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Abstract The largest eigenvalue of a matrix is always larger or equal than its largest
diagonal entry. We show that for a class of random Laplacian matrices with indepen-
dent off-diagonal entries, this bound is essentially tight: the largest eigenvalue is, up
to lower order terms, often the size of the largest diagonal. entry. Besides being a
simple tool to obtain precise estimates on the largest eigenvalue of a class of random
Laplacian matrices, our main result settles a number of open problems related to the
tightness of certain convex relaxation-based algorithms. It easily implies the optimality
of the semidefinite relaxation approaches to problems such asZ2 Synchronization and
stochastic block model recovery. Interestingly, this result readily implies the connec-
tivity threshold for Erdős–Rényi graphs and suggests that these three phenomena are
manifestations of the same underlying principle. The main tool is a recent estimate on
the spectral norm of matrices with independent entries by van Handel and the author.
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1 Introduction

Toward the end of the 1950s, Eugene Wigner [48] made the remarkable finding that
the spectrum of a large class of random matrices is, in high dimension, distributed
essentially the same way: under mild assumptions, the distribution of the spectrum
converges to the so-called Wigner semicircle law. The study of spectral properties of
random matrices has since been a fascinating research area, with important implica-
tions in many areas. We refer the reader to the books [6,43] for more on this subject.

The present paper addresses the problem of estimating the largest eigenvalue of
a large class of Laplacian matrices. The investigation of such problems has strong
motivations from algorithmic analysis. Indeed, the performance ofmany popular algo-
rithms is tightly connected with the largest eigenvalue of some matrix that depends
on its input, and so studying the performance of such algorithms over random inputs
involves understanding the behavior of the largest eigenvalue of a random matrix. In
fact, as we will see, the estimates derived here play a crucial role in understanding the
typical performance of a natural semidefinite programming-based approach for solv-
ing certain computationally hard problems on graphs, such as community detection.

We use the term Laplacian matrix to refer to symmetric matrices whose rows and
columns sum to zero. While oftentimes Laplacians are also thought of as being posi-
tive semidefinite, the matrices we will treat will not necessarily satisfy this property.
Spectral graph theory inspires a useful way of thinking about these matrices [18].
Given a graph on n nodes with edge set E , its adjacency matrix A ∈ R

n×n is defined
by Ai j = 1 if (i, j) ∈ E and Ai j = 0 otherwise, and its degree matrix DA is a diagonal
matrix whose i th diagonal entry is equal to the degree of node i . The Laplacian of the
graph is defined to be L A = DA − A. The spectrum of the graph Laplacian matrix
is known to contain important information about the graph [18] and has been studied
for random graphs [14,17,22]. Analogously, we make the following definition.

Definition 1.1 Given a symmetric matrix X ∈ R
n×n , we define the Laplacian LX of

X as

LX = DX − X,

where DX is the diagonal matrix whose diagonal entries are given by

(DX )i i =
n∑

j=1

Xi j .

Wewill refer to any suchmatrix LX as a Laplacianmatrix. Note that these are precisely
the symmetricmatrices L for which L1 = 0, where 1 ∈ R

n denotes the all-ones vector.

This paper is concerned with a class of random Laplacian matrices LX where
the entries of the matrix X are independent centered (but not necessarily identically
distributed) random variables. Our main result is that, under mild and easily verifiable
conditions, the largest eigenvalue of LX is, up to lower order terms, given by its largest
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diagonal entry. While we defer the formal statement of our main results1 to Sect. 2,
we informally state them here.

Informal Statement of Theorem (2.1). Let L be an n×n symmetric random Lapla-
cian matrix (i.e., satisfying L1 = 0) with centered independent off-diagonal entries
such that

∑
j∈[n]\i EL2

i j is equal for every i , and

∑

j∈[n]\i
EL2

i j � max
i �= j

∥∥Li j
∥∥2∞ log n.

Then, with high probability,

λmax(L) − max
i

Lii � (log n)−
1
2 max

i
Lii .

Not only does ourmain result provide an extremely simple tool to precisely estimate
the largest eigenvalue of Laplacian matrices, but in the applications studied below,
the largest diagonal value also enjoys an interpretation that is intimately tied to the
underlying problem.

To illustrate the latter point, we turn back to graph theory. It is well known that the
spectrum of the Laplacian of a graph dictates whether or not the graph is connected.
On the other hand, its diagonal is simply given by the degrees of the nodes of the
graph. A relation between the spectrum of the Laplacian and its diagonal could then
translate into a relation between degrees of nodes of a graph and its connectivity. In
fact, such a relation is already known to exist: The phase transition for connectivity
of Erdős–Rényi graphs2 coincides with the one for the existence of isolated nodes.
While it is true that any graph with an isolated node (a node with degree zero) cannot
be connected, the converse is far from true, rendering this phenomenon particularly
interesting. In Sect. 3.1, we will use our main result to provide a simple and illustrative
proof of this phenomenon.3

Wewill use ourmain result to give sharp guarantees for certain algorithms that solve
theZ2 Synchronization problem and the community detection problem in the stochas-
tic block model. The Z2 Synchronization problem consists of recovering binary labels
xi = ±1 associated with nodes of a graph from noisy (pairwise) measurements of xi x j
whenever (i, j) is an edge of the graph (see [42]). This problem is intimately related
to correlation clustering [11]. Despite its hardness, spectral methods and semidefinite
programming-based methods are known to perform well in both the worst-case [9]
and average-case settings [1,2,19].4

Community detection, or clustering, in a graph is a central problem in countless
applications. Unfortunately, even the simplified version of partitioning a graph into

1 Our results will be of nonasymptotic nature (we refer the interested reader to [47] for a tutorial on
nonasymptotic estimates in random matrix theory).
2 The Erdős–Rényi model for random graphs will be discussed in more detail in Sect. 3.1.
3 This will be done by considering a centered version of the Laplacian of the random graph, and relating
also the spectral properties and diagonal of it to the ones of the original Laplacian.
4 The information-theoretic limits of this problem have also been investigated [1,2,15,16].
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two vertex sets, with the same size, that minimize the number of edges across the
partition, referred to as minimum bisection, is known to be NP-hard. Nevertheless,
certain heuristics are known to work well for typical realizations of random graph
models that exhibit community structure [12,25,35]. In this setting, a particularly
popular model is the stochastic block model with two communities.

Definition 1.2 (Stochastic block model with two communities) Given n even, and
0 ≤ p, q ≤ 1, we say that a random graph G is drawn from G(n, p, q), the stochastic
block model with two communities, if G has n nodes, divided in two clusters of n

2
nodes each, and for each pair of vertices i, j , (i, j) is an edge of G with probability
p if i and j are in the same cluster and with probability q otherwise, independently
from any other edge.

We will focus on the setting p > q. The problem of recovering, from a realization
G ∼ G(n, p, q), the original partition of the underlying vertices gained popularity
when Decelle et al. [21] conjectured a fascinating phase transition in the constant
average–degree regime. More precisely, if p = a

n and q = b
n with a > b constants, it

was conjectured that as long as

(a − b)2 > 2(a + b),

it is possible to make an estimate of the original partition that correlates with the true
partition and that below this threshold it is impossible to do so. This conjecturewas later
proven in a remarkable series of works by Mossel et al. [37,38] and Massoulie [34].
Instead of settling for an estimate that correlates with the true partition, we will focus
on exactly recovering the partition. A phase transition for this problemwas established
by Abbe et al. [3] and independently by Mossel et al. [36]. We will show that a certain
semidefinite programming-based algorithm succeeds up to the information theoretical
threshold, thus settling a problem posed in [3].We remark that, while the present paper
was being written, it was brought to our attention that this problem was also solved
independently by parallel research efforts of Hajek et al. [28].

The use of semidefinite relaxations in combinatorial optimization dates back to
the late 1970s with the seminal work of László Lovász [32] in the so-called Lovász
theta function, and this approach was shortly after made algorithmic in [27]. In the
first half of the 1990s, interior point methods were adapted to solve semidefinite
programs [5,39], providing reasonably efficient methods to solve these problems. In
1995, Goemans and Williamson devised the first approximation algorithm based on
semidefinite programming [26]. Their algorithm gave the best-known approximation
ratio to the Max-Cut problem. Ever since, many approximation algorithms have been
designed based on semidefinite programming. In fact, the algorithm we will analyze
is greatly inspired by the semidefinite relaxation in [26]. Remarkably, an important
conjecture of Khot [30] is known to imply that for a large class of problems including
Max-Cut, this approach produces optimal approximation ratios [40].

