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Abstract Wedescribe and analyze anumerical algorithm for computing thehomology
(Betti numbers and torsion coefficients) of real projective varieties. Here numerical
means that the algorithm is numerically stable (in a sense to be made precise). Its cost
depends on the condition of the input as well as on its size and is singly exponential
in the number of variables (the dimension of the ambient space) and polynomial in
the condition and the degrees of the defining polynomials. In addition, we show that
outside of an exceptional set of measure exponentially small in the size of the data,
the algorithm takes exponential time.
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1 Introduction

This paper describes and analyzes, both in terms of complexity and numerical stability,
an algorithm to compute the topology of a real projective set.

The geometry of the sets of zeros of polynomials equalities, or more generally solu-
tions of polynomial inequalities, is strongly tied to complexity theory. The problem of
decidingwhether such a set is nonempty is the paramountNPR-complete problem (i.e.,
NP-complete over the reals) [7]; deciding whether it is unbounded is H∃-complete;
and whether a point is isolated on it is H∀-complete [9]; computing its Euler char-
acteristic, or counting its points (in the zero-dimensional case), #PR-complete [8],
…

We do not describe complexity classes in these pages. We content ourselves with
the observation that such classes are characterized by restrictions in the use of specific
resources (such as computing time or working space) and that complete problems
are representatives for them. In this sense, the landscape of classes demanding an
increasing amount of resources is paralleled by a collection of problemswhose solution
appears to be increasingly difficult.

Among the problems whose complexity is poorly understood, the computation of
the homologyof algebraic or semialgebraic sets—andby thiswemean the computation
of all their Betti numbers and torsion coefficients—stands out. The use of Cylindrical
Algebraic Decomposition [12,40] allows one to compute a triangulation of the set
at hand (and from it, its homology) with a running time doubly exponential in the
number of variables (the dimension of the ambient space). On the other hand, the
#PR-hardness of computing the Euler characteristic (a simpler problem) mentioned
above or the PSPACE-hardness of the problem of computing all Betti numbers of
a complex algebraic (or projective) set defined over Z, see [31], makes clear that
the existence of subexponential algorithms for the computation of the homology is
unlikely. The obvious question is whether exponential time algorithms for this task
exist.

Anumber of results in recent years havemade substantial progress toward an answer
to this question. Saugata Basu and collaborators provide algorithms computing the
first Betti number of a semialgebraic set in single exponential time (an algorithm to
compute the zeroth Betti number within these bounds was already known) [4], as well
as an algorithm computing the top � Betti numbers with cost doubly exponential in
� (but polynomial for fixed �) [3]. More recently, Scheiblechner [32] considered the
class of smooth complex projective varieties and exhibited an algorithm computing
all the Betti numbers (but not the torsion coefficients as the paper actually computes
the de Rham homology) for sets in this class in single exponential time.

All the algorithms mentioned above are “symbolic”; they are direct (as opposed
to iterative) and are not meant to work under finite precision. Actually, numerical
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instability has been observed for many of them and very recent results [26] give
some theoretical account for this instability. And partly motivated by this observed
instability, an interest in numerical algorithms has developed in tandem with that on
symbolic algorithms.An example of the former that bears on this paper is the algorithm
in [19] to decide feasibility of semialgebraic sets. The idea was to decide the existence
of the desired solution by exploring a grid. While this grid would have exponentially
many points, the computation performed at each such point would be fast and accurate,
thus ensuring numerical stability in the presence of round-off errors. Both the running
time of the algorithm (directly related to the size of the grid) and the machine precision
needed to ensure the output’s correctness were shown to depend on a condition number
for the system of polynomial inequalities defining the semialgebraic set at hand.

These ideaswere extended in [15–17] to describe and analyze a numerical algorithm
for the more difficult question of counting points in zero-dimensional projective sets.
Note that in this case the number to be computed coincides with the zeroth Betti
number of the set (number of connected components), while higher Betti numbers are
all zero.

We now extend them once more to solve the (even more difficult) problem of
computing all the homology groups for projective (or spherical) algebraic sets.

In order to state our result, we need to introduce some notation.
Let m ≤ n, d1, . . . , dm ∈ N and d = (d1, . . . , dm). We will denote by Hd[m] the

space of polynomial systems f = ( f1, . . . , fm) with fi ∈ R[X0, . . . , Xn] homoge-
neous of degree di . We may assume here that di ≥ 2 for 1 ≤ i ≤ m, since otherwise
we could reduce the input to a system with fewer equations and unknowns. We set
D := max{di , 1 ≤ i ≤ m} and N := dimRHd[m] = ∑m

i=1

(n+di
n

)
. Note that the last

is the size of the system f in the sense that it is the number of reals needed to specify
this system.

We associate to f ∈ Hd[m] its zero sets MS := ZSn ( f ) on the unit sphere
S
n ⊂ R

n+1 and MP := ZPn ( f ) on the projective space P
n(R). The former is the

intersection of the cone of zerosZ := ZRn+1( f ) of f in R
n+1 with S

n and the latter is
the quotient ofMS by identifying antipodal points. For a generic system f , bothMS

andMP are smooth manifolds of dimension n−m. We also associate to f a condition
number κ( f ) (whose precise definition will be given in Sect. 2.1). Finally, we endow
the linear space Hd[m] with the Weyl inner product (also defined in Sect. 2.1) and
consider the unit sphere S

N−1 ⊂ Hd[m] with respect to the norm induced by it.

Theorem 1.1 We describe an algorithm that, given f ∈ Hd[m], returns the Betti
numbers and torsion coefficients of MS (or of MP), with the following properties.

(i) Its cost cost( f ) on input f is bounded by (nDκ( f ))O(n2).
(ii) Assume S

N−1 is endowed with the uniform probability measure. Then, with prob-
ability at least 1 − (nD)−n we have cost( f ) ≤ (nD)O(n3).

(iii) Similarly, with probability at least 1 − 2−N we have cost( f ) ≤ 2O(N2).
(iv) The algorithm is numerically stable.

We give the proof of Theorem 1.1 in several steps. Part (i) is shown in Proposi-
tions 4.3 and 4.4. Parts (ii) and (iii) are in Corollary 5.4. We devote Sect. 7 to both
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define what we mean by numerical stability (in a context where we are computing
integer numbers) and to sketch why our algorithm is numerically stable.

Remark 1.2 Parts (ii) and (iii) in the statement fit well within the setting of weak
complexity analysis recently proposed in [2] (but see also [23, Theorem 4.4] for a
predecessor of this setting). The idea here is to exclude from the analysis a set of
outliers of exponentially small measure (a probability measure in the space of data
is assumed). This exclusion may lead to dramatic differences in the quantity to be
bounded and provide a better agreement between theoretical analysis and compu-
tational experience. A case at hand, studied in [2], is that of the power method to
compute dominant eigenpairs. It is an algorithm experienced as efficient in practice
(say for symmetric or Hermitian matrices) but whose expected number of iterations
(for matrices drawn from the Gaussian orthogonal or unitary ensembles, respectively)
is known to be infinite [23]. Theorem 1.4 in [2] shows that the expected number of
iterations conditioned to excluding a set of exponentially small measure is polyno-
mially bounded in the dimension n of the input matrix. The authors call this form of
analysis weak average-case. Parts (ii) and (iii) in the statement can be seen as a form
of weak worst-case analysis establishing weak worst-case exponential complexity.

Our algorithm relies on an extension of the ideas in [19]—the use of grids, an
exclusion test, and the use of the α-theory of Smale to detect zeros of a polynomial
system in the vicinity of a point at hand—to construct a covering of MS by open
balls in R

n+1 of the same radii. This common radius is chosen to ensure that the
union of the balls in the covering is homotopically equivalent to MS. The Nerve
Theorem then ensures that this union is homotopically equivalent to the nerve of the
covering, and we can compute the homology groups ofMS by computing those of the
said nerve. We explain the basic ingredients (condition numbers, Smale’s α-theory,
the exclusion lemma, …) in Sect. 2. Then, in Sect. 3, we describe and analyze the
computation of the covering. Section 4 uses this covering to actually compute the
homology groups (part (i) in Theorem 1.1), and Sect. 5 establishes the probability
estimates (parts (ii) and (iii) in Theorem 1.1). Section 6 is devoted to prove a number
of results which, to allow for a streamlined exposition, are only stated in Sect. 2. One of
them, Theorem 2.9, links the γ -invariant of Smale with the injectivity radius τ( f ) of
the normal bundle ofMS (in turn related to a number of metric properties of algebraic
spherical (or projective) sets). This connection is, to the best of our knowledge, new
and is interesting per se. Finally, and as already mentioned, Sect. 7 deals with issues
of finite precision and numerical stability.

2 The Basic Ingredients

2.1 Condition Numbers

We need a condition number as a complexity (and accuracy) parameter. To define
one we first fix a norm on the spaceHd[m]. We follow the (by now well established)
tradition of using the Weyl norm, which is invariant under the action of orthogonal
transformations in R

n+1: for f = ( f1, . . . , fm) with fi = ∑
|a|=d fi,aX a, this is
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‖ fi‖2 = ∑
|a|=d f 2i,a

(d
a

)−1
and then ‖ f ‖2 := ∑

1≤i≤m ‖ fi‖2. See, e.g., [10, §16.1]
for details.

For a point ξ ∈ R
n+1 we denote by Df (ξ) =

( ∂ fi
∂x j

(ξ)
)

1≤i≤m,0≤ j≤n
: R

n+1 →
R
m the derivative of f at ξ . We also write

	(ξ) :=
⎡

⎣
‖ξ‖d1−1√d1

. . .

‖ξ‖dm−1√dm

⎤

⎦

(or simply 	, if ξ ∈ S
n).

The condition of f at a zero ξ ∈ R
n+1\{0} has been well studied in the series of

papers [33–37]. It is defined as∞when the derivative Df (ξ) of f at ξ is not surjective,
and when Df (ξ) is surjective as

μnorm( f, ξ) := ‖ f ‖∥∥Df (ξ)†	(ξ)
∥
∥, (1)

where Df (ξ)† : R
m → R

n+1 is the Moore–Penrose inverse of the full-rank matrix
Df (ξ), i.e., Df (ξ)† = Df (ξ)t(Df (ξ) Df (ξ)t)−1, where Df (ξ)t is the transpose of
Df (ξ). This coincides with the inverse of the restricted linear map Df (ξ)|(ker Df (ξ))⊥ .
Also, the norm in ‖Df (ξ)†	(ξ)‖ is the spectral norm.

Since the expression in the right of (1) is well defined for arbitrary points x ∈ S
n ,

we can define μnorm( f, x) for any such point.
For zero-dimensional homogeneous systems, that is, for systems f ∈ Hd[n], the

quantityμnorm( f, x) in (1) is occasionally defined differently, by replacing Df (x)† by
(Df (x)|Tx )−1. Here Tx denotes the orthogonal complement of x in R

n+1 and we are
inverting the restriction of the derivative Df (x) to this space (see [10, §16.7]). This
definition only makes sense whenm = n as in this case the restriction (Df (x)|Tx )−1 :
Tx → R

n is a linear map between spaces of the same dimension. This is not the case
when m = n. Hence the use here of the Moore–Penrose derivative.

Todefine the condition of a system f , it is not enough to just consider the condition at
its zeros. For points x ∈ R

n+1 where ‖ f (x)‖ is nonzero but small, small perturbations
of f can turn x into a new zero (and thus change the topology of Z). Following an
idea going back to [13] and developed in this context in [17] we define

κ( f, x) := ‖ f ‖
{‖ f ‖2μ−2

norm( f, x) + ‖ f (x)‖2}1/2

where μnorm( f, x) is defined as in (1) for x ∈ S
n , with the convention that ∞−1 = 0

and 0−1 = ∞, and
κ( f ) := max

x∈Sn κ( f, x). (2)

Remark 2.1 For any λ = 0 we have μnorm( f, x) = μnorm( f, λx), since when Df (x)

is surjective, Df (λx)† =
(
�Df (x)

)† = Df (x)†�−1 for � =
⎡

⎣
λd1−1

. . .

λdm−1

⎤

⎦.
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Similarly, μnorm( f, ξ) = μnorm(λ f, ξ) for all λ = 0, and consequently, κ(λ f ) =
κ( f ).

