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Abstract We analyze the recent Multi-index Stochastic Collocation (MISC) method
for computing statistics of the solution of a partial differential equation (PDE) with
random data, where the random coefficient is parametrized by means of a countable
sequence of terms in a suitable expansion. MISC is a combination technique based
on mixed differences of spatial approximations and quadratures over the space of
random data, and naturally, the error analysis uses the joint regularity of the solution
with respect to both the variables in the physical domain and parametric variables.
In MISC, the number of problem solutions performed at each discretization level is
not determined by balancing the spatial and stochastic components of the error, but
rather by suitably extending the knapsack-problem approach employed in the con-
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struction of the quasi-optimal sparse-grids and Multi-index Monte Carlo methods,
i.e., we use a greedy optimization procedure to select the most effective mixed differ-
ences to include in the MISC estimator. We apply our theoretical estimates to a linear
elliptic PDE in which the log-diffusion coefficient is modeled as a random field, with
a covariance similar to a Matérn model, whose realizations have spatial regularity
determined by a scalar parameter. We conduct a complexity analysis based on a sum-
mability argument showing algebraic rates of convergence with respect to the overall
computational work. The rate of convergence depends on the smoothness parameter,
the physical dimensionality and the efficiency of the linear solver. Numerical experi-
ments show the effectiveness of MISC in this infinite dimensional setting compared
with the Multi-index Monte Carlo method and compare the convergence rate against
the rates predicted in our theoretical analysis.

Keywords Multi-level · Multi-index Stochastic Collocation · Infinite dimensional
integration · Elliptic partial differential equations with random coefficients · Finite
element method · Uncertainty quantification · Random partial differential equations ·
Multivariate approximation · Sparse grids · Stochastic Collocation methods ·
Multi-level methods · Combination technique

Mathematics Subject Classification 41A10 (approx by polynomials) · 65C20
(models, numerical methods) · 65N30 (Finite elements) · 65N05 (Finite differences)

1 Introduction

In this work, we analyze and apply the recent MISCmethod [22] to the approximation
of quantities of interest (outputs) from the solutions of linear elliptic partial differential
equations (PDEs) with random coefficients. Such equations arise in many applications
in which the coefficients of the PDE are described in terms of random variables/fields
due either to a lack of knowledge of the system or to its inherent non-predictability.
We focus on the weak approximation of the solution of the following linear elliptic
y-parametric problem:

{
−div(a(x, y)∇u(x, y)) = ς(x) in B

u(x, y) = 0 on ∂B.
(1)

Here,B ⊂ R
d with d ∈ N denotes the “physical domain,” and the operators div and∇

act with respect to the physical variable, x ∈ B, only. We assume that B has a tensor
structure, i.e., B = B1 × B2 × · · · × BD , with D ∈ N, Bi ⊂ R

di and
∑D

i=1 di = d,
see, e.g., Fig. 1a, b. This assumption simplifies the analysis detailed in the following,
although MISC can be applied to more general domains, such as

• domains obtained by mapping from a reference tensor domain as in Fig. 1c, by
suitably extending the approaches in [17,28];
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• non-tensor domains that can be immersed in a tensor bounding box, B ⊂ B̂ =
B̂1 × B̂2 × · · · × B̂D , as in Fig. 1d, whose mesh is obtained as a tensor product
of meshes on each component, B̂i , of the bounding box;

• domains that admit a structured mesh, i.e., with a regular connectivity, whose level
of refinement in each “direction” can be set independently, as in Fig. 1e;

• domains that can be decomposed in patches satisfying any of the conditions above
(observe that the meshes on each patch need not be conforming).

The parameter y = {y j } j≥1 in (1) is a random sequence whose components are
independent and uniformly distributed random variables. More precisely, each y j has
support in [−1, 1] with measure dλ

2 , where dλ is the standard Lebesgue measure.
We further define � = × j≥1[−1, 1] (hereafter referred to as the “stochastic domain”
or the “parameter space”), with the cylindrical probability measure dμ = × j≥1 dλ

2 ,
(see, e.g., [5, Chapter 3, Section 5]).

The right-hand side of (1), namely the deterministic function ς , does not play a
central role in this work, and it is assumed to be a smooth function of class C∞0 (B),
where B denotes the closure of B. This regularity requirement can be relaxed, but we
keep it to ease the presentation, since our main goal in this work is to track the effect
of the regularity of the coefficient a in (1) on the MISC convergence rate. Here, we
focus on the following family of diffusion coefficients:

a(x, y) = eκ(x, y), with κ(x, y) =
∑
j≥1

ψ j (x)y j , (2)

where {ψ j } j≥1 is a sequence of functions ψ j ∈ Ct (B) for t ≥ 0 such that∥∥ψ j
∥∥
L∞(B)

→ 0 as j → ∞. Hereafter, without loss of generality, we assume that

the sequence {∥∥ψ j
∥∥
L∞(B)

} j≥1 is ordered in decreasing order. Thanks to a straightfor-
ward application of the Lax–Milgram lemma, thewell-posedness of (1) in the classical
Sobolev space, V = H1

0 (B), is guaranteed almost surely (a.s.) in � if two functions,
amin, amax : �→ R, exist such that

0 < amin( y) ≤ a(x, y) ≤ amax( y) <∞, ∀x ∈ B, a.s. in �. (3)

Moreover, the equation iswell posed in theBochner space, Lq (�; V ), for someq ≥ 1,1

(see [1,8] and the following discussion), provided that sufficiently high moments
of the functions 1/amin and amax are bounded. The goal of our computation is the
approximation of an expected value,

E[F] = E[�(u)] ∈ R,

where � is a deterministic bounded and linear functional, and F( y) = �(u(·, y)) is
a real-valued random variable, F : � → R. To this end, we utilize the Multi-index

1 Recall that, given q ≥ 1, Lq (�; V ) =
{
v : �→ V strongly measurable, such that

∫
� ‖u‖qV dμ <∞

}
.

123



1558 Found Comput Math (2016) 16:1555–1605

(a)

(d) (e)

(b) (c)

Fig. 1 Examples of physical domains on which MISC can be applied: a and b are within the framework of
this work, while treating (c) requires the introduction of a mapping from (b). MISC can also be formulated
in non-tensor domains as in (d) and (e), but extending the analysis of the present work to this case is less
straightforward and out of the scope of this work

Stochastic Collocation (MISC) method, which we have introduced in a general setting
in a previous work [22].

In MISC, we consider a decomposition in terms of tensorized univariate details
(i.e., a tensorized hierarchical decomposition), for both the discrete space in which
(1) is solved for a fixed value of y ∈ � and for the quadrature operator used
to approximate the expected value of F , relying on the well-established theory of
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sparse-grid approximation of PDEs on the one hand [6,7,21,26,41] and of sparse-
grid quadrature on the other hand [1,6,15,34,35,40]. We use tensor products of
such univariate details, obtaining combined deterministic-stochastic, first-order mixed
differences to build the MISC estimator of E[F] by selecting the most effective
mixed differences with an optimization approach inspired by the literature on the
knapsack problem (see, e.g., [30]). The knapsack approach also was used in [33]
to obtain the so-called quasi-optimal sparse grids for PDEs with stochastic coef-
ficients and in [6,20] in the context of sparse-grid resolution of high-dimensional
PDEs.

The resulting method can be seen as an extension of the sparse-grid combination
technique for PDEs with stochastic coefficients, as well as a fully sparse, non-
randomized version of the Multi-level Monte Carlo method [2,9,16,27]. In particular,
MISC differs from other works in the literature that attempt to optimally combine spa-
tial and stochastic resolution levels [4,25,29,37,38] in two aspects. First, MISC uses
combined deterministic-stochastic, first-order differences, which allows us to exploit
not only the regularity of the solution with respect to the spatial variables and the
stochastic parameters, but also the mixed deterministic-stochastic regularity when-
ever available. Second, the MISC estimator is built upon an optimization procedure,
whereas the above-mentioned works try to balance the error contributions arising from
the deterministic and stochastic components of themethodwithout taking into account
the corresponding costs. Finally, MISC can also be seen as a sparse-grid quadrature
version of the Multi-index Monte Carlo method that was proposed and analyzed in
[23].

In [22], MISC was introduced in a general setting and we restricted the analysis to
the case of problems of type (1) depending on a finite number of random variables,
y ∈ � ⊂ R

N , with N < ∞. Here, we provide a complexity analysis of MISC in
the more challenging case in which the diffusion coefficient a depends on a countable
sequence of random variables, {y j } j≥1. Furthermore, we aim at tracking the depen-
dence of the MISC converge rate on the smoothness of the realizations of a. This
new framework requires that the tools used to prove the complexity of the method be
changed: while in [22] we used a “direct counting” argument, i.e., we derived a com-
plexity estimate by explicitly summing the work and the error contributions associated
with each mixed difference included in the MISC estimator, here instead we base our
proof on a summability argument and on suitable interpolation estimates in mixed
regularity spaces. We mention that in [14] an infinite dimensional analysis based on a
direct counting argument was recently carried out in the case of hyperbolic cross-type
index sets that might arise when quasi-optimizing the work contribution of sparse grid
stochastic collocation without spatial discretization.

The rest of this work is organized as follows. Section 2 introduces suitable assump-
tions and a class of random diffusion coefficients that we consider throughout the
work; functional analysis results that are needed for the subsequent analysis of the
MISC method are also provided. The MISC method is reviewed in Sect. 3. A com-
plexity analysis of MISC with an infinite number of random variables is carried out
in Sect. 4, where we provide a general convergence theorem. In Sect. 5, we discuss
the application of MISC to the specific class of diffusion coefficients that we con-
sider here and track the dependence of the convergence rate on the regularity of the
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diffusion coefficient. Section 6 presents some numerical tests to verify the convergence
analysis conducted in the previous section. Finally, Sect. 7 provides some conclusions
and final remarks. In the Appendix, we include some technical results on the summa-
bility and regularity properties of certain random fields written in terms of their series
expansion.

In the following, N denotes the set of integer numbers including zero, while N+
denotes the set of positive integer numbers excluding zero. We refer to sequences

in N
N+ and N

N++ as “multi-indices.” Moreover, we often use a vector notation for
sequences, i.e., we formally treat sequences as vectors in N

N+ (or RN+ ) and mark
them with bold type. We employ the following notation, with the understanding that
N <∞ for actual vectors and N = ∞ for sequences:

• 1 denotes a vector in NN whose components are all equal to one;
• eN	 denotes the 	-th canonical vector in R

N , i.e.,
(
eN	
)
i = 1 if 	 = i and zero

otherwise; however, for the sake of readability, we often omit the superscript N
whenever it is obvious from context. For instance, if v ∈ R

N , we write v − e1
instead of v − eN1 ;

• given v ∈ R
N , |v| =∑N

i=1 vi , |v|0 denotes the number of nonzero components of
v, max(v) = maxi=1,...N vi and min(v) = mini=1,...N vi ;

• L+ denotes the set of sequences with positive components with only finitely many

elements larger than 1, i.e., L+ = { p ∈ N
N++ : | p− 1|0 <∞};

• given v ∈ R
N and f : R → R, f (v) denotes the vector obtained by applying f

to each component of v, f (v) = [ f (v1), f (v2), . . . , f (vN )] ∈ R
N ;

• given v,w ∈ R
N , the inequality v > w holds true if and only if vi > wi ∀i =

1, . . . , N ;
• given v ∈ R

D and w ∈ R
N , we denote their concatenation by [v,w] =

(v1, . . . , vD, w1, . . . , wN ) ∈ R
D+N ;

• given a set with finite cardinality, G ⊂ N+, we define the set NG = {z ∈ N
N+ :

z j = 0, ∀ j /∈ G}. We similarly define RG and C
G .

2 Functional Setting

Even though condition (3) ensures a.s. well-posedness of (1) in V , we need to make
sure that realizations of u a.s. belong tomore regular spaces to prove a convergence rate
result forMISC.More specifically, due to the classic spatial sparse-grid approximation
theory, we need certain conditions on the mixed derivatives of u with respect to the
physical coordinates. To this end, we introduce suitable functional spaces (tensor
products of fractional Sobolev spaces, see also [19]) and then a “shift regularity”
assumption (see Assumption A1), i.e., we assume that the regularity of the realizations
of u is induced “in a natural way” by the regularity of a, of the forcing, ς , and of the
smoothness of the physical domain,B. In other words, we rule out “pathological”/“ad
hoc” examples in which u is very regular despite that the data are not, e.g., when the
forcing is chosen such that u ∈ Cq for q > 2 even in the presence of a domain with
corners. First, recall the definition of a fractional Sobolev space for li ∈ R+ \N+ and
Bi ⊂ N

di :
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Hli (Bi )

=
{
u ∈ H �li �(Bi ) : sup

α∈Ndi ,|α|=�li �

∫
Bi

∫
Bi

|Dαu(x)− Dαu(x′)|2
|x − x′|di+2(li−�li �) dxdx′ <∞

}
,

extending the definition of a standard Sobolev space Hli (Bi ) for li integer. The ten-
sorized fractional Sobolev space can then be defined as

H l (B) = Hl1(B1)⊗ · · · ⊗ HlD (BD)

for l = (li )Di=1 ∈ R
D+ .2 Finally, the mixed fractional Sobolev spaces, that we will need

for our analysis, can be defined for each q ∈ R
D+ as

H1+q(B) =
D⋂
j=1

H e j+q(B).