An approximation ratio is a guarantee that, for any possible instance of the input,
the algorithm outputs a solution whose performance is at least a certain fraction (the
approximation ratio) of the optimal one. The worst-case nature of this type of guaran-
tee is often pessimistic. A popular alternative is to equip the input with a distribution
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(for example the Stochastic Block Model) and give guarantees for most inputs. More
precisely, we will be interested in understanding when is it the case that the semi-
definite relaxation approach gives exactly the correct answer (for most inputs). The
tendency for a large class of semidefinite relaxations to be tight5 has been observed
and conjectured, for example, in [8]. One of the main insights of this paper is the fact
that the phenomenon described by our main result provides a unifying principle for
understanding the tightness of many convex relaxations.

1.1 Notation

Wewill make use of several standardmatrix and probability notations. ForM amatrix,
we will denote its kth smallest eigenvalue by λk(M), largest eigenvalue by λmax(M),
and its spectral normby‖M‖. diag(M)will be used to refer to a vectorwith the diagonal
elements of M as entries. For x ∈ R

n a vector, diag(x) will denote a diagonal matrix
D ∈ R

n×n with Dii = xi .
1 will denote the all-ones vector, whenever there is no risk of ambiguity for its

dimension.
For a scalar random variable Y , we will write its p-norm as ‖Y‖p = (E|Y |p)1/p

and infinity norm as ‖Y‖∞ = inf {a : |Y | ≤ a a. s.}.
Given a graph, deg(i) will be used to denote the degree of node i . In the case of the

stochastic block model, degin(i) will be used for inner-cluster degree and degout(i)
for outer-cluster degree.

We will say that an event E happens with high probability when

P [E] = 1 − n−�(1),

where n is an underlying parameter that is thought of going to infinity (such as the
dimension of the matrices or the number of nodes in the graphs being studied).

2 Main Results

We use this section to formulate precise versions of, and briefly discuss, our main
results.

Theorem 2.1 Let L be an n × n symmetric random Laplacian matrix (i.e., satisfying
L1 = 0) with centered independent off-diagonal entries such that

∑
j∈[n]\i EL2

i j is
equal for every i .

Define σ and σ∞ as

σ 2 =
∑

j∈[n]\i
EL2

i j and σ 2∞ = max
i �= j

∥∥Li j
∥∥2∞ .

5 When the optimal solution of a semidefinite relaxation is the optimal solution of the original problem,
we say that the relaxation is tight.
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If there exists c > 0 such that

σ ≥ c (log n)
1
2 σ∞, (1)

then there exists c1,C1, β1, all positive and depending only on c, such that

λmax(L) ≤
(
1 + C1

(log n)
1
2

)
max
i

Lii

with probability at least 1 − c1n−β1 .

As it will become clear below, the proof of this theorem consists essentially in
showing that, under suitable conditions, maxi Lii � σ

√
log n while ‖X‖ � σ , where

−X is the off-diagonal part of L .
Even though we were not able to find a convincing application for which σ

σ∞ was
asymptotically growing but slower than

√
log n, we still include the theorem below

for the sake of completeness.

Theorem 2.2 Let L be an n × n symmetric random Laplacian matrix (i.e., satisfying
L1 = 0) with centered independent off-diagonal entries such that

∑
j∈[n]\i EL2

i j is
equal for every i .

Define σ and σ∞ as

σ 2 =
∑

j∈[n]\i
EL2

i j and σ 2∞ = max
i �= j

∥∥Li j
∥∥2∞ .

If there exist c and γ > 0 such that

σ ≥ c (log n)
1
4+γ σ∞, (2)

then there exist C2, c2, ε, and β2, all positive and depending only on c and γ > 0,
such that

λmax(L) ≤
(
1 + C2

(log n)ε

)
max
i

Lii ,

with probability at least 1 − c2 exp
[− (log n)β2

]
.

Remark 2.3 In the theorems above, the condition that
∑

j∈[n]\i EL2
i j is equal for every

i can be relaxed to the requirement that

c′σ 2 ≤
∑

j∈[n]\i
EL2

i j ≤ σ 2,

for all i . This requires only simple adaptations to the proofs of these theorems.

While we defer the proof of these theorems to Sect. 4, we briefly describe its idea.
Lemma 4.1 (borrowed from [10]) estimates that
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‖X‖ � σ + σ∞
√
log n,

where −X is the off-diagonal part of L . One the other hand, Lii = ∑ j∈[n]\i Xi j has

variance σ 2 and the central limit theorem would suggest that Lii behave like indepen-
dent Gaussians of variance σ 2, whichwouldmean that maxi Lii ∼ σ

√
log n rendering

the contribution of the off-diagonal entries (to the largest eigenvalue) negligible. How-
ever, several difficulties arise the diagonal entries are not independent (as each pair
shares a summand) and one needs to make sure that the central limit theorem behavior
sets in (this is, in a way, ensured by requirements (1) and (2)). The proofs in Sect. 4
make many needed adaptations to this argument to make it rigorous.

3 Applications

We now turn our attention to applications of the main results. As a form of warm-up,
we will start with understanding connectivity of Erdős–Rényi graphs.

3.1 Connectivity of Erdős–Rényi Graphs

Recall that, for an integer n and an edge probability parameter 0 ≤ p ≤ 1, the Erdős–
Rényi graph model [24] G(n, p) is a random graph on n nodes where each one of the(n
2

)
edges appears independently with probability p.
We are interested in understanding the probability that G, drawn according to

G(n, p), is a connected graph. We will restrict our attention to the setting p ≤ 1
2 . Let

L be the Laplacian of the random graph, given by D − A where A is its adjacency
matrix and D a diagonal matrix containing the degree of each node. It is well known
(see, e.g., [18]) that G connected is equivalent to λ2(L) > 0.

It is clear that if G has an isolated node, then it cannot be connected. It is also
known that for there not to be isolated nodes one needs the average degree of each
node to be at least logarithmic [24]. For this reason, we will focus on the regime

p = ρ log n

n
,

for a constant ρ. It is easy to establish a phase transition on the degrees of the nodes
of graphs drawn from G(n, p).

Lemma 3.1 Let n be a positive integer, ρ a constant, and p = ρ log n
n . Let G be a

random graph drawn from G(n, p), then for any constant 	 > 0:

(1) If ρ > 1, then, with high probability, mini∈[n] deg(i) ≥ 	√
log n

E deg(i).

(2) If ρ < 1, then, with high probability, mini∈[n] deg(i) = 0. That is, G has at least
one isolated node, thus being disconnected.

Part (2) of the lemma is a classical result [24], a particularly simple proof of it
proceeds by applying the second moment method to the number of isolated nodes in
G. For the sake of brevity, we will skip those details and focus on part (1). The main
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thing to note in part (1) of Lemma 3.1 is that the lower bound on minimum degree is
asymptotically smaller than the average degree E deg(i).

Proof (of part (1) of Lemma 3.1)
Let p = ρ log n

n and i denote a node of the graph, note that E deg(i) = n−1
n ρ log n.

We use Chernoff bound (see, for example, Lemma 2.3.3 in [23]) to establish, for any
0 < t < 1,

P
[
deg(i) < tE deg(i)

] ≤
[
exp(−(1 − t))

t t

]E deg(i)

=
[
exp(−(1 − t))

t t

] n−1
n ρ log n

= exp

[
− [1 − t − t log(1/t)

] n − 1

n
ρ log n

]
.

Taking t = 	√
log n

gives, for n large enough (so that t ≤ 1), that the probability that

deg(i) < 	√
log n

E deg(i) is at most

exp

[
−
[
1 − 	√

log n
− 	√

log n
log

(√
log n

	

)]
n − 1

n
ρ log n

]
,

which is easily seen to be exp
[−ρ log n + O(

√
log n log log n)

]
. A simple union

bound over the n vertices of G gives

P

[
min
i∈[n] deg(i) <

	√
log n

E deg(i)

]
≤ exp

[
−(ρ − 1) log n + O(

√
log n log log n)

]
.

��
Using Theorem 2.1, we will show that, with high probability, as long as every node

in G is at least 	√
log n

of the average degree, for a suitable 	, then G is connected.
This is made precise in the following Lemma.

Lemma 3.2 Let n ≥ 2 be an integer and ε > 0. Suppose that ε log n
n ≤ p ≤ 1

2 and G a
random graph drawn from G(n, p). There exists a constant 	 (potentially depending
on ε) such that, with high probability, the following holds:

If

min
i∈[n] deg(i) ≥ 	√

log n
E deg(i),

then G is a connected graph (note that the right-hand side does not depend on i).

Before proving this Lemma, we note that Lemmas 3.1 and 3.2 immediately imply
the well-known phase transition phenomenon.
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Theorem 3.3 Let n be a positive integer and p = ρ log n
n .

(1) If ρ > 1, then, with high probability, a random graph drawn from G(n, p) is
connected.

(2) If ρ < 1, then, with high probability, a random graph drawn from G(n, p) has at
least one isolated node, thus being disconnected.

