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Abstract Hierarchical tensors can be regarded as a generalisation, preserving many
crucial features, of the singular value decomposition to higher-order tensors. For a
given tensor product space, a recursive decomposition of the set of coordinates into a
dimension tree gives a hierarchy of nested subspaces and corresponding nested bases.
The dimensions of these subspaces yield a notion of multilinear rank. This rank tuple,
as well as quasi-optimal low-rank approximations by rank truncation, can be obtained
by a hierarchical singular value decomposition. For fixedmultilinear ranks, the storage
and operation complexity of these hierarchical representations scale only linearly in
the order of the tensor. As in the matrix case, the set of hierarchical tensors of a given
multilinear rank is not a convex set, but forms an open smooth manifold. A number
of techniques for the computation of hierarchical low-rank approximations have been
developed, including local optimisation techniques on Riemannian manifolds as well
as truncated iteration methods, which can be applied for solving high-dimensional
partial differential equations. This article gives a survey of these developments. We
also discuss applications to problems in uncertainty quantification, to the solution
of the electronic Schrödinger equation in the strongly correlated regime, and to the
computation of metastable states in molecular dynamics.

Communicated by W. Dahmen.

B Reinhold Schneider
schneidr@math.tu-berlin.de

1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7598, Laboratoire Jacques-Louis
Lions, 4 place Jussieu, 75005 Paris, France

2 Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin,
Germany

3 Hausdorff Center for Mathematics & Institute for Numerical Simulation, University of Bonn,
53115 Bonn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-016-9317-9&domain=pdf


1424 Found Comput Math (2016) 16:1423–1472

Keywords Hierarchical tensors · Low-rank approximation · High-dimensional
partial differential equations

Mathematics Subject Classification 65-02 · 65F99 · 65J · 49M · 35C

1 Introduction

The numerical solution of high-dimensional partial differential equations remains one
of the most challenging tasks in numerical mathematics. A naive discretisation based
on well-established methods for solving PDEs numerically, such as finite differences,
finite elements or spectral elements, suffers severely from the so-called curse of dimen-
sionality. This notion refers to the exponential scaling O(nd) of the computational
complexity with respect to the dimension d of the discretised domain. For example,
if d = 10 and we consider n = 100 basis functions in each coordinate direction, this
leads to a discretisation space of dimension 10010. Even for low-dimensional univari-
ate spaces, e.g. n = 2, but with d = 500, one has to deal with a space of dimension
2500. It is therefore clear that one needs to find additional structures to design tractable
methods for such large-scale problems.

Many establishedmethods for large-scale problems rely on the framework of sparse
and nonlinear approximation theory in certain dictionaries [40]. These dictionaries
are fixed in advance, and their appropriate choice is crucial. Low-rank approximation
can be regarded as a related approach, but with the dictionary consisting of general
separable functions—going back to one of the oldest ideas in applied mathematics,
namely separation of variables. As this dictionary is uncountably infinite, the actual
basis functions used for a given problem have to be computed adaptively.

On the level of matrix or bivariate approximation, the singular value decomposi-
tion (SVD) provides a tool to find such problem-adapted, separable basis functions.
Related concepts underlie model order reduction techniques such as proper orthog-
onal decompositions and reduced bases [119]. In fact, one might say that low-rank
matrix approximation is one of the most versatile concepts in computational sciences.
Generalising these principles to higher-order tensors has proven to be a promising,
yet nontrivial, way to tackle high-dimensional problems and multivariate functions
[17,65,87]. This article presents a survey of low-rank tensor techniques from the per-
spective of hierarchical tensors, and complements former reviewarticles [63,67,70,87]
with novel aspects. A more detailed review of tensor networks for signal processing
and big data applications, with detailed explanations and visualisations for all promi-
nent low-rank tensor formats can be found in [27]. For an exhaustive treatment, we
also recommend the monograph [65].

Regarding low-rank decomposition, the transition from linear tomultilinear algebra
is not as straightforward and harmless as one might expect. The canonical polyadic
format [76] represents a tensor u of order d as a sum of elementary tensor products,
or rank-one tensors,

u(i1, . . . , id) =
r∑

k=1
C1
k(i1) · · ·Cd

k (id), iμ = 1, . . . , nμ, μ = 1, . . . , d, (1.1)
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with Cμ
k ∈ R

nμ . For tensors of order two, the CP format simply represents the fac-
torisation of a rank-r matrix, and therefore is a natural representation for higher-order
tensors aswell. Correspondingly, theminimal r required in (1.1) is called the canonical
rank of u.

If r is small, the CP representation (1.1) is extremely data-sparse. From the per-
spective of numerical analysis, however, it turns out to have several disadvantages
in case d > 2. For example, the set of tensors of canonical rank at most r is not
closed [127]. This is reflected by the fact that for most optimisation problems involv-
ing tensors of low CP rank, no robust methods exist. For further results concerning
difficulties with the CP representation and rank of higher-order tensors, we refer to
[65,75,127,136], and highlight the concise overview [100]. Many of these issues have
also been investigated from the perspective of algebraic geometry, see the monograph
[95].

The present article is intended to provide an introduction and a survey of a some-
how alternative route. Instead of directly extending matrices techniques to analogous
notions for tensors, the strategy here is to reduce questions of tensor approximation
to matrix analysis. This can be accomplished by the hierarchical tensor (HT) format,
introduced by Hackbusch and Kühn [69], and the tensor train (TT) format, devel-
oped by Oseledets and Tyrtyshnikov [110,111,113,114]. They provide alternative
data-sparse tensor decompositions with stability properties comparable to the SVD
in the matrix case, and can be regarded as multi-level versions of the Tucker for-
mat [87,133]. Whereas the data complexity of the Tucker format intrinsically suffers
from an exponential scalingwith respect to dimensionality, theHT and TT format have
the potential of bringing this down to a linear scaling, as long as the ranks are moder-
ate. This compromise between numerical stability and potential data sparsity makes
the HT and TT formats promising model classes for representing and approximating
tensors.

However, circumventing the curse of dimensionality by introducing a nonlinear
(here: multilinear) parameterisation comes at the price of introducing a curse of
nonlinearity, or more precisely, a curse of non-convexity. Our model class of low-
rank hierarchical tensors is no longer a linear space nor a convex set. Therefore,
it becomes notoriously difficult to find globally optimal solutions to approxima-
tion problems, and first-order optimality conditions remain local. In principle, the
explicit multilinear representation of hierarchical tensors is amenable to block optimi-
sation techniques like variants of the celebrated alternating least squaresmethod, e.g.
[17,25,34,38,44,72,78,87,91,112,132,146], but their convergence analysis is typi-
cally a challenging task as the multilinear structure does not meet classical textbook
assumptions on block optimisation. Another class of local optimisation algorithms can
be designed using the fact that, at least for fixed rank parameters, the model class is
a smooth embedded manifold in tensor space, and explicit descriptions of its tangent
space are available [4,35,71,79,86,89,104,105,138,139]. However, here one his fac-
ing the technical difficulty that this manifold is not closed: its closure only constitutes
an algebraic variety [123].

An important tool available for hierarchical tensor representation is the hierarchical
singular value decomposition (HSVD) [60], as it can be used to find a quasi-best low-
rank approximation using onlymatrix procedures with full error control. The HSVD is
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an extension of thehigher-order singular value decomposition [39] to different types of
hierarchical tensor models, including TT [65,109,113]. This enables the construction
of iterative methods based on low-rank truncations of iterates, such as tensor variants
of iterative singular value thresholding algorithms [7,10,18,68,85,90].

Historically, the parameterisation in a hierarchical tensor framework has evolved
independently in the quantum physics community, in the form of renormalisation
group ideas [55,142], and more explicitly in the framework ofmatrix product and ten-
sor network states [124], including theHSVD formatrix product states [140].A further
independent source of such developments can also be found in quantum dynamics,
with the multilayer multi-configurational time-dependent Hartree (MCTDH) method
[15,102,141]. We refer the interested reader to the survey articles [63,99,130] and to
the monograph [65].

Although the resulting tensor representations have been used in different contexts,
the perspective of hierarchical subspace approximation in [69] and [65] seems to
be completely new. Here, we would like to outline how this concept enables one to
overcome most of the difficulties with the parameterisation by the canonical format.
Most of the important properties of hierarchical tensors can easily be deduced from
the underlying very basic definitions. For a more detailed analysis, we refer to the
respective original papers. We do not aim to give a complete treatment, but rather to
demonstrate the potential of hierarchical low-rank tensor representations from their
basic principles. They provide a universal and versatile tool, with basic algorithms that
are relatively simple to implement (requiring only basic linear algebra operations) and
easily adaptable to various different settings.

An application of hierarchical tensors of particular interest, onwhichwe focus here,
is the treatment of high-dimensional partial differential equations. In this article, we
will consider three major examples in further detail: PDEs depending on countably
many parameters, which arise in particular in deterministic formulations of stochas-
tic problems; the many-particle Schrödinger equation in quantum physics; and the
Fokker–Planck equation describing a mechanical system in a stochastic environment.
A further example of an application of practical importance are chemical master equa-
tions, for which we refer to [41,42].

This article is arranged as follows: Sect. 2 covers basic notions of low-rank expan-
sions and tensor networks. In Sect. 3 we consider subspace-based representations
and basic properties of hierarchical tensor representations, which play a role in the
algorithms using fixed hierarchical ranks discussed in Sect. 4. In Sect. 5, we turn to
questions of convergence of hierarchical tensor approximations with respect to the
ranks, and consider thresholding algorithms operating on representations of variable
ranks in Sect. 6. Finally, in Sect. 7, we describe in more detail the mentioned applica-
tions to high-dimensional PDEs.

2 Tensor Product Parameterisation

In this section, we consider basic notions of low-rank tensor formats and tensor
networks and how linear algebra operations can be carried out on such representa-
tions.
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2.1 Tensor Product Spaces and Multivariate Functions

We start with some preliminaries. In this paper, we consider the d-fold topological
tensor product

V =
d⊗

μ=1
Vμ (2.1)

of separableK-Hilbert spaces V1, . . . ,Vd . For concreteness, we will focus on the real
fieldK = R, although many parts are easy to extend to the complex fieldK = C. The
confinement to Hilbert spaces constitutes a certain restriction, but still covers a broad
range of applications. The topological difficulties that arise in a general Banach space
setting are beyond the scope of the present paper, see [52,65]. Avoiding them allows
us to put clearer focus on the numerical aspect of tensor product approximation.