Observe that, while mixed fractional spaces, H1+q(B), are the proper setting for
the forthcoming analysis, we will, for ease of presentation, not look for the most
general mixed space in which the solution lives. Instead, we will be content with
deducing mixed regularity from inclusions in standard Sobolev spaces, to the point
that Assumption A1 will be written in terms of standard Sobolev spaces. For this, we
observe that H1(B) = H1(B) holds and in general we have the following inclusion
result between standard and mixed fractional Sobolev spaces:

u ∈ H1+r (B)⇒ u ∈ H1+rq(B) for r ∈ (0,∞) and 0 < |q| ≤ 1. (4)

Before stating precisely the shift-regularity assumption on u, we need some more
notation and setup. First, observe that this assumption needs to be stated in the complex
domain, for reasons that will be made clear later. We therefore extend the diffusion
coefficient from a(·, y)with y ∈ � to a(·, z)with z ∈ C

N+ , so that the corresponding
solution of (1), u(·, z), becomes a H1

0 (B) function taking values in C, i.e., u(·, z) ∈
H1
0 (B,C). Since the complex-valued version of problem (1) is well posed as long as

there exists δ such that Re [a(x, z)]> δ > 0 for almost every (a.e.) x ∈ B, and since
our approximation method will cover the countable set of parameters z ∈ C

N+ by
multiple subsets of finite cardinality, we define the following region in CG for a set of
finite cardinality, G ⊂ N+:

�G,δ =
{
z ∈ C

G : Re [a(x, z)]≥ δ > 0 for a.e. x ∈ B
}
. (5)

2 We recall that H l (B) is the completion of formal sums v =∑K
k=1 v1,kv2,k · · · vD,k with vi,k ∈ Hli (Bi )

with respect to the norm induced by the inner product

(v,w)H l (B)
=
∑
k,i

(v1,k , w1,i )Hl1 (B1)
(v2,k , w2,i )Hl2 (B2)

· · · (vD,k , wD,i )HlD (BD)
.
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We are now ready to state the assumption on the link between the regularity of the
coefficient, a, and the regularity of solution, u.

Assumption A1 (Shift assumption) For a given B, let ψ j ∈ Ct (B) (cf. eq. (2)) and
ς ∈ C∞0 (B). We assume that there exists r such that 1 < r < t and that, for any finite
set G ⊂ N+ and any z ∈ �G,δ , the three following conditions hold:

1. u(·, z) ∈ H1+r (B,C) ∩ H1
0 (B,C);

2.
Du(·,z j )
Dz j

∈ H1+r (B,C), ∀ j ∈ G, where Du(·,z j )
Dz j

denotes the partial complex
derivative of u;

3. ‖u(·, z)‖H1+s (B,C) ≤ C(δ, s, ς,B) ‖a(·, z)‖Cs (B,C)
, withC(δ, s, ς,B)→∞ for

δ→ 0, for every s = 1, . . . , �r�.
In the following, we will need to ensure that ‖u(·, z)‖H1+s (B,C), for s > 0, is

uniformely bounded for all z in certain subregions of the complex plane. Note that
this is a stronger condition than what is stated in the previous assumption, where
we only assumed pointwise control on the norms of u (i.e., we gave a bound that
depends on z). In particular, we show at the end of this section that the possibility
of having such a uniform bound depends on certain summability properties of the
diffusion coefficient. Toward this end, we state the following assumption, which also
guarantees the well-posedness of Problem (1).

Assumption A2 (Summability of the diffusion coefficient) For every s = 0, 1, . . . ,
smax ≤ r , define the sequences bs = {bs, j } j≥1 where

bs, j = max
s∈Nd :|s|≤s

∥∥Dsψ j
∥∥
L∞(B)

, j ≥ 1. (6)

We assume that an increasing sequence {ps}smax
s=0 exists such that 0 < p0 ≤ · · · ≤

psmax <
1
2 and bs ∈ 	ps , i.e.,

‖bs‖ps	ps =
∑
j≥1

bps
s, j <∞. (7)

Weobserve thatwith the above assumption, bs, j → 0+ as j →∞ and 0 ≤ b0, j ≤ bs, j
for every s = 0, 1, . . . , smax. Moreover, given Assumption A2, we have that b0 ∈ 	1,
which, together with the fact that y j ∈ [−1, 1] for j ≥ 1, guarantees that condition
(3) holds and therefore that (1) is well posed in V a.s. in �. Incidentally, we observe
that the conditions in Assumption A2 are sufficient but not necessary for condition (3)
to hold: Indeed, one would only need bs ∈ 	2 for some integer s ≥ 1, see Lemma 15
(and Corollary 16 for a specific example) in the Appendix.

As suggested above, the fact that, for a fixed s, the sequence bs is ps-summable
plays a central role in this work. Indeed, if bs is ps-summable, we show that
‖u(·, z)‖H1+s (B,C) is uniformely bounded with respect to z in a region of the complex
plane whose size is proportional to ‖bs‖ps	ps . We use this fact to show convergence of
the MISC method, with the convergence rate dictated by both p0 and ps . In Theo-
rem 10, we detail how to optimally choose the value of s in the range 0, 1, . . . , smax,

123



Found Comput Math (2016) 16:1555–1605 1563

which is the main result of this work. Restricting the range of values of s by ps <
1
2

is not crucial; we could relax this to ps < 1. However, we follow this more stringent
assumption because it considerably simplifies some technical steps in the following
discussion without affecting the main part of the proof, as we make clear below (see
Remark 4). What is important is that smax might be strictly smaller than �r� (i.e., it
could happen that br is pr -summable but with pr >

1
2 , or not summable at all); in this

case, the line of proof we propose does not fully exploit the regularity of the solution,
u.

Example 1 In the numerical section of this work, we consider either B = [0, 1], i.e.,
d = D = d1 = 1, or B = [0, 1]3, i.e., d = D = 3, di = 1 and Bi = [0, 1] for
i = 1, 2, 3. In both cases, we consider the following form for κ(x, y):

κ(x, y) =
∑
k∈Nd

Ak

∑
�∈{0,1}d

yk,�

d∏
i=1

(cos (πki xi ))
	i (sin (πki xi ))

1−	i . (8)

Observe that it is possible to write κ in the form of (2) using a bijective mapping
from {yk,�}k∈Nd ,�∈{0,1}d to {y j } j≥1. We also choose the following values for the Ak
coefficients:

Ak=
(√

3
)
2
|k|0
2 (1+ |k|2)− ν+d/2

2 , (9)

for some ν > 0. We observe that ν is a parameter dictating the x-regularity of the real-
izations of κ , hence of a. Moreover, the parameters ν and d govern the ps-summability
of the sequence bs for any s and, as a consequence, the overall convergence of the
MISC method, as discussed earlier. Section 5 analyzes the summability properties of
the series (8).

We conclude this preliminary section by making the shape of the above-mentioned
regions in the complex plane more precise and showing how their sizes depend on the
summability properties of a. In particular, we will exploit the fact that for any finite
set G ⊂ N+, for every s = 0, 1, . . . , smax and for any z ∈ C

G we have κ(·, z) ∈
Cs(B,C), ‖κ(·, z)‖Cs (B,C)

≤ ∑ j∈G |z j |bs, j and infer, from the multivariate Faà di

Bruno formula (see “Appendix 1” and [13]), that a(·, z) ∈ Cs(B,C) as well, with the
estimate

‖a(·, z)‖Cs (B,C)
≤ s!

(log 2)s
‖a(·, z)‖C0(B,C)

(1+ ‖κ(·, z)‖Cs (B)
)s, ∀z ∈ C

G .
(10)

Next, for a given ζ > 1, let Eζ denote the polyellipse in the complex plane

Eζ =
{
z ∈ C : Re [z]≤ ζ + ζ−1

2
cosϑ, Im [z] ≤ ζ − ζ−1

2
sin ϑ, ϑ ∈ [0, 2π)

}
.

For any sequence ζ = {ζ j } j≥1 with ζ j > 1 for every j ≥ 1 and for any finite set,
G ⊂ N+, we introduce the Bernstein polyellipse:

EGζ = {z ∈ C
G : z j ∈ Eζ j for all j ∈ G}. (11)
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Lemma 1 (Holomorphic complex continuation of u in H1
0 (B;C) in a Bernstein poly-

ellipse) Consider the sequence b0 defined in (6). For any δ > 0, let Eδ > 2 be such
that

π

Eδ

= −‖b0‖	1 − log δ + log cos

(
π

Eδ

)
,

and consider the sequence ζ 0 = {ζ0, j } j≥1, with

ζ0, j = τ0, j +
√
τ 20, j + 1 > 1 (12)

τ0, j = π

Eδ

(b0, j )p0−1

‖b0‖p0	p0
, (13)

with p0 as in (7). Then, for any finite setG ⊂ N+, the solution, u, admits a holomorphic
complex continuation, u : CG → H1

0 (B,C), in the Bernstein polyellipse, EGζ 0
⊂ �G,δ ,

with

sup
z∈EG

ζ0

‖u(·, z)‖H1(B) ≤ C0,u =
‖ς‖H−1(B)

δ
<∞,

with C0,u independent of G.

Proof It is well known in the literature that u : CG → H1
0 (B,C) is holomorphic in

the region �G,δ defined in (5) (see, e.g., [1]). To compute the parameters {ζ j } j∈G of
a Bernstein polyellipse contained in �G,δ , we rewrite a(x, z) as

a(x, z) = exp

⎛
⎝∑

j∈G
z jψ j (x)

⎞
⎠

= exp

⎛
⎝∑

j∈G
Re
[
z j
]
ψ j (x)

⎞
⎠ exp

⎛
⎝∑

j∈G
iIm

[
z j
]
ψ j (x)

⎞
⎠

= exp

⎛
⎝∑

j∈G
Re
[
z j
]
ψ j (x)

⎞
⎠
⎡
⎣cos

⎛
⎝∑

j∈G
Im
[
z j
]
ψ j (x)

⎞
⎠

+ i sin

⎛
⎝∑

j∈G
Im
[
z j
]
ψ j (x)

⎞
⎠
⎤
⎦ ,
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so that �G,δ can be rewritten as

�G,δ =
⎧⎨
⎩z ∈ C

G : exp
⎛
⎝∑

j∈G
Re
[
z j
]
ψ j (x)

⎞
⎠ cos

⎛
⎝∑

j∈G
Im
[
z j
]
ψ j (x)

⎞
⎠

≥ δ for a.e. x ∈ B

⎫⎬
⎭ .

Now, for some E > 2 that we choose in the following, the two following conditions
on z imply that z ∈ �G,δ:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
cos
(∑

j∈G |Im
[
z j
] | b0, j) ≥ cos

(π
E

)

exp
(
−∑ j∈G |Re

[
z j
]| b0, j) ≥ δ

cos
(
π
E

) ;
equivalently, we write

⎧⎨
⎩
∑

j∈G |Im
[
z j
] | b0, j ≤ π

E∑
j∈G |Re

[
z j
]| b0, j ≤ − log δ + log cos

(π
E

)
.

For a fixed value of E , the equations above define a second region, �G,δ , included in
�G,δ . In turn, the previous conditions are verified if the following conditions, which
define a hyper-rectangular region, Rδ ⊂ �G,δ , are verified:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
|Im [z j ] | ≤ τ0, j = π(b0, j )p0−1

E ‖b0‖p0	p0
,

|Re
[
z j
]|≤1+w0, j , with w0, j = (b0, j )p0−1

‖b0‖p0	p0
(
−‖b0‖	1−log δ+log cos

(π
E

))
,

provided that δ and E are such that the quantity−‖b0‖	1−log δ+log cos
(
π
E

)
remains

positive. Observe that for sufficiently small δ > 0 such E exists, since f (E) =
log cos

(
π
E

)
is a monotonically increasing function, with f (E) → −∞ for E → 2

and f (E) → 0 for E → ∞, and − log δ is positive for sufficiently small δ. In
particular, for any δ > 0, we choose E = Eδ such that w0, j = τ0, j , which leads to

π

Eδ

= −‖b0‖	1 − log δ + log cos

(
π

Eδ

)
.

We observe that with this choice, τ0, j (and hence w0, j ) actually does not depend on
G, therefore we can define the sequence τ 0 = {τ0, j } j≥1.

We are now in the position to compute the Bernstein polyellipses that touch the
boundary ofRδ on the real and imaginary axes. For the real axis, we have to enforce
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ζ j,real + ζ−1j,real

2
= 1+ τ0, j ⇒ ζ j,real = 1+ τ0, j +

√
(1+ τ0, j )2 − 1,

while for the imaginary axis we have to enforce

ζ j,imag − ζ−1j,imag

2
= τ0, j ⇒ ζ j,imag = τ0, j +

√
τ 20, j + 1.

The proof is concluded by observing that ζ j,imag ≤ ζ j,real, i.e., the only polyellipse
entirely contained inRδ , and hence in �G,δ , is the one touchingRδ on the imaginary

axis,which also implies that the bound supz∈EG
ζ
‖u(·, z)‖H1(B) ≤ C0,u = ‖ς‖H−1(B)

δ
<

∞ holds independently of G. ��
Lemma 2 (Holomorphic complex continuation of u in H1+s(B;C) in a Bernstein
polyellipse) For a given s = 1, 2, . . . , smax, let ζ s = {ζs, j } j≥1, with

ζs, j = τs, j +
√
τ 2s, j + 1 > 1, (14)

τs, j = π(bs, j )ps−1

Eδ ‖bs‖ps	ps
, (15)

with bs as in (6), ps as in (7), and Eδ as in Lemma 1. For any finite set G ⊂ N+,
u : CG → H1+s(B,C) is holomorphic in the Bernstein polyellipse EGζ s

⊂ �G,δ̃,with

sup
z∈Eζ s

‖u(·, z)‖H1+s (B) ≤ Cs,u = C(δ̃, s, ς,B)M <∞, (16)

where M = s!
(log 2)s e

K π
Eδ

(
1+ K π

Eδ

)s
, K =

(
2+ 1

min j≥1 τ 2s, j

)1/2

, δ̃ = e
−K π

Eδ ,

C(δ̃, s, ς,B) as in Assumption A1, and Cs,u independent of G.
Proof From Assumption A1, u : CG → H1+s(B,C) is complex differentiable for
every z in �G,ε for any ε > 0. It is therefore holomorphic in �G,ε. Similarly to the
previous lemma, we look for a region in which we have an a-priori bound on the
H1+s(B,C) norm of u uniformly on z. Again from Assumption A1, we have that this
is true in the region

�G,ε(M) = {z ∈ C
G : ‖a(·, z)‖Cs (B)

≤ M} ∩�G,ε for any ε > 0.

However, contrary to the previous lemma, in this proof, we do not derive the expression
of a polyellipse contained in �G,ε(M), but content ourselves with verifying that the
polyellipses, EG,ζ s

, proposed in the statement of the lemma (that we have obtained
simply by replacing b0, j with bs, j in (13)) satisfy the requirement, i.e., EG,ζ s

⊂
�G,δ̃(M), for every finite set, G ⊂ N+, and for a certain δ̃ that we specify later
to control the coercivity of the problem. To this end, let us consider the univariate
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polyellipse Eζs, j . We first prove that this polyellipse is contained in the following
complex rectangle:

R j = {z ∈ C : |Re [z]| ≤
√
1+ τ 2s, j , |Im [z] | ≤ τs, j }.

