which can be expanded as

∂β ĥ(ξ)
(B.3)= ∂β

[
Cm‖ξ‖2mû(ξ)

]
= Cm

∑

γ∈Nd
0 :γ≤β

(
β

γ

)

∂γ
[
‖ξ‖2m

]
∂β

[
û(ξ)

]
,

(B.5)

where γ ≤ β is defined by that γi ≤ βi for all i = 1, . . . , d, and
(
β
γ

) :=
∏d

i=1 βi !∏d
i=1 γi ! .

Using the multinomial theorem, the mixed partial derivative ∂γ
[‖ξ‖2m] in the above

equation can be further expanded as
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∂γ
[
‖ξ‖2m

]
=

∑

α∈Nd
0 :|α|=m

m!
∏d

i=1 αi !
d∏

i=1

dγi

dξ
γi
i

[
ξ
2αi
i

]
. (B.6)

From this, it follows that ∂γ
[‖ξ‖2m]∣∣

ξ=0 = 0, and thus, (B.5) gives that ∂β ĥ(0) = 0.

Therefore, from (B.4) and p̂βh(ξ) = i |β|∂β ĥ(ξ), it holds that
∫
R

xβh(x)dx = 0,
which is the property (d).

We next show that
∫ ∞
0 |ĥ(tξ)|2 dtt < ∞ for all ξ ∈ R

d\{0}. Since ĥ is bounded

and supp(ĥ) ⊂ B(0, 1), we have
∫ ∞
1 |ĥ(tξ)|2 dtt < ∞. Also, since |ĥ(tξ)| = O(t2m)

as t → +0 (which follows from ĥ(tξ) = (−1)m‖tξ‖2mû(tξ) with û being bounded),
we have

∫ 1
0 |ĥ(tξ)|2 dtt < ∞. Therefore,

∫ ∞
0 |ĥ(tξ)|2 dtt < ∞.

Note that since ĥ is radial,
∫ ∞
0 |ĥ(tξ)|2 dtt only depends on the norm ‖ξ‖. Further-

more,
∫ ∞
0 |ĥ(tξ)|2 dtt remains the same for different values of the norm ‖ξ‖ > 0 due to

the property of the Haar measure dt/t . In other words, there is a constant 0 < C < ∞
satisfying

∫ ∞
0 |ĥ(tξ)|2 dtt = C for all ξ ∈ R

d\{0}. The proof is completed by defining
ψ in the assertion as ψ(x) := C−1/2h(x). ��
Notation 1 Note thatψ being radial implies that ψ̂ is radial, so ψ̂(tξ) in (B.2) depends
on ξ only through its norm ‖ξ‖. Therefore, we may henceforth use the notation

ψ̂(t‖ξ‖) (B.7)

to denote ψ̂(tξ), to emphasize its dependence on the norm. Similarly, we use the
notation ψ̂(t) to imply ψ̂(tξ) for some (and any) ξ ∈ R

d with ‖ξ‖ = 1.

Appendix B.2: ApproximationVia Calderón’s Formula

The following result is known as Calderón’s formula [19, Theorem 1.2] and will be
used in defining an approximate function (B.10). We use below the notation f ∗ g
for any functions f : R

d → R and g : R
d → R to denote their convolution:

( f ∗ g)(x) := ∫
f (x − y)g(y)dy.