While this phase transition is well understood, we find our proof through Lem-
mas 3.1 and 3.2 enlightening, as it provides a simple explanation of why the phase
transition for disappearance of isolated nodes coincides with the one for connectiv-
ity. Moreover, it also emphasizes a connection with the optimality of the semidefinite
relaxations in both Z2 Synchronization and the Stochastic Block Model that we will
discuss in the sections to follow.

Proof (of Lemma 3.2)
Let LER be the graph Laplacian of G. Note that E (LER) = npI − p11T , which

means that

LER = npI − p11T − [−LER + E(LER)] .

Since LER1 = 0 and G is connected if and only if λ (LER) > 0, it follows that G
is connected if and only if

λmax [−LER + E(LER)] < np. (3)

We proceed by using Theorem 2.1 for

L = −LER + E (LER) .

The hypotheses of the theorem are satisfied as the off-diagonal entries of L are
independent and

∑

j∈[n]\i
EL2

i j = (n − 1)p(1 − p) ≥ np(1 − p)

2
≥ ε

2
(1 − p)2 log n

= ε

2
log nmax

i �= j

∥∥Li j
∥∥2∞ .

This guarantees that there exists a constant C1 such that, with high probability,

λmax [−LER + E (LER)] ≤
(
1 + C1√

log n

)
max
i∈[n]

[− deg(i) + (n − 1)p
]
, (4)

where deg(i) = (LER)i i is the degree of node i . Equivalently,

λmax [−LER + E (LER)] ≤ np +
(
1 + C1√

log n

)[
− min

i∈[n] deg(i) + (n − 1)p

]
− np.
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Together with (3), This implies that, as long as (4) holds, then

(
1 + C1√

log n

)[
− min

i∈[n] deg(i) + (n − 1)p

]
− np < 0

implies the connectivity of G. Straightforward manipulations show that this condition
is equivalent to

min
i

deg(i) > np
C1√

log n + C1
− p,

which is implied by

min
i

deg(i) ≥ np
C1√
log n

. (5)

The lemma follows by taking 	 = 2C1. ��

3.2 A Simpler Problem: Z2 Synchronization with Gaussian Noise

Before presenting the applications of Theorem 2.1 in understanding the performance
of a semidefinite relaxation for the problems ofZ2 Synchronization and recovery in the
Stochastic Block Model, we will motivate them by presenting beforehand a simpler
version of these problems:6 given a noise level σ and a vector z ∈ {±1}n suppose we
are given noisy measurements

Yi j = zi z j + σWi j ,

for each pair (i, j), where Wi j are i.i.d. standard Gaussian random variables (with
Wi j = Wji ). A version of this problem, over the complex numbers, is treated in [7].
Our objective is to devise an algorithm that recovers the correct z with high probability.
By definition, the maximum a posteriori (MAP) estimator maximizes the probability
of recovering the correct variable z. Given that we have no a priori information on z we
assume a uniform prior, in that case the MAP estimator coincides with the maximum
likelihood estimator (MLE) for z. The latter is the solution of

max xT Y x
s.t. x ∈ R

n

x2i = 1,
(6)

which is known to be NP-hard in general. In fact, (6) includes the Max-Cut problem
by taking Y to be the Laplacian of a graph. In the spirit of the relaxation proposed
in [26] for the Max-Cut problem, we take X = xxT and rewrite (6) as

6 While the result in this section is not a direct application of Theorem 2.1, it will help providing intuition
of how Theorem 2.1 plays a crucial role in the estimates in the next sections.
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max Tr(Y X)

s.t. Xii = 1
X  0
rank(X) = 1.

(7)

We now relax the nonconvex rank constraint and arrive at the following semidefinite
program, which can be solved in polynomial time up to arbitrary precision [46].

max Tr(Y X)

s.t. Xii = 1
X  0.

(8)

As it will be clear in the below, this relaxation is also used to solve Z2 Synchro-
nization and recovery in the Stochastic Block Model, albeit for a different coefficient
matrix Y .

Note that if X = xxT is the unique solution to (8), then x must be the solution
to (6), meaning that we are able to compute the MLE efficiently by solving (8). This
motivates us to understand when is it the case that X = xxT is the unique optimal
solution of (8). A fruitful way of approaching this relies on duality. The dual of (8) is
given by: min Tr(D)

s.t. D is diagonal
D − Y  0.

(9)

Weak duality guarantees that if X and D are feasible solutions of, respectively,
(8) and (9), then Tr(Y X) ≤ Tr(D). Indeed, since X and D − Y are both positive
semidefinite, we must have

0 ≤ Tr [(D − Y )X ] = Tr(D) − Tr(Y X). (10)

This means that if we are able to find a so-called dual certificate, a matrix D feasible
for (9) for which Tr(D) = Tr(Y xxT ), then it guarantees that X = xxT is an optimal
solution of (8). To guarantee uniqueness, it suffices to further ensure that λ2(D −
Y ) > 0. In fact, if there existed another optimal solution X , by (10), one would
have Tr [(D − Y )X ] = 0 which can be shown to imply (see, for example, Lemma 5.1.
in [1]), together with the feasibility of X , that X = xxT . This establishes the following
Lemma.
Lemma 3.4 (Dual certificate) Let Y be a symmetric n × n matrix and x ∈ {±1}n.
If there exists a diagonal matrix D, such that Tr(D) = xT Y x, D − Y  0, and
λ2(D − Y ) > 0, then X = xxT is the unique optimal solution of (8).

We take a candidate dual certificate D whose diagonal elements are given by

Dii =
n∑

j=1

Yi j xi x j .

Note that D = D[diag(x)Ydiag(x)] as per Definition 1.1. It is easy to see that Tr(D) =
xT Y x and (D − Y )x = 0 which gives the following Lemma.
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Lemma 3.5 Let Y be a symmetric n×n matrix and x ∈ {±1}n. Let D be the diagonal
matrix defined as D = D[diag(x)Ydiag(x)]. As long as

λ2(D − Y ) > 0,

X = xxT is the unique optimal solution of (8).

Let us return to the setting on which Y = zzT +σW , whereW is a standardWigner
matrix: a symmetric matrix with iid standard Gaussian entries. We want to determine
for which values of σ one excepts X = zzT to be, with high probability, the solution
of (8), as we are interested not only to compute the MLE but also for it to coincide
with the planted vector z we want to recover. Since diag(z)Wdiag(z) ∼ W we can,
without loss of generality, take z = 1. In that case, we are interested in understanding
when

λ2

(
D[11T +σW] −

(
11T + σW

))
> 0. (11)

Since

D[11T +σW]−
(
11T +σW

)
=
(
nIn×n−11T

)
− σ (−DW + W ) = L11T − σ L [−W ],

and 1 is always in the nullspace of any Laplacian matrix, we can rewrite (11) as
σλmax

(
L [−W ]

)
< λ2

(
L11T

)
, showing that it is equivalent to

λmax
(
L [−W ]

)
<

n

σ
. (12)

The triangular inequality tells us that λmax
(
L [−W ]

) ≤ λmax (−DW ) + ‖W‖. It is
well known that, for any ε > 0, ‖W‖ ≤ (2 + ε)

√
n with high probability (see, for

example, Theorem II.11 in [20]). On the other hand,

λmax (−DW ) = max
i∈[n]

[− (DW )i i
]
,

which is the maximum of n Gaussian random variables each with variance n. A simple
union bound yields that, for any ε > 0, λmax

(
D[−W ]

)
<
√

(2 + ε)n log n with high
probability. This readily implies an exact recovery guarantee for Z2 Synchronization
with Gaussian noise.

Proposition 3.6 Let z ∈ {±1}n and Y = zzT + σW where W is a symmetric matrix

with iid standard Gaussian entries. If there exists ε > 0 such that σ <
√

n
(2+ε) log n ,

then, with high probability, X = zzT is the unique solution to the semidefinite pro-
gram (8).

Let us investigate the optimality of this upper bound on σ . If the diagonal elements
of D[−W ] were independent,7 their distribution would be known to indeed concentrate
around

√
2n log n, suggesting that

7 The diagonal entries of DW are not independent because each pair of sums shares a term Wi j as a
summand.
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‖W‖ � λmax
(
D[−W ]

)
, (13)

which would imply

λmax
(
L [−W ]

) = [1 + o(1)] λmax
(
D[−W ]

)
. (14)

Both of these statements can be rigorously shown to be true.8

This suggests that, in rough terms, the success of the relaxation (8) depends mostly
on whether λmax

(
D[−W ]

)
< n

σ
, which is equivalent to

max
i∈[n]

⎡

⎣−σ

n∑

j=1

Wi j

⎤

⎦ < n, (15)

which can be interpreted as a bound on the amount of noise per row of Y . We argue
next that this type of upper bound is indeed necessary for any method to succeed at
recovering z from Y .