We do not give the precise definition of the topological tensor product of Hilbert
spaces in (2.1) (see, e.g. [65]), but only recall the properties necessary for our later
purposes. Let nμ ∈ N ∪ {∞} be the dimension of Vμ. We set

Iμ =
{
{1, . . . , nμ}, if nμ <∞,

N, else,
(2.2)

and I = I1 × · · · × Id . Fixing an orthonormal basis {eμ
iμ
:iμ ∈ Iμ} for each Vμ,

we obtain a unitary isomorphism ϕμ : �2(Iμ)→ Vμ by

ϕμ(c):=
∑

i∈Iμ

c(i) eμ
i , c ∈ �2(Iμ).

Then {e1i1 ⊗ · · · ⊗ edid : i1, . . . , id ∈ I } is an orthonormal basis of V , and

Φ:=ϕ1 ⊗ · · · ⊗ ϕd

is a unitary isomorphism from �2(I ) to V .
Such a fixed choice of orthonormal basis allows us to identify the elements of V

with their coefficient tensors u ∈ �2(I ),

(i1, . . . , id) �→ u(i1, . . . , id) ∈ R iμ ∈ Iμ; μ = 1, . . . , d, (2.3)

often called hypermatrices, depending on discrete variables iμ, usually called indices.
In conclusion, we will focus in the following on the space �2(I ), which is itself a

tensor product of Hilbert spaces, namely,

�2(I ) = �2(I1)⊗ · · · ⊗ �2(Id). (2.4)

The corresponding multilinear tensor product map of d univariate �2-functions is
defined pointwise as (u1 ⊗ · · · ⊗ ud)(i1, . . . , id) = u1(i1) · · · ud(id). Tensors of
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this form are called elementary tensors or rank-one tensors. Also the terminology
decomposable tensors is used in differential geometry.

Let n = max{nμ:μ = 1, . . . , d} be the maximum dimension among the Vμ. Then
the number of possibly nonzero entries in a pointwise representation (2.3) of u is
n1 · · · nd = O(nd). This exponential scaling with respect to d is one aspect of what is
referred to as curse of dimensionality, and poses a common challenge for the discreti-
sation of the previouslymentioned examples of high-dimensional PDEs. In the present
paper we consider methods that aim to circumvent this core issue of high-dimensional
problems using low-rank tensor decomposition. In very abstract terms, all low-rank
tensor decompositions considered below ultimately decompose the tensor u ∈ �2(I )

such that
u(i1, . . . , id) = τ(C1(i1), . . . , Cd(id), Cd+1, . . . , CD), (2.5)

where τ :W :=W1 × . . .Wd × Wd+1 × · · · × WD → R is multilinear on a Cartesian
product of vector spacesWν , ν = 1, . . . , D. The choice of these vector spaces and the
map τ determines the format, and the tensors in its range are considered as “low-rank.”
An example is the CP representation (1.1).

Remark 2.1 SinceΦ is multilinear as well, we obtain representations of the very same
multilinear structure (2.5) for the corresponding elements of V ,

Φ(u) = (ϕ1 ⊗ · · · ⊗ ϕd)
(
(i1, . . . , id) �→ τ(C1(i1), . . . , Cd(id), Cd+1, . . . , CD)

)
.

For instance, ifV is a function space on a tensor product domainΩ = Ω1×· · ·×Ωd on
which point evaluation is defined, and (e1⊗· · ·⊗ed)(x1, . . . , xd) = e1(x1) · · · ed(xd)
for x ∈ Ω , then formally (dispensing for the moment with possible convergence
issues), exploiting the multilinearity properties, we obtain

Φ(u)(x1, . . . , xd) = τ

⎛

⎝
n1∑

i1=1
e1i1(x1)C

1(i1), . . . ,
nd∑

id=1
edid (xd)C

d(id), Cd+1, . . . , CD

⎞

⎠

= τ(ϕ1(C1)(x1), . . . , ϕ
d(Cd)(xd), Cd+1, . . . , CD),

and the same applies to other tensor product functionals on V . Since in the present
case of Hilbert spaces (2.1), the identification with �2(I ) via Φ thus also preserves
the considered low-rank structures, we exclusively work on basis representations in
�2(I ) in what follows.

2.2 The Canonical Tensor Format

The canonical tensor format, also called CP (canonical polyadic) decomposition,
CANDECOMP or PARAFAC, represents a tensor of order d as a sum of elementary
tensor products u = ∑r

k=1 c1k ⊗ · · · ⊗ cdk , that is

u(i1, . . . , id) =
r∑

k=1
C1(i1, k) · · ·Cd(id , k), (2.6)
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with cμ
k = Cμ(·, k) ∈ �2(Iμ) [25,72,76]. The minimal r such that such a decompo-

sition exists is called the canonical rank (or simply rank) of the tensor u. It can be
infinite.

Depending on the rank, the representation in the canonical tensor format has a
potentially extremely low complexity. Namely, it requires at most rdn nonzero entries,
where n = max

∣∣Iμ

∣∣. Another key feature (in the case d > 2) is that the decomposi-
tion (2.6) is essentially unique under relativelymild conditions (assuming that r equals
the rank). This property is a main reason for the prominent role that the canonical ten-
sor decomposition plays in signal processing and data analysis, see [28,87,93] and
references therein.

In view of the applications to high-dimensional partial differential equations, one
can observe that the involved operator can usually be represented in the form of a
canonical tensor operator, and the right-hand side is also very often of the form above.
This implies that the operator and the right-hand sides can be stored in this data-sparse
representation. This motivates the basic assumption in numerical tensor calculus that
all input data can be represented in a sparse tensor form. Then there is a reasonable
hope that the solution of such a high-dimensional PDE might also be approximated
by a tensor in the canonical tensor format with moderate r . The precise justification
for this hope is subject to ongoing research (see [36] for a recent approach and further
references), but many known numerical solutions obtained by tensor product ansatz
functions such as (trigonometric) polynomials, sparse grids, or Gaussian kernels are
in fact low-rank approximations, mostly in the canonical format. However, the key
idea in nonlinear low-rank approximation is to not fix possible basis functions in (2.6)
in advance. Then we have an extremely large library of functions at our disposal.
Motivated by the seminal papers [16,17], we will pursue this idea throughout the
present article.

Froma theoretical viewpoint, the canonical tensor representation (2.6)maybe seen a
straightforward generalisation of low-rankmatrix representation, and coincides with it
when d = 2. As it turns out, however, the parameterisation of tensors via the canonical
representation (2.6) is not as harmless as it seems to be. For example, for d > 2, the
following difficulties appear:

– The canonical tensor rank is (in case of finite-dimensional spaces) NP-hard to
compute [75].

– The set of tensors of the above form with canonical rank at most r is not closed
when r ≥ 2 (border rank problem). As a consequence, a best approximation of a
tensor by one of smaller canonical rank may not exist; see [127]. This is in strong
contrast to the matrix case d = 2, see Sect. 3.1.

– In fact, the set of tensors of rank at most r does not form an algebraic variety [95].

Further surprising and fascinating difficulties with the canonical tensor rank in case
d > 2 with references are listed in [87,94,100,136]. Deep results of algebraic geom-
etry have been invoked for the investigation of these problems, see the monograph
[95] for the state of the art. The problem of non-closedness can often be mitigated
by imposing further conditions such as symmetry [95], nonnegativity [101] or norm
bounds on factors [127].
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In this paper we show a way to avoid all these difficulties by considering another
type of low-rank representation, namely the hierarchical tensor representation [65],
but at the price of a slightly higher computational and conceptual complexity. Roughly
speaking, the principle of hierarchical tensor representations is to reduce the treatment
of higher-order tensors to matrix analysis.

2.3 Tensor Networks

For fixed r , the canonical tensor format (2.6) is multilinear with respect to every
matrix Cμ:=(

Cμ(i, k)
)
i∈Iμ, k=1,...,r . A generalised concept of low-rank tensor for-

mats is obtained by considering classes of tensors which are images of more general
multilinear parameterisations. A very general form is

u(i1, . . . , id) =
r1∑

k1=1
· · ·

rE∑

kE=1

D∏

ν=1
Cν(i1, . . . , id , k1, . . . , kE ) (2.7)

with an arbitrary number D of components Cν(i1, . . . , id , k1, . . . , kE ) that potentially
depend on all variable i1, . . . , id and additional contraction variables k1, . . . , kE . For
clarity, we will call the indices iμ physical variables. Again, we can regard u as
elements of the image of a multilinear map τr,

u = τr(C1, . . . , CD), (2.8)

parametrising a certain class of “low-rank” tensors. By r = (r1, . . . , rE ) we indicate
that this map τ depends on the representation ranks r1, . . . , rE .

The disadvantage compared to the canonical format is that the component tensors
have order eν instead of 2, where 1 ≤ eν ≤ d + E is the number of (contraction and
physical) variables in Cν which are actually active.1 In cases of interest introduced
below (like the HT or TT format), this number is small, say at most three. More
precisely, let p and q be bounds for the number of active contraction variables, and q
a bound for the number of active physical variables per component. Let also nμ ≤ n
for all μ, and rη ≤ r for all η, the data complexity of the format (2.7) is bounded by
Dnqr p. Computationally efficient representations of multivariate functions arise by
bounding p, q and r .

Without further restriction, the low-rank formats (2.7) form a too general class. An
extremely useful subclass are tensor networks.

Definition 2.2 We call the multilinear parameterization (2.7) a tensor network, if

(i) each physical variable iμ, μ = 1, . . . , d, is active in exactly one component Cν ;
(ii) each contraction variable kη, η = 1, . . . , E , is active in precisely two components

Cν , 1 ≤ ν ≤ D,

1 A contraction variable kη is called inactive in Cν if Cν does not depend on this index. The other variables
are called active. The notation will be adjusted to reflect the dependence on active variables only later for
special cases.
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see also [49,124] and the references given there.

We note that the canonical tensor format (2.6) is not a tensor network, since the
contraction variable k relates to all physical variables iμ.

The main feature of a tensor network is that it can be visualised as a graph with D
nodes, representing the components Cν , ν = 1, . . . , D, and E edges connecting those
nodes with common active contraction variable kη, η = 1, . . . , E . In this way, the
edges represent the summations over the corresponding contraction variables in (2.7).
Among all nodes, the ones in which a physical variable iμ, μ = 1, . . . , d, is active
play a special role and get an additional label, which in our pictures will be depicted by
an additional open edge connected to the node. The graphical visualisation of tensor
networks is a useful and versatile tool for describing decompositions of multivariate
functions (tensors) into nested summations over contraction variables. This will be
illustrated in the remainder of this section.