The bound on the imaginary part of z is a consequence of the choice of the polyellipse
in (14), similarly to what was done in Lemma 1. For the real part, we compute the
point z0 where the polyellipse intersects the real axis by equating

z0 =
ζs, j + 1

ζs, j

2
= ζ 2s, j + 1

2ζs, j
=

τ 2s, j + 1+ τs, j

√
τ 2s, j + 1

τs, j +
√
τ 2s, j + 1

=
(
τ 2s, j + 1+ τs, j

√
τ 2s, j + 1

) (√
τ 2s, j + 1− τs, j

)
=
√
1+ τ 2s, j .

Furthermore, we observe that |z| ≤
√
1+ 2τ 2s, j ≤ K τs, j for every z ∈ R j and

some K > 0; for instance, we could look for the smallest τs, j , say τs, j∗ , choose K
accordingly, i.e., such that (K 2 − 2)τ 2s, j∗ ≥ 1, and obtain the value in the statement
of the lemma. Next, according to (10) and Assumption A2,

‖a(·, z)‖Cs (B,C)
≤ s!

(log 2)s ‖a(·, z)‖C0(B,C)
(1+ ‖κ(·, z)‖Cs (B,C)

)s

≤ s!
(log 2)s e

∑
j∈G b0, j |z j |

(
1+∑ j∈G bs, j |z j |

)s
holds. We finish the proof by observing that for every, z ∈ EG,ζ s

, we have

∑
j∈G

b0, j |z j | ≤
∑
j∈G

bs, j |z j | ≤ K
∑
j∈G

bs, jτs, j = K
π

Eδ

∑
j∈G

bs, j
(bs, j )ps−1

‖bs‖ps	ps
≤ K

π

Eδ

,

which gives uniform control of the norm of ‖a(·, z)‖Cs (B,C)
within EGζ s

as required.
More precisely, we have

‖a(·, z)‖Cs (B,C)
≤ M = s!

(log 2)s
e
K π

Eδ

(
1+ K

π

Eδ

)s

, ∀z ∈ EG,ζ s
,

which together with Assumption A1 gives the desired bound on ‖u(·, z)‖H1+s (B) in
(16) and

Re [a(x, z)]≥ e
−K π

Eδ =: δ̃ > 0.

��
The following result from [22,33] is also needed. Since this result is concerned with

the finite-dimensional case, i.e., G = {1, 2, . . . , N } and ζ ∈ R
N , we write, for ease of

notation, Eζ instead of EGζ , i.e., Eζ = {z ∈ C
N : z j ∈ Eζ j for j = 1, 2, . . . , N }.
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Lemma 3 (Chebyshev expansion of a holomorphic function) Given q j ∈ N, let φq j

be the family of Chebyshev polynomials of the first kind on [−1, 1], i.e., |φq j (y)| ≤ 1

for all y ∈ [−1, 1], and, for N ∈ N+ and any p ∈ N
N , let� p( y) =∏N

j=1 φp j (y j ). If

f : [−1, 1]N → Radmits a holomorphic complex extension in aBernstein polyellipse,
Eζ , for some ζ ∈ (1,∞)N and if there exists 0 < C f <∞ such that supz∈Eζ

| f (z)| ≤
C f , then f admits the following Chebyshev expansion:

f ( y) =
∑
p∈NN

f p� p( y),

f p = 1∫
[−1,1]N �2

p( y)�C ( y)d y

∫
[−1,1]N

f ( y)� p( y)�C ( y)d y,

�C ( y) =
N∏
j=1

(√
1− y2j

)−1
,

which converges uniformely in Eζ . Moreover the following bound on the coefficients
f p holds:

| f p| ≤ sup
z∈Eζ

| f (z)|2| p|0
N∏
j=1

ζ
−p j
j ,

where | p|0 denotes the number of nonzero elements of p.

3 The Multi-index Stochastic Collocation Method

In this section, we introduce approximations of E[F] along the deterministic and
stochastic dimensions and their decomposition in terms of tensorizations of univariate
difference operators. We then recall the so-called mixed difference operators and the
construction of the MISC estimator that was first introduced in [22] in a general
setting.

3.1 Approximation Along the Deterministic and Stochastic Variables

Tensorized deterministic solver. Let {Ti }Di=1 be the triangulations/meshes of each of
the subdomains {Bi }Di=1 composing the domain B; denote by {hi }Di=1 the mesh size

on each mesh Ti ; and let
⊗D

i=1 Ti be the mesh for B. Then, consider a numerical
method for the approximation of the solution of (1) for a fixed value of the random
variables, y, based on such a mesh, e.g., finite differences, finite volumes, tensorized
finite elements, or h-refined splines, such as those used in the isogeometric context. The
values of hi are actually given as functions of a positive integer value, α ≥ 1, referred
to as a “deterministic discretization level”, i.e., hi = hi (α). Observe that, in a more
general setting, the mesh size needs not be a constant value over the subdomain Bi

and could be for instance the result of a grading function intended to refine subregions
of Bi as in Fig. 1d (see also [24, Remark 2.2] for further comments on locally refined
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meshes in the context of Multi-Level Monte Carlo methods). In this work, we restrict
ourselves to constant h for ease of presentation. Given a multi-index, α ∈ N

D+ , we
denote by uα(x, y) the approximation of u obtained by setting hi = hi (αi ) and use
notation Fα( y) = �[uα(·, y)]. More specifically, in the following we will consider

hi = h0,i2
−αi , for i = 1, . . . , D (17)

and a method obtained by tensorizing piecewise multi-linear finite element spaces on
each mesh, {Ti }Di=1, discretizing each {Bi }Di=1.

As already mentioned in the previous section, MISC could also be applied to more
general domains, such as those discussed in Fig. 1, as long as some kind of “tensor
structure” can be induced from the shape of the domain to the solver of the deter-
ministic problem and the vector α determines the refinement level of each component
of such a tensor structure. The reason why we need such tensor structure will be
made clear when we introduce the classic sparse-grids approach to solve the problem.
For non-tensorial domains, we can always set D = 1 and consider an unstructured
mesh for the whole domain, B, having only one discretization level α ∈ N+. In
this way, we give up the sparse-grid approach on the deterministic part of the prob-
lem and obtain a variant of the Multi-Level Stochastic Collocation method discussed
in [37,38], yet with a different algorithm for combining spatial and stochastic dis-
cretizations. See Remark 1 stated next and [22] for additional discussion on this
aspect.

It would be straightforward to extend this setting to discretizationmethods based on
degree elevation rather than on mesh refinement, such as spectral methods, p-refined
finite elements or p- and k-refined splines. However, here we limit ourselves to the
setting defined above. It would also be possible to include time-dependent problems in
this framework, but in this case we might need to take care of possible constraints on
discretization parameters, such as CFL conditions; a broader generalization could also
include “non-physical” parameters such as tolerances for numerical solvers. Finally,
more general problems, e.g., those depending on random variables with probability
distributions other than uniform distributions or with uncertain boundary conditions
and/or forcing terms could also be addressed with suitable modifications of the MISC
methodology.

Tensorized quadrature formulae for expected value approximation. Similarly to what
was presented for the deterministic problem, we base our approximation of the
expected value of Fα( y) on a tensorization of quadrature formulae over the stochastic
domain, �.

LetC0([−1, 1]) be the set of real-valued continuous functions over [−1, 1],β ∈ N+
be referred to as a “stochastic discretization level”, and m : N → N be a strictly
increasing function with m(0) = 0 and m(1) = 1, that we call a “level-to-nodes
function”. At level β, we consider a set of m(β) distinct quadrature points in [−1, 1],
Pm(β) = {y1β, y2β, . . . , ym(β)

β } ⊂ [−1, 1], and a set of quadrature weights, Wm(β) =
{� 1

β ,�
2
β , . . . ,�

m(β)
β }. We then define the quadrature operator as
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Qm(β) : C0([−1, 1])→ R, Qm(β)[ f ] =
m(β)∑
j=1

f (y j
β)�

j
β . (18)

The quadrature weights are selected such that Qm(β)[yk] = ∫ 1
−1

yk

2 dy, ∀ k =
0, 1, . . . ,m(β) − 1. The quadrature points are chosen to optimize the convergence
properties of the quadrature error (the specific choice of quadrature points is dis-
cussed later in this section). In particular, for symmetry reasons, we define the trivial
operator Q1[ f ] = f (0), ∀ f ∈ C0([−1, 1]).

Defining a quadrature operator over � is more delicate, since � is defined as a
countable tensor product of intervals. To this end, we follow [36] and define, for any
finitely supported multi-index β ∈ L+,

Qm(β) : C0(�)→ R, Qm(β) =
⊗
j≥1

Qm(β j ),

where the j-th quadrature operator is understood to act only on the j-th variable, and the
tensor product is well defined since it is composed of finitely many non-trivial factors
(see [36] again). In practice, the value of Qm(β)[ f ] can be obtained by considering
the tensor grid Tm(β) = × j≥1Pm(β j ) with cardinality #Tm(β) = ∏

j≥1m(β j ) and
computing

Qm(β)[ f ] =
#Tm(β)∑
j=1

f (̂ y j )w j ,

where ŷ j ∈ Tm(β) and w j are (infinite) products of weights of the univariate quadra-
ture rules. Notice that having m(1) = 1 is essential in this construction so that the
cardinality of Tm(β) is finite for any β ∈ L+ and � 1

β j
= 1 whenever β j = 1. All

weights, w j , are thus bounded.
Coming back to the choice of the univariate quadrature points, it is recommended,

for optimal performance, that they are chosen according to the underlying measure,
dλ/2. Moreover, since we aim at a hierarchical decomposition of the operator, Qm(β),
it is useful (although not necessary, see e.g., [33]) that the nodes be nested collocation
points, i.e., Pm(β) ⊂ Pm(β+1) for any β ≥ 1. Thus, we consider Clenshaw–Curtis
points that are defined as

y j
β = cos

(
( j − 1)π

m(β)− 1

)
, 1 ≤ j ≤ m(β). (19)

Clenshaw–Curtis points are nested provided that the level-to-nodes function is defined
as

m(0) = 0, m(1) = 1, m(β) = 2β−1 + 1. (20)

We close this section by mentioning that another family of nested points for uniform
measures available in the literature is the Leja points, whose performance is equivalent
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to that of Clenshaw–Curtis points for quadrature purposes. See, e.g., [10,31,32,36]
and references therein for definitions and comparison.

3.2 Construction of the MISC Estimator

It is straightforward to see that a direct approximation, E[F] ≈ Qm(β)[Fα], is not
a viable option in practical cases, due to the well-known “curse of dimensionality”
effect. In [22], we proposed to useMISC as a computational strategy to combine spatial
and stochastic discretizations in such a way as to obtain an effective approximation
scheme for E[F].

MISC is based on a classic sparsification approach in which approximations like
Qm(β)[Fα] are decomposed in a hierarchy of operators. Only the most important of
these operators are retained in the approximation. In more detail, let us denote for
brevity Qm(β)[Fα] = Fα,β and introduce the first-order difference operators for the
deterministic and stochastic discretization operators, denoted, respectively, by �det

i
with 1 ≤ i ≤ D and �stoc

j with j ≥ 1:

�det
i [Fα,β ] =

{
Fα,β − Fα−ei ,β , if αi > 1,

Fα,β if αi = 1,

�stoc
j [Fα,β ] =

{
Fα,β − Fα,β−e j , if β j > 1,

Fα,β if β j = 1.

As a second step, we define the so-called mixed difference operators,

�det[Fα,β ] =
D⊗
i=1

�det
i [Fα,β ] = �det

1

[
�det

2

[
· · ·�det

D

[
Fα,β

] ] ]

=
∑

i∈{0,1}D
(−1)|i |Fα−i,β , (21)

�stoc[Fα,β ] =
⊗
j≥1

�stoc
j [Fα,β ] =

∑
j∈{0,1}N+

(−1)| j |Fα,β− j , (22)

with the convention that Fv,w = 0 whenever a component of v or w is zero. Notice
that, since β has finitely many components larger than 1, the sum on the right-hand
side of (22) contains only a finite number of terms. Finally, letting

�[Fα,β ] = �stoc[�det[Fα,β ]], (23)

we define the Multi-index Stochastic Collocation (MISC) estimator of E[F] as

MI [F] =
∑

[α,β]∈I
�[Fα,β ] =

∑
[α,β]∈I

cα,βFα,β , cα,β =
∑

[i, j ]∈{0,1}D+N
[α+i,β+ j ]∈I

(−1)|[i, j ]|0 ,

(24)
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where I ⊂ N
D+×L+. The second form of theMISC estimator is known as the “combi-

nation technique”, since it expresses the MISC approximation as a linear combination
of a number of tensor approximations, Fα,β , and might be useful for the practical
implementation of the method; we observe in particular that many of its coefficients,
cα,β , are zero.

The effectiveness of MISC crucially depends on the choice of the index set, I.
Given the hierarchical structure of MISC, a natural requirement is that I should be
downward-closed, i.e.,

∀ [α,β] ∈ I,
{
[α − ei ,β] ∈ I for all 1 ≤ i ≤ D such that αi > 1,

[α,β − e j ] ∈ I for all j ≥ 1 such that β j > 1

(see also [6,33,39]). In addition to this general constraint, in [22] we have detailed a
procedure to derive an efficient set, I, based on an optimization technique inspired
by the Dantzig algorithm for the approximate solution of the knapsack problem (see
[30]). In the following, we briefly summarize this procedure and refer to [22] as well
as to [3,6,33] for a thorough discussion on the similarities between this procedure and
the Dantzig algorithm.