Theorem B.3 (Calderón’s formula) Let ψ ∈ L1 be a radial function satisfying (B.2),
and for t > 0 define

ψt (x) := 1

td
ψ(x/t), x ∈ R

d . (B.8)

Then, for any f ∈ L2, we have

f (x) =
∫ ∞

0
(ψt ∗ ψt ∗ f )(x)

dt

t
, x ∈ R

d , (B.9)

where the improper integral in (B.9) is to be interpreted in the following L2 sense: if
0 < ε < δ < ∞ and fε,δ(x) := ∫ δ

ε
(ψt ∗ ψt ∗ f )(x) dtt , then ‖ f − fε,δ‖L2 → 0 as

ε → +0 and δ → ∞ independently.
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Note that it is easy to verify from (B.8) that ‖ψ‖L1 = ‖ψt‖L1 holds for all t > 0.
Let ψ be the function in Lemma B.2. Following Section 3.2 of [37], we consider the
following approximation of f based on Calderón’s formula (B.9):

gσ (x) :=
∫ ∞

1/σ
(ψt ∗ ψt ∗ f )(x)

dt

t
. (B.10)

The integral in (B.10) is also improper and should be interpreted as follows. Let
δ > 1/σ and define

gσ,δ :=
∫ δ

1/σ
(ψt ∗ ψt ∗ f )(x)

dt

t
. (B.11)

Then, gσ in (B.10) is defined to be a function in L2 such that limδ→∞ ‖gσ −gσ,δ‖L2 =
0. Such gσ exists (as a limit of gσ,δ), as shown in Lemma B.5. Since there is no proof
of this result in [37], we provide a proof for the sake of completeness. To this end, we
first need the following lemma.

Lemma B.3 Let gσ,δ be defined as in (B.11) with δ > 1/σ . For all 1 ≤ p ≤ ∞, if
f ∈ L p, then gσ,δ ∈ L p.

Proof For 1 ≤ p ≤ ∞, we have

‖gσ,δ‖L p =
∥
∥
∥
∥

∫ δ

1/σ
ψt ∗ ψt ∗ f

dt

t

∥
∥
∥
∥
L p

≤
∫ δ

1/σ
‖ψt ∗ ψt ∗ f ‖L p

dt

t
(∵ Minkowski’s inequality)

≤
∫ δ

1/σ
‖ψt‖2L1

‖ f ‖L p

dt

t
(∵ Young’s inequality)

=
∫ δ

1/σ
‖ψ‖2L1

‖ f ‖L p

dt

t
= ‖ψ‖2L1

‖ f ‖L p (log(δ) − log(1/σ)) < +∞,

where in the last line we used the assumption f ∈ L p and the fact ψ ∈ L1, which is
a consequence of ψ being a Schwartz function (see Lemma B.2). ��
Lemma B.4 Assume f ∈ L1, and let gσ,δ be defined as in (B.11) with δ > 1/σ . Then,
the Fourier transform of gσ,δ is given by

ĝσ,δ(ξ) =
⎧
⎨

⎩

f̂ (ξ)
∫ min(1,‖ξ‖δ)
‖ξ‖/σ (ψ̂(t))2 dtt , if ‖ξ‖ < σ

0, otherwise
.

Proof We have

ĝσ,δ(ξ) =
∫ ∫ δ

1/σ
(ψt ∗ ψt ∗ f )(x)

dt

t
e−iξT xdx
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=
∫ δ

1/σ

∫
(ψt ∗ ψt ∗ f )(x)e−iξT xdx

dt

t
(∵ Fubini’s theorem)

= f̂ (ξ)

∫ δ

1/σ
(ψ̂t (ξ))2

dt

t
= f̂ (ξ)

∫ δ

1/σ
(ψ̂(tξ))2

dt

t
.

In the above derivation, Fubini’s theorem is applicable since ψt ∗ ψt ∗ f ∈ L1 (which
follows from ψ ∈ L1, f ∈ L1 and Young’s inequality; see the proof of Lemma B.3).