Note that κ( f ) = ∞ if only if there exists ξ ∈ S
n such that f (ξ) = 0 (i.e., ξ ∈ MS)

and Df (ξ) is not surjective, i.e., f belongs to the set of ill-posed systems

�R := {
f ∈ Hd[m] | ∃ ξ ∈ S

n such that f (ξ) = 0 and rank(Df (ξ)) < m
}
. (3)

The following result is proved in Sect. 6.1. It extends a statement originally shown
for square systems in [16] (see also [10, Theorem 19.3]).

Proposition 2.2 For all f ∈ Hd[m],

‖ f ‖√
2 dist( f, �R)

≤ κ( f ) ≤ ‖ f ‖
dist( f, �R)

.

We prove the following in Sect. 6.2.

Proposition 2.3 Let m ≤ n + 1. For all f ∈ Hd[m], 0 ≤ ε ≤ 1
2 and y, z ∈ S

n such
that

‖y − z‖ ≤ 2ε

D3/2μnorm( f, y)

we have

1

1 + 5
2ε

μnorm( f, y) ≤ μnorm( f, z) ≤
(
1 + 5

2
ε
)
μnorm( f, y).

2.2 Moore–Penrose Newton and Point Estimates

Let f : R
n+1 → R

m , m ≤ n + 1, be analytic. The Moore–Penrose Newton operator
of f at x ∈ R

n+1 is defined (see [1]) as

N f (x) := x − Df (x)† f (x).

We say that it is well defined if Df (x) is surjective.

Definition 2.4 Let x ∈ R
n+1. We say that x converges to a zero of f if the sequence

(xk)k≥0 defined as x0 := x and xk+1 := N f (xk) for k ≥ 0 is well defined and
converges to a zero of f .

Following ideas introduced by Smale in [38], the following three quantities were
associated with a point x ∈ R

n+1 in [37],
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β( f, x) := ‖Df (x)† f (x)‖|

γ ( f, x) := max
k>1

∥
∥
∥
∥Df (x)†

Dk f (x)

k!
∥
∥
∥
∥

1
k−1

α( f, x) := β( f, x)γ ( f, x),

when Df (x) is surjective, and α( f, x) = β( f, x) = γ ( f, x) = ∞ when Df (x)
is not surjective. The quantity β( f, x) = ‖N f (x) − x‖ measures the length of the
Newton step at x . The value of γ ( f, ξ), at a zero ξ of f , is related to the radius of the
neighborhood of points that converge to the zero ξ of f , and the meaning of α( f, x)
is made clear in the main theorem in the theory of point estimates.

Theorem 2.5 Let f : R
n+1 → R

m, m ≤ n + 1, be analytic. Set α0 = 0.125. Let
x ∈ R

n+1withα( f, x) < α0, then x converges to a zero ξ of f and ‖x−ξ‖ < 2β( f, x).
Furthermore, if n + 1 = m and α( f, x) ≤ 0.03, then all points in the ball of center x
and radius 0.05

γ ( f,x) converge to the same zero of f .

Proof In [37, Th. 1.4] it is shown that under the stated hypothesis, x converges to a
zero ξ of f and

‖xk+1 − xk‖ ≤
(
1

2

)2k−1

‖x1 − x0‖ =
(
1

2

)2k−1

β( f, x).

Therefore

‖xi+1 − x‖ ≤
∑

0≤k≤i

(
1

2

)2k−1

β( f, x) < (2 − 1

8
)β( f, x).

This implies the first statement. The second is Theorem 4 and Remarks 5, 6 and 7
in [6, Ch. 8]. ��

In what follows, we will apply the theory of point estimates to the case of polyno-
mial maps f = ( f1, . . . , fm). In the particular case where the fi are homogeneous, the
invariantsα, β andγ are themselves homogeneous in x .Wehaveβ( f, λx) = λβ( f, x),
γ ( f, λx) = λ−1γ ( f, x), and α( f, λx) = α( f, x), for all λ = 0. This property moti-
vates the following projective version for them:

βproj( f, x) := ‖x‖−1‖Df (x)† f (x)‖

γproj( f, x) := ‖x‖max
k>1

∥
∥
∥
∥Df (x)†

Dk f (x)

k!
∥
∥
∥
∥

1
k−1

αproj( f, x) := βproj( f, x)γproj( f, x),

These projective versions coincide with the previous expressions when x ∈ S
n and

an α-Theorem for them is easily derived from Theorem 2.5 above. Furthermore, βproj
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still measures the (scaled) length of the Newton step, and γproj relates to the condition
number via the following bound (known as the Higher Derivative Estimate),

γproj( f, x) ≤ 1

2
D3/2μnorm( f, x). (4)

The proof is exactly the one of [6, Th. 2, p. 267] which still holds for m ≤ n and
Df (x)† instead of Df (x)|−1

Tx
.

We now move to “easily computable” versions α, β and γ , which we define for
x ∈ S

n :

β( f, x) := μnorm( f, x)
‖ f (x)‖
‖ f ‖

γ ( f, x) := 1

2
D3/2μnorm( f, x)

α( f, x) := β( f, x)γ ( f, x) = 1

2
D3/2μ2

norm( f, x)
‖ f (x)‖
‖ f ‖ . (5)

For x ∈ S
n , (4) therefore says that γ ( f, x) ≤ γ ( f, x). We also observe that

β( f, x) ≤ β( f, x) since

β( f, x) =
∥
∥
∥Df (x)† f (x)

∥
∥
∥ ≤

∥
∥
∥Df (x)†

∥
∥
∥ ‖ f (x)‖ ≤ ‖ f ‖‖Df (x)†	‖‖ f (x)‖

‖ f ‖
= β( f, x).

Therefore α( f, x) ≤ α( f, x).

2.3 Curvature and Coverings

A crucial ingredient in our development is a result in a paper by Niyogi et al. [25,
Prop.7.1]. The context of that paper (learning on manifolds) is different from ours, but
this particular result, linking curvature and coverings, is, as we said, central to us.

Consider a compact Riemannian submanifoldM of a Euclidean space R
n+1. Con-

sider as well a finite collection of points X = {x1, . . . , xK } in R
n+1 and also ε > 0.

We are interested in conditions guaranteeing that the union of the open balls

Uε(X ) :=
⋃

x∈X
B(x, ε)

coversM and is homotopically equivalent to it. These conditions involve two notions
which we next define.

We denote by τ(M) the injectivity radius of the normal bundle of M, i.e., the
largest t such that the open normal bundle around M of radius t

Nt (M) := {
(x, v) ∈ M × R

n+1 | v ∈ NxM, ‖v‖ < t
}
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is embedded in R
n+1. That is, the largest t for which φt : Nt (M) → R

n+1, (x, v) �→
x + v, is injective. Therefore, its image Tubτ(M) is an open tubular neighborhood
of M with its canonical orthogonal projection map π0 : Tubτ(M) → M mapping
every point x ∈ Tubτ(M) to the (unique) point in M closest to x . In particular, M is
a deformation retract of Tubτ(M).

Also, we recall that the Hausdorff distance between two subsets A, B ⊂ R
n+1 is

defined as

dH (A, B) := max
{
sup
a∈A

inf
b∈B ‖a − b‖, sup

b∈B
inf
a∈A

‖a − b‖
}
.

If both A and B are compact, we have that dH (A, B) ≤ r if and only if for all a ∈ A
there exists b ∈ B such that ‖a − b‖ ≤ r and for all b ∈ B there exists a ∈ A such
that ‖a − b‖ ≤ r .

The following is a slight variation of [25, Prop.7.1].

Proposition 2.6 Let τ ≤ τ(M) and 0 < r < (3− √
8)τ . If dH (X ,M) ≤ r thenM

is a deformation retract of Uε(X ) for every ε satisfying

ε ∈
(

(r + τ) −
√
r2 + τ 2 − 6rτ

2
,
(r + τ) +

√
r2 + τ 2 − 6rτ

2

)

.

��
Remark 2.7 If we start with r > 0 for which 6r < τ(M) we can take τ := 6r . In this
case, the interval we obtain for the admissible values of ε is [3r, 4r ].

The quantity τ(M) is strongly related to the curvature of M as shown in Propo-
sitions 6.1, 6.2, and 6.3 in [25]. Even though we won’t make use of these results, we
summarize them in the following statement.

Theorem 2.8 Let τ := τ(M).
(i) The norm of the second fundamental form ofM is bounded by 1

τ
in all direc-

tions.
(ii) For p, q ∈ M let φ(p, q) be the angle between their tangent spaces Tp and

Tq , and dM(p, q) their geodesic distance. Then cos(φ(p, q)) ≥ 1 − 1
τ
dM(p, q).

(iii) For p, q ∈ M, dM(p, q) ≤ τ − τ

√

1 − 2‖p − q‖
τ

. ��

2.4 Curvature and Condition

Theorem 2.8 shows a deep relationship between the curvature of a submanifold M
of Euclidean space and the value of τ(M). One of the main results in this paper is
a further connection, for the particular case where M = MS, the set of zeros of
f ∈ Hd[m] in S

n , between τ(MS) and the values of γ on MS. Define

τ( f ) := τ(MS) and �( f ) := max
x∈MS

max{1, γ ( f, x)}.
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In Sect. 6.3 we prove the following.

Theorem 2.9 We have

τ( f ) ≥ 1

87�( f )
.

Note that as max{1, γ ( f, x)} ≤ γ ( f, x) we obtain

Corollary 2.10

τ( f ) ≥ 1

87�( f )
.

where �( f ) := maxx∈MS
γ ( f, x).

2.5 Grids and Exclusion Results

Our algorithm works on a grid Gη on S
n , which we construct by projecting onto S

n

a grid on the cube Cn = {y ∈ R
n+1 | ‖y‖∞ = 1}. We make use of the (easy to

compute) bijections φ : Cn → S
n and φ−1 : S

n → Cn given by φ(y) = y
‖y‖ and

φ−1(x) = x
‖x‖∞ .

Given η := 2−k for some k ≥ 1, we consider the uniform grid Uη of mesh η

on Cn . This is the set of points in Cn whose coordinates are of the form i2−k for
i ∈ {−2k,−2k + 1, . . . , 2k}, with at least one coordinate equal to 1 or −1. We denote
by Gη its image by φ in S

n . An argument in elementary geometry shows that for
y1, y2 ∈ Cn ,

‖φ(y1)−φ(y2)‖ ≤ dS(φ(y1), φ(y2)) ≤ π

2
‖y1 − y2‖ ≤ π

2

√
n + 1 ‖y1 − y2‖∞, (6)

where dS(x1, x2) := arccos(〈x1, x2〉) ∈ [0, π ] denotes the angular distance, for
x1, x2 ∈ S

n .

Given ε > 0, we denote by B(x, ε) := {y ∈ R
n+1 | ‖y − x‖ < ε}, for x ∈

R
n+1, the open ball with respect to the Euclidean distance, and by BS(x, ε) = {y ∈

S
n | dS(y, x) < ε}, for x ∈ S

n , the open ball with respect to the angular distance. We
also set from now on

sep(η) := η
√
n + 1 and δ( f, η) := 1.1

√
D(n + 1)‖ f ‖η. (7)

Lemma 2.11 The union ∪x∈Gη
B(x, sep(η)) covers the sphere S

n.

Proof Let z ∈ S
n and y = φ−1(z) ∈ Cn . There exists y′ ∈ Uη such that ‖y′ − y‖∞ ≤

η
2 . Let x = φ(y′) ∈ Gη. Then, Eq. (6) shows that ‖x− z‖ ≤ η

2
π
2

√
n + 1 < η

√
n + 1.

��
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In [15, Lem. 3.1] and [10, Lem. 19.22], the following Exclusion Lemma is proved
(the statement there is for n = m but the proof holds for general m).

Lemma 2.12 (Exclusion lemma.) Let f ∈ Hd[m] and x, y ∈ S
n be such that 0 <

dS(x, y) ≤ √
2. Then,

‖ f (x) − f (y)‖ < ‖ f ‖√D dS(x, y).