Plain vectors, matrices and higher-order tensors are trivial examples of tensor net-
works, since they contain no contraction variable at all. A vector i �→ u(i) is a node
with single edge i , a matrix (i1, i2) �→ u(i1, i2) is a node with two edges i1, i2, and a
d-th-order tensor is a node with d edges connected to it:

vector matrix third-order tensor

The simplest nontrivial examples of tensor networks are given by low-rank matrix
decompositions like A = UVT or A = UΣVT , the latter containing a node with no
physical variable:

UVT UΣVT

Note that these graphs do not show which physical variables belong to which open
edge. To emphasise a concrete choice one has to attach the labels iμ explicitly. Let us
consider a more detailed example, in which we also attach contraction variables to the
edges:

→ C3

C2

k3

C1

k1

k2

C4

k4

i2 i4

i1 i3

The graph on the right side represents the tensor network

u(i1, i2, i3, i4)=
r1∑

k1=1

r2∑

k2=1
C1(i3, k1, k2)

r3∑

k3=1
C2(i1, k2, k3)

r4∑

k4=1
C3(k1, k3, k4)C4(i2, i4, k4).
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Note that node C3 depends on no physical variable, while C4 depends on two. The
sums have been nested to illustrate how the contractions are performed efficiently in
practice by following a path in the graph.

As a further example, we illustrate how to contract and decontract a tensor of order
d = 4 by a rank-r matrix decomposition that separates physical variables (i1, i2) from
(i3, i4), using, e.g. SVD:

i1

i2 i3

i4

↔
i1

i2 i3

i4
k

u(i1, i2, i3, i4) =
r∑

k=1
C1(i1, i2, k)C2(i3, i4, k)

Diagrammatic representations of a similar kind are also common in quantum
physics for keeping track of summations, for instance Feynman and Goldstein dia-
grams.

Remark 2.3 The representation of tensor networks by graphs can be formalised using
the following definition as an alternative to Definition 2.2. A tensor network is a
tuple (G, E, ι, r), where (G, E) is a connected graph with nodes G and edges E ,
ι:{1, . . . , d} → G is an assignment of physical variable, and r:E → N are weights on
the edges indicating the representation ranks for the contraction variables.

Remark 2.4 Tensor networks are related to statistical networks such as hiddenMarkov
models, Bayesian belief networks, latent tree models, and sum-product networks.
However, due to the probabilistic interpretation the components need to satisfy further
constraints to ensure nonnegativity and appropriate normalisation. For further details
on latent tree networks, we refer the reader to the recent monograph [149].

2.4 Tree Tensor Networks

The main subject of this article are tensor networks of a special type, namely those
with a tree structure.

Definition 2.5 A tensor network is called a tree tensor network if its graph is a tree,
that is, contains no loops.

Among the general tensor networks, the tree tensor networks have favourable topo-
logical properties thatmake themmore amenable to numerical utilisation. For instance,
tensors representable in tree networks with fixed rank bounds rν form closed sets, and
the ranks have clear interpretation as matrix ranks, as will be explained in Sect. 3.
In contrast, it has been shown that the set of tensors represented by a tensor network
whose graph has closed loops is not closed in the Zariski sense [96]. In fact, there is
no evidence that the more general tensor network parameterisation with loops do not
suffer from similar problems as the canonical tensor format, which is not even a tensor
network. In the following, we therefore restrict ourselves to tree tensor networks.
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(a) (b) (c)

Fig. 1 Important examples of tree tensor networks. a Tucker format. b Hierarchical Tucker (HT) format.
c Tensor train (TT) format

Some of the most frequent examples of tree tensor networks are the Tucker, hierar-
chical Tucker (HT), and tensor train (TT) formats. In case d = 4, they are represented
by the tensor networks depicted in Fig. 1 and will be treated in detail in Sect. 3. By
allowing large enough representation ranks, it is always possible to represent a d-th-
order tensor in any of these formats, but the required values r = max rη can differ
substantially depending on the choice of format. Let again p be a bound for the num-
ber of connected (active) contraction variables for a node, and n = max nμ. The three
mentioned formats have storage complexity O(dnr p). A potential disadvantage of
the Tucker format is that p = d, which implies a curse of dimension for large d. In
contrast, p = 3 in HT, and p = 2 in HT.

2.5 Linear Algebra Operations

For two tensors given in the same tree tensor network representation it is easy to
perform standard linear algebra operations, such as summation, Hadamard (pointwise)
product, and inner products. Also the application of a linear operator to such a tensor
can be performed in this representation if the operator is in a “compatible” form.

For instance, a matrix-vector product b = Au results in a vector, and is obtained
as a single contraction b(i) = ∑n

k=1 A(i, k)u(k). Hence it has the following tensor
network representation.

i A uk=bi

As a next example, consider a fourth-order tensor represented in the TT format (see
Fig. 1; Sect. 3.4):

G1 G2 G3 G4

i1 i2 i3 i4

k1 k2 k3

u(i1, i2, i3, i4) =
r1∑

k1=1

r2∑

k2=1

r3∑

k3=1
G1(i1, k1)G2(k1, i2, k2)G3(k2, i3, k3)G4(k3, i4)

Note that the ordering of physical and contraction variable in the components Gμ was
adjusted to follow the linear structure of the tree. A linear operator A in TT format
has the following form:
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A1 A2 A3 A4

j1 j2 j3 j4

i1 i2 i3 i4

k′1 k′2 k′3

A((i1, . . . , i4), ( j1, . . . , j4)) =
s1∑

k′1=1

s2∑

k′2=1

s3∑

k′3=1
A1(i1, j1, k

′
1)A

2(k′1, i2, j2, k′2)A3(k′2, i3, j3, k′1)A4(k′3, i4, j4)

The application of A to u is illustrated by:

G1 G2
k1

G3
k2

G4
k3

A1

i1

A2

i2

A3

i3

A4

i4

j1 j2 j3 j4

k′1 k′2 k′3

Summing over connected edges iμ related to physical variables results again in a TT
tensor ũ = Au:

G̃
1

G̃
2

G̃
3

G̃
4

j1 j2 j3 j4

k̃1 k̃2 k̃3

ũ( j1, j2, j3, j4) =
r̃1∑

k̃1=1

r̃2∑

k̃2=1

r̃3∑

k̃3=1
G̃

1
( j1, k̃1)G̃

2
(k̃1, j2, k̃2)G̃

3
(k̃2, j3, k̃3)G̃

4
(k̃3, j4).

The new ranges r̃η for k̃η are bounded by r̃η ≤ rηsη, compared to the initial rη. It can
be seen that the overall complexity of computing Au is linear in d, quadratic in n and
polynomial in the ranks.

To estimate the complexity of standard linear algebra operations, one observes that
summing tensors in tree network representations leads to summation of ranks, while
multiplicative operations like matrix-vector products or Hadamard products lead to
multiplication of ranks. Fortunately, this is only an upper bound for the ranks. How to
recompress the resulting parameterisation with and without loss of accuracy will be
shown later. Details on linear algebra operations are beyond the scope of this paper,
but can be found in [27,65,110].

3 Tree Tensor Networks as Nested Subspace Representations

In this section we explain how the deficiencies of the canonical format are cured using
tree tensor network parameterisations. Tree tensor networks have the fundamental
property that if one edge of the tree is removed, exactly two subtrees are obtained.
This property enables the application of matrix techniques to tree tensor networks and
constitutes the main difference to the canonical tensor format.
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3.1 The Matrix Case d = 2 Revisited

Anm× n matrix can be either seen as an element ofRm ⊗R
n , as a bivariate function,

or as a linear operator from R
n to R

m . In the general, possibly infinite-dimensional
case this corresponds to the fact that the topological tensor product ofH =H1⊗H2
is isometrically isomorphic to the Hilbert space HS(H2,H1) of Hilbert–Schmidt
operators from H2 to H1. This space consists of bounded linear operators T :H2 →
H1 for which ‖T ‖2HS = 〈T, T 〉HS < ∞, where the inner product is defined as
〈S, T 〉HS = ∑n2

i2=1〈Se2i2 , T e2i2〉. Here {e
μ
i2
:i2 ∈ Iμ} is any orthonormal basis of H2.

It is an easy exercise to convince oneself that the choice of basis is irrelevant. The
isometric isomorphismu �→ Tu betweenH andHS(H2,H1)whichwe then consider
is constructed by identifying

u1 ⊗ u2 ∈H1 ⊗H2 ↔ 〈·, u2〉u1 ∈ HS(H2,H1) (3.1)

and linear expansion.
The relation to compact operatorsmakes the case d = 2 unique as it enables spectral

theory for obtaining tensor decompositions and low-rank approximations. The nuclear
decomposition of compact operators plays the decisive role. It has been first obtained
by Schmidt for integral operators [121]. A proof can be found in most textbooks on
linear functional analysis or spectral theory. For matrices the decomposition (3.2)
below is called the singular value decomposition (SVD), and can be traced back
even further, see [128] for the history. We will use the same terminology. The best
approximation property stated below was also obtained by Schmidt, and later also
attributed to Eckart and Young [45]. We state the result in �2(I1 ×I2); see [65] for
a self-contained treatment from a more general tensor perspective.

Theorem 3.1 (E. Schmidt, 1907) Let u ∈ �2(I1×I2), then there exist orthonormal
systems {U1(·, k):k ∈ I1} in �2(I1) and {U2(·, k):k ∈ I2} in �2(I2), and σ1 ≥ σ2 ≥
· · · ≥ 0, such that

u(i1, i2) =
min(n1,n2)∑

k=1
σk U1(i1, k)U2(i2, k), (3.2)

with convergence in �2(I1 × I2). A best approximation of u by a tensor of rank
r ≤ min(n1, n2) in the norm of �2(I1 ×I2) is provided by

ur (i1, i2) =
r∑

k=1
σk U1(i1, k)U2(i2, k),

and the approximation error satisfies

‖u− ur‖2 =
min(n1,n2)∑

k=r+1
σ 2
k .

The best approximation is unique in case σr > σr+1.
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The numbers σk are called singular values, the basis elements U1(·, k) and U2(·, k)
are called corresponding left and right singular vectors. They are the eigenvectors of
TuT

∗
u and T ∗u Tu, respectively.
In matrix notation, let U be the (possibly infinite) matrix with entries u(i1, i2).

Then, using (3.1), the singular value decomposition (3.2) takes the familiar form

U = U1ΣUT
2 ,

where Uμ = [uμ
1 , uμ

2 , . . . ] have columns uμ
k , μ = 1, 2, and Σ = diag(σ1, σ2, . . . ).

3.2 Subspace Approximation

Theproblemoffinding the best rank-r approximation to a tensor of order two (amatrix)
can be interpreted as a subspace approximation problem, and Schmidt’s theorem 3.1
provides a solution.