Once again, let us consider z = 1 without loss of generality. Let us consider an
oracle version of problem on which one is given the correct label of every single node
except of node i . It is easy to see that the maximum likelihood estimator for zi on this
oracle problem is given by

sign

⎡

⎣
∑

j∈[n]\i
Yi j

⎤

⎦ = sign

⎡

⎣n − 1 + σ
∑

j∈[n]\i
Wi j

⎤

⎦ ,

which would give the correct answer if and only if −σ
∑

j∈[n]\i Wi j < n − 1.
This means that if

max
i∈[n]

⎡

⎣−σ
∑

j∈[n]\i
Wi j

⎤

⎦ > n − 1, (16)

one does not expect the MLE to succeed (with high probability) at recovering z from
Y = zzT + σW . This means that (with a uniform prior on z) no method is able
to recover z with high probability. Note the similarity between (15) and (16). This
strongly suggests the optimality of the semidefinite programming-based approach (8).

These optimality arguments can be made rigorous. In fact, in the sections to follow,
we will establish precise optimality results of this type, for the applications we are
interested in. The main ingredient (13) in the rough argument above was the real-
ization that the spectral norm of W is, with high probability, asymptotically smaller
than the largest diagonal entry of D[−W ]. Indeed, Theorems 2.1 and 2.2 establish
precisely this fact for a large class of matrices with independent off-diagonal entries.
Empowered with this result, we will be able to establish optimality for the semidefinite

8 While a simple adaptation of the proof of Theorem 2.1 can establish (13) and (14) we omit their proofs
for the sake of brevity, but emphasize that in this particular setting (where W is a standard Wigner matrix),
one does not need the whole strength of Theorem 2.1 as more elementary proofs exist.
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programming approach to solve the problems of Z2 Synchronization and recovery in
the stochastic block model, where the underlying random matrices have much less
well understood distributions. Modulo the use of Theorem 2.1, the arguments used
will be very reminiscent of the ones above.

It is pertinent to compare this approach with the one of using noncommutative
Khintchine inequality, or the related matrix concentration inequalities [44,45], to esti-
mate the spectral norms in question. Unfortunately, those general purpose methods
are, in our case, not fine enough to give satisfactory results. One illustration of their
known suboptimality is the fact that the upper bound they give for ‖W‖ is of order√
n log n, which does not allow to establish (13), a crucial step in the argument. In

fact, the looseness of these bounds is reflected in the suboptimal guarantees obtained
in [1–3]. Our results are able to establish a phenomenon of the type of (13) by relying
on recent sharp estimates for the spectral norm of matrices with independent entries
in [10].

3.3 Synchronization Over the Group of Two Elements

Recall the setting of Z2 Synchronization [1,2]. Given an underlying graph G with n
nodes, the task is to recover a binary vector z ∈ {±1}n from noisy measurements Yi j
of zi z j . Following [1,2], we will take the underlying graph G to be an Erdős–Rényi
graph G(n, p) and, for each edge (i, j) ∈ G,

Yi j =
{

zi z j with probability 1 − ε

−zi z j with probability ε,

where ε < 1
2 represents the noise level. We are interested in understanding for which

values of p and ε is it possible to exactly recover z. It is easy to see that, just like in the
example in Sect. 3.2, the maximum likelihood estimator is given by (6). Similarly, we
consider its semidefinite relaxation (8) and investigate when X = zzT is the unique
solution of (8).

It is easy to see that Y is given by

Y = diag(z) (AG − 2AH ) diag(z),

where AG is the adjacency matrix of the underlying graph and AH is the adjacency
of the graph consisting of the corrupted edges. In this case, we want conditions on ε

and p under which zzT is the unique solution to:

max Tr
[
diag(z) (AG − 2AH ) diag(z)X

]

s.t. Xii = 1
X  0.

(17)

Lemma 3.5 states that zzT is indeed the unique solution as long as the second
smallest eigenvalue of
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DAG−2AH −diag(z) (AG−2AH ) diag(z) = DG−2DH−diag(z) (AG−2AH ) diag(z)
(18)

is strictly positive. As diag(z) (DG − 2DH ) diag(z) = DG − 2DH and conjugating
by diag(z) does not alter the eigenvalues, the second smallest eigenvalue of (18) being
strictly positive is equivalent to

λ2 (DG − AG − 2 (DH − AH )) > 0. (19)

Since DG−AG−2 (DH − AH ) = LG−2LH , where LG and LH are theLaplacians
of, respectively,G and H , we define LSynch and write the condition in terms of LSynch.

Definition 3.7 (LSynch) In the setting described above,

LSynch = LG − 2LH ,

where G is the graph of all measurements and H is the graph of wrong measurements.

Then, (19) is equivalent to λ2
(
LSynch

)
> 0. The following Lemma readily follows

by noting that E
[
LSynch

] = np(1 − 2ε)In×n − p(1 − 2ε)11T .

Lemma 3.8 Consider the Z2 Synchronization problem defined above and LSynch
defined in Definition 3.7. As long as

λmax
(−LSynch + E

[
LSynch

])
< np(1 − 2ε),

the semidefinite program (17) achieves exact recovery.

In [1,2], this largest eigenvalue is estimated using the general purpose matrix con-
centration inequalities (such as the ones in [44]) obtaining a suboptimal bound. In
contrast, we will do this estimate using Theorem 2.1.

Let us define, for a node i, deg+(i) as the number of noncorrupted edges incident
to i and deg−(i) as the number of corrupted edges incident to i . We start by obtaining
the following theorem.

Theorem 3.9 As long as n > 2, p >
log n
2n and p(1 − 2ε)2 ≤ 1

2 , there exists 	 > 0
such that, with high probability, the following holds: If

min
i∈[n]

[
deg+(i) − deg−(i)

] ≥ 	√
log n

E
[
deg+(i) − deg−(i)

]
, (20)

then the semidefinite program (17) achieves exact recovery.

Proof (of Theorem 3.9)
The idea is to apply Theorem 2.1 to L = −LSynch + E

[
LSynch

]
. Note that L has

independent off-diagonal entries and

∑

j∈[n]\i
E

[
L2
i j

]
= (n − 1)

(
p − p2(1 − 2ε)2

)
≥ 1

4
np ≥ 1

8
log n

≥ 1 + p(1 − 2ε)

8(1 + √
2)

log n = log n

8(1 + √
2)

max
i �= j

∥∥∥L2
i j

∥∥∥∞ .
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Hence, there exists a constant 	′ such that, with high probability,

λmax
(−LSynch+E

[
LSynch

]) ≤
(
1 + 	′

√
log n

)
max
i∈[n]

[−(LSynch)i i +E
[
(LSynch)i i

]]
.

We just need to show that there exists 	 > 0 such that if (20) holds, then

(
1 + 	′

√
log n

)
max
i∈[n]

[−(LSynch)i i + E
[
(LSynch)i i

]]
< np(1 − 2ε). (21)

Recall that (LSynch)i i = deg+(i) − deg−(i) and E(LSynch)i i = (n − 1)p(1 − 2ε).
We can rewrite (21) as

min
i∈[n](LSynch)i i > (n − 1)p(1 − 2ε) − np(1 − 2ε)

(
1 + 	′

√
log n

)−1

.

Straightforward algebraic manipulations show that there exists a constant 	 such
that

(n − 1)p(1−2ε) − np(1 − 2ε)

(
1 + 	′

√
log n

)−1

≤ 	√
log n

E
[
deg+(i)−deg−(i)

]
,

proving the theorem. ��
We note that if p ≤ log n

2n , then Theorem 3.3 implies that, with high probability, the
underlying graph is disconnected implying impossibility of exact recovery. We also
note that if we do not have

min
i∈[n]

[
deg+(i) − deg−(i)

] ≥ 0, (22)

then the maximum likelihood does not match the ground truth, rendering exact recov-
ery unrealistic.9 The optimality of this analysis hinges upon the fact that the right-hand
side of (20) is asymptotically smaller than the expectation of deg+(i)− deg−(i), sug-
gesting that (20) and (22) have similar probabilities and the same phase transition.

The next theorem establishes the optimality of the semidefinite programming-based
approach in a particular regime, solving a problem raised in [1,2]. While it is clear
that one can use Theorem 3.9 to establish similar results for many other regimes (for
some, through estimates similar to the ones in Lemma 3.17), the main purpose of this
paper is not to perform a detailed analysis of this problem but rather to illustrate the
efficacy of these semidefinite relaxations and the fundamental connections between
these different phenomena, through Theorem 2.1. The independent parallel research
efforts of Hajek et al. [29] address other regimes for this particular problem; we refer
the interested reader there.