In particular, if f (x) = 0, there is no zero of f in the ball BS

(
x, ‖ f (x)‖

‖ f ‖√D

)
. ��

Corollary 2.13 Let η be such that sep(η) ≤ 1
2 , and let x ∈ S

n satisfy ‖ f (x)‖ >

δ( f, η). Then f (y) = 0 on the ball B(x, sep(η)).

Proof Let y ∈ R
n+1 such that ‖y − x‖ < sep(η) ≤ 1

2 . Define h(ε) =
√
2 − 2

√
1 − ε2. We have ‖φ(y) − x‖ ≤ h(‖x − y‖). Since h(ε)/ε is monotoni-

cally increasing on [0, 1],

‖φ(y) − x‖ ≤ 2h(1/2)‖y − x‖ < 1.035‖y − x‖ < 0.5175 for ‖y − x‖ <
1

2
.

Then,

dS(φ(y), x) = 2 arcsin
(‖φ(y) − x‖

2

)
≤ 1.012‖φ(y) − x‖ < 1.1‖x − y‖

< 1.1 sep(η)

since arcsin is a convex function on the interval [0, 0.5175]. Therefore, the hypothesis
on ‖ f (x)‖ implies that

‖ f (x)‖ > 1.1 ‖ f ‖√D sep(η) > ‖ f ‖√D dS(φ(y), x)

i.e., that dS(φ(y), x) <
‖ f (x)‖
‖ f ‖√D

. Lemma 2.12 then shows, since f (x) = 0, that

f (φ(y)) = 0 and we conclude that f (y) = 0 as f is homogeneous. ��

3 Computing a Homotopically Equivalent Covering

Set k := �log2 4
√
n + 1� so that sep(η) ≤ 1

4 for η = 2−k , where sep(η) is defined
in (7). Our algorithm works on the grid Gη on S

n constructed in the previous section
and makes use of the quantities β, γ and α introduced in (5) and δ( f, η) defined in (7).
We recall α0 := 0.125.
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Algorithm 1 Covering

Input: f ∈ Hd[m]
Preconditions: f = 0

let η := 2−k

repeat
X := ∅
r := √

sep(η)

ε := 3.5 r
for all x ∈ Gη

if α( f, x) ≤ α0 and 1
531 γ ( f,x) ≥ r and 2.2 β( f, x) < r

then
X := X ∪ {x}

elsif ‖ f (x)‖ ≥ δ( f, η) then do nothing
elsif go to (*)

return the pair {X , ε} and halt
end for
(*) η := η/2

Output: {X , ε}
Postconditions: The algorithm halts if f /∈ �R. If X = ∅ then MS is
empty. Otherwise, the set X is closed by the involution x �→ −x , and the
union of the balls {B(x, ε) | x ∈ X } covers MS and is homotopically
equivalent to it.

In the sequel, we use the quantity

C := max

{

12 (n + 1)D,
5312

2

√
n + 1 D3

}

. (8)

Note that we have C = O(n D3).

Proposition 3.1 Algorithm Covering is correct (it computes a list {X , ε} satisfying
its postconditions). Furthermore, its cost is bounded by

O
(
log2(Cκ( f )) nN (2Cκ2( f ))n

)
= (nDκ( f ))O(n)

and the number K of points in the returned X is bounded by (nDκ( f ))O(n).

The rest of this section is devoted to prove Proposition 3.1.

Lemma 3.2 Let x ∈ S
n and y ∈ Z( f ) be such that ‖x − y‖ ≤ 0.7. Then the point

φ(y) := y
‖y‖ ∈ MS satisfies ‖x − φ(y)‖ ≤ 1.1‖x − y‖.
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Proof The proof goes exactly as the proof of Corollary 2.13. ��
The following two lemmas deal with the correctness of the algorithm.
Assume the algorithm halts for a certain value η. Let X be the set constructed by

the execution at this stage and set r = √
sep(η).

Lemma 3.3 The sets X and MS satisfy dH (X ,MS) ≤ r . Furthermore, for all y ∈
MS, there exists x ∈ X such that ‖y − x‖ ≤ r2.

Proof The points in Gη divide into two groups that satisfy, respectively:

x ∈ Gη\X This happens when ‖ f (x)‖ ≥ δ( f, η), and therefore, by Corollary 2.13,

there are no zeros of f in the ball B(x, sep(η)) = B(x, r2).
x ∈ X This happenswhen in particularα( f, x) < α0, and therefore, by Theorem2.5,
there exist zeros of f in the ball B(x, 2β( f, x)) ⊂ B(x, r/1.1) since 2.2β( f, x) < r .
This implies, because of Lemma 3.2, that MS ∩ B(x, r) = ∅.

This last sentence shows that for x ∈ X , there exists y ∈ MS with ‖y− x‖ < r . In
addition, since by Lemma 2.11, ∪x∈Gη

B(x, r2) covers the sphere S
n and there are no

points ofMS in∪x∈Gη\X B(x, r2), it follows thatMS ⊂ ∪x∈X B(x, r2) and therefore
for all y ∈ MS, there exists x ∈ X such that ‖y − x‖ ≤ r2 < r . This shows that
dH (X ,MS) ≤ r . ��
Lemma 3.4 Let τ := 6r . Then τ < τ( f ).

Proof Let y ∈ MS be such that �( f ) = γ ( f, y), for �( f ) defined in Corollary 2.10.
By Lemma 3.3 there exists x ∈ X such that ‖x − y‖ < r . Hence,

‖x − y‖ < r ≤ 1

531 γ ( f, x)
= 2

531 D3/2μnorm( f, x)
.

By Proposition 2.3 (with ε = 1
531 ) we have μnorm( f, y) ≤ (1 + 5

1062 )μnorm( f, x) ≤
1.005μnorm( f, x). Consequently, γ ( f, y) ≤ 1.005γ ( f, x) and therefore,

τ = 6r ≤ 6

531 γ ( f, x)
≤ 6.03

531 γ ( f, y)
<

1

87 γ ( f, y)
= 1

87�( f )
≤ τ( f ),

the last by Theorem 2.9. ��
To bound the complexity, we rely on the following.

Lemma 3.5 Let C be defined in (8). Suppose η ≤ 1
Cκ2( f )

and let X be the set
constructed by the algorithm for this η. Then, for all x ∈ Gη either x ∈ X or
‖ f (x)‖ > δ( f, η).

Proof Let x ∈ Gη. By the definition of κ( f ) in (2),

1

κ2( f )
≤ 2max

{
μ−2
norm( f, x),

‖ f (x)‖2
‖ f ‖2

}
.

123



942 Found Comput Math (2018) 18:929–970

We accordingly divide the proof into two cases.

Assume first that max
{
μ−2
norm( f, x), ‖ f (x)‖2

‖ f ‖2
}

= ‖ f (x)‖2
‖ f ‖2 .

In this case

η ≤ 1

Cκ2( f )
≤ 2‖ f (x)‖2

C‖ f ‖2 ,

which implies

‖ f (x)‖ ≥
√

ηC ‖ f ‖√
2

>
η
√
C‖ f ‖√
2

≥ 1.1
√

(n + 1)D ‖ f ‖ η = δ( f, η),

the second inequality since η < 1 and the third since C ≥ 12(n + 1)D.

Now assume instead that max
{
μ−2
norm( f, x), ‖ f (x)‖2

‖ f ‖2
}

= μ−2
norm( f, x).

In this case

η ≤ 1

Cκ2( f )
≤ 2

Cμ2
norm( f, x)

. (9)

We will show that the condition 1
531 γ ( f,x) ≥ √

sep(η) of the algorithm holds true,
and that when any of the other two conditions doesn’t hold, then ‖ f (x)‖ > δ( f, η).

Indeed,

γ ( f, x) = 1

2
D3/2μnorm( f, x) ≤

(9)

√
2

2
D3/2 1√

Cη
≤ 1

531
√

η (n + 1)1/4

= 1

531
√
sep(η)

,

the second inequality since
√
C ≥

√
2
2 531(n + 1)1/4D3/2.

Assume now that α( f, x) > α0. Then

α0 <
1

2
D3/2μ2

norm( f, x)
‖ f (x)‖
‖ f ‖

which implies

‖ f (x)‖ > ‖ f ‖ 2α0

D3/2μ2
norm( f, x)

≥
(9)

‖ f ‖Cη
α0

D3/2 ≥ 1.1
√
D(n + 1) ‖ f ‖ η = δ( f, η),

the last inequality since C ≥ 5312
2

√
n + 1 D3 ≥ 1.1

√
n+1D2

α0
.

Assume finally that 2.2 β( f, x) ≥ √
sep(η), i.e.,

2.2
‖ f (x)‖
‖ f ‖ μnorm( f, x) ≥ √

η(n + 1)1/4.
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This implies

‖ f (x)‖ ≥ ‖ f ‖√η
(n + 1)1/4

2.2μnorm( f, x)
≥
(9)

‖ f ‖η
√
C(n + 1)1/4

2.2
√
2

≥ 1.1
√

(n + 1)D ‖ f ‖ η

= δ( f, η),

since C ≥ 12(n + 1)D. ��
Proof of Proposition 3.1 Lemmas 3.3, 3.4 and Remark 2.7 show that if the algorithm
halts, then the current value of r when halting and that of τ := 6r satisfy the hypoth-
esis of Proposition 2.6. The fact that τ = 6r shows that with the choice ε := 3.5r
the manifold MS is a deformation retract of Uε(X ) and, hence, the two are homo-
topically equivalent. Finally, the fact that X is closed under the involution x �→ −x
is straightforward. This shows correctness.

To evaluate the complexity, note that Lemma 3.5 shows that the algorithm halts as
soon as

η ≤ η0 := 1

C κ2( f )
.

This gives a bound of O(log2(Cκ( f ))) for the number of iterations.
At each such iteration there are at most Rη := 2(n + 1)

( 2
η

)n points in the grid
Gη. For each such point x , we can evaluate μnorm( f, x) and ‖ f (x)‖, both with cost
O(N ) (cf. [10, Prop. 16.45 and Lem. 16.31]). It follows that the cost of each iteration
is O(RηN ).

Since at these iterations η ≥ η0, we have Rη ≤ 2(n + 1)
(
2Cκ2( f )

)n . Using
this estimate in the O(RηN ) cost of each iteration and multiplying by the bound
O(log2(Cκ( f ))) for the number of iterations, we obtain a bound of N (nDκ( f ))O(n)

for the total cost. The claimed bound follows by noting that N = (nD)O(n).
Finally, the number of points K of the returned X satisfies

K = Rη0 ≤ 2(n + 1)
(
2C κ2( f )

)n = (nDκ( f ))O(n).

��

4 Computing the Betti Numbers and Torsion Coefficients of Spherical
and Projective Algebraic Sets

Let X be a topological space and {Ui }i∈I a collection of open subsets covering X . We
recall that the nerve of this covering is the abstract simplicial complexN (Ui ) defined
on I so that a finite set J ⊂ I belongs toN (Ui ) if and only if the intersection ∩ j∈JU j

is nonempty. In general the complex does not reflect the topology of X , except when
intersections are contractible, in which case there is the Nerve Theorem, that we quote
here from [5, Theorem 10.7].

Theorem 4.1 Let X be a triangulable topological space and {Ui }i∈I a locally finite
family of open subsets (or a finite family of closed subsets) such that X = ∪i∈IUi .
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If every nonempty finite intersection ∩ j∈JU j is contractible, then X and the nerve
N (Ui ) are homotopically equivalent. ��

Here we use the Nerve Theorem in the case where the sets Ui in the statement
of the theorem are the open balls B(xi , ε) for xi ∈ X where {X , ε} is the output of
Algorithm 1 and X is their union. Note that as balls are convex, so is their intersection.
Hence, these intersections, if nonempty, are contractible, and we can apply the Nerve
Theorem. That is, given {X , ε} we want to compute first its nerve N := N (Ui ) and
then, the Betti numbers and torsion coefficients ofN . Proposition 3.1 and Theorem 4.1
ensure that these quantities coincide for N and MS.