The problem is as follows: Find subspaces U1 ⊆ �2(I1) and U2 ⊆ �2(I2) of
dimension r such that

dist(u,U1 ⊗U2) = ‖u−ΠU1⊗U2u‖ = min! (3.3)

Here ΠU1⊗U2 denotes the orthogonal projection onU1 ⊗U2. The truncated singular
value decomposition ur is the solution to this problem, more precisely the subspaces
spanned by the dominating r left and right singular vectors, respectively, since one
has that a tensor of order two is of rank at most r if and only if it is contained in such
a subspace2 U1 ⊗U2. We highlight that the admissible set over which we minimise
the distance dist(u,U1 ⊗U2) is the closure of a Cartesian product of Grassmanians
[1,46,95]. Note that the rank of u can now be defined as the minimal r such that the
minimal distance in (3.3) is zero.

In contrast to the representability in canonical tensor format, the interpretation of
low-rank approximation as subspace approximation, which is possible in case d = 2,
provides a different conceptwhich offers advantageousmathematical properties also in
the higher-order case. In the sequel wewill pursue this concept. A direct generalisation
of (3.3) to higher-order tensors leads to the bynowclassicalTucker format [65,87,133].
Given a tensor u ∈ �2(I ) and dimensions r1, . . . , rd one is searching for optimal
subspaces Uμ ⊆ �2(Iμ) of dimension rμ such that

dist(u,U1 ⊗ · · · ⊗Ud) = ‖u−ΠU1⊗···⊗Ud u‖ = min! (3.4)

The (elementwise) minimal tuple of (r1, . . . , rd)which minimises the distance to zero
is called the Tucker rank of u. It follows from this definition that a tensor has Tucker
rank at most (r1, . . . , rd) if and only if u ∈ U1 ⊗ · · · ⊗Ud with dim(Uμ) ≤ r . Note

2 If u = ∑r
k=1 u1k ⊗ u2k , then u ∈ span{u11, . . . , u1r } ⊗ span{u21, . . . , u2r }. Conversely, if u is in such a

subspace, then there exist ai j such that u = ∑r
i=1

∑r
j=1 ai ju1i ⊗ u2j =

∑r
i=1 u1i ⊗

(∑r
j=1 ai ju2j

)
.
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that this in turn is the case if and only if u can be written as

u(i1, . . . , id) =
r1∑

k1=1
· · ·

rd∑

kd=1
C(i1, . . . , id , k1, . . . , kd)U1(i1, k1) · · ·Ud(id , kd).

(3.5)
For instance, one can choose {Uμ(·, 1), . . . , Ud(·, r)} to be a basis of Uμ. The mul-
tilinear representation (3.5) of tensors is called the Tucker format [77,133]. Its tensor
network representation is given in Fig. 1a.

The minimal rμ appearing in the Tucker rank of u, as well as the corresponding
subspaces Uμ, can be found constructively and independently from each other as
follows. For μ = 1, . . . , d, let I c

μ = I1 × · · · × Iμ−1 × Iμ+1 × · · · × Id . Then
the spaces �2(Iμ × I c

μ) = �2(Iμ) ⊗ �2(I c
μ), which are tensor product spaces of

order two, are all isometrically isomorphic to �2(I ). The corresponding isomorphisms
u �→ Mμ(u) are calledmatricisations. The SVDs ofMμ(u) provide us with subspaces
Uμ of minimal dimension rμ such that Mμ(u) ∈ Uμ ⊗ �2(I c

μ), that is,

u ∈ �2(I1)⊗ · · · ⊗ �2(Iμ−1)⊗Uμ ⊗ �2(Iμ+1)⊗ · · · ⊗ �2(Id). (3.6)

Comparing with (3.4), this shows that this rμ cannot be larger than the corresponding
Tucker rank. On the other hand, since (3.6) holds for μ = 1, . . . , d simultaneously,
we get (see, e.g. [65, Lemma 6.28])

u ∈ U1 ⊗ · · · ⊗Ud , (3.7)

which in combination yields that theUμ found in this way solve (3.4). These consid-
erations will be generalised to general tree tensor networks in Sect. 3.5.

Similar to the matrix case one may pose the problem of finding the best approx-
imation of a tensor u by one of lower Tucker rank. This problem always has a
solution [52,134], but no normal form providing a solution similar to the SVD is cur-
rently available. The higher-order SVD [39] uses the dominant left singular subspaces
from the SVDs of the matricisations Mμ(u), but they only provide quasi-optimal
approximations. This will be explained in more detail Sect. 3.5, albeit somewhat more
abstractly than required for the Tucker format.

There is a major drawback of the Tucker format, which motivates us to go beyond
it: unless the core tensor C in (3.5) is sparse, the low-rank Tucker representation is
still affected by the curse of dimensionality. Since, in general, the core tensor contains
r1 · · · rd possibly nonzero entries, its storage complexity scales exponentially with
the order as O(rd), where r = max{rμ:μ = 1, . . . , d}. With n = max{nμ:μ =
1, . . . , d}, the overall complexity for storing the required data, including the basis
vectors Uμ(·, k), is bounded by O(ndr + rd). Without further sparsity of the core
tensor, the pure Tucker format is appropriate only for tensors of low order, say d ≤ 4.
Nonetheless, subspace-based tensor representation approximation as in the Tucker
format is not a dead end. We will describe how it can be used in a hierarchical fashion
to circumvent the curse of dimensionality, at least for a large class of tensors.
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3.3 Hierarchical Tensor Representation

The hierarchical Tucker format or hierarchical tensor format (HT) was introduced
by Hackbusch and Kühn [69], and extends the idea of subspace approximation to a
hierarchical or multi-level framework. It is a tree tensor network corresponding to the
diagram in Fig. 1b. Here we derive it from a geometric viewpoint.

Let us reconsider the subspace relation (3.7) with subspaces Uμ of dimension rμ.
There exists a subspaceU{1,2} ⊆ U1⊗U2, of possibly lower dimension r{1,2} ≤ r1r2,
such that we actually have u ∈ U{1,2} ⊗ U3 ⊗ · · · ⊗ Ud . Then U{1,2} is a space of
“matrices”, and has a basis {U{1,2}(·, ·, k{1,2}):k{1,2} = 1, . . . , r{1,2}}, whose elements
can be represented in the basis of U1 ⊗U2:

U{1,2}(i1, i2, k{1,2}) =
r1∑

k1=1

r2∑

k2=1
B{1,2}(k1, k2, k{1,2})U1(i1, k1)U2(i2, k2).

One can now continue in several ways, e.g. by choosing a subspaceU{1,2,3} ⊆ U{1,2}⊗
U3 ⊆ U1⊗U2⊗U3. Another option is to find a subspaceU{1,2,3,4} ⊆ U{1,2}⊗U{3,4},
where U{3,4} is defined analogously to U{1,2}, and so on.

For a systematic treatment, this approach is cast into the framework of a partition
tree T (also called dimension tree) containing subsets of {1, . . . , d} such that

(i) α∗: = {1, . . . , d} ∈ T, and
(ii) for every α ∈ T with |α| > 1 there exist α1, α2 ∈ T such that α = α1 ∪ α2 and

α1 ∩ α2 = ∅.
Such a set T forms a binary tree by introducing edges between fathers and sons. The
vertex α∗ is then the root of this tree, while the singletons {μ}, μ = 1, . . . , d are
the leaves. By agreeing that α1 should be the left son of α and α2 the right son, a
pre-order traversion through the tree yields the leaves {μ} appearing according to a
certain permutation ΠT of {1, . . . , d}.

By T̂ we denote the subset of α which are neither the root, nor a leaf (inner
vertices). In the HT format, to every α ∈ T\{α∗} with sons α1, α2 a subspace
Uα ⊆ ⊗

j∈α �2(I j ) of dimension rα is attached such that the nestedness proper-
ties

Uα ⊆ Uα1 ⊗Uα2 , α ∈ T̂,

andπT(u) ∈ Uα∗1⊗Uα∗2 hold true. HereπT denotes the natural isomorphism3 between
⊗d

μ=1 �2(Iμ) and
⊗d

μ=1 �2(IΠT(μ)).
Corresponding bases {Uα(·, . . . , ·, kα):kα = 1, . . . , rα} of Uα are then recursively

expressed as

3 One can think of πT(u) as a reshape of the tensor u which relabels the physical variables according to
the permutation Π induced by the order of the tree vertices. Note that in the pointwise formula (3.9) it is
not needed.
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Uα(iα, kα) =
rα1∑

k1=1

rα2∑

k2=1
Bα(k1, k2, kα)Uα1(iα1 , k1)U

α2(iα2 , k2), α ∈ T̂, (3.8)

where iα = ×μ∈α{iμ} denotes, with a slight abuse of notation, the tuple of physical
variables represented by α. Finally, u is recovered as

u(i1, . . . , id) =
rα∗1∑

k1=1

rα∗2∑

k2=1
Bα∗(k1, k2)Uα∗1 (iα∗1 , k1)U

α∗2 (iα∗2 , k2). (3.9)

It will be notationally convenient to set Bα = Uα for leaves α = {μ}. If equa-
tion (3.9) is recursively expanded using (3.8), we obtain a multilinear low-rank format
of the form (2.7) with E = |T | − 1, D = |T |, rη = rα , and Cν = Bα (in some
ordering), that satisfies Definition 2.2. Its graphical representation takes the form of
the tree in Fig. 1b, and has the same topology as the tree T itself, ignoring the edges
with open ends which can be seen as labels indicating physical variables.

The tensors Bα will be called component tensors, the terminology transfer tensors
is also common in the literature. In line with (2.8) the tensors which are representable
in the HT format with fixed r = (rα) are the images

u = π−1
T

(τT,r((B
α)α∈T))

of a multilinear map π−1
T
◦ τT,r.

For fixed u and T, the minimal possible rα to represent u as image of τT,r are,
as for the Tucker format, given by ranks of certain matricisations of u. This will be
explained in Sect. 3.5 for general tree tensor networks.

Depending on the contraction lengths rα , the HT format can be efficient, as it
only requires storing the tuple (Bα)α∈T. Every Bα is a tensor of order at most three.
The number of nodes in the tree T is bounded by 2d − 1 = O(d), including the
root node. Therefore, the data complexity for representing u is O(ndr + dr3), where
n = max{nμ:μ = 1, . . . , d}, r = max{rα:α ∈ T\{α∗}}. In contrast to the classical
Tucker format, the complexity formally no longer scales exponentially in d.

It is straightforward to extend the concept to partition trees such that vertices are
allowed to have more than two sons, but the binary trees are the most common. Note
that the Tucker format itself represents an extreme case where the root decomposes
immediately into d leaves, as illustrated in Fig. 1a.

3.4 Tensor Trains and Matrix Product Representation

As a third example, we consider the tensor train (TT) format as introduced in [111,
113]. As it later turned out, this format plays an important role in physics, where it
is known as matrix product states (MPS). The unlabelled tree tensor network of this
format can be seen in Fig. 1c. When attaching the physical variable nμ in natural order
from left to right, the pointwise multilinear representation is
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u(i1, . . . , id) =
r1∑

k1=1
· · ·

rd−1∑

kd−1=1
G1(i1, k1)G2(k1, i2, k2) · · ·Gd(kd−1, id) (3.10)

The TT format is hence of the form (2.7) with D = d and E = d − 1, and satisfies
Definition 2.2.