The first step of our optimized construction consists of introducing the “work con-
tribution,” �Wα,β , and “error contribution”, �Eα,β , for each operator, �[Fα,β ]. The
work contribution measures the computational cost (measured, e.g., as a function of
the total number of degrees of freedom, or in terms of computational time) required
to add �[Fα,β ] toMI [F], i.e.,

�Wα,β =Work
[
MI∪{[α,β]}

]−Work[MI ] =Work
[
�[Fα,β ]

]
. (25)

Similarly, the error contributionmeasures howmuch the error, |E[F]−MI [F]|, would
decrease if the operator �[Fα,β ] were added toMI [F],

�Eα,β =
∣∣MI∪{[α,β]}[F] −MI [F]

∣∣ = ∣∣�[Fα,β ]
∣∣ . (26)

We observe that the following decompositions of the total work and error of the MISC
estimator hold:

Work[MI ] =
∑

[α,β]∈I
�Wα,β , (27)

|E[F]−MI [F]| =
∣∣∣∣∣∣
∑

[α,β]/∈I
�[Fα,β ]

∣∣∣∣∣∣ ≤
∑

[α,β]/∈I

∣∣�[Fα,β ]
∣∣ = ∑

[α,β]/∈I
�Eα,β . (28)

Although itwould be tempting to defineI as the set of couples [α,β]with the largest
error contribution, this choice could be far from optimal in terms of computational
cost. As suggested in the literature on the knapsack problem (see [30]), the benefit-to-
cost ratio should be taken into account in the decision (see also [3,6,20,22,33]). More

123



Found Comput Math (2016) 16:1555–1605 1573

precisely, we propose to build theMISC estimator by first assessing the so-called profit
of each operator �[Fα,β ], i.e., the quantity

Pα,β = �Eα,β

�Wα,β

.

Then, we build an index set for the MISC estimator:

I = I(ε) =
{
[α,β] ∈ N

D+ × L+ : Pα,β ≥ ε
}
, (29)

for a suitable ε > 0. We observe that the obtained set is not necessarily downward-
closed; we have to enforce this condition a posteriori. Obviously, �Eα,β and �Wα,β

are not, in general, at our disposal. In practice, we base the construction of the MISC
estimator on a-priori bounds for such quantities. More precisely, we derive a-priori
ansatzes for these bounds from theoretical considerations and then fit the constants
appearing in the ansatzes with some auxiliary computations. We refer to the entire
strategy as a priori/a posteriori.

Remark 1 We remark that the general form of the MISC estimator (24) is quite broad
and includes other related methods (i.e., methods that combine different spatial and
stochastic discretization levels to optimize the computational effort) available in the
literature, such as the “Multi-Level Stochastic Collocation” method [37,38] and the
“Sparse Composite Collocation” method [4]; see also [25]. The main novelty of the
MISC estimator (24)-(29) with respect to such methods is the profit-oriented selection
of difference operators. Another difference from [37,38] is the fact that difference
operators in our approach are introduced in both the spatial and stochastic domains.
See also [4] for a similar construction, in which no optimization is performed. More
details on the comparison between the above-mentioned methods and MISC can be
found in [22].

4 Error Analysis of the MISC Method

In this section, we state and prove a convergence theorem for the profit-based MISC
estimator based on the multi-index set (29). The theorem is based on a result from the
previous work [33], which was proved in the context of sparse-grid approximation of
Hilbert-space-valued functions. Since the sparse grid and the MISC constructions are
identical, this theorem can be used verbatim here. In particular, it links the summability
of the profits to the convergence rate of methods such as MISC and Sparse Grids
Stochastic Collocation, i.e., based on a sum of difference operators. To use this result,
we have to assess the summability properties of the profits. We thus introduce suitable
estimates of the error and work contributions, �Eα,β and �Wα,β , respectively. In
particular, the estimate of�Eα,β depends on the spatial regularity of the solution, on
the convergence rate of themethod used to solve the deterministic problems, and on the
summability property of the Chebyshev expansion of the solution over the parameter
space.
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Theorem 4 (Convergence of the profit-basedMISC estimator, see [33]) If the profits,
Pα,β , satisfy the weighted summability condition

⎛
⎜⎝ ∑
[α,β]∈ND+×L+

P p
α,β�Wα,β

⎞
⎟⎠

1/p

= CP (p) <∞

for some 0 < p ≤ 1, then

∣∣E[F]−MI [F]
∣∣ ≤ CP (p)Work[MI ]1−1/p ,

where Work[MI ] is given by (27).

We begin by introducing an estimate for the size of the work contribution,�Wα,β .
To this end, let �W det

α = Work
[
�det[Fα]], i.e., let it be the cost of computing

�det[Fα] according to (21).

Assumption A3 (Spatial work contribution) There exist γi ∈ [1,∞) for i =
1, . . . , D and CW > 0 such that

�W det
α ≤ CW2

∑D
i=1 γi diαi , (30)

where 2
∑D

i=1 diαi is proportional to the number of degress of freedom in the mesh on
level α, cf. equation (17), and γi are related to the used deterministic solver and to the
sparsity structure of the linear system, which might be different on eachBi depending
on the chosen discretization.

Lemma 5 (Total work contribution)When using Clenshaw–Curtis points for the dis-
cretization over the parameter space, thework contribution,�Wα,β , of each difference
operator, �[Fα,β ], can be decomposed as

�Wα,β ≤ CW2
∑D

i=1 γi diαi+|β−1|,

with γi and CW as in Assumption A3.

Proof Combining (25) and (23), we have

�Wα,β =Work
[
�stoc[�det[Fα,β ]]

]
=Work

[
�stoc[�det[Qm(β)[Fα(·)]]]

]
.

Since the Clenshaw–Curtis points are nested, computing �Wα,β (i.e., adding
[α,β] to the set I that defines the current MISC estimator) amounts to evalu-
ating Fα( y) in the set of “new” points added to the estimator by �stoc[·], i.e.,
× j :β j>1

{
Pm(β j ) \ Pm(β j−1)}, whose cardinality is

∏
j≥1(m(β j ) − m(β j − 1)). The

proof is then concluded by observing that the definition of m(β) in (20) immediately
gives m(β j )− m(β j − 1) ≤ 2β j−1 and recalling Assumption A3. ��
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Fig. 2 Numerical evaluation of
L̃ebm(β) for Clenshaw–Curtis
points
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β

Remark 2 We observe that the exponent β − 1 guarantees that the directions along
which noquadrature is actually performed (i.e.,β j = 1 for any j ≥ 1) donot contribute
to the total work.

Next, we prove a sequence of lemmas that allow us to conclude that an analogous
estimate holds for the error contribution as well, i.e., that �Eα,β can be bounded
as a product of a term related to the spatial discretization and a term related to the
approximation over the parameter space. To this end, we need to introduce the quantity

Lebm(β) = sup
f ∈C0([−1,1]),‖ f ‖L∞(−1,1)=1

∣∣∣Qm(β)[ f ] − Qm(β−1)[ f ]
∣∣∣ ∀β ∈ N+,

where Qm(β)[·] are the univariate quadrature operators introduced in (18), and observe
that Leb1 = 1. Next, let L = maxβ≥1 Lebm(β), and note that L ≤ 2 since Qm(β) has
positiveweights.Moreover, amuch smaller bound onL can be obtained for Clenshaw–
Curtis points. Indeed, since Clenshaw–Curtis points are nested, we can also bound
Lebm(β) ≤ L̃ebm(β) with

L̃ebm(β) =
∑

y j
β∈Pm(β)∩Pm(β−1)

∣∣∣� j
β −�

j
β−1
∣∣∣+ ∑

y j∈Pm(β)\Pm(β−1)

∣∣∣� j
β

∣∣∣ ,

and it can be verified numerically that L̃ebm(β) is bounded, attains its maximum for
β = 3 and converges to 1 for β →∞, see Fig. 2. Therefore, we have L ≤ L̃ebm(3) ≈
1.067.

Lemma 6 (Stochastic error contribution) Let f : � → R and β ∈ L+, and assume
that the quadrature operator, Qm(β), is built with Clenshaw–Curtis abscissae. If there
exists a sequence, ρ = {ρ j } j≥1, ρ j > 1 for all j , such that

1.
∑

j≥1 1
ρ j

<∞,
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2. there exists 0 < C f < ∞ such that for any finite set, G′ ⊂ N+ with #G′ < ∞,
the restriction of f on ([−1, 1])G′ admits a holomorphic complex extension in a
Bernstein polyellipse, EG′ρ with sup

z∈EG′
ρ
| f (z)| ≤ C f .

Then, the set

J =
{
j ≥ 1 : ρ j ≤ 2(L)

1
3

}
,

has finite cardinality, i.e., #J <∞ and

∣∣∣�stoc[Qm(β) f ]
∣∣∣ ≤ CSE(ρ) sup

z∈EG
ρ

| f (z)|e−
∑

j≥1 g jm(β j−1)

≤ CSE(ρ)C f e
−∑ j≥1 g(ρ j )m(β j−1),

holds, where G is the support of β − 1,

0 < g(ρ j ) =
{
log ρ j , for j ∈ J ,

log ρ j − log 2− 1
3 log (L) , otherwise,

and CSE(ρ) <∞ is independent of β.

Proof Let G be the support of β − 1 with cardinality #G <∞, k ∈ N
G
+, and let �G,k

denote the Chebyshev polynomials of the first kind with degree k j along y j for j ≥ 1.
We observe that �G,k are equivalent to the #G-variate Chebyshev polynomials over
[−1, 1]#G thanks to the product structure of the multivariate Chebyshev polynomials
and to the fact that φ0(y) = 1. Next, consider the holomorphic extension of f : CG →
C, and its Chebyshev expansion over �G,k introduced in Lemma 3. Then

|�stoc[Qm(β) f ]| =

∣∣∣∣∣∣∣�
stoc

⎡
⎢⎣Qm(β)

⎡
⎢⎣∑
k∈NG+

fk�G,k

⎤
⎥⎦
⎤
⎥⎦
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∑
k∈NG+

fk�
stoc
[
Qm(β)

[
�G,k

]]
∣∣∣∣∣∣∣

holds. By construction of hierarchical surplus, we have �stoc[Qm(β)[�G,k]] = 0 for
all Chebyshev polynomials, �G,k, such that ∃ j ∈ G : k j < m(β j − 1) (i.e., for
polynomials that are integrated exactly at least in one direction by both quadrature
operators along that direction). Therefore, the previous sum reduces to the multi-index
set k ≥ m(β − 1). Furthermore, by the triangular inequality, we have

|�stoc[Qm(β) f ]| ≤
∑

k≥m(β−1)

| fk|
∣∣∣�stoc

[
Qm(β)

[
�G,k

]]∣∣∣ .
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Next, using the definitions of �stoc and Lebm(β) and recalling that Chebyshev poly-
nomials of the first kind on [−1, 1] are bounded by 1, that Lebm(β) ≤ L̃ebm(β) ≤ 1
for β = 1, 2 and Lebm(β) ≤ L for β ≥ 3, we have

∣∣∣�stoc
[
Qm(β)

[
�G,k

]]∣∣∣ =
∣∣∣∣∣∣
⊗
j∈G

�stoc
j [Qm(β j )[φk j ]]

∣∣∣∣∣∣
≤
∏
j∈G

L̃ebm(β j )

∥∥φk j∥∥L∞([−1,1]) ≤
∏
β j≥3

L. (31)

We then bound | fk| by Lemma 3 to obtain

|�stoc[Qm(β) f ]| ≤ sup
z∈EG

ρ

| f (z)|
( ∏

β j≥3
L

) ∑
k≥m(β−1)

∏
j∈G

2|k j |0ρ−k jj

≤ sup
z∈EG

ρ

| f (z)|
( ∏

β j≥3
L

)⎛⎝∏
j∈G

∑
k j≥m(β j−1)

2|k j |0ρ−k jj

⎞
⎠

= sup
z∈EG

ρ

| f (z)|
( ∏

j∈J
β j≥3

L

)( ∏
j /∈J
β j≥3

L

)

×
⎛
⎝ ∏
j∈G∩J

∑
k j≥m(β j−1)

2|k j |0ρ−k jj

⎞
⎠
⎛
⎝ ∏
j∈G\J

∑
k j≥m(β j−1)

2|k j |0ρ−k jj

⎞
⎠.

Next, we observe that |k j |0 ≤ min{1, k j } for k j ≥ 0 and 1 ≤ 1
3m(β j − 1) for all

β j ≥ 3. Then,

|�stoc[Qm(β) f ]| ≤ sup
z∈EG

ρ

| f (z)|L#J
( ∏

j /∈J
L

1
3m(β j−1)

)

2#J
⎛
⎝ ∏

j∈G∩J

∑
k j≥m(β j−1)

ρ
−k j
j

⎞
⎠
⎛
⎝ ∏

j∈G\J

∑
k j≥m(β j−1)

2k jρ
−k j
j

⎞
⎠

≤ (2L)#J sup
z∈EG

ρ

| f (z)|
⎛
⎝∏

j∈G

∑
k j≥m(β j−1)

e−g(ρ j )k j

⎞
⎠

= (2L)#J sup
z∈EG

ρ

| f (z)|
⎛
⎝∏

j∈G

1

1− e−g(ρ j )

⎞
⎠
⎛
⎝∏

j∈G
e−g(ρ j )m(β j−1)

⎞
⎠

≤ CSE(ρ) sup
z∈EG

ρ

| f (z)|
∏
j≥1

e−g(ρ j )m(β j−1),

123



1578 Found Comput Math (2016) 16:1555–1605

where the last inequality is due to the fact that m(β j − 1) = 0 whenever j /∈ G or
equivalently β j = 1 and

∏
j∈G

1

1− e−g(ρ j )
≤
∏
j>1

1

1− e−g(ρ j )
,

since g(ρ j ) > 0 for all j ≥ 1. Note that CSE(ρ) is independent of β and is bounded
since

∏
j≥1

1

1− e−g(ρ j )
<∞⇐⇒ −

∑
j≥1

log(1− e−g(ρ j )) <∞⇐⇒
∑
j≥1

e−g(ρ j ) <∞

⇐⇒
∑
j∈J

1

ρ j
+
∑
j /∈J

2 (L)
1
3

ρ j
<∞,

which was assumed. Moreover, to show that #J < ∞, note that
∑

j∈J ρ−1j is oth-
erwise unbounded, which contradicts the first assumption of the theorem, namely∑

j≥1 ρ
−1
j <∞. ��

Remark 3 Sharper estimates could be obtained by exploiting the structure of the
Chebyshev polynomials when bounding

∣∣�stoc[Qm(β j )[φk j ]]
∣∣ in (31) (for instance,

the fact that Qm(β j )[φk j ] = 0 whenever k j is odd and larger than 1) rather than using
the general bound �stoc[Qm(β j )[φk j ]] ≤ L̃ebm(β j )

∥∥φk j∥∥L∞([−1,1]).