In what follows, we assume that we have ordered the set X so that X = {x1 <

x2 < . . . < xK } where K = |X | is the cardinality of X . Then, for k ≥ 0, the abelian
group Ck of k-chains of N is free, generated by the set of k-faces

{
J ⊂ {x1, . . . , xK } | |J | = k and

⋂

x j∈J

B(x j , ε) = ∅}. (10)

To determine the faces of Ck from {X , ε}, we need to be able to decide whether,
given a subset {xi1 , . . . , xik } ofX , the intersection of the balls B(xi j , ε), j = 1, . . . , k,
is nonempty. This is equivalent to say that the smallest ball containing all the points
{xi1 , . . . , xik } has radius smaller than ε, and we can do so if we have at hand an
algorithm computing this smallest ball. Since we are looking here for a deterministic
algorithm, we do not apply the efficient but randomized algorithm of [22, pp. 60–
61], whose (expected) cost is bounded by O((n + 2)!k), but we apply a deterministic
quantifier elimination algorithm to the following problem: given xi1 , . . . , xik ∈ R

n+1

and ε > 0, decide whether

∃ z ∈ R
n+1 s.t. ‖xi j − z‖ < ε for 1 ≤ j ≤ k.

This can be solved using for instance [27] in time linear in kO(n). As there are
(K
k

) ≤ Kk

subsets of k elements in I , the following result is clear.

Lemma 4.2 The cost of constructing Ck is bounded by K k · kO(n). ��
For k ≥ 1 the boundary map ∂k : Ck → Ck−1 is defined, for a simplex J ∈ Ck ,

J = {xi1 , . . . , xik }, with i1 < i2 < . . . < ik , by

∂k(J ) =
k∑

j=1

(−1) j {xi1 , . . . , x̂i j , . . . , xik }

where the (k−1)-face {xi1 , . . . , x̂i j , . . . , xik } is obtained by deleting the j th element in
J . This map is therefore represented by a matrix Mk with Ok−1 rows and Ok columns
with entries in {−1, 0, 1}, where Ok denotes the number of faces in (10).
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Proposition 4.3 We can compute the Betti numbers b0(MS), . . . , bn−m(MS) as well
as the torsion coefficients of MS with cost

(nDκ( f ))O(n2).

Proof Algorithm Covering produces, as shown in Proposition 3.1, a pair {X , ε} such
that the union Uε(X ) of the balls B(x, ε), for x ∈ X , covers MS and is homotopi-
cally equivalent to it. Theorem 4.1 then ensures that the nerve N of this covering
is homotopically equivalent to Uε(X ) (and hence to MS). It is therefore enough to
compute the Betti numbers and torsion coefficients of N . To do so, we construct, for
k = 0, . . . , n − m + 1, the group Ck (i.e., we determine its faces). This has cost

n−m+1∑

k=0

Kk · kO(n) =
n−m+1∑

k=0

(nDκ( f ))O(nk)kO(n) = (nDκ( f ))O(n2)

by Lemma 4.2 and the bound for K in Proposition 3.1.
With the groups Ck at hand we write down the matrices Mk corresponding to the

boundary maps ∂k , for k = 1, . . . , n − m + 1. Next we compute their Smith normal
forms Dk ,

Dk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bk,1
. . .

bk,tk
0

. . .

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then, dim Im∂k = rank(Dk) = tk , and consequently dim ker ∂k = Ok − rank(Dk) =
Ok − tk . For k = 1, . . . , n − m we thus obtain the Betti numbers

bk(MS) = dim
(
ker ∂k/Im∂k+1

) = Ok − tk − tk+1

and the same formula yields b0(MS) and bn−m(MS) by taking t0 = 0. Furthermore,
it is well known that the kth homology group of N (and hence that of MS as well)
has the structure

Hk(MS) � Z
bk (MS) ⊕ Zbk+1,1 ⊕ Zbk+1,2 ⊕ · · · ⊕ Zbk+1,tk+1

,

that is, its torsion coefficients are bk+1,1, bk+1,2, . . . , bk+1,tk+1 .
The cost of this last computations is that of computing the Smith normal forms

D1, . . . , Dn−m . The one for Dk can be done (see [39]) with cost

O˜
(
(min{Ok, Ok−1})5 max{Ok, Ok−1}

) = O˜
(
K 6n) = (nDκ( f ))O(n2)
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(hereO (̃g) denotesO(g logc g) for some constant c) and hence the same bound holds
for the cost of computing all of them. ��

The reasoning above extends in a simple manner to compute the homology ofMP.
Indeed, projective space P

n is homeomorphic to the quotient S
n/ ∼ where ∼ is the

equivalence relation that identifies antipodal points. Now consider the map

S
n [ ]−→ P

n

associating to x its class [x] = {x,−x}. Because the setX is closed by taking antipodal
points, its image X under [ ] is well defined and so is the ball in projective space
BP([x], ε) := {B(x, ε), B(−x, ε)}. Then, the retraction from the union of the balls
B(x, ε) onto MS induces a retraction in projective space from the union of the balls
BP([x], ε) onto MP.

Also, given xi1 , . . . , xik inX , the intersection of B([xi j ], ε) is nonempty if and only
if there exist representatives of [xi1 ], . . . , [xik ] such that the Euclidean balls centered
at these representatives have nonempty intersection. That is, if and only if there exist
e1, . . . , ek ∈ {−1, 1} such that the balls B(e1xi1 , ε), B(e2xi2 , ε), . . . , B(ekxik , ε) have
nonempty intersection. This can be checked by brute force, by checking each of the
2k possibilities. Furthermore, if this is the case we get, since ε < 1,

⋂

1≤ j≤k

BP([xi j ], ε)

= [
B(e1xi1 , ε) ∩ . . . ∩ B(ekxik , ε)

]

= {
B(e1xi1 , ε) ∩ . . . ∩ B(ekxik , ε), B(−e1xi1 , ε) ∩ . . . ∩ B(−ekxik , ε)

}
.

Since if B(e1xi1 , ε) ∩ . . . ∩ B(ekxik , ε) contracts to y ∈ R
n+1 then B(−e1xi1 , ε) ∩

. . . ∩ B(−ekxik , ε) contracts to −y, then the intersection of B([x], ε) contracts to
{y,−y} = [y] ∈ P

n and the Nerve Theorem applies: it implies that the nerveN of the
family {B([x], ε) | [x] ∈ X } is homotopically equivalent to the union of this family.
The reasoning of Proposition 4.3 straightforwardly applies to prove the following
result.

Proposition 4.4 We can compute the Betti numbers b0(MP), . . . , bn−m(MP) as well
as the torsion coefficients of MP with cost

(nDκ( f ))O(n2).

��

5 On the Cost of Computing Coverings for Random Systems

The following result is a part of Theorem 21.1 in [10].
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Theorem 5.1 Let � ⊂ R
p+1 be contained in a real algebraic hypersurface, given as

the zero set of a homogeneous polynomial of degree d and, for a ∈ R
p+1, a = 0,

C (a) := ‖a‖
dist(a, �)

.

Then, for all t ≥ (2d + 1)p,

Prob
a∈Sp

{C (a) ≥ t} ≤ 4e dp
1

t

and
E

a∈Sp

(
log2 C (a)

) ≤ log2 p + log2 d + log2(4e
2).

��
Remark 5.2 For condition numbers over the complex numbers, one can improve the
tail estimate in Theorem 5.1 to show a rate of decay of the order of t−2(p+1−�) where
� is the (complex) dimension of � ⊂ C

p+1 (see [21, Theorem 4.1]). Over the reals,
such an estimate (with the 2 in the exponent removed) has only been proved in the
case where � is complete intersection [24]. We suspect that a similar estimate holds
for κ( f ).

We define

�C : =
{
f ∈ Hd[m] | ∃ x ∈ C

n+1 such that
∑

0≤ j≤n

x2j = 1, f (x) = 0 and rank(Df (x)) < m
}
.

The set of ill-posed systems �R defined in (3) is contained in �C.

Proposition 5.3 Let U be a set of N = dimRHd[m] variables. Then there exists a
polynomial G ∈ Q[U ]\{0} such that G|�C

= 0 and deg(G) ≤ mn+2(n + 1)Dn+1.
(Here G( f ) for f ∈ �C means specializing G at the coefficients of the polynomials
in f .)

Proof Observe that for generic f = ( f1, . . . , fm) ∈ Hd[m] themap x �→ Df (x), x ∈
C
n+1, is surjective, that is rank(Df (x)) = m, and that the condition rank(Df (x)) < m

is equivalent to the vanishing of all maximal minors of the matrix Df (x) ∈ C
m×(n+1).

For convenience, we write U = {ui,α | i = 1, . . . ,m, |α| = di }. We consider the
general (n + 1)-variate polynomials of degree di ,

Fi =
∑

|α|=di

ui,αX
α ∈ Q[U ][X ], 1 ≤ i ≤ m.

Let DF(U, X) ∈ Q[U ][X ]m×(n+1) be the Jacobian matrix of F = (F1, . . . , Fm)

w.r.t. X , and denote by Mk(U, X), 1 ≤ k ≤ t , all its maximal minors. We consider
the polynomials
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∑

0≤ j≤m

X2
j − 1, Fi (ui , X), Mk(U, X), 1 ≤ i ≤ m, 1 ≤ k ≤ t. (11)

These polynomials have no common zeros inQ(U )
n+1

because they have no common
zeros for a generic specialization ofU as mentioned at the beginning of the proof, and
we can apply [20, Cor.4.20]. We have

degX (Fi ) = di ≤ D, degX
(∑

X2
j − 1

)
= 2, degX (Mk) ≤ m(D − 1),

degU (Fi ) = 1, degU
(∑

X2
j − 1

)
= 0, degU (Mk) ≤ m,

and therefore there exists G ∈ Q[U ]\{0} such that G belongs to the ideal in Q[U, X ]
generated by the polynomials in (11) with

degU (G) ≤ (mD)n+1
∑

0≤�≤n

m ≤ mn+2(n + 1)Dn+1.

Clearly this polynomial G vanishes on all f ∈ �C. ��
Corollary 5.4 Let costS( f ) and costP( f ) denote the costs of computing the Betti
numbers and torsion coefficients ofMS andMP, respectively. For f drawn from the
uniform distribution on S(Hd[m]) = S

N−1 we have the following:

(i) With probability at least 1 − (nD)−n we have costS( f ) ≤ (nD)O(n3). Similarly
for costP( f ).

(ii) With probability at least 1 − 2−N we have costS( f ) ≤ 2O(N2). Similarly for
costP( f ).

Proof For all t ≥ (
2(n + 1)mn+2Dn+1 + 1

)
N , it follows from Theorem 5.1 and

Propositions 2.2 and 5.3, that we have

Prob
f ∈SN−1

{κ( f ) ≥ t} ≤ 4e mn+2(n + 1)Dn+1N
1

t
.

By taking t = (nD)cn for a constant c large enough, we have

Prob
f ∈SN−1

{κ( f ) ≥ (nD)cn} ≤ 4e mn+2(n + 1)Dn+1N (nD)−cn ≤ (nD)−n .

ByPropositions 4.3 and 4.4, for f with κ( f ) ≤ (nD)cn we have costS( f ), costP( f ) ≤
(nD)O(n3). This proves (i).

To prove part (ii) we take t = 2cN for c large enough. Then,

Prob
f ∈SN−1

{κ( f ) ≥ 2cN } ≤ 4e (n + 1)mn+2Dn+1N2−cN ≤ 2−N .

Using Propositions 4.3 and 4.4 again, we have that for f such that κ( f ) ≤ 2cN ,
costS( f ), costP( f ) ≤ (nD)O(n2)2O(n2N ) ≤ 2O(N2), the last as N ≥ n2

2 . ��
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6 Remaining Proofs

6.1 Proof of Proposition 2.2

We start by defining a fiber version of �R. For x ∈ S
n we let

�R(x) := {
g ∈ Hd[m] : g(x) = 0 and rank (Dg(x)) < m

}
.

Note that, for all x ∈ S
n , �R(x) is a cone in R

N . In particular, 0 ∈ �R(x). The
following result is the heart of our proof.

Proposition 6.1 For all f ∈ Hd[m] and x ∈ S
n,

‖ f ‖√
2 dist( f, �R(x))

≤ κ( f, x) ≤ ‖ f ‖
dist( f, �R(x))

.

Proof We only need to prove the statement for f /∈ �R(x). As we saw in Remark 2.1,
κ(λ f, x) = κ( f, x) for all λ = 0, and also dist(λ f, �R(x)) = |λ|dist( f, �R(x)). We
can therefore assume, without loss of generality, that ‖ f ‖ = 1.