Introducing the matrices Gμ(iμ) = [Gμ(kμ−1, iμ, kμ)] ∈ R
rμ−1×rμ , with the

convention r0 = rd = 1, G1(1, i1, k1) = G1(i1, k1), and Gd(kd−1, i1, 1) =
Gd(kd−1, id), formula (3.10) becomes a matrix product,

u(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id), (3.11)

which explains the name matrix product states used in physics. In particular, the
multilinear dependence on the components Gμ is evident, and may be expressed as
u = τTT(G1, . . . , Gd).

From the viewpoint of subspace representation, the minimal rη, η = 1, . . . , d − 1,
required for representing u in the TT format are the minimal dimensions of subspaces
U{1,...,ν} ⊆ ⊗ν

μ=1 �2(Iμ) such that the relations

u ∈ U{1,...,η} ⊗
( d⊗

μ=η+1
�2(Iμ)

)
, η = 1, . . . , d − 1

hold simultaneously. Again, these subspaces can be obtained as ranges of correspond-
ing matricisations, as will be explained in the next subsection. Regarding nestedness,
we will see that one even has

U{1,...,η} ⊆ U{1,...,η−1} ⊗ �2(Iη), η = 1, . . . , d − 1.

A tensor in canonical format

u(i1, . . . , id) =
rc∑

k=1
C1(i1, k) · · ·Cd(id , k)

can be easily written in TT form, by setting all rη to rc, G1 = C1, Cd = (Gd)T , and

Gμ(kμ−1, iμ, kμ) =
{

Cμ(iμ, k), if kμ−1 = kμ = k,

0, else,

for μ = 2, . . . , d − 1. From (3.11) we conclude immediately that a single point
evaluationu(i1, . . . , id) can be computed easily bymatrixmultiplication usingO(dr2)
arithmetic operations, where r = max{rη:η = 1, . . . , d − 1}. With n = max{nμ:μ =
1, . . . , d}, the data required for the TT representation isO(dnr2), as the d component
tensorsGμ need tobe stored.Dependingon r , theTT format henceoffers the possibility
to circumvent the curse of dimensionality.
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Due to its convenient explicit representation (3.11) we will use the TT format
frequently as a model case for explanation.

3.5 Matricisations and Tree Rank

After having discussed the most prominent examples of tree tensor networks in the
previous sections, we return to the consideration of a general tree tensor network
τ = τr(C1, . . . , CD) encoding a representation (2.7) and obeying Definitions 2.2
and 2.5. The nodes have indices 1, . . . , D, and the distribution of physical variables
iμ is fixed (nodes are allowed to carry more than one physical index).

The topology of the network is described by the set of its edges. Following [9], we
now introduce a notion of effective edges, whichmay in fact comprise several lines in a
graphical representation such as Fig. 1, and correspond precisely to the matricisations
arising in the tensor format. The set of such edges will be denoted by E. In slight
deviation from (2.7), the contraction variable (kη)η∈E and the representation ranks
r = (rη)η∈E will now be indexed by the set E.

Since we are dealing with a tree tensor network, along every contraction index
we may split the tree into two disjoint subtrees. Both subtrees must contain vertices
carrying physical variables. Hence such a splitting induces a partition

α∗ = {1, . . . , d} = α ∪ αc

by gathering the μ for which the physical index iμ is in the respective subtree. We
then call the unordered pair {α, αc} an edge.

For instance, for a given partition tree T in the HT case, we have

E = {{α, αc} : α ∈ T\{α∗}} (3.12)

as used in [9], with each element of E corresponding to precisely one matricisation
arising in the format. As a consequence of the definition, for each η ∈ E we may pick
a representative [η] ∈ T. Note that in (3.12), the set {α∗1 , α∗2} appears twice as α runs
over T\{α∗}, which is a consequence of the two children of α∗ corresponding to the
same matricisation; hence |E| = 2d − 3.

In order to introduce the same notion for tree tensor networks, we first give a
construction of a corresponding generalised partition tree T by assigning labels to the
nodes in the tensor network as follows. Pick any node ν∗ to be the root of the tree, for
which we add α∗ = {1, . . . , d} to T. This induces a top–down (father–son) ordering
in the whole tree. For all nodes ν, we have a partition of the physical variables in the
respective subtree of the form

αν =
( ⋃

ν′∈sons(ν)

αν′
)
∪ βν, (3.13)

where βν is the set of physical variables attached to ν (of course allowing βν = ∅).
We now add all αν that are obtained recursively in this manner to the set T. It is easy
to see that such a labelling is possible for any choice of ν∗.
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For such a generalised partition tree T of a tree tensor network, we again obtain a
set of effective edges E exactly as in (3.12), and again have a representative [η] ∈ T

for each η ∈ E.
The difference between this general construction and the particular case (3.12) of

the HT format is that we now allow incomplete partitions (complemented by βν), and
in principle also further nodes with the same label. In the case of the TT format (3.10),
which corresponds to the network considered in Fig. 1c with linearly arranged iμ,
starting from the rightmost node ν∗ = {d}, one obtains the d − 1 edges

{{1}, {2, . . . , d}}, {{1, 2}, {3, . . . , d}}, . . . , {{1, . . . , d − 1}, {d}}

which in this case comprise the set E.
The main purpose of this section is to show how the minimal representation ranks

(rη)η∈E are obtained frommatrix ranks. For every edgeη ∈ E,wehave index setsIη =×μ∈[η]Iμ and I c
η =×μ∈[η]c Iμ, and, by (2.4), a natural isometric isomorphism

Mη:�2(I )→ �2(Iη)⊗ �2(I c
η ),

called η-matricisation or simplymatricisation. The second-order tensor Mη(u) repre-
sents a reshape of the hyper-matrix (array)u into amatrix inwhich the rows are indexed
by Iη and the columns by I c

η . The order in which these index sets are traversed is
unimportant for what follows.

Definition 3.2 The rank of Mη(u) is called the η-rank of u, and denoted by rankη(u).
The tuple rankE(u) = (rankη(u))η∈E is called the tree rank of u for the given tree
tensor network.

Theorem 3.3 A tensor is representable in a tree tensor network τrwith edgesE if and
only if rankη(u) ≤ rη for all η ∈ E.

Proof Assume u is representable in the form (2.7). Extracting the edge η correspond-
ing to (without loss of generality, only one) contraction index kη from the tree we
obtain two disjoint subtrees on both sides of η, with corresponding contraction vari-
ables relabelled as k1, . . . , ks and ks+1, . . . , kE−1, respectively; the set of nodes for
the components is partitioned into {1, . . . , D} = γ ′η ∪ γ ′′η . Since in every component
Cν at most two contraction variable are active, it follows that

u(i1, . . . , id) =
rη∑

kη=1

⎛

⎝
r1∑

k1=1
· · ·

rs∑

ks=1

∏

ν′∈γ ′
Cν′(i1, . . . , id , k1, . . . , kE )

⎞

⎠ (3.14)

×
⎛

⎝
rs+1∑

ks+1
· · ·

rE−1∑

kE−1=1

∏

ν′′∈γ ′′
Cν′′(i1, . . . , id , k1, . . . , kE )

⎞

⎠ .

The edge η is of the form η = {α, αc}, where all physical variables iμ with μ ∈ α are
active in some Cν′ with ν′ ∈ γ ′, and those in αc are active in some Cν′′ with ν′′ ∈ γ ′′.
Thus (3.14) implies rankη(u) ≤ rη.
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To prove the converse statement it suffices to show that we can choose rη =
rankη(u). We assume a proper labelling with distinguished node ν∗. To every edge
η belongs a subspace Uη ⊆ �2(I[η]), which is the Hilbert space whose orthonormal
basis are the left singular vectors of Mη(u) belonging to positive singular values. Its
dimension is rη. In a slight abuse of notation (one has to involve an isomorphism
correcting the permutation of factors in the tensor product) we note that

u ∈ Uη ⊗ �2(I c
η ) (3.15)

for every η. Here our argumentation will be rather informal to avoid notational tech-
nicalities. One can show that (3.15) in combination with (3.13) yields (in intuitive
notation)

Uαν ⊆
( ⊗

ν′∈sons(ν)

Uαν′
)
⊗ �2(Iβν ), (3.16)

and
u ∈

( ⊗

ν∈sons(ν∗)
Uαν

)
⊗ �2(Iβν∗ ), (3.17)

by [65, Lemma 6.28]. Let {Uν(·, . . . , ·, kη(ν)):kη(ν) = 1, . . . , rη(ν)} be a basis ofUαν ,
with η(ν) = {αν, α

c
ν}. We also set Uν∗ = u. Now if a node ν has no sons, we choose

Cν = Uν . For other ν �= ν∗, by (3.16) or (3.17), a tensor Cν is obtained by recursive
expansion. By construction, the final representation for u yields a decomposition
according to the tree network. ��

3.6 Existence of Best Approximations

We can state the result of Theorem 3.3 differently. Let H≤r = H≤r(E) denote the
set of all tensors representable in a given tensor tree network with edges E. For every
η ∈ E let

M
η
≤rη = {u ∈ �2(I ): rankη(u) ≤ rη}.

Then Theorem 3.3 states that

H≤r = {u: rankE(u) ≤ r} =
⋂

η∈E
M

η
≤rη . (3.18)

Using the singular value decomposition, it is relatively easy to show that for any finite
rη, the setM

η
≤rη is weakly sequentially compact [52,65,134,136], and for rν = ∞, we

haveM η
≤rη = �2(I ). Hence the setH≤r is weakly sequentially closed. Depending on

the chosen norm, this is even true in tensor product of Banach spaces [52]. A standard
consequence in reflexive Banach spaces like �2(I ) (see, e.g. [147]) is the following.
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Theorem 3.4 Every u ∈ �2(I ) admits a best approximation in H≤r.

For matrices we know that truncation of the singular value decomposition to rank
r yields the best rank-r approximation of that matrix. The analogous problem to find
a best approximation of tree rank at most r for a tensor u, that is, a best approximation
inH≤r, has no such clear solution and can be NP-hard [75]. As we are able to project
onto every setM η

≤rη via SVD, the characterisation (3.18) suggests to apply successive
projections on these sets to obtain an approximation in H≤r. This works depending
on the order of these projections, and is called hierarchical singular value truncation.