We are now almost in the position to prove the estimate on the error contribution (see
Lemma8); before doing this,we need another auxiliary lemma that gives conditions for
the summability of certain sequences that will be considered in the proof of Lemma 8
as well as in the proof of the main theorem on the convergence of MISC.

Lemma 7 (Summability of stochastic rates) Recall the definitions of {ζ0, j } j≥1 in
Lemma 1, of {ζs, j } j≥1 in Lemma 2 and of g(·) in Lemma 6. Under AssumptionA2, for
all s = 0, 1, . . . , smax, the sequences {e−g(ζs, j )} j≥1 and

{
1
ζs, j

}
j≥1 are 	

p-summable

for p ≥ p̃s = ps
1−ps

, with p̃s < 1.

Proof First note that, by definition of g(·), we have
∑
j≥1

e−pg(ζs, j ) ≤ 2p (L)3p
∑
j≥1

ζ
−p
s, j .

Then, from (14)–(15), or (12)–(13) for s = 0, we can bound 2τs, j ≤ ζs, j and obtain

∑
j≥1

ζ
−p
s, j ≤ 2−p

∑
j≥1

τ
−p
s, j = 2−p

(
π

Eδ ‖bs‖ps	ps

)−p∑
j≥1

b(1−ps )p
s, j .
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From Assumption A2, we know that bs ∈ 	ps for ps ≤ 1
2 , and therefore we have the

condition

(1− ps)p ≥ ps ⇒ p ≥ ps
1− ps

< 1.

��
Lemma 8 (Total error contribution) Assume that the deterministic problem is solved
with a method obtained by tensorizing piecewise multi-linear finite element spaces on
each mesh, {Ti }Di=1, discretizing each {Bi }Di=1, and let hi as in (17) be the mesh size
of each {Ti }Di=1. Then, under Assumptions A1 andA2, the error contribution,�Eα,β ,
of each difference operator, �[Fα,β ], can be decomposed as

�Eα,β ≤ min
s=0,1,...,smax

Cs�Edet
α (s)�E stoc

β (s), (32)

for a constant Cs <∞ independent of α and β and

�Edet
α (s) = 2−α·rFEM(sq), (33)

�E stoc
β (s) = e−

∑
j≥1 m(β j−1)gs, j , (34)

with gs, j = g(ζs, j ) as in Lemma 6 and rFEM(sq)i = min {1, qi s} for i = 1, . . . , D
with q ∈ R

D+ s.t. |q| = 1.

Proof Combining the definition of�[Fα,β ], cf. (23), and the definition of�det[Fα,β ],
cf. (21), we have

�Eα,β = |�[Fα,β ]| =
∣∣∣�stoc[�det[Fα,β ]]

∣∣∣ =
∣∣∣∣∣∣�stoc

⎡
⎣ ∑

j∈{0,1}D
(−1)| j |Fα− j ,β

⎤
⎦
∣∣∣∣∣∣

=
∣∣∣∣∣∣�stoc

⎡
⎣ ∑

j∈{0,1}D
(−1)| j |Qm(β)[�[uα− j (·, y)]]

⎤
⎦
∣∣∣∣∣∣

=
∣∣∣∣∣∣�stoc

⎡
⎣Qm(β)�

⎡
⎣ ∑

j∈{0,1}D
(−1)| j |uα− j (·, y)

⎤
⎦
⎤
⎦
∣∣∣∣∣∣

=
∣∣∣�stoc

[
Qm(β)�[�det[uα(·, y)]]

]∣∣∣ .
We observe that f ( y) = �[�det[uα(·, y)]] is a linear combination of some uα and
that each of these uα is an H1

0 (B,C)-holomorphic function, since the finite element
approximations of u are holomorphic in the same complex region as u itself; hence,
f ( y) is also holomorphic in the same region. Then, thanks to the summability prop-
erties in Lemma 7, we can apply Lemma 6 to f (·) in the polyellipses defined in
Lemmas 1 and 2 by ζ s in (14) (or (12) for s = 0) and obtain
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�Eα,β ≤ CSE(ζ s) sup
z∈EG

ζ s

|�[�det[uα(x, z)]|e−
∑

j≥1 g(ζs, j )m(β j−1)

≤ CSE(ζ s) ‖�‖H−1(B) sup
z∈EG

ζ s

∥∥∥�det[uα(·, z)]
∥∥∥
H1(B,C)

e−
∑

j≥1 g(ζs, j )m(β j−1),

where G ⊂ N+ denotes the support of β − 1. Next, assuming that the spatial dis-
cretization consists of piecewise linear finite elements with spatial mesh sizes (17)
and combining the a-priori bounds on the decay of the difference operators coming
from the Combination Technique theory (see, e.g., [19, proof of Theorem 2]) with
(4) and the fact that u ∈ H1+s(B) for any s = 0, 1, . . . , smax, we have the following
bound for every z in the Bernstein polyellipse, EGζ s

:

∥∥∥�det[uα(·, z)]
∥∥∥
H1(B,C)

≤ CCT ‖u(·, z)‖H1+sq (B,C) 2
−∑D

i=1 αi min{1,qi s} (35)

≤ CCTCs,q ‖u(·, z)‖H1+s (B,C) 2
−α·rFEM(sq), (36)

for q ∈ R
D+ s.t. qi s.t. |q| = 1, some CCT > 0 independent of u, and where Cs,q

is the embedding constant betweenH1+sq(B,C) and H1+s(B,C). We then have the
following bound:

�Eα,β ≤ CSE(ζ s) ‖�‖H−1(B)

× CCTCs,q sup
z∈EG

ζ s

‖u(·, z)‖H1+s (B,C) e
−∑ j gs, j m(β j−1)2−α·rFEM(sq),

where the constant,CSE(ζ s) is bounded independently of β, thanks again to Lemma 6.
The proof is then concluded by recalling that supz∈EG

ζ s
‖u(·, z)‖H1+s (B,C) ≤ Cs,u

independently of β and G due to Lemmas 1 and 2. ��
Observe that the result in Lemma 8 gives a bound on �Eα,β parametric on the

vector q. The optimal choice for such q will be discussed later on, in the proof of the
main theorem, namely Theorem 10.

Remark 4 (Relaxing the simplifying assumption)We now clarify why the assumption
ps < 1

2 , for s = 0, 1, . . . , smax, is not essential. Due to a suboptimal choice of ζs, j
in Lemma 2 (and Lemma 1 for s = 0), the sequence {e−gs, j } j≥1 in Lemma 7, which
is related to the solution u and which appears in the proof of the MISC convergence
theorem, has worse summability p̃s = ps

1−ps
than the sequence {bs, j } j≥1, whose

summability coefficient is ps , and which is related to the diffusion coefficient, a. As
we see in the main theorem stated below, we need p̃s < 1 to guarantee convergence
of MISC, which implies ps < 1

2 . By choosing the polyellipses in Lemmas 1 and 2
by the more elaborate strategy presented in [11], it would be possible to obtain the
better summability p̃s = ps for the sequence {e−gs, j } j≥1, which would only imply
the less stringent condition ps < 1 and a better estimate for the MISC convergence
rate. However, for ease of exposition, we maintain the sub-optimal choice, which is
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enough for the purpose of presenting the argument that proves convergence of MISC.
The restriction ps < 1

2 formally prevents us from applying the MISC convergence
analysis to diffusion coefficients with low spatial regularity. In practice, we see in
Sect. 6 that the convergence estimates are numerically verified beyond this restriction.

Before proving the main theorem of this section, we finally need the following
technical lemma.

Lemma 9 (Bounding a sum of double exponentials) For a > 0, b ≥ 2 and 0 ≤ c <
ab,

∞∑
k=1

e−abk+ck ≤ e−ab+ε(a,b,c)

holds, where for each fixed c and b, ε(·, b, c) is a monotonically decreasing, strictly
positive function with ε(a, b, c)→ c as a →+∞.

Proof

∑
k≥1

e−abk+ck = e−ab+c +
∑
k≥2

e−abk+ck = e−ab+c +
∑
k≥1

e−abk+1+c(k+1)

= e−ab
⎛
⎝ec + ec

∑
k≥1

e−ab(bk−1)+ck
⎞
⎠ .

We observe that for b ≥ 2 we have bk − 1 ≥ k for k ≥ 1 integer. Therefore,
e−ab(bk−1) ≤ e−abk and we have

∑
k≥1

e−abk+ck ≤ e−ab
⎛
⎝ec + ec

∑
k≥1

ek(c−ab)
⎞
⎠ = e−ab

(
ec + e2c−ab

1− ec−ab

)
.

Then,

ε(a, b, c) = log

(
ec + e2c−ab

1− ec−ab

)
,

and we finish by verifying that the function, ε, has the required properties. ��
We are now ready to state and prove our main result.

Theorem 10 (MISC convergence theorem) Under Assumptions A1–A3, the profit-
basedMISC estimator,MI , built using the set I defined in (29), Stochastic Collocation
with Clenshaw–Curtis points as in (19)–(20), and spatial discretization obtained by
tensorizing multi-linear piecewise finite element spaces on each mesh, {Ti }Di=1, with
mesh sizes hi as in (17) for solving the deterministic problems, satisfies, for any δ > 0,∣∣E[F]−MI [F]

∣∣ ≤ CδWork[MI ]−rMISC+δ ,
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for some constant Cδ > 0 that is independent of Work[MI ] and tends to infinity as
δ→ 0. Moreover, Work[MI ] is given by (27), and

rMISC = max
s=0,...,smax

⎧⎨
⎩
rdet(s), if rdet(s) ≤ 1

ps
− 2,(

1
p0
− 2
) (

1+ 1
rdet(s)

(
1
p0
− 1

ps

))−1
, otherwise,

where

rdet(s) = min

{
1

maxi=1,...,D γi di
,

s∑D
j=1 γ j d j

}
.

Proof In this proof, we use Theorem 4. Therefore, we need to estimate the p-
summability of the weighted profits for some p < 1. To this end, we use Lemma 8.
Observe that Lemma 8 provides a family of bounds for each �Eα,β , depending on
s; therefore we would then ideally choose the best s for each �Eα,β . However, this
optimization problem is too complex and we simplify it by assuming that

• only two values of s will be considered, s = 0 and s = s∗ (which will not
necessarily coincide with smax);

• the optimization between s = 0 and s = s∗ will not be carried out individu-
ally on each �Eα,β , but we will rather take a “convex combination” of the two
corresponding estimates and choose the best outcome only at the end of the proof.

To this end, we first need to rewrite the result of the Lemma 8 in a more suitable
form for any fixed s∗ ∈ {1, 2, . . . , smax}; note that from here on, with a slight abuse
of notation, we drop the superscript ∗ and simply use s to denote the fixed value.
Thus, for such fixed s, consider the statement of Lemma 8, let CE = max{C0,Cs},
χ j,s = gs, j log2 e, and θ j,s = (g0, j − gs, j ) log2 e and combine (32)–(34), obtaining

�Eα,β ≤ min
t={0,s}Ct�Edet

α (t)�E stoc
β (t)

≤ CE min
η∈{0,1} 2

−ηrFEM(sq)·α ∏
j≥1

e−m(β j−1)[gs, j+(1−η)(g0, j−gs, j )]

= CE min
η∈{0,1} 2

−ηrFEM(sq)·α ∏
j≥1

2−m(β j−1)[gs, j+(1−η)(g0, j−gs, j )] log2 e

= CE min
η∈{0,1} 2

−ηrFEM(sq)·α ∏
j≥1

2−m(β j−1)[χ j,s+(1−η)θ j,s ]

= CE2
−∑ j≥1 m(β j−1)χ j,s−maxη∈{0,1}

(
ηrFEM(sq)·α+∑ j≥1 m(β j−1)(1−η)θ j,s

)

= CE2
−∑ j≥1 m(β j−1)χ j,s−max

{∑
j≥1 m(β j−1)θ j,s , rFEM(sq)·α

}
.

for an arbitrary q ∈ R
D+ with |q| = 1 that we will choose later. We can now bound the

weighted sum of the profits as follows:
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∑
[α,β]∈ND+×L+

P p
α,β�Wα,β =

∑
[α,β]∈ND+×L+

�E p
α,β�W 1−p

α �W 1−p
β

≤ C p
EC

1−p
W

∑
[α,β]∈ND+×L+

2−p[max{rFEM(sq)·α,∑ j≥1 m(β j−1)θs, j }+∑ j≥1 m(β j−1)χs, j ]

· 2(1−p)
∑D

i=1 γi diαi+(1−p)
∑

j≥1(β j−1)

= C p
EC

1−p
W

∑
[α,β]∈ND+×L+

min
λ∈[0,1] 2

−p[λrFEM(sq)·α+(1−λ)∑ j≥1 m(β j−1)θs, j+∑ j≥1 m(β j−1)χs, j ]

· 2(1−p)
∑D

i=1 γi diαi+(1−p)
∑

j≥1(β j−1)

≤ C p
EC

1−p
W min

λ∈[0,1]
∑

[α,β]∈ND+×L+
2−p[λrFEM(sq)·α+(1−λ)∑ j≥1 m(β j−1)θs, j+∑ j≥1 m(β j−1)χs, j ]

· 2(1−p)
∑D

i=1 γi diαi+(1−p)
∑

j≥1(β j−1)

= C p
EC

1−p
W min

λ∈[0,1]

(
D∏
i=1

∞∑
k=1

2−[p(λrFEM(sq)i+γi di )−γi di ]k
)

·
⎛
⎝ ∞∏

j=1

∞∑
k=1

2−pm(k−1)((1−λ)θs, j+χs, j )+(1−p)(k−1)
⎞
⎠ . (37)

We then investigate underwhat conditions each of the two factors is finite (the constants
CE ,CW are bounded, cf. Lemmas 5 and 8). Before proceeding, we comment on the
equations above. As we already mentioned at the beginning of the proof, here we
are working in a suboptimal setting in which instead of choosing a different s for
each �Eα,β , we restrict ourselves to choosing between only two values, s = 0 or a
certain s > 0 (second line). Observe that we have an equality between the second and
the third lines since 2x is a monotone function of x . Hence, the minimum is always
attained at either λ = 0 or λ = 1. However, when it comes to switching the order
of the sum and the minimum in the fourth line, i.e., bounding the sum by choosing
the same λ to bound every term in the sum, allowing for fractional λ gives a tighter
bound on the overall sum than just considering λ ∈ {0, 1}. Roughly speaking, we are
somehow “mimicking” the fact that the optimal bound of the sumwould use a different
value of λ for every term by choosing an overall λ that is between the two possible
values.