Because the orthogonal group O(n + 1) in n + 1 variables acts on Hd[m] × S
n

and leaves μnorm, κ and the distance to �R invariant, we may assume without loss of
generality that x = e0 := (1, 0, . . . , 0).

For 1 ≤ i ≤ m write

fi (X) =
di∑

q=0

Xdi−q
0 fi,q(X1, . . . , Xn) = Xdi

0 fi,0 +
di∑

q=1

Xdi−q
0 fi,q(X1, . . . , Xn)

= Xdi
0 fi (e0) + Xdi−1

0

∑

1≤ j≤n

∂ fi
∂X j

(e0)X j + Qi (X) (12)

where in the first line fi,q is a homogeneous polynomial of degree q, and in the second,
degX0

(Qi ) ≤ di − 2. In particular fi,1 = ∑
1≤ j≤n

∂ fi
∂X j

(e0)X j .
We first prove that κ( f, e0) ≤ 1/dist( f, �R(e0)), or equivalently,

dist( f, �R(e0))
2 ≤ κ( f, e0)

−2 = μ−2
norm( f, e0) + ‖ f (e0)‖2.

Write fi,1(X1, . . . , Xn) = √
diai1X1 + · · · + √

diain Xn for suitable ai j . Therefore,

∂ fi
∂X j

(e0) =
{
di fi (e0) if j = 0√
diai j if j ≥ 1.

Define

hi := fi − Xdi
0 fi,0 =

di∑

q=1

Xdi−q
0 fi,q(X1, . . . , Xn)
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for 1 ≤ i ≤ m. Then

‖ f − h‖2 =
∑

i≤m

f 2i,0 =
∑

i≤m

fi (e0)
2 = ‖ f (e0)‖2. (13)

In addition hi (e0) = 0 and for 0 ≤ j ≤ n,

∂hi
∂X j

(e0) =
{

∂ fi
∂X j

(e0) − di fi (e0) = 0 if j = 0
∂ fi
∂X j

(e0) = √
diai j if j ≥ 1.

Therefore, we have (recall the definition of 	 from Sect. 2.1)

	−1Df (e0) =

⎡

⎢
⎢
⎢
⎣

√
d1 f1(e0) a11 . . . a1n√
d2 f2(e0) a21 . . . a2n

...
...√

dm fm(e0) am1 . . . amn

⎤

⎥
⎥
⎥
⎦

and

	−1Dh(e0) =

⎡

⎢
⎢
⎢
⎣

0 a11 . . . a1n
0 a21 . . . a2n
...

...

0 am1 . . . amn

⎤

⎥
⎥
⎥
⎦

.

Let A = (ai j ) ∈ R
m×n so that 	−1Dh(e0) = [0 A]. We know that rank(A) ≤ m.

If rank(A) ≤ m − 1, then h ∈ �R(e0) and hence, by (13)

dist( f, �R(e0))
2 ≤ ‖ f − h‖2 = ‖ f (e0)‖2 ≤ μ−2

norm( f, e0) + ‖ f (e0)‖2.

If rank(A) = m, then (the inequality by [14, Lemma 3]),

μnorm( f, e0) = ‖(	−1Df (e0))
†‖ ≤ ‖(	−1Dh(e0))

†‖ = μnorm(h, e0). (14)

Because of the Condition Number Theorem [10, Corollaries 1.19 and 1.25], there
exists a matrix P ∈ R

m×n such that A + P is a nonzero matrix of rank less than m
and

‖P‖F = ‖A†‖−1 = ‖[0 A]†‖−1 = ‖(	−1Dh(e0))
†‖−1 = μ−1

norm(h, e0).

Let E = (ei j ) = 	P ∈ R
m×n and consider the polynomials

gi (X) := hi (X) + Xdi−1
0

n∑

j=1

ei j X j , 1 ≤ i ≤ m.
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Then gi are not all zero, gi (e0) = hi (e0) = 0, ∂gi
∂X0

(e0) = ∂hi
∂X0

(e0) = 0, and ∂gi
∂X j

(e0) =
∂hi
∂X j

(e0) + ei j = ci j + ei j = √
diai j + ei j for 1 ≤ j ≤ n. It follows that

Dg(e0) = [0 	A + E] = [0 	(A + P)]

and therefore rank(Dg(e0)) < m. Hence, g ∈ �R(e0). In addition,

‖g − h‖2 =
∑

1≤i≤m
1≤ j≤n

(
di

di − 1, 1

)−1

e2i j =
∑

1≤i≤m
1≤ j≤n

d−1
i e2i j =

∑

1≤i≤m
1≤ j≤n

p2i j = ‖P‖2F

= μ−2
norm(h, e0).

We conclude as

‖g − f ‖2 = ‖g − h‖2 + ‖h − f ‖2 =
(13)

μ−2
norm(h, e0) + ‖ f (e0)‖2 ≤

(14)
μ−2
norm( f, e0)

+‖ f (e0)‖2,

and hence, dist( f, �R(e0))2 ≤ ‖ f − g‖2 ≤ μ−2
norm( f, e0) + ‖ f (e0)‖2.

We now prove that κ( f, e0) ≥ 1√
2 dist( f,�R(e0))

, or equivalently, that

2 dist( f, �R(e0))
2 ≥ μ−2

norm( f, e0) + ‖ f (e0)‖2.

Let g ∈ �R(e0) be such that dist( f, �R(e0))2 = ‖ f − g‖2. As in Identity (12), write

gi (X) = Xdi−1
0

∑

1≤ j≤n

∂gi
∂X j

(e0)X j + Q̃i (X),

where we used that g(e0) = 0. From this equality and (12), it follows that

fi − gi = Xdi
0 fi (e0) +

⎡

⎣Xdi−1
0

∑

1≤ j≤n

(
∂ fi
∂X j

(e0)X j − ∂gi
∂X j

(e0)X j

)
⎤

⎦

+ [
Qi (X) − Q̃i (X)

]
.

As the three terms in this sum do not share monomials,

‖ fi − gi‖2 ≥ fi (e0)
2 +

∑

1≤ j≤n

(
∂ fi
∂X j

(e0) − ∂gi
∂X j

(e0)

)2

≥ 1

2
fi (e0)

2 + 1

2

⎡

⎣ 1

di
fi (e0)

2 + 1

di

∑

1≤ j≤n

(
∂ fi
∂X j

(e0) − ∂gi
∂X j

(e0)

)2
⎤

⎦
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and hence,

‖ f − g‖2 ≥ 1

2

(

‖ f (e0)‖2 +
∥
∥
∥
∥diag

( 1√
di

)
Df (e0) − diag

( 1√
di

)
Dg(e0)

∥
∥
∥
∥

2

F

)

.

But rank
(
diag

( 1√
di

)
Dg(e0)

)
< m, and therefore, by the Eckart–Young theorem,

∥
∥
∥
∥diag

( 1√
di

)
Df (e0) − diag

( 1√
di

)
Dg(e0)

∥
∥
∥
∥
F

≥ σm,

the smallest singular value of diag
( 1√

di

)
Df (e0). On the other hand,

μnorm( f, e0)
−2 = ∥

∥Df (e0)
†diag

(√
di

)∥
∥−2 =

∥
∥
∥
(
diag

( 1√
di

)
Df (e0)

)†∥∥
∥

−2

=
( 1

σm

)−2 = σ 2
m .

This concludes the proof since

‖ f − g‖2 ≥ 1

2

(‖ f (e0)‖2 + σ 2
m

) = 1

2

(‖ f (e0)‖2 + μnorm( f, e0)
−2)

as desired. ��
Proof of Proposition 2.2 We can assume again ‖ f ‖ = 1. We note that

dist( f, �R) = min{dist( f, g) : g ∈ �R} = min{dist( f, �R(x)) : x ∈ S
n},

since �R = ⋃
x∈Sn �R(x). Then, using Proposition 6.1,

κ( f ) = max
x∈Sn κ( f, x) ≤ max

x∈Sn
1

dist( f, �R(x))
= 1

min
x∈Sn dist( f, �R(x))

= 1

dist( f, �R)
.

Analogously,

κ( f ) = max
x∈Sn κ( f, x) ≥ max

x∈Sn
1√

2 dist( f, �R(x))
= 1√

2 min
x∈Sn dist( f, �R(x))

= 1√
2 dist( f, �R)

.

��

123



Found Comput Math (2018) 18:929–970 953

6.2 Proof of Proposition 2.3

The following simple quadratic map, which was introduced by Smale in [38], is useful
in several places in our development,

ψ : [0,∞) → R, u �→ 1 − 4u + 2u2. (15)

It is monotonically decreasing and nonnegative in [0, 1 −
√
2
2 ].

Lemma 6.2 Let u := ‖z − y‖γ ( f, y). For all ε ∈ (0, 1/2], if u ≤ ε then

μnorm( f, z) ≤
(
1 + 5

2
ε
)
μnorm( f, y).

Proof As Df (y)Df (y)† = IdRm we have

μnorm( f, z) = ‖ f ‖‖Df (z)†	‖ = ‖ f ‖‖Df (z)†Df (y)Df (y)†	‖
≤ ‖ f ‖‖Df (z)†Df (y)‖‖Df (y)†	‖ ≤ (1 − u)2

ψ(u)
μnorm( f, y)

the last inequality by [37, Lemma 4.1(11)]. We now use that

(1 − u)2

ψ(u)
= 1 + u

( 2 − u

1 − 4u + 2u2

)
≤ 1 + 5

2
ε

the last as u ≤ ε ≤ 1
2 and the fact that 2−u

1−4u+2u2
≤ 5

2 in the interval [0, 1
2 ]. ��

Proposition 2.3 Because of (4) we have

‖y − z‖ ≤ 2ε

D3/2μnorm( f, y)
= ε

γ ( f, y)
≤ ε

γ ( f, y)
.

Hence,we can applyLemma6.2 to deduce the inequality on the right. For the inequality
on the left, assume it does not hold. That is,

μnorm( f, z) <
1

1 + 5
2ε

μnorm( f, y) < μnorm( f, y).

Then, ‖y − z‖ ≤ ε
μnorm( f,y) ≤ ε

μnorm( f,z) and we can use Lemma 6.2 with the roles of
y and z exchanged to deduce that

μnorm( f, y) ≤
(
1 + 5

2
ε
)
μnorm( f, z)

which contradicts our assumption. ��
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6.3 Proof of Theorem 2.9

Recall that Z denotes f −1(0) ⊂ R
n+1 and MS = Z ∩ S

n . The idea of the proof is
to show that if p, q ∈ MS, p = q, then there are fixed radius balls around p and q
such that the normals at p and q toMS, i.e., the normal spaces of their tangent spaces
at MS, do not intersect in the intersection of the two balls. Either the two points
are so far that there will be no intersection between the two balls, or there are close
and in that case, MS around p can be described as an analytic map by the implicit
function theorem. This enables us to analyze the normals at p and q and their possible
intersection.

For the rest of this section,wefixan arbitrary point p ∈ MS, i.e., such that f (p) = 0
and ‖p‖ = 1, with a full-rank derivative Df (p) and we set γp := max{γ ( f, p), 1}.

For any ε > 0 and any linear subspace H ⊂ R
n+1 we denote by Bε,H (0) the open

ε-ball in H centered at 0 and by Bε,H (p) := p + Bε,H (0) the same but centered at p.
In the special case that H = R

n+1, we simply write Bε(0) and Bε(p).
We recall that, because of Euler’s formula, p ∈ ker Df (p). We define

T := 〈p〉⊥, H1 := ker Df (p) ∩ T, H2 := ker Df (p)⊥ ⊂ T, H3 := H2 + 〈p〉,

and consider the orthogonal projections πi : R
n+1 → Hi for i = 1, 2, 3. Note that H1,

H2, H3 are linear spaces of dimension n −m, m, and m + 1, respectively. In addition,
T = H1 ⊥ H2 and R

n+1 = H1 ⊥ H3 = ker Df (p) ⊥ H2, where the symbol ⊥
denotes orthogonal direct sum.