9 Recall that, if we assume a uniform prior, the MLE is the method that maximizes the probability of exact
recovery.
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Corollary 3.10 As long as ε < 1
2 and p(1 − 2ε)2 ≤ 1

2 , there exists a constant K for
which the following holds: If there exists δ > 0 such that

(n − 1)p ≥ (1 + δ)
2

(1 − 2ε)2

[
1 + K√

log n
+ 5

3
(1 − 2ε)

]
log n, (23)

then the semidefinite program (17) achieves exact recovery with high probability.

Before proving this corollary, we emphasize how it solves the problem, raised
in [1,2], of whether the semidefinite programming approach for Z2 Synchronization
is optimal in the low signal-to-noise regime. In fact, the results in [1,2] ensure that the
threshold in Corollary 3.10 is optimal for, at least, an interesting range of values of ε.
Empowered with Theorem 3.9, the proof of this corollary becomes rather elementary.

Proof (of Corollary 3.10)
This corollary will be established with a simple use of Bernstein’s inequality.
Our goal is to show that, given 	, there exists a K and δ such that, under the

hypothesis of the corollary,

min
i∈[n]

[
deg+(i) − deg−(i)

] ≥ 	√
log n

E
[
deg+(i) − deg−(i)

]
,

holds with high probability. This implies, via Theorem 3.9, that the semidefinite pro-
gram (17) achieves exact recovery with high probability.

We will consider n to be large enough. We start by noting that it suffices to show
that there exists δ > 0 such that, for each i ∈ [n] separately,

P

[
deg+(i) − deg−(i) <

	√
log n

E
[
deg+(i) − deg−(i)

]] ≤ n−(1+δ). (24)

Indeed, (24) together with a union bound over the n nodes of the graph would establish
the corollary.

Throughout the rest of the proof, we will fix i ∈ [n] and use deg+ and deg− to
denote, respectively, deg+(i) and deg−(i). It is easy to see that

deg+ − deg− = (n − 1)p(1 − 2ε) −
n−1∑

j=1

x j ,

where x j are i.i.d. centered random variables with distribution

x j =
⎧
⎨

⎩

−1 + p(1 − 2ε) with probability p(1 − ε)

1 + p(1 − 2ε) with probability pε
p(1 − 2ε) with probability 1 − p.
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For any t > 0, Bernstein’s inequality gives

P

⎡

⎣
n−1∑

j=1

x j > t

⎤

⎦ ≤ exp

(
− t2/2

(n − 1)Ex2j + t
3‖x j‖∞

)
.

Taking t =
[
1 − 	√

log n

]
(n − 1)p(1 − 2ε) gives

P

[
deg+ − deg− <

	√
log n

E
[
deg+ − deg−

]]

≤ exp

⎛

⎜⎝−
([

1 − 	√
log n

]
(n − 1)p(1 − 2ε)

)2
/2

(n − 1)Ex2j +
([

1− 	√
log n

]
(n−1)p(1−2ε)

)

3 ‖x j‖∞

⎞

⎟⎠

= exp

⎛

⎜⎜⎝−
[
1 − 	√

log n

]2
(n − 1)p(1 − 2ε)2/2

1
pEx

2
j +

([
1− 	√

log n

]
(1−2ε)

)

3 ‖x j‖∞

⎞

⎟⎟⎠

Condition (23) (for a K to be determined later) guarantees that

(n − 1)p(1 − 2ε)2/2 ≥ (1 + δ)

[
1 + K√

log n
+ 5

3
(1 − 2ε)

]
log n,

meaning that we just need to show that there exists K > 0 for which

[
1 − 	√

log n

]2 (
1 + K√

log n
+ 5

3 (1 − 2ε)
)

1
pEx

2
j +

([
1− 	√

log n

]
(1−2ε)

)

3 ‖x j‖∞
≥ 1.

Note that 1
pEx

2
j = 1 + p(1 − 2ε) ≤ 1 + (1 − 2ε) and ‖x j‖∞ = 1 + p(1 − 2ε) ≤ 2,

implying that

1

p
Ex2j +

([
1 − 	√

log n

]
(1 − 2ε)

)

3
‖x j‖∞ ≤ 1 + 5

3
(1 − 2ε).

Also,
[
1 − 	√

log n

]2 ≥ 1 − 2	√
log n

. The corollary is then proved by noting that there

exists K > 0 such that

K√
log n

≥ 2K
	

log n
+ 2	√

log n

(
1 + 5

3
(1 − 2ε)

)
.

��
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3.4 Stochastic Block Model with Two Communities

We shift our attention to the problem of exact recovery of the stochastic block model
with two communities. Recall Definition 1.2, for n even and 0 ≤ q < p ≤ 1, we
say that a graph G with n nodes is drawn from the Stochastic block model with two
communities G(n, p, q) if the nodes are divided in two sets of n

2 nodes each, and for
each pair of vertices i, j , (i, j) is an edge of G with probability p if i and j are in the
same cluster and q otherwise, independently from any other edge. Let g ∈ {±1}n be
a vector that is 1 in one of the clusters and −1 in the other, our task is to recover g.

The maximum likelihood estimator for g is given by

max xT Bx
s.t. x ∈ R

n

x2i = 1,∑n
i=1 xi = 0,

(25)

where B is the signed adjacency ofG, meaning that Bi j = 1 if (i, j) is an edge ofG and
Bi j = −1 otherwise. Note that B = 2A−(11T − I

)
, where A is the adjacencymatrix.

We will drop the balanced constraint
∑n

i=1 xi = 0, arriving at (6) for Y = B. The
intuitive justification is that there are enough−1 entries in B to discourage unbalanced
solutions. As in the problems considered above, we will consider the semidefinite
relaxation (8).

max Tr
[(
2A − (11T − I

))
X
]

s.t. Xii = 1
X  0.

(26)

We want to understand when is it that X = ggT is the unique solution of (26).
Lemma 3.5 shows that ggT is indeed the unique solution of (26) as long as the second
smallest eigenvalue of

D[diag(g)(2A−(11T −I))diag(g)] −
[
2A −

(
11T − I

)]
, (27)

is strictly positive.
Let us introduce a new matrix.

Definition 3.11 (�SBM ) Given a graphG drawn from the stochastic blockmodel with
two clusters,

�SBM = D+ − D− − A,

where D+ is a diagonal matrix of inner degrees, D− is a diagonal matrix of outer
degrees and A is the adjacency matrix of the graph.

It is easy to see that D[diag(g)Adiag(g)] = D+ − D−. In fact,

D[diag(g)(2A−(11T −I))diag(g)] −
[
2A −

(
11T − I

)]
= 2�SBM + 11T ,
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whichmeans that ggT is the unique solution of (26) as long asλ2
(
2�SBM + 11T

)
> 0.

Note that

E

[
2�SBM + 11T

]
= 2

((n
2
p − n

2
q
)
In×n −

(
p + q

2
11T + p − q

2
ggT

))
+ 11T

= n (p − q)

(
In×n − ggT

n

)
+ n (1 − (p + q))

11T

n
.

If we suppose that p < 1
2 , we have 1 − (p + q) > p − q the second smallest

eigenvalue of E
[
2�SBM + 11T

]
is n (p − q). This establishes the following Lemma.

Lemma 3.12 Let n ≥ 4 be even and let G be drawn from G(n, p, q) with edge
probabilities p < 1

2 and q < p. As long as

λmax (−�SBM + E [�SBM]) <
n

2
(p − q),

the semidefinite program (26) for the stochastic block model problem achieves exact
recovery, meaning that ggT is its unique solution.

Estimating this largest eigenvalue using Theorem 2.1, we obtain the following
theorem.

Theorem 3.13 Let n ≥ 4 be even and let G be drawn from G(n, p, q). As long as
log n
3n < p < 1

2 and q < p, then there exists 	 > 0 such that, with high probability,
the following holds: If,

min
i

(
degin(i) − degout(i)

) ≥ 	√
log n

E
[
degin(i) − degout(i)

]
(28)

then the semidefinite program (26) achieves exact recovery.

Proof The idea is again to apply Theorem 2.1. One obstacle is that �SBM is not a
Laplacian matrix. Let g denote the vector that is 1 in a cluster and −1 in the other, and
let diag(g) denote a diagonal matrix with the entries of g on the diagonal. We define

�′
SBM = diag(g)�SBMdiag(g).

Note that �′
SBM is a Laplacian and both the eigenvalues and diagonal elements of

E
[
�′
SBM

]− �′
SBM are the as E [�SBM] − �SBM.