To investigate the condition for which each of the two factors in (37) are bounded,
we immediately have for the first factor for all i = 1, . . . , D that

p (λrFEM(sq)i + γi di )− γi di > 0

�⇒ p >
γi di

λrFEM(sq)i + γi di
=
(
λ
rFEM(sq)i

γi di
+ 1

)−1
. (38)

Our goal is to optimize the above constraint for the summability exponent p. To this
end, we will minimize the right-hand side of (38), observing that it decreases with
respect to rFEM(sq)i . Hence, recalling the dependence of rFEM(sq)i (cf. Lemma 8)
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on the vector of weights q, we consider

rdet(s) = max
q∈RD+ ,|q|=1

min
i=1,...,D

rFEM(sq)i
γi di

= max
q∈RD+ ,|q|=1

min
i=1,...,Dmin

{
1

γi di
,
sqi
γi di

}

= max
q∈RD+ ,|q|=1

min

(
1

maxi=1,...,D γi di
, min
i=1,...,D

sqi
γi di

)

= min

(
1

maxi=1,...,D γi di
, max
q∈RD+ ,|q|=1

min
i=1,...,D

sqi
γi di

)

and observe that the second argument of the min is maximized with respect to q by
making sqi

γi di
constant over i , i.e.,

qi = γi di∑D
j=1 γ j d j

⇒ rdet(s) = min

{
1

maxi=1,...,D γi di
,

s∑D
j=1 γ j d j

}
.

With this optimal choice, then (38) becomes simply

p > (λrdet(s)+ 1)−1 . (39)

For the second factor, denoting the generic term of the inner sum as a j,k for brevity
and observing that a j,1 = 1 for every j , we have

∞∏
j=1

∞∑
k=1

a j,k ≤
∞∏
j=1

(
1+

∞∑
k=2

a j,k

)
= exp

⎛
⎝ ∞∑

j=1
log

(
1+

∞∑
k=2

a j,k

)⎞⎠

≤ exp

⎛
⎝ ∞∑

j=1

∞∑
k=2

a j,k

⎞
⎠ .

We thus only have to discuss the convergence of the sum

∞∑
j=1

∞∑
k=2

2−pm(k−1)[(1−λ)θs, j+χs, j ]+(1−p)(k−1)

=
∞∑
j=1

∞∑
k=1

2−pm(k)[(1−λ)θs, j+χs, j ]+(1−p)k

≤
∞∑
j=1

∞∑
k=1

2−p2k−1[(1−λ)θs, j+χs, j ]+(1−p)k, (40)
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where the last step is a consequence of the fact that, for Clenshaw–Curtis points,
m(k) ≥ 2k−1 for k ≥ 1, cf. (20). Moreover, (1 − λ)θs, j + χs, j ≥ 0. To study the
summability of (40), we want to use Lemma 9 to bound the inner sum in (40). First,
we rewrite

∞∑
k=1

2−p2k−1[(1−λ)θs, j+χs, j ]+(1−p)k

=
∞∑
k=1

exp

(
−p

log 2

2
[(1− λ)θs, j + χs, j ]2k + (1− p)k log 2

)

=
∞∑
k=1

exp
(
−a2k + ck

)

with a = p
log 2

2
[(1− λ)θs, j + χs, j ] > 0, c = (1− p) log 2 > 0,

where we have used the notation in Lemma 9. Note that this lemma holds true under
the assumptions that a > 0 and 0 ≤ c < 2a, where the latter has to be verified as
follows

2a > c⇔ p log 2[(1− λ)θs, j + χs, j ] > (1− p) log 2

⇔ (1− λ)θs, j + χs, j >
(1− p)

p
,

which is true whenever

χs, j > rdet(s),

due to (39), θs, j ≥ 0 and λ ≤ 1. Define J = { j ≥ 1 : χs, j ≤ rdet(s)} which has a
finite cardinality since χs, j → ∞ as j →∞. Resuming from (40), we have, due to
Lemma 9,

∞∑
j=1

∞∑
k=1

2−p2k−1[(1−λ)θs, j+χs, j ]+(1−p)k ≤ C(J )+
∑
j /∈J

∞∑
k=1

exp
(
−a2k + ck

)

≤ C(J )+
∑
j /∈J

e−2a+ε(a,2,c),

where C(J ) is bounded, since #J <∞, and ε(a, 2, c) is a monotonically decreasing
function with limit c = (1− p) log 2 independent of j . Therefore, the previous series
converges if and only if

∞∑
j /∈J

e−2a =
∞∑
j /∈J

e−p log 2[(1−λ)θs, j+χs, j ] =
∞∑
j /∈J

2−p[(1−λ)θs, j+χs, j ]
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converges. Inserting the expression of θs, j and χs, j , we get

∞∑
j /∈J

2−p[(1−λ)θs, j+χs, j ] =
∞∑
j /∈J

2−p[(1−λ)(g0, j−gs, j )+gs, j ] log2 e

=
∞∑
j /∈J

e−p[(1−λ)(g0, j−gs, j )+gs, j ]

=
∞∑
j /∈J

e−p(1−λ)g0, j e−pλgs, j .

After applying the Hölder inequality in the previous summation with exponents η−11 +
η−12 = 1, we need to simultaneously ensure the boundedness of the following sums:

∞∑
j /∈J

e−p(1−λ)g0, jη2 and
∞∑
j /∈J

e−pλgs, jη1 .

Recalling the summability result in Lemma 7, we understand that the following two
conditions must hold:

⎧⎪⎨
⎪⎩
p(1− λ)η2 ≥ p0

1− p0
pλη1 ≥ ps

1− ps

⇒

⎧⎪⎪⎨
⎪⎪⎩
p ≥ p0

1− p0

1

1− λ

1

η2

p ≥ ps
1− ps

1

λ

(
1− 1

η2

)
,

which closes the discussion of the summability of the second factor of (37) for a fixed
s. Recalling the constraint (39) coming from the first factor of (37), we finally have
to solve the following optimization problem:

p > min
λ∈[0,1],1≤η2

max

{
(λrdet(s)+ 1)−1 ,

ps
1− ps

1

λ

(
1− 1

η2

)
,

p0
1− p0

1

1− λ

1

η2

}

i.e., we have to choose η2 and λ to minimize the lower bound on p. We first optimally
select η2 given λ, i.e., we take η2 = η∗2 such that

ps
1− ps

1

λ

(
1− 1

η∗2

)
= p0

1− p0

1

1− λ

1

η∗2
⇒ η∗2 = 1+ 1− ps

ps

p0
1− p0

λ

1− λ

Substituting back, we obtain

ps
1− ps

1

λ

η∗2 − 1

η∗2
=
(

1

p0
− 1+ λ

(
1

ps
− 1

p0

))−1
,
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Fig. 3 Illustration of the optimization problem (41). As observed in the proof, f1 is decreasing with λ

while f2 is increasing with λ. Left case 1 of the proof: the minmax point is λ = 1; Right case 2 of the proof:
the minmax point is λ < 1

so that the minimization problem reads

p > min
λ∈[0,1]max { f1(λ, s), f2(λ, s)} ,

f1(λ, s) = (λrdet(s)+ 1)−1 , f2(λ, s) =
(

1

p0
− 1+ λ

(
1

ps
− 1

p0

))−1
. (41)

Now,we recall that p0 ≤ ps . Hence, f2(λ, s) is increasingwithλ. Conversely, f1(λ, s)
is decreasing with λ since rdet(s) is a positive number. Furthermore, notice that we
cannot have f1(λ, s) < f2(λ, s) for all λ ∈ [0, 1]. Indeed, the previous condition is
equivalent to f1(0, s) ≤ f2(0, s), i.e., 1 ≤ p0

1−p0
⇒ p0 ≥ 1

2 , which does not satisfy
Assumption A2. Note that, in this case, the lower bound for p in (41) is minimized
for λ = 0, implying that p >

p0
1−p0

> 1, i.e., the method does not converge (cf. the
statement of Theorem 4). Thus, we have only two cases (see also Fig. 3):

Case 1 f1(λ, s) > f2(λ, s) for all λ ∈ [0, 1], whichmeans that the convergence of the
method is dictated by the spatial discretization. Given that f1 is decreasing and
f2 is increasing, the previous condition is equivalent to f1(1, s) ≥ f2(1, s),
i.e., rdet(s) ≤ 1

ps
− 2. In this case, the lower bound (41) is minimized for

λ = 1, and we have p > (rdet(s)+ 1)−1.
Case 2 There exists λ∗ ∈ (0, 1) such that f1(λ, s) = f2(λ, s). This condition is

equivalent to the two conditions{
f1(0, s) ≥ f2(0, s)

f1(1, s) ≤ f2(1, s)
⇒
{
1 ≤ 1

p0
− 1

rdet(s) ≥ 1
ps
− 2.

Solving for λ∗ yields

λ∗ =
1
p0
− 2

rdet(s)+ 1
p0
− 1

ps

> 0
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which yields p > p, where

p =
(( 1

p0
− 2

rdet(s)+ 1
p0
− 1

ps

)
rdet(s)+ 1

)−1

=
(
1+

(
1

p0
− 2

)(
1+ 1

rdet(s)

(
1

p0
− 1

ps

))−1)−1
.

Since the previous computations were carried out for a fixed s, we can take the min-
imum over all possible values of s. Then, we can apply Theorem 4 and derive the
convergence estimate,

∣∣E[F]−MI [F]
∣∣ ≤ CP (p)Work[MI ]1−1/p ,

where 1− 1/p = 1−maxs=0,...,smax(1/p)+ δ for any δ > 0, which we reformulate
as

∣∣E[F]−MI [F]
∣∣ ≤ CP

(
1

1+ rMISC − δ

)
Work[MI ]−rMISC+δ ,

with rMISC = maxs=0,...,smax(1/p)− 1. ��

5 Analysis of Example 1

In this section,we determine the value of smax and the sequence {ps}smax
s=0 for Example 1.

Since we will work with localized quantities of interest far from the boundary, cf.
equation (45) written below, we believe that the effect of the boundary is negligible
and the regularity smax is mainly limited by the summability properties of κ . See
“Appendix 2” for a slightly modified problem on the same domain where we can
prove that the regularity is only limited by the summability properties of κ . Let us
define the following family of auxiliary functions,

ϒk,�(x) =
d∏

i=1
(cos (πki xi ))

	i (sin (πki xi ))
1−	i ,

so that κ from (8) can be written as

κ(x, y) =
∑
k∈Nd

Ak

∑
�∈{0,1}d

yk,�ϒk,�(x)

=
∞∑
j=0

∑
{k∈Nd : |k|= j}

Ak

∑
�∈{0,1}d

yk,�ϒk,�(x).
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Based on this expression, for s ≥ 0, we analyze the summability of{
Ak‖Dsϒk,�‖L∞(B)

}
for |s| = s to determine the permissible values of ps . First,

for |s| = s, observe that for a constant c independent of k we have

‖Dsϒk,�(x)‖L∞(B) =
d∏
j=1

(
πk j

)s j ≤ c|k|s .

Then, for all s ≥ 0, we have

∞∑
j=0

∑
{k∈Nd : |k|= j}

∑
�∈{0,1}d

Aps
k ‖Dsϒk,�‖psL∞(B)

≤ c2d
∞∑
j=0

∑
{k∈Nd : |k|= j}

2ps
|k|0
2 |k|pss(1+ |k|2)−

ps
(
ν+ d

2

)
2

≤ c2d + c2d+ps
d
2

∞∑
j=1

∑
{k∈Nd : |k|= j}

j
−ps

(
ν+ d

2−s
)

= c2d + c
2d+ps

d
2

(d − 1)!
∞∑
j=1

j
−ps

(
ν+ d

2−s
) d−1∏
i=1

( j + i)

= c2d + c
2d+ps

d
2

(d − 1)!
∞∑
j=1

j
−ps

(
ν+ d

2−s
)
+d−1

(
1+ d − 1

j

)d−1

≤ c2d + c2d+ps
d
2 dd−1

(d − 1)!
∞∑
j=1

j
−ps

(
ν+ d

2−s
)
+d−1

.

From here, we obtain the bound

ps >

(
ν

d
+ 1

2
− s

d

)−1
, (42)

for all s ≥ 0. Moreover, imposing p0 <
1
2 and psmax <

1
2 gives the bounds

ν >
3d

2
and smax < ν − 3d

2
, (43)

respectively. Since ϒk,� ∈ C∞(B), the bounds in (43) are the only bounds on the
value of smax. To determine an upper bound on the value of rMISC, up to a small δ,
we set γ1 = · · · = γD = γ (motivated by the fact that all subdomains Bi are equal),
we substitute di = 1 for i = 1, . . . , d and the lower bound of ps in Theorem 10 and
obtain after simplifying
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rMISC = max
s=0,...,smax

⎧⎨
⎩

min(1, sd )
γ

if
min(1, sd )

γ
≤ ν

d − 3
2 − s

d ,(
ν
d − 3

2

) (
1+ γ

min(1, sd )
s
d

)−1
if

min(1, sd )
γ

≥ ν
d − 3

2 − s
d ,

= max
s=0,...,smax

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s
dγ if s

dγ ≤ ν
d − 3

2 − s
d and s ≤ d,(

ν
d − 3

2

)
(1+ γ )−1 if s

dγ ≥ ν
d − 3

2 − s
d and s ≤ d,

1
γ

if 1
γ
≤ ν

d − 3
2 − s

d and s ≥ d,(
ν
d − 3

2

) (
1+ sγ

d

)−1 if 1
γ
≥ ν

d − 3
2 − s

d and s ≥ d.