3.7 Hierarchical Singular Value Decomposition and Truncation

The bases of subspaces considered in the explicit construction used to prove Theo-
rem 3.3 can be chosen arbitrarily. When the left singular vectors of Mη(u) are chosen,
the corresponding decomposition u = τr(C1, . . . , CD) is called the hierarchical sin-
gular value decomposition (HSVD) with respect to the tree network with effective
edges E. It was first considered in [39] for the Tucker format, later in [60] for the
HT and in [109,111] for the TT format. It was also introduced before in physics for
the matrix product representation [140]. The HSVD can be used to obtain low-rank
approximations in the tree network. This procedure is called HSVD truncation.

Most technical details will be omitted. In particular, we do not describe how to
practically compute an exact HSVD representation; see, e.g. [60]. For an arbitrary
tensor given in full format this is typically prohibitively expensive. However, for

u = τr(C̃
1
, . . . C̃

D
) already given in the tree tensor network format, the procedure

is quite efficient. The basic idea is as follows. One changes the components from
leaves to root to encode some orthonormal bases in every node except ν∗, using e.g.
QR decompositions that operate only on (matrix reshapes of) the component tensors.
Afterwards, it is possible to install HOSV bases from root to leaves using only SVDs
on component tensors. Many details are provided in [65].

In the following we assume that u has tree rank s and u = τs(C1, . . . , CD) ∈
H≤s(E) is an HSVD representation. Let r ≤ s be given. We consider here the case
that all rη are finite. An HSVD truncation of u toH≤r can be derived as follows. Let

Mη(u) = UηΣη(Vη)T

be the SVD of Mη, with Ση = diag(σ η
1 (u), σ

η
2 (u), . . . ) such that σ

η
1 (u) ≥ σ

η
2 (u) ≥

· · · ≥ 0. The truncation of a single Mη(u) to rank rη can be achieved by applying the
orthogonal projection

Pη,rη = P̃[η],rμ ⊗ Id[η]c :�2(I )→M
η
≤rη , (3.19)

where P̃[η],rμ is the orthogonal projection onto the span of rη dominant left singular
vectors of Mη(u). Then Pη,rη (u) is the best approximation of u in the setM η

≤rη . Note
that Pη,rη = Pη,rη,u itself depends on u.
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The projections (Pη,rη )η∈E are now applied consecutively. However, to obtain a
result in H≤r, one has to take the ordering into account. Let T be a generalised
partition tree of the tensor network. Considering a α ∈ T with son α′ we observe the
following:

(i) Applying Pη,rη with η = {α, αc} does not destroy the nestedness property (3.15)
at α, simply because the span of only the dominant rη left singular vectors is a
subset of the full span.

(ii) Applying Pη′,rη′ with η′ = {α′, α′c} does not increase the rank of Mη(u). This
holds because there exists β ⊆ {1, . . . , d} such that Id[η′]c ⊆ Id[η]c ⊗ Idβ . Thus,
since Pη′,rη′ is of the form (3.19), it only acts as a left multiplication on Mη(u).

Property (ii) by itself implies that the top-to-bottom application of the projections
Pη,rη will result in a tensor in H≤r. Property (i) implies that the procedure can be
performed, starting at the root element, by simply setting to zero all entries in the
components that relate to deleted basis elements in the current node or its sons, and
resizing the tensors accordingly.

Let level η denote the distance of [η] in the tree to α∗, and let L be the maximum
such level. The described procedure describes an operator

Hr:�2(I )→H≤r, u �→
( ∏

level η=L

Pη,rη,u · · ·
∏

level η=1
Pη,rη,u

)
(u), (3.20)

called the hard thresholding operator. Remarkably, as the following result shows, it
provides a quasi-optimal projection. Recall that a best approximation in H≤r exists
by Theorem 3.4.

Theorem 3.5 For any u ∈ �2(I ), one has

min
v∈H≤r

‖u− v‖ ≤ ‖u−Hr(u)‖ ≤
√∑

η∈E

∑

k>rη

(
σ

η
k (u)

)2 ≤ √|E| min
v∈H≤r

‖u− v‖.

The proof follows more or less immediately along the lines of [60], using the
properties ‖u−P1P2u‖2 ≤ ‖u−P1u‖2+‖u−P2u‖2, which holds for any orthogonal
projections P1, P2, and minv∈M η

≤rη
‖u − v‖ ≤ minv∈H≤r ‖u − v‖, which follows

from (3.18).
There are sequential versions of hard thresholding operators which traverse the tree

in a different ordering, and compute at edge η the best η-rank-rη approximation of
the current iterate by recomputing an SVD. These techniques can be computationally
beneficial, but the error cannot easily be related to that of the direct HSVD truncation;
see [65, Sect. 11.4.2] for corresponding bounds similar to Theorem 3.5.

3.8 Hierarchical Tensors as Differentiable Manifolds

We now consider geometric properties of Hr =Hr(E) = {u: rankE(u) = r}, that is,
Hr = ⋂

η∈EM
η
rη , whereM

η
rη is the set of tensors with η-rank exactly rη. We assume
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that r is such thatHr is not empty. In contrast to the setH≤r, it can be shown thatHr

is a smooth embedded submanifold if all ranks rη are finite [79,138], which enables
Riemannian optimisation methods on it as discussed later. This generalises the fact
that matrices of fixed rank form smooth manifolds [74].

The cited references consider finite-dimensional tensor product spaces, but the
arguments can be transferred to the present separable Hilbert space setting [136], since
the concept of submanifolds itself generalises quite straightforwardly, see, e.g. [97,
148]. The case of infinite ranks rη, however, is more subtle and needs to be treated
with care [52,54].

We will demonstrate some essential features using the example of the TT format.
Let r = (r1, . . . , rd−1) denote finite TT representation ranks. Repeating (3.11), the
setH≤r is then the image of the multilinear map

τTT:W :=W1 × · · · ×Wd → �2(I ),

whereWν = R
rν−1 ⊗ �2(Iν)⊗R

rν (with r0 = rd = 1), and u = τTT(G1, . . . , Gd) is
defined via

u(i1, . . . , id) = G1(i1)G2(i2) · · ·Gd(id). (3.21)

The set W is called the parameter space for the TT format with representation rank
r. It is not difficult to deduce from (3.21) that in this caseHr = τTT(W ∗), whereW ∗
is the open and dense subset of parameters (G1, . . . , Gd) for which the embeddings
(reshapes) of every Gν into the matrix spaces Rrν−1 ⊗ (�2(Iμ)⊗ R

rν ), respectively
(Rrν−1 ⊗ �2(Iν)) ⊗ R

rν , have full possible rank rν−1, respectively rν . Since τTT is
continuous, this also shows that H≤r is the closure of Hr in �2(I ).

A key point that has not been emphasised so far is that the representation (3.21) is
by no means unique. We can replace it with

u(i1, . . . , id) =
[
G1(i1)A1

] [
(A1)−1G2(i2)A2

]
· · ·

[
(Ad−1)−1Gd(id)

]
, (3.22)

with invertible matrices Aν , which yields new components G̃
ν
representing the same

tensor. This kind of non-uniqueness occurs in all tree tensor networks and reflects the
fact that in all except one node only the subspaces are important, not the concrete
choice of basis. A central issue in understanding the geometry of tree representations
is to remove these redundancies. A classical approach, pursued in [136,138], is the
introduction of equivalence classes in the parameter space. To this end, we interpret
the transformation (3.22) as a left action of the Lie group G of regular matrix tuples
(A1, . . . , Ad−1) on the regular parameter space W ∗. The parameters in an orbit G ◦
(G1, . . . , Gd) lead to the same tensor and are called equivalent. Using simple matrix
techniques one can show that this is the only kind of non-uniqueness that occurs. Hence
we can identify Hr with the quotient W ∗/G . Since G acts freely and properly on
W ∗, the quotient admits a unique manifold structure such that the canonical mapping
W ∗ → W ∗/G is a submersion. One now has to show that the induced mapping τ̂TT
fromW ∗/G to �2(I ) is an embedding to conclude that its imageHr is an embedded
submanifold. The construction can be extended to general tree tensor networks.
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The tangent space TuHr at u, abbreviated by Tu, is of particular importance for
optimisation on Hr. The previous considerations imply that the multilinear map τTT
is a submersion from W ∗ toHr. Hence the tangent space at u = τTT(C1, . . . , Cd) is
the range of τ ′TT(C1, . . . , Cd), and by multilinearity, tangent vectors at u are therefore
of the generic form

δu(i1, . . . , id) = δG1(i1)G(i2) · · ·Gd(id)

+ · · · + G1(i1) · · ·Gd−1(id−1)δGd(id). (3.23)

As a consequence, a tangent vector δu has TT-rank s with sν ≤ 2rν .
Since τ ′TT(G1, . . . , Gd) is not injective (tangentially to the orbit G ◦ (G1, . . . , Gd),

the derivative vanishes), the representation (3.23) of tangent vectors cannot be unique.
One has to impose gauge conditions in the form of a horizontal space. Typical choices
for the TT format are the spaces Ŵν = Ŵν(Gν), ν = 1, . . . , d − 1, comprised of δGν

satisfying

rν−1∑

kν−1=1

nν∑

iν=1
Gν(kν−1, iν, kν)δGν(kν−1, iν, kν) = 0, kν = 1, . . . , rν .

These Ŵν are the orthogonal complements in Wν of the space of δGν for which there
exists an invertible Aν such that δGν(iν) = Gν(iν)Aν for all iν . This can be used
to conclude that every tangent vector of the generic form (3.23) can be uniquely
represented such that

δGν ∈ Ŵν, ν = 1, . . . , d − 1. (3.24)

In fact, the different contributions in (3.23) then belong to linearly independent sub-
spaces, see [79] for details. It follows that the derivative τ ′TT(G1, . . . , Gd) maps the

subspace Ŵν(G1)× · · · × Ŵd−1(Gd−1)×Wd ofW bijectively on Tu.4 In our exam-
ple, there is no gauge on the component Gd , but with modified gauge spaces, any
component could play this role.

Theorthogonal projectionΠTu onto the tangent spaceTu is computable in a straight-
forward way if the basis vectors implicitly encoded at nodes ν = 1, . . . , d − 1 are
orthonormal, which in turn is not difficult to achieve (using QR decomposition from
left to right). Then the decomposition of the tangent space induced by (3.23) and the
gauge conditions (3.24) is actually orthogonal. Hence the projection on Tu can be
computed by projecting on the different parts. To this end, let Eν = Eν(G1, . . . , Gd)

be the linear map δGν �→ τTT(G1, . . . , δGν, . . . Gd). Then the components δGν to
represent the orthogonal projection of v ∈ �2(I ) ontoTu in the form (3.23) are given
by

δGν =
{
PŴν

E+ν v, ν = 1, . . . , d − 1,

ET
ν v, ν = d.