We apply Theorem 2.1 to L = −�′
SBM + E

[
�′
SBM

]
. Note that L has independent

off-diagonal entries and

∑

j∈[n]\i
E

[
L2
i j

]
=
(n
2

− 1
) (

p − p2
)

+ n

2

(
q − q2

)
≥ n

8
p ≥ log n

24

≥ log n

24
(1 − q) = log n

24
max
i �= j

∥∥∥L2
i j

∥∥∥∞ .
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Hence, there exists a constant 	′ such that, with high probability,

λmax
(−�′

SBM + E
[
�′
SBM

]) ≤
(
1 + 	′

√
log n

)
max
i∈[n]

[−(�′
SBM)i i + E

[
(�′

SBM)i i
]]

,

which is equivalent to

λmax (−�SBM + E [�SBM]) ≤
(
1 + 	′

√
log n

)
max
i∈[n] [−(�SBM)i i + E [(�SBM)i i ]] .

(29)
We just need to show that there exists 	 > 0 such that if (28) holds, then

(
1 + 	′

√
log n

)
max
i∈[n] [−(�SBM)i i + E [(�SBM)i i ]] <

n

2
(p − q) − p. (30)

Note that (�SBM)i i = degin(i) − degout(i) and

E
[
degin(i) − degout(i)

] = n

2
(p − q) − p.

Condition (28) can thus be rewritten as

max
i∈[n] [−(�SBM)i i + E [(�SBM)i i ]] ≤

[
1 − 	√

log n

] (n
2
(p − q) − p

)
.

The theorem is then proven by noting that, for any 	′, there exists 	 such that

[
1 − 	√

log n

] (n
2
(p − q) − p

)
≤
[
1 + 	′

√
log n

]−1 (n
2
(p − q) − p

)
.

��
Asa corollary of this theorem,we can establish a sharp threshold for the semidefinite

program (26) to achieve exact recovery for the stochastic block model of two clusters,
solving a problem posed in [3]. We recall that this problem was simultaneously solved
by the parallel research efforts of Hajek et al. [28].

We first show a Lemma concerning mini
(
degin(i) − degout(i)

)
, analogous to

Lemma 3.1.

Lemma 3.14 LetG bea randomgraphwith n nodes drawnaccordingly to the stochas-
tic block model on two communities with edge probabilities p and q. Let p = α log n

n

and q = β log n
n , where α > β are constants. Then for any constant 	 > 0,

(1) If √
α −√β >

√
2, (31)

then, with high probability,

min
i

(
degin(i) − degout(i)

) ≥ 	√
log n

E
[
degin(i) − degout(i)

]
.
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(2) On the other hand, if √
α −√β <

√
2, (32)

then, with high probability,

min
i

(
degin(i) − degout(i)

)
< 0,

and exact recovery is impossible.

Part (2) is proven in [3], so we will focus on part (1). Before proving this lemma
we note how, together with Theorem 3.13, this immediately implies the following
corollary.

Corollary 3.15 Let G be a random graph with n nodes drawn accordingly to the
stochastic block model on two communities with edge probabilities p and q. Let
p = α log n

n and q = β log n
n , where α > β are constants. Then, as long as

√
α −√β >

√
2, (33)

the semidefinite program (26) coincides with the true partition with high probability.

In order to establish Lemma 3.14, we will borrow an estimate from [3].

Definition 3.16 (Definition 3 in [3]) Let m be a natural number, p, q ∈ [0, 1], and
δ ∈ R, we define

T (m, p, q, δ) = P

[
m∑

i=1

(Zi − Wi ) ≥ δ

]
,

where W1, . . . ,Wm are i.i.d. Bernoulli(p) and Z1, . . . , Zm are i.i.d. Bernoulli(q),
independent of W1, . . . ,Wm .

Lemma 3.17 Recall Definition 3.16. Let α, β, and 	′ be constants. Then,

T

(
n

2
,
α log n

n
,
β log n

n
,−	′√log n

)
≤ exp

[
−
(

α + β

2
−√αβ − δ(n)

)
log n

]
,

with lim
n→∞ δ(n) = 0.

Proof The proof of this lemma is obtained by straightforward adaptations to the proof
of Lemma 8 in [3]. ��

We are now ready to prove Lemma 3.14.

Proof (of Lemma 3.14)
Let α > β be constants satisfying condition (32). Given 	 > 0, we want to show

that, with high probability

min
i

(
degin(i) − degout(i)

) ≥ 	√
log n

n

2
(p − q). (34)
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Let us fix i throughout the rest of the proof. It is clear that we can write

degin(i) − degout(i) =
⎛

⎝
n
2−1∑

i=1

Wi

⎞

⎠−
⎛

⎝
n/2∑

i=1

Zi

⎞

⎠ =
n/2∑

i=1

(Wi − Zi ) + Z n
2
,

where W1, . . . ,Wm are i.i.d. Bernoulli(p) and Z1, . . . , Zm are i.i.d. Bernoulli(q),
independent of W1, . . . ,Wm . Hence, since

	√
log n

(n
2
(p − q)

)
= 	

√
log n

(
α − β

2

)
,

the probability of degin(i) − degout(i) < 	√
log n

( n
2 (p − q)

)
is equal to

P

⎡

⎣
n/2∑

i=1

(Zi − Wi ) − Z n
2

> −	
√
log n

(
α − β

2

)⎤

⎦

which is upper bounded by,

P

⎡

⎣
n/2∑

i=1

(Zi − Wi ) > −	
√
log n

(
α − β

2

)⎤

⎦ .

Take 	′ = 	
(

α−β
2

)
+ 1 and recall Definition 3.16, then

P

[
degin(i) − degout(i) <

	√
log n

n

2
(p − q)

]

≤ T

(
n

2
,
α log n

n
,
β log n

n
,−	′√log n

)

≤ exp

[
−
(

α + β

2
−√αβ − δ(n)

)
log n

]
,

where limn→in f t y δ(n) = 0, and the last inequality used Lemma 3.17.
Via a simple union bound, it is easy to see that,

P

[
min
i

(
degin(i) − degout(i)

)
<

	√
log n

n

2
(p − q)

]

≤ exp

[
−
(

α + β

2
−√αβ − 1 − δ(n)

)
log n

]
,

which means that, as long as α+β
2 − √

αβ > 1, (34) holds with high probability.
Straightforward algebraic manipulations show that (31) implies this condition, con-
cluding the proof of the corollary. ��
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4 Proof of the Main Result

We will prove Theorems 2.1 and 2.2 through a few lemmas. Let us define X as the
nondiagonal part of −L and y ∈ R

n as y = diag (DX ), meaning that y = diag(L).
Then, L = DX − X . We will separately lower bound maxi yi and upper bound ‖X‖.
The upper bound on ‖X‖ is obtained by a direct application of a result in [10].

Lemma 4.1 (Remark 3.13 in [10]). Let X be the n × n symmetric matrix with inde-
pendent centered entries. Then, there exists a universal constant c′, such that for every
t ≥ 0

P[‖X‖ > 3σ + t] ≤ ne−t2/c′σ 2∞ , (35)

where we have defined

σ := max
i

√∑

j

E[X2
i j ], σ∞ := max

i j
‖Xi j‖∞.

Before continuing with the proof, let us recall the main idea: Lemma 4.1 gives that,
with high probability,

‖X‖ � σ + σ∞
√
log n,

where X is the off-diagonal part of −L . One the other hand, Lii = ∑
j∈[n]\i Xi j

has variance σ 2. The central limit theorem would thus suggest that Lii behave like a
Gaussian of variance σ 2. Since different sums only share a single summand, they are
“almost” independent which by itself would suggest that maxi Lii ∼ σ

√
log n, which

would imply the theorems. The proof that follows makes this argument precise.
We turn our attention to a lower bound on maxi yi . Recall that

yi =
n∑

j=1

Xi j .

More specifically, we are looking for an upper bound on

P

[
max
i

yi < t

]
,

for a suitable value of t . We note that if the yi ’s were independent, then this could
be easily done via lower bounds on the upper tail of each yi . Furthermore, if the
random variable yi were Gaussian, obtaining such lower bounds would be trivial.
Unfortunately, the random variables in question are neither independent nor Gaussian,
forcing major adaptations to this argument. In fact, we will actually start by lower
bounding

Emax
i∈[n] yi .
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We will obtain such a bound via a comparison (using Jensen’s inequality) with the
maximum among certain independent random variables.

Lemma 4.2 Let I and J be disjoint subsets of [n]. For i ∈ I define zi as

zi =
∑

j∈J
Xi j . (36)

Then

Emax
i∈[n] yi ≥ Emax

i∈I
zi .

Proof

Emax
i∈[n] yi = Emax

i∈[n]

n∑

j=1

Xi j ≥ Emax
i∈I

n∑

j=1

Xi j .

Since I∩J = ∅, {Xi j }i∈I, j∈J is independent from {Xi j }i∈I, j /∈J , and so Jensen’s
inequality gives

Emax
i∈I

n∑

j=1

Xi j ≥ Emax
i∈I

⎡

⎣
∑

j∈J
Xi j +

∑

j /∈J
EXi j

⎤

⎦ = Emax
i∈I

∑

j∈J
Xi j = Emax

i∈I
zi .