Before continuing, we discuss the four branches of the previous expression. If smax ≤
d, then only the first two branches are valid. Since the rates in these two branches
increase with s, the maximum is achieved for s = smax. If smax ≥ d, then, since the
rates in the third and fourth branches decrease with s, the maximum is achieved for
s = d. Hence

rMISC =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

smax
dγ if smax(1+γ )

dγ ≤ ν
d − 3

2 and smax ≤ d,(
ν
d − 3

2

)
(1+ γ )−1 if smax(1+γ )

dγ ≥ ν
d − 3

2 and smax ≤ d,
1
γ

if 1
γ
≤ ν

d − 3
2 − 1 and smax ≥ d,(

ν
d − 3

2

)
(1+ γ )−1 if 1

γ
≥ ν

d − 3
2 − 1 and smax ≥ d,

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
γ

(
ν
d − 3

2

)
if 1

γ
≤ 0 and ν

d ≤ 5
2 ,(

ν
d − 3

2

)
(1+ γ )−1 if 1

γ
≥ 0 and ν

d ≤ 5
2 ,

1
γ

if 1
γ
≤ ν

d − 5
2 and ν

d ≥ 5
2 ,(

ν
d − 3

2

)
(1+ γ )−1 if 1

γ
≥ ν

d − 5
2 and ν

d ≥ 5
2 ,

=
{
γ−1 if ν

d ≥ 1
γ
+ 5

2 ,(
ν
d − 3

2

)
(1+ γ )−1 if ν

d ≤ 1
γ
+ 5

2 .

In Fig. 4, we plot the upper bound of the rate of MISC work complexity, rMISC, based
on Theorem 10 and the following analysis variants:

Theory This is based on the summability properties of
{
Ak‖Dsϒk,�‖L∞(B)

}
. We

also use the value rFEM,i (s) = 2min
(
1, s

d

)
for all i = 1, . . . , d. This is motivated

by the fact that we expect to double the convergence rate of the underlying FEM
method since we are considering convergence of a smooth linear functional of the
solution.
Square summability Motivated by the arguments in Lemma 15 in the appendix,
webelieve that our resultsmaybe improvedby instead considering the summability

properties of
{
A2
k‖Dsϒk,�‖2L∞(B)

}
for |s| ≤ s. Similar calculations yield the

bounds

ps >

(
2ν

d
+ 1− 2s

d

)−1
, (44)

and the corresponding conditions, ν > d
2 and smax < ν − d

2 .
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Fig. 4 The upper bound of the MISC rate, rMISC, as predicted in Theorem 10 versus the observed rates
when running the example detailed in Sect. 6. Refer to Sect. 5 for an explanation of the different curves.
Also included are the observed convergence rates for a few values of ν and the observed convergence rate
of MISC with no random variable and constant diffusion coefficient, a, as a horizontal line. The latter is
referred to as the “deterministic problem” and shows more clearly the effect of the logarithmic factor in the
work for d > 1, as shown in Fig. 9 and proved in [22, Theorem 1]

Improved As mentioned in Remark 4, we could in principle make our results
sharper by taking p̃s = ps instead of p̃s = ps

1−ps
. Themodifications of Theorem 10

to account for these rates are straightforward. Moreover, when considering square
summability, the conditions become ν > 0 and smax < ν.

We also include in Fig. 4 the observed convergence rates of MISC when applied
to the example with different values of ν, as discussed below in Sect. 6, and the
observed convergence rate ofMISCwhen applied to the same problemwith no random
variables and a constant diffusion coefficient, a. In the latter case, MISC reduces to a
deterministic combination technique [7]. Note that the rate of MISC with no random
variables is an upper bound for the convergence rate of MISC with any ν > 0.

From this figure, we can clearly see that the predicted rates in our theory are pes-
simistic when compared to the observed rates and that the suggested analysis of using
the square summability or using the improved rates, p̃s , might yield sharper bounds
for the predicted work rates. On the other hand, we know from our previous work
[22, Theorem 1] that the work degrades with increasing d with a log factor and in
fact the expected work rate for maximum regularity when the number of random
variables is finite is of O (W−2

max log(Wmax)
d−1). This can be seen Fig. 4 and d = 3,

since in this case the observed work rate seems to be converging to a value less
that 2.

6 Numerical Experiments

We now verify the effectiveness of the MISC approximation on some instances of
the general elliptic equation (1), as well as the validity of the convergence analysis
detailed in the previous sections. In particular, we consider the domain B = [0, 1]d
and the family of random diffusion coefficients specified in Example 1. In more detail,
we consider a problem with one physical dimension (d = 1) and another with three
dimensions (d = 3); in both cases,we setς(x) = 1, andmodel the diffusion coefficient
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by the expansion (8) with different values of ν. Finally, the quantity of interest is a
local average defined as

F( y) = 10

(σ
√
2π)d

∫
B
u(x, y) exp

(
−‖x − x0‖22

2σ 2

)
dx (45)

with σ = 0.2 and location x0 = 0.3 for d = 1 and x0 = [0.3, 0.2, 0.6] for d = 3. The
deterministic problems are discretized with a second-order centered finite differences
scheme for which we expect to recover the same rate in the numerical experiments
that we would obtain with piece-wise multi-linear finite elements on a structured
mesh. We choose the mesh sizes in (17) and h0,i = 1/3 for all i = 1, . . . , d, and
the resulting linear system is solved with GMRES with sufficient accuracy. With
these values and using the coarsest discretization, h0 = 1/3, in all dimensions, the
coefficient of variation of the quantity of interest can be approximated to be between
90% and 110% depending on the number of dimensions, d, and the particular value
of the parameter, ν, that we consider below. Finally, the quadrature points on the
stochastic domain are the already-mentioned Clenshaw–Curtis points (see eq. (19)
and (20)).

In the plots below, the computational work is compared in terms of the total number
of degrees of freedom to avoid discrepancies in running time due to implementation
details, i.e., using (27) and Assumption A3. Moreover, we set γ = 1 in (30), which
is motivated by the fact that, for the tolerances we are interested in, we estimate that
the cost of solving a linear system with GMRES is linear with respect to the number
of degrees of freedom.

In order to evaluate the MISC estimator, we need to build the index set (29). To do
that, we must be able to evaluate two quantities for every α and β: the work contri-
bution, �Wα,β , and the error contribution, �Eα,β . Evaluating the work contribution
is straightforward thanks to Assumption A3 and using γ = 1. On the other hand,
evaluating the error contribution is more involved. We look at two options:

“brute-force” evaluation We compute �[Fα,β ] for all (α,β) within some “uni-
verse” index set and set �Eα,β = ∣∣�[Fα,β ]

∣∣. Notice that this method is not
practical since the cost of constructing the set, I, would far dominate the cost
of the MISC estimator. However, within some “universe” index set, this method
would produce the best possible convergence and serve as a benchmark for other
MISC sets within that universe.
“a-priori” evaluation We use Lemma 8 to bound �Eα,β . Using these bounds
instead of exact values produces quasi-optimal index sets (cf. [3,33] ). Thismethod
in turn requires the estimation of the parameters rFEM,

{
gs, j
}
j≥1 for all s =

0, . . . , smax. Since we use a second-order centered finite differences scheme and
consider the convergence of a quantity of interest, we expect rFEM = 2min

(
1, ν

d

)
as motivated by the “improved” analysis in the previous section and considering

the summability properties of
{
A2
k‖Dsϒk,�‖2L∞(B)

}
. This can also be validated

numerically in the usual way by fixing all random variables to their expected value
and checking the decay of �Eα,1 with respect to α.
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On the other hand, estimating
{
gs, j
}
j≥1 for s = 0, . . . , smax is more difficult

since, in principle, we do not know a priori, for a given α and β, which value
of s ∈ {0, 1, . . . , smax} yields the smallest estimate of �Eα,β . Instead, we use a
“simplified” model that was used in [22]:

�Eα,β ≤ Ce−
∑

j≥1 m(β j−1)g̃ j 2−|α|rFEM , (46)

where g̃ j is some unknown function of gs, j for all s = 0, 1, . . . , smax. g̃ j can be
estimated given rFEM and a set of evaluations of

∣∣�[Fα,β ]
∣∣ for some (α,β) ∈ I∗

by solving a least-squares problem to fit the linear model

∑
j≥1

g̃ jm(β j − 1) = − log
(∣∣�[Fα,β ]

∣∣)− |α|rFEM, for all (α,β) ∈ I∗.

For our example, these rates are plotted in Figs. 5a and 6a for d = 1 and d = 3,
respectively. In our current implementation, the construction of the optimal MISC
set,I, is separate from the setI∗. However, it is possible in principle to construct an
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ᾱ = [1]

0 1 2 3 4
j

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

|Δ
E

1+
j ᾱ
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Fig. 5 Example 1, d = 1 and ν = 2.5. a A plot of the estimated stochastic rates, g̃ j , that are used in (46).
Different markers correspond to different modes multiplying the same value of Ak . b–d solid lines show the
computed approximations of�E1,1+ j β̃ ,�E1+ j α̃,1 and�E1+ j α̃,1+ j β̃ , respectively, versus the model in

(46) represented with dashed lines
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algorithm inwhich the optimalMISCset,I, is constructed iteratively by alternating
between estimating rates given a set of indices and evaluating the MISC estimator.

Note that, in the current work, there are certain operations whose costs we do
not track or compare. The first operation is the estimation of the stochastic rates,{
g̃ j
}
j≥1. The second operation is the construction of the optimal set given estimates

of error and work contribution. We believe that the cost of these two operations can
be reduced by using the previously mentioned iterative algorithm. The cost of these
operations is thus dominated by the cost of evaluating the MISC estimator. The third
operation is the assembly of the stiffness matrix, especially since it scales linearly
with the number of random variables. While the cost of this operation is relevant to
our discussion, it is usually dominated by the cost of the linear solver, at least for
fine-enough discretizations.

Finally, we also compareMISC to theMulti-indexMonte Carlo (MIMC)method as
detailed in [23], for whichO (W−0.5

max

)
convergence can be proved for Example 1 with

γ = 1, d ≤ 3 and sufficiently large ν (see “Appendix 1”). Moreover, when computing
errors, we use the result obtained using a well-resolved MISC solution as a reference
value.
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jᾱ

,1
|
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ᾱ = [1, 1, 0]
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Fig. 6 Example 1, d = 3 and ν = 4.5. a A plot of the estimated stochastic rates, g̃ j , that are used in (46).
Here different markers correspond to different modes multiplying the same value of Ak . b–d solid lines
show the computed approximations of�E1,1+ j β̃ ,�E1+ j α̃,1 and�E1+ j α̃,1+ j β̃ , respectively, versus the

model in (46) represented with dashed lines
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Figures 5b–d and 6b–d compare some computed values of
∣∣�[Fα,β ]

∣∣ versus the
model (46) using the estimated rates rFEM = 2min

(
1, ν

d

)
and

{
g̃ j
}
j≥1. These plots

show that the model (46) is a good fit for the case d = 1, ν = 2.5 and d = 3, ν = 4.5.
Moreover, similar plots were produced for other values of d and ν that are not reported
here but also show good fit. Figures 7 and 8 show

• the maximum spatial discretization level, max(α,β)∈I max(α),
• the maximum quadrature level, max(α,β)∈I max(β),
• the index of the last activated random variable, max(α,β)∈I maxβ j>1 j ,
• and the maximum number of jointly activated variables, max(α,β)∈I |β − 1|0.
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Fig. 7 Example 1, d = 1 and ν = 2.5. This figure shows extreme values of α and β included in the MISC
set, I. Specifically, the left-solid lines are the maximum spatial discretization level, max(α,β)∈I (max (α)),
the left-dashed lines are the maximum quadrature level, max(α,β)∈I (max (β)), the right-solid lines are the

index of the last activated random variable, max(α,β)∈I
(
maxβ j>1 j

)
, and the right-dashed lines are the

maximum number of jointly activated variables, max(α,β)∈I (|β − 1|0)

100 101 102 103 104 105 106 107

Wmax

1

2

3

4

5

6

7

8

9

10

100 101 102 103 104 105 106 107

Wmax

100

101

102

103

104

Fig. 8 Example 1, d = 3 and ν = 4.5. This figure shows extreme values of α and β included in the MISC
set I. Specifically, the left-solid lines are the maximum spatial discretization level, max(α,β)∈I (max (α)),
the left-dashed are the maximum quadrature level, max(α,β)∈I (max (β)), the right-solid are the index

of the last activated random variable, max(α,β)∈I
(
maxβ j>1 j

)
, and the right-dashed are the maximum

number of jointly activated variables, max(α,β)∈I (|β − 1|0)

123



1596 Found Comput Math (2016) 16:1555–1605

100 101 102 103 104

Wmax

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 101 102 103 104 105

Wmax

10−5

10−4

10−3

10−2

10−1

100

(a) (b)

Fig. 9 Convergence results of MISC Example 1 with a constant diffusion coefficient, a (left, d = 1 and
ν = 2.5; right, d = 3 and ν = 4.5). In this case, MISC is equivalent to a deterministic combination
technique [7]. These plots show the non-asymptotic effect of the logarithmic factor for d > 1 (as discussed
in [22, Theorem 1]) on the linear convergence fit in log–log scale
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Fig. 10 Convergence results of MISC versus MIMC when applied to Example 1 (left, d = 1 and ν = 2.5;
right, d = 3 and ν = 4.5)

These values convey the size of the used index set, I, for different values of Wmax.
Figure 4 shows the observed convergence rates of MISC for the cases d = 1 and

d = 3 and different values of ν. This figure shows that the observed rates are better
than those predicted by the theory developed in this work, which suggests that further
improvement in the theory is possible (see Remark 4). Figures 9 and 10 show in greater
details the observed convergence curves for d = 1, ν = 2.5 and d = 3, ν = 4.5 and
their respective linear fit in log-log scale.

We recall that, as shown in [22, Theorem 1], the convergence rate of MISC with
a finite number of random variables is O (W−2

max log(Wmax)
d−1). Compare this to the

theory presented here that predicts, as ν → ∞, a convergence of O (W−2+ε
max

)
for

any ε > 0. However, Fig. 9 shows that even for a problem with d = 3 and no
random variables, MISC (which, in this case, becomes equivalent to a deterministic
combination technique [7]) has an observed convergence rate that is closer to −1.38.