4 Even without assuming our knowledge thatHr is an embedded submanifold, these considerations show
that τTT is a smooth map of constant co-rank r21 + · · · + r2d−1 onW ∗. This already implies that the image
is a locally embedded submanifold [79].
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Here we denote by P
Ŵν

is the orthogonal projection onto the gauge space Ŵν , and

E+ν = (ET
ν Eν)

−1ET
ν is the Moore–Penrose inverse of Eν . Indeed, the assumption that

u has TT-rank r implies that the matrix ET
ν Eν is invertible. At ν = d it is actually the

identity by our assumption that orthonormal bases are encoded in the other nodes. In
operator form, the projector ΠTu can then be written as

ΠTu v =
d−1∑

ν=1
Eν PŴν

E+ν v + EνET
ν v.

The operators ET
ν are easy to implement, since they require only the computation of

scalar product of tensors. Furthermore, the inverses (ET
ν Eν)

−1 are applied only to
the small component spaces Wν . This makes the projection onto the tangent space a
flexible and efficient numerical tool for the application of geometric optimisation, see
Sect. 4.2. Estimates of the Lipschitz continuity of �→PTu (curvature bounds) are of
interest in this context, with upper bounds given in [4,105].

The generalisation of these considerations to arbitrary tree networks is essentially
straightforward, but can become notationally quite intricate, see [138] for the HT
format.

4 Optimisation with Tensor Networks and Hierarchical Tensors and the
Dirac–Frenkel Variational Principle

In this section, our starting point is the abstract optimisation problem of finding

u∗ = argmin J (u), u ∈ A ,

for a given cost functional J : �2(I )→ R and an admissible set A ⊆ �2(I ).
In general, a minimiser u∗ will not have low hierarchical ranks in any tree ten-

sor network, but we are interested in finding good low-rank approximations to u∗.
Let H≤r denote again a set of tensors representable in a given tree tensor network
with corresponding tree ranks at most r. Then we wish to solve the tensor product
optimisation problem

ur = argmin{J (u):u ∈ C = A ∩H≤r}. (4.1)

By fixing the ranks, one fixes the representation complexity of the approximate
solution. It needs to be noted that the methods discussed in this section yield approx-
imations to ur, but no information on the error with respect to u∗. Typically, one will
not aim to approximate ur with an accuracy better than ‖ur− u∗‖. In fact, finding
an accurate approximation of the global minimiser ur of (4.1) is a difficult problem:
The results in [75] show that even finding the best rank-one approximation of a given
tensor, with finiteI , up to a prescribed accuracy is generally NP-hard if d ≥ 3. This
is related to the observation that (4.1) typically has multiple local minima.
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In general, one thus cannot ensure a prescribed error in approximating a global
minimiser ur of (4.1). In order to enable a desired accuracy with respect to u∗, one
also needs in addition somemeans to systematically enrichC by increasing the ranks r.
Subject to these limitations, themethods considered in this section provide numerically
inexpensive ways of finding low-rank approximations by hierarchical tensors.

Note that in what follows, the index set I as in (2.2) may be finite or countably
infinite. In the numerical treatment of differential equations, discretisations and cor-
responding finite index sets need to be selected. This aspect is not covered by the
methods considered in this section, which operate on fixed I , but we return to this
point in Sect. 5.

Typical examples of optimisation tasks (4.1) that we have inmind are the following,
see also [49,51].

(a) Best rank-r approximation in �2(I ): for given v ∈ �2(I ) minimise

J (u):=‖u− v‖2

over A = �2(I ). This is the most basic task we encounter in low-rank tensor
approximation.

(b) Solving linear operator equations: for elliptic self-adjoint A : �2(I ) → �2(I )

and b ∈ �2(I ), we consider A :=�2(I ) and

J (u):=1

2
〈Au, u〉 − 〈b, u〉 (4.2)

to solve Au = b. For nonsymmetric isomorphisms A, one may resort to a least
squares formulation

J (u):=‖Au− b‖2. (4.3)

The latter approach of minimisation of the norm of a residual also carries over to
nonlinear problems.

(c) Computing the lowest eigenvalue of symmetric A by minimising the Rayleigh
quotient

u∗ = argmin{J (u) = 〈Au, u〉:‖u‖2 = 1}.

This approach can be easily extended if one wants to approximate the N lowest
eigenvalues and corresponding eigenfunctions simultaneously, see, e.g. [43,88,
108].

For the existence of a minimiser, the weak sequential closedness of the sets H≤r
is crucial. As mentioned before, this property can be violated for tensors described by
the canonical format [65,127], and in general no minimiser exists. However, it does
hold for hierarchical tensorsH≤r, as was explained in Sect. 3.6. A generalised version
of Theorem 3.4 reads as follows.

Theorem 4.1 Let J be strongly convex over �2(I ), and let A ⊆ �2(I ) be weakly
sequentially closed. Then J attains its minimum on C = A ∩H≤r.
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Under the assumptions of example (b), due to ellipticity of A in (4.2) or A∗A in
(4.3), the functional J is strongly convex, and one obtains well-posedness of these
minimisation problems with (a) as a special case.

Since in case (c) the corresponding set A (the unit sphere) is not weakly closed,
such simple arguments do not apply there.

4.1 Alternating Linear Scheme

We are interested in finding a minimiser, or even less ambitiously, we want to decrease
the cost functional along our model class when the admissible set is A = �2(I ).

A straightforward approach which suggests itself in view of the multilinearity of
τTT(C1, . . . , CD) is block coordinate descent (BCD). For the task of finding the best
rank-r approximation this approach is classical and called alternating least squares
(ALS), because the optimal choice of a single block is obtained from a least squares
problem. Formore general quadratic optimisation problems, we refer to BCDmethods
as alternating linear schemes.

The idea is to iteratively fix all components Cν except one. The restriction Cν �→
τr(C1, . . . , CD) is linear. Thus for quadratic J weobtain again a quadratic optimisation
problem for the unknown component Cν , which is of much smaller dimension than
the ambient space �2(I ). Generically, there exist unique solutions of the restricted
problems.

Algorithm 1: Alternating linear scheme
while not converged do

for ν = 1, . . . , D do
Cν ← argmin

Cν
J

(
τr(C1, . . . , Cν , . . . , CD)

)

end
end

In this way, the nonlinearity imposed by the model class is circumvented at the
price of possiblymaking very little progress in each step or encountering accumulation
points which are not critical points of the problem. Also the convergence analysis is
challenging, as textbook assumptions on BCD methods are typically not met, see [50,
106,118,135] for partial results. However, regularisation can cure most convergence
issues [137,146].

In practical computations the abstract description in Algorithm 1 is modified to
reorder the tree during the process in such a way that the component to be optimised
becomes the root, and all bases encoded in the other nodes are orthonormalised accord-
ingly. This does not affect the generated sequence of tensors [118], but permits much
more efficient solution of the local least squares problems. In particular, the condition
of the restricted problems is bounded by the condition of the original problem [78].
All contractions required to set up the local linear system for a single component scale
only polynomially in r , n, and are hence computable at acceptable cost.
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This optimisation procedure for tensor networks is known as the single-site den-
sity matrix renormalisation group (DMRG) algorithm in physics [143]. The two-site
DMRG algorithm (modified ALS [78]) has been developed by S. White [142] for spin
chain models. It is a substantial modification of the scheme above, combining neigh-
bouring components Cν and Cν+1 in one, which is subsequently optimised. The result
is then separated again by an appropriately truncated SVD. This allows an adjustment
of representation ranks, but comes at a higher numerical cost. In the numerical analysis
community such algorithms have been used in [43,78,84,88,91,112].

4.2 Riemannian Gradient Descent

The Riemannian optimisation framework [1] assumes that the minimiser ur ∈ H≤r
of the problem constrained to H≤r actually belongs to the smooth manifold Hr (cf.
Sect. 3.8). For matrix manifolds this is the case if the global minimiser u∗ does not
belong to the singular points H≤r\Hr, see [123].

Assuming ur ∈ Hr, the first-order necessary optimality condition is that the gra-
dient of J at ur is perpendicular to the tangent space Tur = TurHr. Hence a relaxed
problem compared to (4.1) consists in finding u ∈Hr such that

〈∇ J (u), δu〉 = 0 for all δu ∈ Tu, (4.4)

where ∇ J is the gradient of J . Since Hr is an embedded submanifold, a trivial
Riemannianmetric is inherited from the ambient space �2(I ), and for theRiemannian
gradient one has Grad J (u) = PTu∇ J (u), which by (4.4) should be driven to zero.

As a relatively general way of treating the above problems, we will consider pro-
jected gradient methods. In these methods, one performs gradient steps yn+1:=un −
αm∇ J (un) in the ambient space �2(I ). More generally, one may take preconditioned
gradient steps, which is not considered for brevity. For the problems derived from
linear operator equations considered above, yn+1 is in principle computable whenever
A and b have a suitable low-rank structure. The gradient step is followed by amapping
R : �2(I ) →H≤r to get back on the admissible set. The iteration is summarised as
follows:

yn+1 := un − αn∇ J (un) (gradient step),

un+1 := R(yn+1) (projection step).

The specification of the above algorithm depends on the step size selection αn and on
the choice of the projection operator R:�2(I )→H≤r.

Let us remark that taking the best approximation

R(yn+1):=argmin{‖yn+1 − z‖ : z ∈H≤r}

is generally not numerically realisable [75]. A practically feasible choice for the non-
linear projection R would be the HSVD truncation Hr defined in (3.20), which will
be considered in Sect. 6.1.
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Supposing that a retraction (defined below) is available on the tangent space, a
nonlinear projection R can also be realised in two steps, by first projecting (linearly)
onto the tangent space Tun at un , and subsequently applying the retraction R:

zn+1 := PTun

(
un − αn∇ J (un)

) = un − αn PTun
∇ J (un) (projected gradient step)

=: un + ξn, ξn ∈ Tun ,

un+1 := R(un, zn+1 − un) = R(un, ξn) (retraction step).

In the first line we used that un ∈ Tun (since Hr is a cone). This algorithm is called
the Riemannian gradient iteration.

Retractions and Riemannian gradient iteration have been introduced in [126]. We
follow the treatment in the monograph [1]. A retraction maps u + ξ , where u ∈ Hr

and ξ ∈ Tu, smoothly to a point R(u, ξ) on the manifold such that

‖u+ ξ − R(u, ξ)‖ = O(‖ξ‖2).

Roughly speaking, a retraction is an approximate exponential map on the manifold.
The exponential map itself satisfies the definition of a retraction, but is in general
too expensive to evaluate. Several examples of retractions for hierarchical tensors are
known [89,104,105].