��
The following lemma guarantees the existence of sets I and J with desired prop-

erties.

Lemma 4.3 There exist I and J disjoint subsets of [n] such that

|I| ≥ 1

8
n,

and, for every i ∈ I,

Ez2i ≥ 1

8
σ 2,

where zi is defined, as in (36), to be zi =∑ j∈J Xi j .

Proof Given the matrix X , we start by constructing a weighted graph on n nodes such
that wi j = EX2

i j (note that wi i = 0, for al i). Let (S, Sc) be a partition of the vertices
of this graph, with |S| ≥ n

2 , that maximizes the cut

∑

i∈S, j∈Sc
wi j .
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It is easy to see that the maximum cut needs to be at least half of the total edge
weights.10 This readily implies

∑

i∈S, j∈Sc
wi j ≥ 1

2

∑

i< j

wi j = 1

4

∑

i∈[n]

∑

j∈[n]
wi j = 1

4

∑

i∈[n]

∑

j∈[n]
EX2

i j = 1

4
nσ 2.

Consider zi , for i ∈ S, defined as

zi =
∑

j∈Sc
Xi j .

We proceed by claiming that the set I ⊂ S of indices i ∈ S for which

Ez2i ≥ 1

8
σ 2,

satisfies |I| ≥ 1
8n. Thus, taking J = Sc would establish the lemma.

To justify the claim, note that

∑

i∈S
Ez2i =

∑

i∈S, j∈Sc
wi j ≥ 1

4
nσ 2,

and

∑

i∈S
Ez2i ≤ |I|max

i∈S Ez2i + (|S| − |I|) 1
8
σ 2 ≤

(
|I| + 1

8
|S|
)

σ 2 ≤
(

|I| + 1

8
n

)
σ 2,

implying that
(|I| + 1

8n
)
σ 2 ≥ 1

4σ
2. ��

We now proceed by obtaining a lower bound for Emaxi∈I zi , where I and zi are
defined to satisfy the conditions in Lemma 4.3. We note that at this point the random
variables zi are independent and each is a sum of independent random variables. We
use Lemma 8.1 of [31] (for a fixed constant γ = 1) to obtain a lower bound on the
upper tail of each zi .

Lemma 4.4 (Lemma 8.1 of [31]) In the setting described above, there exist two
universal positive constants K and ε such that for every t satisfying t ≥ K σ

8 and

t ≤ ε σ 2√
8σ∞

, we have (for every i ∈ I separately)

P [zi > t] ≥ exp

(
−8

t2

σ 2

)
.

We are now ready to establish a lower bound on Emaxi∈[n] yi .

10 One can build such a cut by consecutively selecting memberships for each node in a greedy fashion as
to maximize the number of incident edges cut, see [41].
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Lemma 4.5 In the setting described above, there exist twouniversal positive constants

K and ε such that for every t satisfying t ≥ K σ
8 and t ≤ ε σ 2√

8σ∞
, we have

Emax
i∈[n] yi ≥ t − (t + nσ∞) exp

⎛

⎝− n

exp
(
8t2
σ 2

)

⎞

⎠

Proof Let K and ε be the universal constants in Lemma 4.4 and t such that K σ
8 ≤

t ≤ ε σ 2√
8σ∞

. Lemma 4.4 guarantees that, for any i ∈ I,

P [zi > t] ≥ exp

(
−8

t2

σ 2

)
.

Due to the independence of the random variables zi , we have

P

[
max
i∈I

zi ≤ t

]
=
∏

i∈I
P [zi ≤ t] =

∏

i∈I
(1 − P [zi > t])

≤
⎛

⎝1 − 1

exp
(
8 t2

σ 2

)

⎞

⎠
|I|

≤
⎛

⎝1 − 1

exp
(
8 t2

σ 2

)

⎞

⎠
n/8

≤ exp

⎛

⎝− n/8

exp
(
8 t2

σ 2

)

⎞

⎠

where the second to last inequality follows from the fact that |I| ≥ 1
8n and the last

from the fact that
(
1 − 1

x

)x ≤ exp(−1) for x > 1.
Since ‖Xi j‖∞ ≤ σ∞, we have that, almost surely, zi ≥ −(n − 1)σ∞. Thus,

Emax
i∈[n] yi ≥ Emax

i∈I
zi ≥ t

⎡

⎣1 − exp

⎛

⎝− n/8

exp
(
8 t2

σ 2

)

⎞

⎠

⎤

⎦

−(n − 1)σ∞ exp

⎛

⎝− n/8

exp
(
8 t2

σ 2

)

⎞

⎠ ,

which establishes the lemma. ��

The last ingredient we need is a concentration result to control the lower tail of
maxi∈[n] yi by controlling its fluctuations around Emaxi∈[n] yi . We make use of a
result in [33].
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Lemma 4.6 In the setting described above, define v as

v = E

⎡

⎣max
i∈[n]

n∑

j=1

(
Xi j − X ′

i j

)2
⎤

⎦ , (37)

where X ′ is an independent identically distributed copy of X.
Then, for any x > 0:

P

[
max
i∈[n] yi ≤ E

[
max
i∈[n] yi

]
− x

]
≤ exp

(
− x2

7(v + σ∞x)

)
.

Proof This lemma is a direct consequence of Theorem 12 in [33] by taking the inde-
pendent random variables to be Y(i, j) such that Y(i, j),t = Xi j if t = i and Y(i, j),t = 0
otherwise. We note that there is a small typo (in the definition of the quantity v) in the
theorem as stated in [33]. ��

At this point, we need an upper bound on the quantity v defined in (37). This is the
purpose of the following lemma.

Lemma 4.7 In the setting above, let X ′ be an independent identically distributed copy
of X, then

E

⎡

⎣max
i∈[n]

n∑

j=1

(
Xi j − X ′

i j

)2
⎤

⎦ ≤ 9σ 2 + 90σ 2∞ log n.

Proof We apply a Rosenthal-type inequality from Theorem 8 of [13], for each i ∈ [n]
separately, and get, for any integer p and 0 < δ < 1,

∥∥∥∥∥∥

n∑

j=1

(
Xi j −X ′

i j

)2
∥∥∥∥∥∥
p

≤ (1+δ)E

⎡

⎣
n∑

j=1

(
Xi j −X ′

i j

)2
⎤

⎦+ 2p

δ

∥∥∥∥max
j∈[n]

(
Xi j −X ′

i j

)2∥∥∥∥
p

≤ 2(1 + δ)σ 2 + 8p

δ
σ 2∞. (38)

It is easy to see that

E

⎡

⎣max
i∈[n]

n∑

j=1

(
Xi j − X ′

i j

)2
⎤

⎦ ≤ n
1
p max
i∈[n]

∥∥∥∥∥∥

n∑

j=1

(
Xi j − X ′

i j

)2
∥∥∥∥∥∥
p

.
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Thus, taking p = �α log n� for some α > 0 gives

E

⎡

⎣max
i∈[n]

n∑

j=1

(
Xi j − X ′

i j

)2
⎤

⎦ ≤ n
1

�α log n� 2(1 + δ)σ 2 + n
1

�α log n� 8�α log n�
δ

σ 2∞

≤ e
1
α 2(1 + δ)σ 2 + e

1
α
8�α log n�

δ
σ 2∞.

Taking, for example, δ = 0.5 and α = 1 gives

E

⎡

⎣max
i∈[n]

n∑

j=1

(
Xi j − X ′

i j

)2
⎤

⎦ ≤ 9σ 2 + 90σ 2∞ log n.

��

We now collect all our bounds in a master Lemma.

Lemma 4.8 In the setting described above, there exist universal constants K > 0
and ε > 0 such that, for any t satisfying K σ

8 ≤ t ≤ ε σ 2√
8σ∞

, we have

P

⎡

⎣max
i∈[n] yi ≤ t

2
− (t + nσ∞) exp

⎛

⎝ −n

exp
(
8t2
σ 2

)

⎞

⎠

⎤

⎦ ≤ exp

( −t2/104

σ 2 + σ 2∞ log n + σ∞t

)

Proof Let t > 0 satisfy the hypothesis of the lemma, and x > 0.
Recall that Lemma 4.6 gives

P

[
max
i∈[n] yi ≤ E

[
max
i∈[n] yi

]
− x

]
≤ exp

(
− x2

7(v + σ∞x)

)
.

On the other hand, Lemmas 4.5 and 4.7 control, respectively, E
[
maxi∈[n] yi

]
and v,

giving

E

[
max
i∈[n] yi

]
≥ t − (t + nσ∞) exp

⎛

⎝− n

exp
(
8t2
σ 2

)

⎞

⎠ ,

and

v ≤ 9σ 2 + 90σ 2∞ log n.
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Combining all these bounds,

P

⎡

⎣max
i∈[n] yi ≤ t − (t + nσ∞) exp

⎛

⎝− n

exp
(
8t2
σ 2

)

⎞

⎠− x

⎤

⎦

≤ exp

(
− x2

7(9σ 2 + 90σ 2∞ log n + σ∞x)

)
.