Proposition 6.3 Define c1 = 0.024. Then Z ∩ B c1
γp

,T (p) is contained in the graph

of a real analytic map ω : B c1
γp

,H1
(p) → H2 satisfying ω(p) = 0, ‖Dω(p + x)‖ ≤

2.3 ‖x‖γp and ‖ω(p + x)‖ ≤ 1.15 ‖x‖2γp, for all x ∈ B c1
γp

,H1
(0).

Figure 1 attempts to summarize the situation described in Proposition 6.3.

Proof The general idea is to first apply (and get explicit bounds for) the Implicit
Function Theorem to get a real analytic map ω0 : B c1

γp
,ker Df (p)(p) → H2 satisfying

that Z ∩ B c1
γp

(p) is contained in the graph of ω0 with ω0(p) = 0, ‖Dω0(p + x)‖ ≤
2.3‖x‖γp and ‖ω0(p + x)‖ ≤ 1.15γp‖x‖2 for all x ∈ B c1

γp
,ker Df (p)(0). We then

restrict B c1
γp

(p) to B c1
γp

,T (p) and ω0 to H1 ⊂ ker Df (p) to obtain ω satisfying all the

stated conditions.
The process is involved and we describe it as a sequence of claims.

Claim 1. For all z ∈ R
n+1 such that u = u(z) := ‖z‖γ ( f, p) < 1 −

√
2
2 the

derivative D f (p + z)|H2of f with respect to H2at p + z is invertible.
Indeed,

123



Found Comput Math (2018) 18:929–970 955

Z ∩ B c1
γp

,T (p) p

0

〈p〉

H1

kerDf(p)

T := 〈p〉⊥

T + p

H2

Fig. 1 Situation in Proposition 6.3

‖Df (p)|−1
H2

Df (p + z)|H2 − IdH2‖ ≤ ‖Df (p)†Df (p + z) − π2‖
<

1

(1 − u)2
− 1 < 1

the first inequality by properties of Moore–Penrose inverse and the second by [37,
Lem. 4.1(9)]. Therefore, by [10, Lem. 15.7], Df (p)|−1

H2
Df (p + z)|H2 is invertible,

which implies Df (p + z)|H2 invertible as desired. This proves Claim 1.
Fromnowon, sinceR

n+1 = ker Df (p)⊕H2, wewrite indistinctly f (p) or f (p, 0)
as p ∈ ker Df (p), and for z = (x, y) ∈ ker Df (p) ⊕ H2, f (p + z) or f (p + x, y).

Let

� :=
{
z = (x, y) ∈ ker Df (p) ⊕ H2 | ‖z‖ ≤

(
1 −

√
2

2

) 1

γ ( f, p)

}
.

For all z = (x0, y0) ∈ �, Claim 1 ensures that Df (p + x0, y0)|H2 is invertible. If
f (p + z) = 0, the Analytic Implicit Function Theorem ensures the existence of an
open setU ⊂ ker Df (p) around x0, an open set V ⊂ H2 around y0 and a real analytic
map ωz : p +U → V such that

{(p+x, ωz(p+x)) | x ∈ U } = {(p+x, y) ∈ (p+U )×V | f (p+x, y) = 0}. (16)
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Recall the decreasing map ψ defined in (15) and consider also the function

φ(u) := (1 − u)2

ψ(u)

( 1

(1 − u)2
− 1

)
= 2u(1 − u

2 )

ψ(u)
.

We observe that φ(u) < 2.2 u for u < 0.024 =: c1.
Claim 2. Let z = (x0, y0) ∈ � and u = u(z) = ‖z‖γ ( f, p). If f (p + z) = 0 then
‖Dωz(p + x0)‖ ≤ φ(u).

This is Lemma 5.1 in [37] (with x, y and σ there corresponding to p, p + z and
Dωz in our context, and in the particular case where f (p + z) = 0).

Let now ω0 be ωz for z = (0, 0), and denote by 0 ∈ U0 ⊂ ker Df (p) and
0 ∈ V0 ⊂ H2 the open sets given by the Implicit Function Theorem in last paragraph.
We observe that by Claim 2, we have Dω0(p) = 0 since φ(0) = 0.
Claim 3. We have

‖D2ω0(p)‖ ≤ 2γ ( f, p).

First note that by the Implicit Function Theorem, Dω0(p) = −(Df (p, 0)|H2)
−1 ◦

Df (p, 0)|ker Df (p) = 0 and f ◦ (Id, ω0) = 0 in (p +U0) × V0, so

0 = D2( f ◦ (Id, ω0))(p)

= D2 f ((Id, 0), (Id, 0))(p) + (Df (Id, ω0)(0, D
2ω0))(p)

= D2 f ((Id, 0), (Id, 0))(p) + Df (p)|H2D
2ω0(p).

Note we have removed the symbol ◦ in the compositions from the second line above.
We have done, and keep doing, this to make the notation lighter.

So, D2ω0(p) = −Df (p)†D2 f ((Id, 0), (Id, 0))(p) and we obtain the inequality

‖D2ω0(p)‖ = ‖Df (p)†D2 f ((Id, 0), (Id, 0))(p)‖ ≤ 2max
k>1

∥
∥
∥
∥Df (p)†

Dk f (p)

k!
∥
∥
∥
∥

1/k−1

= 2γ ( f, p)

from the definition of γ ( f, p). Claim 3 is proved.
Claim4. Recall c1 = 0.024.The analyticmapω0 : p+U0 → V0 can be analytically
extended on the open ball B c1

γp
,ker Df (p)(p), and for all p + x ∈ B c1

γp
,ker Df (p)(p), its

extension—also denoted by ω0—satisfies the following:

(i) ‖Dω0(p + x)‖ < 2.3 ‖x‖γp , and
(ii) ‖ω0(p + x)‖ < 1.15 ‖x‖2γp < 0.0007

γp
.

Since ω0 is defined in p+U0, there exists r , 0 < r ≤ c1
γp
, such that ω0 is defined on

Br,ker Df (p)(p) and satisfies Conditions (i) and (ii). To see (i) we note that the equality
‖Dω0(p)‖ = 0 along with Claim 3, the Mean Value Theorem and the fact that ω0 is
defined and C2 on p +U0 imply that

‖Dω0(p + x)‖ < 2.3‖x‖γp (17)
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for x sufficiently close to 0. For (ii), from (17) and the Fundamental Theorem of
Calculus, we have

‖ω0(p + x)‖ = ‖ω0(p + x) − ω0(p)‖ ≤
∫ 1

0
‖Dω0(p + t x)x‖dt

≤
∫ 1

0
‖Dω0(p + t x)‖‖x‖dt <

(i)

∫ 1

0
2.3 t ‖x‖2γp dt

= 1.15 ‖x‖2γp ≤ 1.15
c21
γp

<
0.0007

γp
. (18)

Let us show that the supremum r0 of all 0 < r ≤ c1
γp

such that ω0(p + x) can be
analytically extended to Br,ker Df (p)(p) and satisfies Conditions (i) and (ii) is exactly
r0 = c1

γp
. We assume the contrary, that r0 < c1

γp
, and show that in that case ω0 can be

extended a little further.
Let x0 be any point in ker Df (p) with ‖x0‖ = r0. We note that the continuous map

ω0 is bounded on the ball Br0,ker Df (p)(p) because Condition (i) holds there. Thus, we
can consider the limit y0 := lim

t→1− ω0(p + t x0). Then, reasoning as in (18)

‖y0‖ ≤
∫ 1

0
‖Dω0(p + t x0)x0‖dt < 1.15 ‖x0‖2γp ≤ 1.15

c21
γp

<
0.0007

γp
.

Using the inequality above and the triangle inequality, we obtain

‖(x0, y0)‖γp <
(
‖x0‖ + 1.15 ‖x0‖2γp

)
γp

= ‖x0‖γp

(
1 + 1.15 ‖x0‖γp

)
≤

r0<
c1
γp

c1
(
1 + 1.15 c1

)
<

(
1 −

√
2

2

)
.

(19)

Hence, z := (x0, y0) ∈ � and f (x0, y0) = 0. This implies that there exist an open
ball U ⊂ ker Df (p) and an open set V ⊂ H2 around x0 and y0, respectively, and a
real analytic ωz : p +U → V such that (16) holds.

Since ‖y0‖ < 1.15 ‖x0‖2γp, by taking a smaller ball U we can further ensure that
ωz(p+x) ⊂ B1.15 ‖x‖2γp,H2

(0) for x ∈ U . So, (ii) holds forωz on p+U . Furthermore,
we may use Claim 2, Inequality (19), and the fact that φ(u) < 2.2 u for all 0 < u < c1
to deduce

‖Dωz(p + x0)‖ < 2.2‖x0‖γp

(
1 + 1.15 c1

)
< 2.3 ‖x0‖γp,

so that ωz also satisfies (i) on p +U , possibly taking an even smaller U .
Finally, since the analytic maps ω0, defined on p + x ∈ Br0,ker Df (p)(p), and ωz ,

defined on p+x0+x for x−x0 ∈ U , coincide by (16) on Br0,ker Df (p)(p)∩U , which is
nonempty and connected,ωz is an analytic continuation ofω0 on p+U around p+x0.
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Let us denote byUx this open ball around x for x ∈ S0 := {x ∈ ker Df (p) | ‖x‖ = r0}
and let U := ∪x∈S0Ux . Consider the function ϕ : S0 → R defined by

ϕ(x) = sup{t ∈ R | [x, t x)) ⊂ U}.
Note that by construction t > 1 for every x . As ϕ is continuous and S0 is compact and
connected the image ϕ(S0) is a closed interval [�, �′] with 1 ≤ � ≤ �′. Furthermore,
there exists x∗ ∈ S0 such that ϕ(x∗) = � and, hence, � ≥ r0+r∗

r0
> 1, where r∗ is the

radius ofUx∗ . It follows that we can extend ω0 to the open ball in ker Df (p) centered
at p with radius r0 + r∗ > r0 and both (i) and (ii) hold in this ball, a contradiction.
This finishes the proof of Claim 4.

Claim 4 shows that for all x ∈ B c1
γp

,ker Df (p)(0) the point y = ω0(p + x) satisfies

(p + x, y) ∈ Z and ‖y‖ ≤ 0.0007
γp

. We will next see that it is the only point in
H2 satisfying these two conditions. To do so, for each x ∈ ker Df (p), we define
gx : H2 → R

m as the restriction of f to {p + x} × H2 so that gx (0) = f (p + x).

Because of Claim 1, for all y ∈ H2 such that ‖(x, y)‖ <
1−

√
2
2

γp
, Df (p + x, y) |H2 is

invertible. In particular, Dgx (0) = Df (p + x)|H2 is invertible for ‖x‖ <
1−

√
2
2

γp
.

Claim 5. For all x ∈ ker Df (p) such that u = u(x) = ‖x‖γ ( f, p) < 1 −
√
2
2 , we

have α(gx , 0) ≤ u
ψ(u)2

.
To show this claim we adapt the proof of [6, Prop. 3, p. 160]. First we verify that

γ (g0, 0) = γ ( f |{p}×H2 , p) ≤ γ ( f, p). To do this we note that

γ ( f, p) := max
k>1

∥
∥
∥
∥Df (p)†

Dk f (p)

k!
∥
∥
∥
∥

1
k−1

= max
k>1

max
w1,...,wk∈Sn

∥
∥
∥
∥Df (p)†

Dk f (p)

k! (w1, . . . , wk)

∥
∥
∥
∥

and

γ ( f |{p}×H2 , p) : = max
k>1

∥
∥
∥
∥
∥
Df |{p}×H2(p)

−1 D
k f |p×H2(p)

k!

∥
∥
∥
∥
∥

1
k−1

= max
k>1

∥
∥
∥
∥Df (p)|−1

H2

Dk f (p)|H2

k!
∥
∥
∥
∥

1
k−1

= max
k>1

max
v1,...,vk∈Sm−1

∥
∥
∥
∥Df (p)|−1

H2

Dk f (p)|H2

k! (v1, . . . , vk)

∥
∥
∥
∥

1
k−1

.