123



Found Comput Math (2016) 16:1555–1605 1597

This is due to the effect of the logarithmic term that is nonzero for d > 1. Based on
this, we should not expect a better convergence rate for d = 3 and any finite ν > 0.
This is also numerically validated in Fig. 10, which shows the full convergence curves
for d = 1, ν = 2.5 and d = 3, ν = 4.5.

7 Conclusions

In this work, we analyzed the performance of the MISC method when applied to lin-
ear elliptic PDEs depending on a countable sequence of random variables. For ease of
presentation, we worked on tensor product domains, but the results can be extended
to more general domains and non-uniform meshes, as briefly mentioned Sect. 3. We
proved a convergence result using a summability argument that shows that, in cer-
tain cases, the convergence of the method is essentially dictated by the convergence
properties of the deterministic solver. We then applied the convergence theorem to
derive convergence rates for the approximation of the expected value of a functional
of the solution of an elliptic PDE with diffusion coefficient described by a random
field, tracking the dependence of the convergence rate on the spatial regularity of the
realizations of the random field. The theoretical findings are backed up by numeri-
cal experiments that show the dependence of the convergence rate on the regularity
parameter. Future works includes extending the convergence analysis to higher-order
finite element solvers and improving the estimates of the error contribution of each
difference operator by taking into account the factorial terms appearing in the esti-
mates for the size of the Chebyshev coefficients, cf. [3,11]. Moreover, the ideas in [12]
can be extended to design an algorithm that iteratively estimates the optimal MISC
set by alternating between optimizing the set and evaluating the estimator to ensure
that the work to optimize the set is dominated by the work to evaluate the MISC
estimator.
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Appendix 1: Summability of Series Expansion

We start by recalling a useful multivariate Faà di Bruno formula taken from [13,
Theorem 2.1].

Lemma 11 LetB ⊂ R
d be an open domain, g : B→ R and f : R→ R be functions

of class Cs(B) and denote h = f ◦ g : B→ R. For any multi-index i ∈ N
d , |i | ≤ s,
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and any x ∈ B,

D ih(x) = i !
|i |∑
λ=1

f (λ)(g(x))
λ∑

r=1

∑
pr (i,λ)

r∏
j=1

(D� j g(x))k j

k j !(� j !)k j
, (47)

holds, where

pr (i, λ) = {(k j , � j ) ∈ N× N
d
0 , j = 1, . . . , r : 0 ≺ �1 ≺ �2 ≺ · · · ≺ �r ,

r∑
j=1

k j = λ,

r∑
j=1

k j� j = i}

and ≺ denotes the lexicographic ordering of multi-indices. The set pr (i, λ) denotes
the set of possible decompositions of i as a sum of λ multi-indices with r ≤ λ distinct
multi-indices, � j , taken with multiplicity k j such that

∑r
j=1 k j = λ.

Also from [13, Corollary 2.9], we have that, for any i ∈ N
d ,

i !
λ∑

r=1

∑
pr (i,λ)

r∏
j=1

1

k j !(� j !)k j
= S|i |,λ,

where Sn,k is the Stirling number of the second kind, which counts the number of ways
to partition a set of n objects into k non-empty subsets. Similarly, the Bell number,
Bn = ∑n

k=0 Sn,k , counts the number of partitions of a set of n objects, whereas the
ordered Bell numbers are defined by B̃n = ∑n

k=0 k!Sn,k and satisfy the recursive
relation B̃n =∑n−1

k=0
(n
k

)
B̃k . Clearly, Bn ≤ B̃n . Moreover, the bound

Bn ≤ B̃n ≤ n!/(log 2)n (48)

was given in [3, Lemma A.3]. We now use these results to show the following result

Lemma 12 LetB ⊂ R
d be an open-bounded domain and κ ∈ Cs(B) (real or complex

valued) for s ≥ 0. Then, a = eκ ∈ Cs(B) and we have the estimate

‖a‖Cs (B)
≤ s!

(log 2)s
‖a‖C0(B)

(1+ ‖κ‖Cs (B)
)s .

Proof Using formula (47), we have for any i ∈ N
d , |i | ≤ s and any x ∈ B

|D ieκ(x)| = i !
|i |∑
λ=1

eκ(x)
λ∑

r=1

∑
pr (i,λ)

r∏
j=1

|D� j κ(x)|k j
k j !(� j !)k j

≤ ‖a‖C0(B)

|i |∑
λ=1

‖κ‖λ
Cs (B)

S|i |,λ

≤ ‖a‖C0(B)
(1+ ‖κ‖Cs (B)

)|i |Bn .

The result then follows from the bound on the Bell numbers in (48). ��

123



Found Comput Math (2016) 16:1555–1605 1599

L p(	) Summability, Pointwise in Space

We now consider a diffusion coefficient as in Assumption A2:

a(x, y) = exp

⎧⎨
⎩
∑
j≥1

ψ j (x)y j

⎫⎬
⎭ =

∞∏
j=1

ey jψ j (x), x ∈ B,

with y j , j ≥ 1, independent random variables, all uniformly distributed in [−1, 1]
and recall the definition of the sequence bs = {bs, j } j≥1, for all s ∈ N in (6).

Lemma 13 If b0 ∈ 	2 then E
[
a(x)p

]
<∞ for all 0 < p <∞ and ∀x ∈ B.

Proof For any x ∈ B, we estimate the p-th moment of a(x, y), exploiting the inde-
pendence of the random variables, y j :

E
[
a(x)p

] = E

⎡
⎣ ∞∏

j=1
epy jψ j (x)

⎤
⎦ = ∞∏

j=1
E

[
epy jψ j (x)

]
=

∞∏
j=1

sinh(pψ j (x))

pψ j (x)

= exp

⎧⎨
⎩
∞∑
j=1

log

(
sinh(pψ j (x))

pψ j (x)

)⎫⎬
⎭

where in the last two equalities we have implicitly assumed that sinh(z)/z = 1 for z =
0. Setting θ0(p; x) = ∏∞

j=1
sinh(pψ j (x))

pψ j (x)
and observing that log(sinh(z)/z) ∼ z2/6,

we have

E
[
a(x)p

] = θ0(p; x) <∞ ∀x ∈ B, 0 < p <∞ ⇐⇒
∞∑
j=1

ψ j (x)2 <∞.

Since
∑∞

j=1 b20, j <∞ implies
∑∞

j=1 ψ j (x)2 <∞ for any x ∈ B, this concludes the
proof. ��

A similar result holds for higher-order derivatives of a.

Lemma 14 Let s ∈ N+. If bs ∈ 	2, then for any i ∈ N
d , |i | = s,E

[
(D ia(x))2p

]
<∞

for all 0 < p <∞ and ∀x ∈ B.

Proof Since the calculations are tedious, we prove the result here for s = 1 only.
Using the chain rule, we have
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(∂xi a(x, y))
2p =

⎛
⎝∑

j≥1
a(x, y)∂xiψ j (x)y j

⎞
⎠

2p

= a(x, y)2p
∑
q∈NN

|q|=2p

(2p)!
∞∏
j=1

1

q j ! (∂xiψ j (x)y j )q j

=
∑
q∈NN

|q|=2p

(2p)!
∞∏
j=1

1

q j ! (∂xiψ j (x)y j )q j e2py jψ j (x).

Hence,

E

[
(∂xi a(x, y))

2p
]
=
∑
q∈NN

|q|=2p

(2p)!
∞∏
j=1

(∂xiψ j (x))q jE

[
1

q j ! y
q j
j e2py jψ j (x)

]
.

We now distinguish between even or odd q j . For even q j , we have

E

[
1

q j ! y
q j
j e2py jψ j (x)

]
≤ E

[
1

q j !e
2py jψ j (x)

]
= 1

q j !
sinh(2pψ j (x))

2pψ j (x)
,

while for q j odd we have

E

[
1

q j ! y
q j
j e2py jψ j (x)

]
= 1

q j !
∫ 1

−1
1

2
yq j e2pyψ j (x)dy= 1

q j !
∫ 1

0
yq j sinh(2pyψ j (x))dy

= 1

q j !
∞∑
n=0

(2pψ j (x))2n+1

(2n + 1)!
∫ 1

0
y2n+1+q j dy

= 1

q j !
∞∑
n=0

(2pψ j (x))2n+1

(2n + 1)!(2n + 2+ q j )

≤ 1

(q j + 1)! sinh(2p|ψ j (x)|) ≤ 2pb1, j
(q j + 1)!

sinh(2pψ j (x))

2pψ j (x)
.

Hence, defining the function

f (q j ) =
{ 1

q j ! for q j even,
2pb1, j
(q j+1)! for q j odd,
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we have

E

[
(∂xi a(x, y))

2p
]
≤
∑
q∈NN

|q|=2p

(2p)!
∞∏
j=1

b
q j
1, j f (q j )

sinh(2pψ j (x))

2pψ j (x)

= θ0(2p; x)
∑
q∈NN

|q|=2p

(2p)!
∞∏
j=1

b
q j
1, j f (q j )

≤ θ0(2p; x)
∑
q∈NN

|q|=2p,q even

(2p)!(1+ 2p)|q|0
∞∏
j=1

b
q j
1, j

q j !

≤ (1+ 2p)pθ0(2p; x)
∑
q∈NN

|q|=p

(2p)!
∞∏
j=1

b
2q j
1, j

(2q j )!

≤ (1+ 2p)p(2p)pθ0(2p; x)
∑
q∈NN

|q|=p

p!
∞∏
j=1

(b21, j )
q j

q j !

= (1+ 2p)p(2p)pθ0(2p; x)
⎛
⎝∑

j≥1
b21, j

⎞
⎠

from which we see that E
[
(∂xi a(x, y))

2p
]
is bounded for any 0 ≤ p < ∞ and any

x ∈ B if b1 ∈ 	2. ��

L p(	) Summability, Uniform in Space

Assuming now that bs ∈ 	2 so that the random field, a, is s-times differentiable in an
L p(�) sense according to Lemma 14, we show that this implies some uniform L p(�)

summability as detailed in the next lemma.

Lemma 15 Let s ∈ N+. If bs ∈ 	2 then E

[
‖a‖pWυ,∞(B)

]
< ∞ for all 1 ≤ p < ∞

and υ < s.

Proof We exploit the Sobolev embedding, W υ+ d
2q ,2q(B) ⊆ W υ,∞(B), for all υ ≥ 0

and q ≥ 1. For q ≥ max{d/2(s − υ), p/2}, we have
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E

[
‖a‖pWυ,∞(B)

]
≤ E

[
‖a‖2q

W
s− d

2q ,∞(B)

]
� E

[
‖a‖2q

Ws,2q (B)

]

= E

⎡
⎣∑
|i |≤s

∫
B
(D ia(x))2qdx

⎤
⎦ = ∑

|i |≤s

∫
B
E

[
(D ia(x))2q

]
dx <∞,

where the last term is bounded from Lemma 14. ��

Now, we directly observe by taking υ = 0 in the previous result that amax = ‖a‖L∞(B)

has bounded moments,

E
[
a p
max

]
<∞,

for all 1 ≤ p < ∞ and 0 < s. Finally, by observing that, due to (2), in we have
that amin = 1

‖a−1‖L∞(B)
has the same distribution as amax. As a consequence, amin has

bounded moments as well. This implies in turn that (3) holds and thus problem (1) is
well posed in the Bochner space, L p

(
�; H1

0 (B)
)
. That is,

Corollary 16 (Well-posedness with log uniform coefficient) We have for 0 < ν that
the problem in Example 1 is well posed in the Bochner space L p

(
�; H1

0 (B)
)
. The

corresponding solution, u, satisfies

‖u‖L p(�;H1
0 (B)) ≤ CE

[
1

a p
min

]1/p
‖ς‖H−1(B).

We observe that higher regularity of the solution, u, can be obtained by using larger
values of s in Lemma 15. This in turn yields control on moments of W υ,∞(B) norms
of the coefficient, a, and following, for instance, estimates similar to (2.10) in [18,
Theorem2.4], we can estimatemoments of the H1+s(B) normof the solution, u. These
regularity estimates, once combined with pathwise error estimates for the combination
technique, can be further used to show the corresponding ν-dependent convergence
rates of MIMC [23], for Example 1, similar to what was presented in Sect. 5 for MISC
in the current work.

Appendix 2: Shift Theorem for Problem (1)

Here, we seek to establish a shift theorem for the problem

{
−div(a(x)∇u(x)) = ς(x) in B = [0, 1]D
u(x) = 0 on ∂B,

(49)

under suitable assumptions on a and ς .
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With respect to problem (1), for convenience, we drop the dependence on the
parameter vector, y. We consider an odd periodic extension of ς , on [−1, 1]D , and an
even periodic extension of the coefficient a on [−1, 1]D , named, respectively, ς̃ and
ã. More precisely, for j = {0, 1}D , we denote by x j = ((−1) j1x1, . . . , (−1) jD xD)
and

ς̃ (x j + 2k) = (−1)| j |ς(x), ã(x j + 2k) = a(x), ∀x ∈ [0, 1]2, j ∈ {0, 1}D, k ∈ N
D .

The following Shift theorem holds for problem (49).

Lemma 17 If the coefficient a is such that its periodic extension satisfies ã ∈
Ws,∞(RD), s ≥ 0 and ς ∈ C∞0 (B) then u ∈ Hs+1(B).

Proof We define the extended problem

⎧⎪⎨
⎪⎩
−div(ã(x)∇ũ(x)) = ς̃ (x) in B̃ = [−1, 1]D∫
B̃u(x) = 0

periodic boundary conditions on ∂B̃.

Since by assumption ã ∈ L∞(RD) and ς̃ ∈ L2(B̃), this problemhas a unique solution,
ũ ∈ H1

per (B̃)\R, where we denote with Hs
per (B̃) the space of periodic functions with

(periodic) square integrable derivatives up to order s. It is easy to check that the solution
ũ is odd, that is ũ(x j ) = (−1) j ũ(x),∀x ∈ [0, 1]D , hence ũ = 0 (in the sense of traces)
on ∂B and it coincides with the (unique) solution of (49) on B. Moreover, standard
elliptic regularity arguments allow us to say that ũ ∈ Hs

per (B̃), hence u ∈ Hs(B). ��
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