Recall that ψ̂ is radial, so that the value of ψ̂(tξ) only depends on the norm of its
argument ‖tξ‖ = t‖ξ‖. By a change of variables τ := t‖ξ‖, and recalling the notation
ψ̂(t‖ξ‖) := ψ̂(tξ), it holds that

∫ δ

1/σ
(ψ̂(t‖ξ‖))2 dt

t
=

∫ ‖ξ‖δ

‖ξ‖/σ
(ψ̂(τ ))2

dτ

τ

=
⎧
⎨

⎩

∫ min(1,‖ξ‖δ)
‖ξ‖/σ (ψ̂(τ ))2 dτ

τ
, if ‖ξ‖ < σ

0, otherwise
, (B.12)

where the last line follows from the property supp(ψ) ⊂ B(0, 1). The proof is com-
pleted by combining this and the above expression of ĝσ,δ(ξ). ��

We are now ready to show that the improper integral in (B.10) is well defined as a
limit of gσ,δ in L2: The following lemma characterizes this limiting function in L2 in
terms of its Fourier transform.

Lemma B.5 Assume f ∈ L1 ∩ L2. Let gσ,δ be defined as in (B.11) with δ > 1/σ , and
gσ ∈ L2 be the inverse Fourier transform of ĝσ ∈ L2 defined by

ĝσ (ξ) =
⎧
⎨

⎩

f̂ (ξ)
∫ 1
‖ξ‖/σ (ψ̂(t))2 dtt , if ‖ξ‖ < σ

0, otherwise
.

Then, we have limδ→∞ ‖gσ − gσ,δ‖L2 = 0.

Proof First note that by Lemma B.3, the assumption f ∈ L1 ∩ L2 implies gσ,δ ∈
L1∩ L2, so we have ĝσ,δ ∈ L1∩ L2. Below we will show limδ→∞ ‖ĝσ − ĝσ,δ‖L2 = 0,
from which the assertion follows because of the Fourier transform being an isometry
from L2 to L2. By Lemma B.4 (which is applicable as f ∈ L1) we have

‖ĝσ − ĝσ,δ‖2L2
=

∫

‖ξ‖<σ

| f̂ (ξ)|2
∣
∣
∣
∣

∫ 1

min(1,‖ξ‖δ)
(ψ̂(t))2

dt

t

∣
∣
∣
∣

2

dξ.

Therefore,

lim
δ→∞ ‖ĝσ − ĝσ,δ‖2L2

=
∫

‖ξ‖<σ

| f̂ (ξ)|2 lim
δ→∞

∣
∣
∣
∣

∫ 1

min(1,‖ξ‖δ)
(ψ̂(t))2

dt

t

∣
∣
∣
∣

2

dξ
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=
∫

‖ξ‖<σ

| f̂ (ξ)|2
∣
∣
∣
∣

∫ 1

1
(ψ̂(t))2

dt

t

∣
∣
∣
∣

2

dξ = 0, (B.13)

where (B.13) follows from the dominated convergence theorem (which follows from
f ∈ L2). ��

Appendix B.3: The Sobolev Norm of the Approximate Function

In the main body of the paper, we use the following lemma, which is not provided in
[37].

Lemma B.6 Let r , s ∈ R, r , s > 0 such that r ≥ s and let σ > 0 be a constant. If
f ∈ Hs(Rd) ∩ L1(R

d), the function gσ defined in (B.10) satisfies

‖gσ ‖Hr ≤ (1 + σ 2)
r−s
2 ‖ f ‖Hs ,

where C > 0 is a constant independent of f and σ .

Proof Note that from (B.2), if ‖ξ‖ < σ , we have
∫ 1
‖ξ‖/σ |ψ̂(t)|2 dtt ≤ ∫ 1

0 |ψ̂(t)|2 dtt ≤
1. Therefore, by Lemma B.5 we have

‖gσ ‖2Hr =
∫

B(0,σ )

(1 + ‖ξ‖2)r |ĝσ (ξ)|2dξ

≤
∫

B(0,σ )

(1 + ‖ξ‖2)r | f̂ (ξ)|2dξ

≤ (1 + σ 2)r−s
∫

B(0,σ )

(1 + ‖ξ‖2)s | f̂ (ξ)|2dξ

≤ (1 + σ 2)r−s‖ f ‖2Hs ,

yielding the result. ��
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