Modulo an orthogonal change of basis (that does not modify norms), we can write

Df (p)† =
(

0
Df (p)|−1

H2

)

. This proves that γ (g0, 0) ≤ γ ( f, p). Also,

β(gx , 0) = ‖Dgx (0)
−1 gx (0)‖ ≤ ‖Df (p + x)|−1

H2
Df (p)|H2‖‖Df (p)|−1

H2
f (p + x)‖.
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By [37, Lem. 4.1(10)],

‖Df (p + x)|−1
H2

Df (p)|H2‖ ≤ (1 − u)2

ψ(u)

while by the multivariate version of [6, Lem. 4(b), p. 161],

‖Df (p)|−1
H2

f (p + x)‖ ≤ ‖x‖
1 − ‖x‖γ ( f |{p}×H2 , p)

≤ ‖x‖
1 − u

,

since β( f, p) = 0. This implies β(gx , 0) ≤ 1−u
ψ(u)

‖x‖.
Also, in the same way that we verified that γ (g0, 0) ≤ γ ( f, p) we can check that

γ (gx , 0) ≤ γ ( f, p+ x), and therefore, as in the proof of [6, Prop. 3, p. 162], one gets

γ (gx , 0) ≤ γ ( f, p)

ψ(u)(1 − u)
. (20)

Multiplying β(gx , 0) and γ (gx , 0) we conclude that as long as u = ‖x‖γ ( f, p) <

1 −
√
2
2 we have

α(gx , 0) ≤ u

ψ(u)2
.

This proves Claim 5.
Claim 6. Recall c1 = 0.024. For all x ∈ ker Df (p) with ‖x‖ ≤ c1

γp
, there is at most

one zero of the map gx in the ball ‖y‖ < 0.044
γp

.

For 0 ≤ u ≤ c1 one has 0.905 ≤ ψ(u) ≤ 1 and u
ψ(u)2

< 0.03. Thus, by Claim 5,

α(gx , 0) < 0.03 for all x ∈ ker Df (p) with ‖x‖ ≤ c1
γp
. The second statement in

Theorem 2.5 applied to gx tells us that 0 converges to a zero of gx and that all points
in the ball of radius 0.05

γ (gx ,0)
converge to the same zero. This implies that there is at

most one zero of gx in the ball of radius

0.05

γ (gx , 0)
≥
(20)

0.05ψ(u)(1 − u)

γ ( f, p)
≥ 0.05ψ(0.024)(1 − 0.024)

γ ( f, p)
≥ 0.044

γ ( f, p)

which proves Claim 6.
We can nowfinish the proof of the proposition. Since B c1

γp
(p) ⊂ B c1

γp
,ker Df (p)(p)×

B 0.044
γp

,H2
(0), it follows from Claims 4 and 6 that Z ∩ B c1

γp
(p) is included in the graph

Gr(ω0) of ω0. We finally restrict Z ∩ B c1
γp

(p) to Z ∩ B c1
γp

,T (p), and therefore ω0

restricts to ω : B c1
γp

,H1
(p) → H2, as explained at the beginning of the proof. The

bounds for ‖Dω(p + x)‖ and ‖ω(p + x)‖ follow from Claim 4. ��

123



960 Found Comput Math (2018) 18:929–970

Lemma 6.4 Let ω be the map of Proposition 6.3 and define the following continuous
map

� : B c1
γp

,H1
(0) ⊂ H1 −→ H1, �(x) = x

‖(p + x, ω(p + x))‖ .

Then � is a bijection onto its image and satisfies

(i) ‖�(x)‖ ≥ 0.9997‖x‖,
(ii) ‖D�(x)−1‖ ≤ 1.0013.

Proof If we define the map

S : B c1
γp

,H1
(0) → R, S(x) = ‖(p + x, ω(p + x))‖, (21)

then �(x) = x
S(x) , which implies that � maps rays to themselves. To see that � is

bijective, it is therefore sufficient to see that it is monotone increasing along rays, so
we study its derivative along rays and show it is positive.

Let x = tv with v a unit vector and differentiate �(tv) = tv
S(tv)

w.r.t. t to obtain

d�

dt
(tv) = (1 + ‖ω(p + tv)‖2 − t〈Dω(p + tv)v, ω(p + tv)〉)

S(tv)3
v.

As we have

t |〈Dω(p + tv)v, ω(p + tv)〉|
≤ t‖Dω(p + tv)‖‖ω(p + tv)‖ ≤

Prop. 6.3
2.3 t2γp‖ω(p + tv)‖

≤
t≤ c1

γp

2.3
c21
γp

‖ω(p + tv)‖ < 2‖ω(p + tv)‖

since c1 = 0.024 and γp ≥ 1, it follows that

1 + ‖ω(p + tv)‖2 − t〈Dω(p + tv)v, ω(p + tv)〉
> 1 + ‖ω(p + tv)‖2 − 2‖ω(p + tv)‖
= (1 − ‖ω(p + tv)‖)2 ≥ 0,

since ‖ω(p + tv)‖ ≤ 1.15t2γp ≤ 1.15c21 < 1 by Proposition 6.3 for |t | ≤ c1
γp
. This

shows that � restricted to {tv}|t |≤ c1
γp

is strictly monotone, as wanted.

To show the bounds (i–ii) we first note that for any x with ‖x‖ < c1
γp
, by Proposi-

tion 6.3, we have
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S(x) = (1 + ‖x‖2 + ‖ω(p + x)‖2) 1
2 ≤

√

1 + c21
γ 2
p

+ 1.152
c41
γ 2
p

≤
√
1 + c21 + 1.152c41 ≤ 1.0003,

and hence ‖�(x)‖ = ‖x‖
S(x) ≥ 0.9997‖x‖. This shows (i).

Also, for any y ∈ H1,

DS(x) y = 〈x, y〉 + 〈
ω(p + x), Dω(p + x)y

〉

S(x)
.

As 〈x, y〉 ≤ ‖x‖‖y‖ and by Proposition 6.3,

〈
ω(p + x), Dω(p + x)y

〉 ≤ ‖ω(p + x)‖∥∥Dω(p + x)
∥
∥‖y‖

≤ 2.65‖x‖3γ 2
p‖y‖ ≤

‖x‖< c1
γp

2.65 c21‖x‖‖y‖,

we deduce that

∥
∥DS(x)y

∥
∥ ≤ 1

S(x)
(1 + 2.65c21)‖x‖‖y‖ ≤ 1.0016‖x‖‖y‖

S(x)
.

So,

‖DS(x)‖ ≤ 1.0016‖x‖
S(x)

≤ 1.0016‖x‖ (22)

since S(x) ≥ 1.
We now use that �(x) = x

S(x) to derive that, for any y ∈ H1,

D�(x)y = S(x) − xDS(x)

S(x)2
y

and, consequently,

∥
∥D�(x)y

∥
∥≥ S(x) − 1.0016‖x‖2

S(x)2
‖y‖ ≥

S(x)≥1

1 − 1.0016 c21
S(x)2

‖y‖≥ 1 − 1.0016 c21
1.00032

‖y‖

the last inequality since S(x) ≤ 1.0003. Therefore,

∥
∥D�(x)y

∥
∥ ≥ 0.9988‖y‖.

It follows that the smallest singular value σ of D�(x) satisfies σ ≥ 0.9988 and
therefore

∥
∥D�(x)−1

∥
∥ = 1

σ
≤ 0.0013.

This shows (ii). ��
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0

p

z
ε

h(ε)

Fig. 2 Worst situation in Lemma 6.5

In what follows, we denote by φ the map φ : R
n+1\{0} → Sn , φ(z) = z

‖z‖ , as we
did in Sect. 2.5.

Lemma 6.5 For all ε ∈ (0, 1), φ(Z∩ Bε,T (p)) = MS∩φ(Bh(ε)(p)), where h(ε) :=
ε√
1+ε2

.

Proof The worst possible situation corresponds to a point z ∈ Z ∩ Bε,T (p) with
‖z − p‖ = ε. This situation is depicted in Fig. 2.

If α denotes the angle at the origin in the figure, then ε = tan(α) and h(ε) = sin(α)

so that h(ε) = sin arctan(ε) = ε√
1+ε2

. ��
Proposition 6.6 Define c2 = 0.023 and let � be the map defined in Lemma 6.4. Then

MS ∩ φ
(
B c2

γp
(p)

)
is contained in the graph of a real analytic map

ϑ : p + �
(
B c1

γp
,H1

(0)
)

⊂ p + H1 → H3

satisfying ϑ(p) = 0, ‖Dϑ(p + x)‖ ≤ 3.4‖x‖γp and ‖ϑ(p + x)‖ ≤ 1.7‖x‖2γp, for

all x ∈ �
(
B c1

γp
,H1

(0)
)
. Moreover, B c2

γp
,H1

(0) ⊂ �
(
B c1

γp
,H1

(0)
)
.

Proof Write B = �
(
B c1

γp
,H1

(0)
)
. By Lemma 6.4, � is a bijection onto B. Let ω be

the map defined in Proposition 6.3. We recall H3 = H2 +〈p〉 and π3 is the projection
onto H3 and define

ϑ : p + B → H3

p + x �→ (
π3φ(Id, ω)

)
(p + �−1(x)) − p,

where φ(p + x ′, y) := (p+x ′,y)
‖(p+x ′,y)‖ for (x ′, y) ∈ H1 × H2.

Note that ϑ(p) = 0.
For x ′ := �−1(x) we have

ϑ(p + x) = π3φ(p + x ′, ω(p + x ′)) − p.

Also note that x = �(x ′) = x ′
‖(p+x ′,ω(p+x ′)‖ = π1φ(p + x ′, ω(p + x ′)) implies that,

for each x ∈ B (or, equivalently, for each x ′ ∈ �−1(B) = B c1
γp

,H1
(0)),
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(
p + x, ϑ(p + x)

) = (
p + x, π3φ(p + x ′, ω(p + x ′)) − p

)

= (
x, π3φ(p + x ′, ω(p + x ′))

)

= (
π1, π3)φ(p + x ′, ω(p + x ′)

) = φ
(
p + x ′, ω(p + x ′)

)

(23)

modulo the identification H1 × H3 = H1 ⊕ H3 = R
n+1. Identity (23) shows that

Gr(ϑ) = φ(Id, ω)(B c1
γp

,H1
(p)).

Now, from Proposition 6.3 we know that

Z ∩ B c1
γp

,T (p) ⊆ Gr(ω) = (Id, ω)(B c1
γp

,H1
(p))

and therefore, by Lemma 6.5,

MS ∩ φ
(
B c1√

γ 2p+c21

(p)
)

= φ(Z ∩ B c1
γp

,T (p)) ⊆ φ(Id, ω)(B c1
γp

,H1
(p)) = Gr(ϑ).

As γp ≥ 1 we have γ 2
p + c21 ≤ 1.0006γ 2

p and therefore c1√
γ 2
p+c21

≥ c2
γp

for c2 := 0.023.

This shows that MS ∩ φ
(
B c2

γp
(p)

)
⊂ Gr(ϑ).

We now show the bounds. By definition, for all x ∈ B one has ϑ(p + x) =
(ψ3 ◦ �−1)(x), where ψ3 : B c1

γp
,H1

(0) → H3 is defined as

ψ3(x
′) := π3φ(Id, ω)(p + x ′) − p = ω(p + x ′)

S(x ′)
−

(
1 − 1

S(x ′)

)
p,

where S(x ′) is defined in (21). Hence, for x ∈ B,

Dϑ(p + x) = Dψ3(�
−1(x)) ◦ D�−1(x). (24)

For x ′ ∈ B c1
γp

,H1
(0) and any y ∈ H1 we have

Dψ3(x
′)y =

(
Dω(p + x ′)y

S(x ′)
− DS(x ′)y ω(p + x ′)

S(x ′)2
,−DS(x ′)y

S(x ′)2

)t

.