Taking x = t/2 establishes the lemma. ��
At this point, the proofs of Theorems 2.1 and 2.2 will consist essentially of applying

Lemma 4.8 for appropriate values of t .

Proof (of Theorem 2.1)
Let β > 0 be a constant to be defined later. Taking t = βσ

√
log n in Lemma 4.8

gives that, in the setting described above,

P

[
max
i∈[n] yi ≤ β

2
σ
√
log n −

(
βσ
√
log n + nσ∞

)
exp
(
−n1−8β2

)]

≤ exp

( −β2σ 2 log n/104

σ 2 + σ 2∞ log n + σ∞(βσ
√
log n)

)

= exp

(
− β2/104

1 + (σ∞
σ

)2 log n + σ∞
σ

β
√
log n

log n

)
,

provided that K σ
8 ≤ βσ

√
log n ≤ ε σ 2√

8σ∞
, where K and ε are the universal constants

in Lemma 4.8.
We start by noting that if 0 < β < 1√

8
independent of n, then, for n large enough

(not depending on σ or σ∞),

(
βσ
√
log n + nσ∞

)
exp
(
−n1−8β2

)
≤ β

6
σ
√
log n.

Thus, provided that K
8
√
log n

≤ β ≤ min
{
ε σ√

8 log nσ∞
, 1
3

}
,

P

[
max
i∈[n] yi ≤ β

3
σ
√
log n

]
≤ exp

(
− β2/104

1 + (σ∞
σ

)2 log n + σ∞
σ

β
√
log n

log n

)
.

Let c be the constant in the hypothesis of the theorem, then σ > c
√
log nσ∞.

Let β = min
{

εc√
8
, 1
3

}
. Clearly, for n large enough,

K

8
√
log n

≤ min

{
εc√
8
,
1

3

}
≤ min

{
ε

σ√
8 log nσ∞

,
1

3

}
,
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and

P

[
max
i∈[n] yi ≤ min

{
εc

6
√
2
,
1

9

}
σ
√
log n

]
≤ n

−
⎛

⎝ 10−4

max

{
8

ε2c2
,9

}
+max

{
8
ε2

,9c2
}
+max

{√
8

ε ,3c

}

⎞

⎠

.

This implies that there exist constants c′
1,C

′
1, and β ′

1 such that

P

[
max
i∈[n] Lii ≤ C ′

1σ
√
log n

]
≤ c′

1n
−β ′

1 .

Recall that Corollary 4.1 ensures that, for a universal constant c′, and for every
u ≥ 0, by taking t = uσ ,

P[‖X‖ > (3 + u)σ ] ≤ ne−u2σ 2/c′σ 2∞ . (39)

It is easy to see that ne−u2σ 2/c′σ 2∞ ≤ ne−u2(log n)c/c′ = n1−u2c/c′
. Taking u = √2c′/c

gives

P
[
‖X‖ >

(
3 +√2c′/c

)
σ
]

≤ n−1.

This means that, with probability at least 1 − c′
1n

−β ′
1 − n−1, we have

‖X‖ <
(
3 +√2c′/c

)
σ ≤ 3 +√2c′/c

C ′
1
√
log n

max
i∈[n] Lii ,

which, together with the fact that λmax(L) ≤ ‖X‖ + maxi∈[n] Lii , establishes the
theorem. ��
Proof (of Theorem 2.2)

If σ >
√
log nσ∞, then the result follows immediately from Theorem 2.1. For that

reason, we restrict our attention to the instances with σ ≤ √
log nσ∞. We start by

setting

t = 2σ

(
σ

σ∞

) 1
2

(log n)
1
8 . (40)

Recall that there exist c and γ > 0 such that σ ≥ c (log n)
1
4+γ σ∞, or equivalently

σ

σ∞
≥ c (log n)

1
4+γ .

This guarantees that, for n large enough (not depending on σ or σ∞), the conditions
in Lemma 4.8 are satisfied. In fact,

Kσ

8
≤2σ

√
c (log n)

1
4+ γ

2 ≤ 2σ

√
σ

σ∞
(log n)

1
8 ≤ εσ√

8

√
σ

σ∞
√
c (log n)

1
8+ γ

2 ≤ εσ 2

√
8σ∞

.
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Hence, Lemma 4.8 gives, for t as in (40),

P

⎡

⎣max
i∈[n] yi ≤ t

2
− (t + nσ∞) exp

⎛

⎝ −n

exp
(
8t2
σ 2

)

⎞

⎠

⎤

⎦ ≤ exp

( −t2/104

σ 2 + σ 2∞ log n + σ∞t

)
.

We proceed by noting that, for t = 2σ
(

σ
σ∞

) 1
2
(log n)

1
8 and n large enough (not

depending on σ or σ∞),

(t + nσ∞) exp

⎛

⎝ −n

exp
(
8t2
σ 2

)

⎞

⎠ ≤ t

6
.

In fact, since σ ≤ σ∞
√
log n,

exp

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−n

exp

⎛

⎜⎝
8

(
2σ
(

σ
σ∞
)1/2

(log n)1/8
)2

σ 2

⎞

⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ exp

(
−n

exp
(
32(log n)3/4

)
)

,

decreases faster than any polynomial.

Hence, since t ≥ 2σ
√
c (log n)

1
4+ γ

2 ,

P

[
max
i∈[n] yi ≤ 2

3
σ
√
c (log n)

1
4+ γ

2

]
≤ exp

⎛

⎜⎜⎜⎝

−
(
2σ
(

σ
σ∞

) 1
2
(log n)

1
8

)2

/104

σ 2+σ 2∞ log n+σ∞2σ
(

σ
σ∞

) 1
2
(log n)

1
8

⎞

⎟⎟⎟⎠ .

We proceed by noting that

(
2σ
(

σ
σ∞

) 1
2
(log n)

1
8

)2

/104

σ 2 + σ 2∞ log n + σ∞2σ
(

σ
σ∞

) 1
2
(log n)

1
8

= 4(log n)
1
4 /104

σ∞
σ

+ (σ∞
σ

)3 log n + 2
(

σ∞
σ

) 3
2 (log n)

1
8

Since σ∞
σ

≤ 1
c (log n)− 1

4−γ , we have that, for n large enough and a constant c′′

P

[
max
i∈[n] yi ≤ 2

3
σ
√
c (log n)

1
4+ γ

2

]
≤ exp

(−c′′(log n)γ
)
.
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At this point, we upper bound ‖X‖, as in the proof of Theorem 2.1. Recall, as in
(39), for any u > 0,

P[‖X‖ > (3 + u)σ ] ≤ ne
− u2σ2

c′σ2∞ .

Hence,

P[‖X‖ > (3 + u)σ ] ≤ ne− u2c2

c′ (log(n))
1
2+2γ

.

Taking u = (log n)
1
4 gives

P[‖X‖ >
(
3 + (log n)

1
4

)
σ ] ≤ e− c2

c′ (log(n))2γ
.

The rest of the proof follows the final arguments in the proof of Theorem 2.1. ��

5 Conclusion and Future Directions

Theorems 2.1 and 2.2 are valid for matrices whose entries may be distributed in
very different ways. This potentially allows one to use them in order to obtain strong
guarantees for deterministically censored versions of the problems described, where
themeasurements are obtained only for edges of a deterministic graph (a similarmodel
was studied, for example, in [1]).

The problem of recovery in the stochastic block model with multiple balanced clus-
ters, also referred to as multisection, is a natural generalization of the one considered
here and also admits a semidefinite relaxation.While the results here do not seem to be
directly applicable in the analysis of that algorithm, in part because the construction
of a dual certificate in that setting is considerably more involved, some of the ideas in
the present paper can be adapted for the estimates needed there. These also provide
interpretable and sharp guarantees. We refer the interested reader to [4].

Regarding directions for future investigations, from the random matrix side of
things it would be interesting to investigate what happens when σ � σ∞ but σ

σ∞ =
o
(
(log n)

1
4

)
, as this setting is not captured by our results. It would be particularly

interesting also to understand whether analogs of these results exist, for instance,
where the off-diagonal entries of L are not independent.11

From the point of viewof applications, a natural question iswhich other semidefinite
relaxations have these optimality guarantees. A general understanding in that direction
would be remarkable.

11 For the particular example of connectivity of an Erdős–Rényi graph, it is possible to use the matrix
concentration approach [44,45] to obtain a guarantee that, while being a factor away from optimal, appears
to be adaptable to instances where edges have particular types of dependencies—we refer the reader to Sect.
5.3. in the monograph [45].
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