Therefore,

‖Dψ3(x
′)‖ ≤ ‖Dω(p + x ′)‖

S(x ′)
+ ‖DS(x ′)‖‖ω(p + x ′)‖

S(x ′)2
+ ‖DS(x ′)‖

S(x ′)2

≤
S(x ′)≥1

2.3‖x ′‖γp + 1.0016‖x ′‖1.15‖x ′‖2γp + 1.0016‖x ′‖

≤
‖x ′‖≤ c1

γp
,γp≥1

‖x ′‖γp
(
2.3 + 1.0016 · 1.15 · c21 + 1.0016

) ≤ 3.303‖x ′‖γp
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by Proposition 6.3 and Inequality (22).
Going back to (24), using that D�−1(x) = (D�(�−1(x)))−1, the above inequality

and Lemma 6.4(i, ii), we obtain for any x ∈ B,

‖Dϑ(p + x)‖ ≤ ‖Dψ3(�
−1(x))‖ ‖D�−1(x)‖

≤ ‖Dψ3(�
−1(x))‖∥∥(D�(�−1(x)))−1

∥
∥

≤ 3.303‖�−1(x)‖γp · 1.0013
≤ 3.303 · 1.0004‖x‖γp · 1.0013 ≤ 3.4‖x‖γp.

Now, we deduce that

‖ϑ(p + x)‖ ≤ 1.7‖x‖2γp.

the same way we deduced the bound for ‖ω(p + x)‖ in Proposition 6.3.

Finally, Lemma 6.4 also implies that B c2
γp

,H1
(0) ⊂ �

(
B c1

γp
,H1

(0)
)
, since for ‖x ′‖ =

c1
γp
, ‖�(x ′)‖ ≥ 0.9997c1

γp
≥ c2

γp
. ��

Lemma 6.7 Let ϕ : H1 → H3 be any linear map and E ⊂ H1 × H3 be the graph of
ϕ. Then,

(i) E⊥ = {(−ϕ∗(v), v) | v ∈ H3} ⊂ H1 × H3.

(ii) Let w ∈ H3 ∩
(
(p + x, ϑ(p + x)) + E⊥

)
for ϑ the map of Proposition 6.6 and

x ∈ �
(
B c1

γp
,H1

(0)
)

⊂ H1. Then ‖w − p‖ ≥ ‖x‖
‖ϕ‖ − ‖ϑ(p + x)‖.

Proof (i) For all x ∈ H1 and v ∈ H3 we have

〈(x, ϕ(x)), (−ϕ∗(v), v)〉=〈x,−ϕ∗(v)〉 + 〈ϕ(x), v〉= − 〈x, ϕ∗(v)〉 + 〈x, ϕ∗(v)〉 = 0.

This shows that the linear space {(−ϕ∗(v), v) | v ∈ H3}, of dimension dim(H3), is
included in E⊥. The reverse inclusion follows as both spaces have the same dimension.
(ii) As w ∈ (

(p + x, ϑ(p + x)) + E⊥) = (
(x, p + ϑ(p + x)) + E⊥)

, we use
Lemma 6.7(i) to deduce the existence of v ∈ H3 such that w = (x, p + ϑ(p + x)) +
(−ϕ∗(v), v) ∈ H1 × H3. Hence, since w ∈ H3, x − ϕ∗(v) = 0, i.e., x = ϕ∗(x), and
w = p + ϑ(p + x) + v, i.e., w − p = ϑ(p + x) + v. We deduce

‖v‖ ≥ ‖x‖
‖ϕ∗‖ = ‖x‖

‖ϕ‖

and, consequently, ‖w − p‖ ≥ ‖v‖ − ‖ϑ(p + x)‖ ≥ ‖x‖
‖ϕ‖ − ‖ϑ(p + x)‖. ��

Proof of Theorem 2.9 We show that for all points p, q ∈ MS the normals Np and
Nq of MS at p and q, i.e., the normal spaces to their tangent planes at MS, either
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do not intersect or, if they do, the intersection points lie outside B c2
2γp

(p) ∩ B c2
2γp

(q).

Therefore,

τ( f ) ≥ min
p∈MS

c2
2 γp

= c2
2 maxp∈MS

γp
≥ 1

87�( f )
,

sinceMS is compact and c2 = 0.023.
To prove this statement, we take p to be the point in the preceding development

(which is arbitrary onMS) and divide by cases.
(i) If ‖q − p‖ ≥ c2

γp
, then B c2

2γp
(p)∩ B c2

2γp
(q) = ∅, which implies that the normals Np

and Nq cannot intersect at any point in the intersection of these two balls.

(ii) If ‖q−p‖ < c2
γp
, thenq ∈ MS∩φ

(
B c2

γp
(p)

)
is in the hypothesis of Proposition 6.6.

Let x0 ∈ �
(
B c1

γp
,H1

(0)
)

⊂ H1 be such that q = (p + x0, ϑ(p + x0)). Then
(
c2
γp

)2
>

‖q − p‖2 = ‖x0‖2 + ‖ϑ(p + x0)‖2 ≥ ‖x0‖2 implies x0 ∈ B c2
γp

,H1
(0), and hence, by

the last statement in Proposition 6.6, p + x0 belongs to the domain of ϑ and we may
consider its derivative

ϕ := Dϑ(p + x0) : H1 → H3.

Then the graph E := Gr(ϕ) is a linear subspace of R
n+1 and the normal Nq to E at

q = (p + x0, ϑ(p + x0)) equals (p + x0, ϑ(p + x0)) + E⊥. Analogously the normal
Np of MS at p equals p + H⊥

1 = p + H3 = H3.
Suppose now that Nq = (p + x0, ϑ(p + x0)) + E⊥ intersects Np = H3 at a point

w. Applying Lemma 6.7(ii) and Proposition 6.6 we obtain

‖w − p‖ ≥ ‖x0‖
‖Dϑ(p + x0)‖ − ‖ϑ(p + x0)‖ ≥ ‖x0‖

3.4 γp‖x0‖ − 1.7 γp‖x0‖2

≥ 1

3.4 γp
− 1.7 c22

γp
= c2

2γp

( 1

1.7 c2
− 3.4 c2

)
≥ c2

2γp

the third inequality as ‖x0‖ ≤ c2
γp
. This shows that Np and Nq do not intersect in

B c2
2γp

(p). ��

7 On Numerical Stability

In this last section, we deal with the numerical stability of our algorithms. Part (iv) of
Theorem 1.1 claims that our algorithms are numerically stable. We now give a precise
meaning to this claim.

Numerical stability refers to the effects of finite precision arithmetic in the final
result of a computation. During the execution of such computation, real numbers x
are systematically replaced by approximations fl(x) satisfying that
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fl(x) = x(1 + δ), with |δ| ≤ εmach

where εmach ∈ (0, 1) is themachine precision. If the algorithm is computing a function
ϕ : R

p → R
q a common definition of stability says that the algorithm is forward

stable when, for sufficiently small εmach and for each input a ∈ R
p, the computed

point ϕ̃(a) ∈ R
q satisfies

∥
∥
∥ϕ̃(a) − ϕ(a)

∥
∥
∥ ≤ εmach ‖ϕ(a)‖ cond(a)P(p, q). (25)

Here P is a polynomial (which in practice should be of small degree) and cond(a) is
the condition number of a given by

cond(a) := lim
δ→0

sup
‖̃a−a‖≤δ

‖ϕ(̃a) − ϕ(a)‖
‖̃a − a‖

‖a‖
‖ϕ(a)‖ . (26)

We observe that cond(a) depends on ϕ and a but not on the algorithm and that
inequality (25) is satisfied in first order whenever the algorithm is backward stable,
that is, whenever it satisfies that

ϕ̃(a) = ϕ(̃a), for some ã satisfying ‖̃a − a‖ ≤ ‖a‖εmach P(p, q). (27)

These notions are appropriate for a continuous function ϕ (such as in matrix inver-
sion, the solution of linear systems of equations, the computation of eigenvalues, …)
but not for discrete-valued problems: if the range of ϕ is discrete (as in deciding the
feasibility of a linear program, counting the number of solutions of a polynomial sys-
tem, or computing Betti numbers), then definition (26) becomes meaningless (see [10,
Overture, §6.1, and §9.5] for a detailed exposition of these issues). For these, a now
common definition of condition number, pioneered by Renegar [28–30], consists of
identifying the set� of ill-posed inputs and taking the condition of a as the relativized
inverse of the distance from a to �. That is, one takes

C (a) := ‖a‖
dist(a, �)

. (28)

Proposition 2.2 shows that our condition number κ( f ) is bounded by such an expres-
sion (with respect to the set of ill-posed inputs �R).

The idea of stability changes together with the definition of condition. The issue
now is not the one underlying (25)—given εmach, how good is the computed value—
but a different one: how small does εmach need to be to ensure that the computed
output is correct? The answer to this question depends on the condition of the input
at hand, a quantity that is generally not known a priori, and stability results can be
broadly divided in two classes. In a fixed-precision analysis, the algorithm runs with
a pre-established machine precision and the users have no guarantee that the returned
output is correct. They only know that if the input a is well conditioned (i.e., smaller
than a bound depending on εmach) then the answer is correct. In a variable-precision
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analysis, the algorithm has the capacity to adjust its machine precision during the
execution and returns an output which is guaranteed to be correct. Needless to say, not
all algorithms may be brought to a variable-precision analysis. But in the last decades,
a number of problems such as feasibility for semialgebraic systems [19] or for linear
programs [18], real zero counting of polynomial systems [15], or the computation of
optimal bases for linear programs [11] have been given such analysis.

In all these cases, it is shown that the finest precision ε∗
mach used by the algorithm

satisfies

ε∗
mach = 1

(pC (a))O(1)
(29)

where p is the size of the input and C (a) is the condition number defined in (28). We
can (and will) consider algorithms satisfying (29) to be stable as this bound implies
that the number of bits in the mantissa of the floating-point numbers occurring in the
computation with input a ∈ R

p is bounded by O(log2 p + log2 C (a)).
It is in this sense that our algorithms are stable.

Proposition 7.1 The algorithms in Propositions 4.3 and 4.4 computing the homology
groups of spherical and projective sets, respectively, can be modified to work with
variable-precision and satisfy the following. Their cost, for an input f ∈ Hd[m],
remain

(nDκ( f ))O(n2)

and the finest precision ε∗
mach used by the algorithm is

ε∗
mach = 1

(nDκ( f ) log N )O(1)
.

Sketch of proof. A key observation for the needed modification is that only the routine
Covering needs to work with finite precision. Indeed, we can modify this routine to
return a pair {X , ε}where all numbers, coordinates of points x inX and ε, are rational
numbers (expressed as quotients of integers in binary form). Furthermore, we can do
so such that the differences ‖x − x̃‖ and |ε − ε̃| between the real objects and their
rational approximations are small. Sufficiently small actually for Proposition 2.6 to
apply to (X̃ , ε̃) (recall that Remark 2.7 gives us plenty of room to do so).

From this point on, the computation of the nerve N and then of the homology
groups of either MS or MP is done symbolically (i.e., with infinite precision). The
complexity of the whole procedure, that is, its cost, which now takes account of the
size of the rational numbers occurring during the computation, remains within the
same general bound in the statement.

We therefore only need to show that a variable-precision version ofCovering can be
devised that returns an output with rational components and that satisfies the bounds
in the statement. This version is constructed, essentially, as the variable-precision
version of the algorithm for counting roots in §5.2 of [15] is constructed in §6.3 of
that paper. We do not give all the details here since these do not add anything new
to our understanding of the algorithm: we just “make room” for errors by weakening
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the desired inequalities by a factor of 2; in our case, the inner loop of the algorithm
becomes

for all x ∈ Gη

if α( f, x) ≤ α0
2 and 1

1000 γ ( f,x) ≥ r and 4.4 β( f, x) <

r then
X := X ∪ {x}

elsif ‖ f (x)‖ ≥ 2δ( f, η) then do nothing
elsif go to (*)

return the pair {X , ε} and halt
end for

Also, as Proposition 2.6 does neither require the points of X to belong to the sphere,
nor a precise value for ε, there is no harm in returning points (with rational coefficients)
close to the sphere and to work with a good (rational) approximation ε of 3.5

√
sep(η).

��
We close this section by recalling that the biggest mantissa required in a floating-

point computation with input f has O(log2(nDκ( f ) log N )) bits. If f is randomly
drawn from S

N−1, this is a random variable. Using the second bound in Theorem 5.1
along with Propositions 2.2 and 5.3, it follows that the expectation for the number of
bits in this longest mantissa is of the order of

O(
n log2(Dm) + log2 N + log2 n

)
.

This is a relatively small quantity compared with (and certainly polynomially bounded
in) the size N of input f .
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