Let us note that in principle, it can occur that an iterate un is of lower rank, that is,
un ∈ Hs, where sη < rη for at least one η ∈ E. In this case un ∈ H≤r is a singular
point, and no longer on the manifoldHr, so the Riemannian gradient algorithm breaks
down. Since Hr is dense in H≤r, for any ε > 0 there exists a tensor un

ε ∈ Hr with
‖u − un

ε‖ < ε. Practically such a regularised un
ε is not hard to obtain for a chosen

ε ∼ ‖∇ J (un)‖. Alternatively, the algorithm described above can be regularised, in
order to automatically avoid arriving at a singular point [89].

In [123], the Riemannian gradient iteration was extended to closures of matrix
manifolds, and convergence results were deduced from the Łojasiewicz inequality.
We expect that these results can be extended to general tensor manifolds of fixed tree
rank.

4.3 Dirac–Frenkel Variational Principle

The first-order optimality condition can be considered as the stationary case of a more
general time-dependent formulation in the frameworkof theDirac–Frenkel variational
principle [102]. We consider an initial value problem

d

dt
u = F(u), u(0) = u0 ∈Hr. (4.5)

The goal is to approximate the trajectory u(t) of (4.5), which might not be exactly
of low rank, by a curve ur(t) in Hr. However, the pointwise best approximation
ur(t):=argminv∈H r

‖u(t) − v(t)‖ provides in general no practical solution to the
problem, since first, the computation of the exact trajectory is typically infeasible
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in high-dimensional problems, and second, it requires the solution of too many best
approximation problems.

TheDirac–Frenkel variational principle [102] determines an approximate trajectory
ur(t) ∈Hr that minimises

∥∥∥∥
d

dt
u(t)− d

dt
ur(t)

∥∥∥∥ → min, ur(0) = u(0),

corresponding to the weak formulation 〈 ddt ur− F(ur), δu〉 = 0 for all δu ∈ Tur .
If the manifold were a closed linear space, the equations above would reduce to

the corresponding Galerkin equations. Note also that for the gradient in the limiting
case d

dt u = 0, one obtains the first-order condition (4.4). However, this instationary
approach applies also to nonsymmetric operators A : �2(I )→ �2(I ).

Even for the simple differential equation of the form d
dt u(t) = F(t), with solution

u(t) = u(0) + ∫ t
0 F(s)ds, the Dirac–Frenkel principle leads to a coupled nonlinear

system of ODEs, which is not always easy to solve. This motivated the development
of splitting schemes that integrate the components successively, similarly to ALS
[103,104]. In particular, the splitting is easy to realise for linear differential equations.

When F is a partial differential operator, the Dirac–Frenkel principle leads to meth-
ods for approximating the solutions of instationary PDEs in high dimension by solving
nonlinear systems of low-dimensional differential equations on the tensor manifold
Hr. This shares some similarities with the derivations of Hartree–Fock and time-
dependent Hartree–Fock equations for fermions and the Gross–Pitaevskii equation
for bosons. The Dirac–Frenkel principle is well-known in molecular quantum dynam-
ics as the multi-configuration time-dependent Hartree method (MCTDH) [15,102]
for the Tucker format. For hierarchical tensors such a method has been formulated in
[102,141]. First convergence results have been obtained in [4,105]. Themore involved
case of reflexive Banach spaces has been considered in [54]. Time evolution of matrix
product states (TT format) for spin systems has been considered in detail in [71].

5 Convergence of Low-Rank Approximations

For a tensor of order d with mode sizes n and all hierarchical ranks bounded by r , the
hierarchical format has storage complexityO(drn+dr3); in the case of the tensor train
format, one obtainsO(dnr2). Similar results hold for operations on these formats: the
HSVD, for instance, requiresO(dr2n+dr4) orO(dnr3) operations, respectively. For
small r , one can thus obtain a very strong improvement over the data complexity nd

of the full tensor.
In the numerical treatment of PDEs, however, the underlying function spaces require

discretisation. In this context, the above complexity considerations are thus only for-
mal, since d, n, and r cannot be considered as independent parameters.

In the context of PDEs, the appropriate question becomes: what is the total com-
plexity, in terms of the required number of parameters or arithmetic operations, for
achieving a prescribed accuracy ε > 0 in the relevant function space norm? In this
setting, not only the ranks, but also the dimension n of the univariate trial spaces—
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and in the example of Sect. 7.1 even the tensor order d—need to be considered as
functions of ε > 0. This leads to the fundamental question of appropriate notions of
approximability in terms of which one can quantify the dependencies of d(ε), n(ε),
r(ε) on ε.

5.1 Function Spaces and Preconditioning

In order to treat such approximability questions, we need to consider hierarchical
tensors in infinite-dimensional spaces. Let Ω ⊂ R

d be a tensor product domain, e.g.

Ω = I1 × · · · × Id , I1, . . . , Id ⊆ R. (5.1)

Aswehavenoted,Hilbert function spaces such as L2(Ω) = ⊗d
μ=1 L2(Iμ) and H1(Ω)

are, by an appropriate choice of basis, isomorphic to �2(Nd) = ⊗d
μ=1 �2(N).

So far V = ⊗d
μ=1 Vμ, as in (2.1), has been assumed to be a Hilbert space with

a cross-norm, that is, ‖u‖V = ‖u1‖V1 · · · ‖ud‖Vd for u = u1 ⊗ · · · ⊗ ud ∈ V .
Examples of such spaces are L2-spaces, as well as certain mixed Sobolev spaces, over
tensor product domains (5.1). Indeed, if V is endowed with a cross-norm, by choice
of suitable bases for the Vμ one obtains an isomorphism �2(Nd) → V of Kronecker
rank one (that is, mapping elementary tensors to elementary tensors).

Standard Sobolev norms do not have this property. For instance, in the important
case of the standard H1

0 (Ω)-norm ‖v‖2
H1
0 (Ω)

= ∑d
μ=1 ‖∂xμv‖2 on Ω as in (5.1) with

homogeneous Dirichlet boundary data, this is related to the fact that the Laplacian is
not a rank-one operator. Applying the inverse of the homogeneous Dirichlet Laplacian
on Ω = (0, 1)d in the corresponding eigenfunction basis representation amounts to
multiplication by the diagonal operator with entries

Lν :=π−2
(
ν21 + . . .+ ν2d )

−1, ν ∈ N
d . (5.2)

Since the eigenfunctions are separable, but the tensor of corresponding eigenvalues
(Lν)ν∈Nd does not have a finite-rank representation, the inverse of the Laplacian there-
fore does not have a representation of finite rank either.

It does, however, have efficient low-rank approximations: as a consequence of the
results in [20], for each r ∈ N there exist ωr,k, αr,k > 0 such that the exponential sum

Er (L
−1
ν ):=

r∑

k=1
ωr,ke

−αr,k L−1ν =
r∑

k=1
ωr,k

d∏

μ=1
e−π2αr,kν

2
μ, ν ∈ N

d , (5.3)

which is a sum of r separable terms, satisfies

sup
ν∈Nd

∣∣∣Lν − Er (L
−1
ν )

∣∣∣ ≤ 16

π2d
exp(−π

√
r). (5.4)

123



Found Comput Math (2016) 16:1423–1472 1455

Approximations of the type (5.3) can also be used for preconditioning. They are
particularly useful in the context of diagonal preconditioners for wavelet representa-
tions of elliptic operators, where the diagonal elements have a form analogous to (5.2).
In this case, the operator exponentials in an approximation of the form (5.3) reduce to
the exponentials of the diagonal entries corresponding to each tensor mode. In contrast
to (5.4), however, in this case sequences of the form (5.2) need to be approximated up
to a certain relative accuracy. As a consequence, the required rank of the exponential
sum then also depends on the considered discretisation subspace. This is analysed in
detail in [6,8].

On finite-dimensional subspaces, one can also use multilevel preconditioners such
as BPX with tensor structure. This has been considered for space-time formulations
of parabolic problems in [2]; in the elliptic case, the analysis of BPX—including the
question of d-dependence—is still open in this context.

Also when V is a standard Sobolev space (such as V = H1
0 (Ω) as above), we can

still obtain an isomorphism �2(Nd) → V by choice of an appropriate basis. Such an
isomorphism, however, then does not have boundedKronecker rank; as a consequence,
corresponding representations of bounded elliptic operators on V as isomorphisms
A : �2(Nd) → �2(Nd) generally also have unbounded ranks and thus need to be
approximated. In other words, in the case of operators on standard Sobolev spaces,
with the Dirichlet Laplacian −Δ : H1

0 (Ω) → H−1(Ω) as a prototypical example,
the price to pay for such well-conditioned representations on an �2-sequence space
with cross-norm is that simple formal low-rank structures of the operator (as present
in −Δ) are lost.

In summary, however, for our present purposes wemay restrict ourselves to approx-
imation of tensors in the high-dimensional sequence space �2(I ), with I = N

d .

5.2 Computational Complexity

An important question is to what extent one can profit from low-rank approximability
of problems, in the sense that approximate solutions for any given ε can actually be
found at reasonable cost. This includes in particular the identification of a suitable
discretisation and a corresponding subset of Nd to achieve the prescribed target error.

One option is a choice based on a priori estimates. In the case of tensor product
finite difference or finite element discretisations, one has such estimates in terms of
norms of higher derivatives of the exact solution. The dependence of these norms and
further constants appearing in the estimates on d, however, is typically not easy to
quantify; see [6, Sect. 4.3] for an illustration by a simple Poisson problem for large d.

These difficulties can be avoided by explicitly computable a posteriori bounds. Such
bounds are provided, for linear operator equations Au = b on �2(I ), by the adaptive
low-rank method in [7]. This adaptive scheme is based on iterative thresholding, see
also Sect. 6.1. Assume that u ∈ �2(I ) belongs to a subset for which accuracy ε

requires at most the maximum hierarchical rank r(ε) and the maximum mode size
n(ε). For given ε, the adaptive low-rank method then finds uε in hierarchical format
with ‖u− uε‖�2(I ) ≤ ε, with ranks and mode sizes bounded up to fixed constants by
r(ε) and n(ε), respectively. In addition, if for instance A has finite rank and can be
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applied efficiently to each tensor mode, then the total number of operations required
can be bounded by C(d)

(
d r4(ε) + d r2(ε) n(ε)

)
, with C(d) polynomial in d—in

other words, up to C(d) one has the operation complexity of performing the HSVD
on the best low-rank approximation of accuracy ε. This property is shown in [7] for
n(ε) algebraic and r(ε) polylogarithmic in ε, but analogous results can be derived
for algebraically growing r(ε) as well. Similar estimates, with additional logarithmic
factors, are obtained in [6,8] for this method applied to problems on Sobolev spaces,
where A is not of finite rank as discussed in Sect. 5.1.

5.3 Low-Rank Approximability

Since n(ε) is strongly tied to the underlying univariate discretisations, let us now
consider inmore detail when one can expect to have efficient low-rank approximations
of solutions, that is, slow growth of r(ε) as ε → 0. The HSVD of tensors yields
information on the approximation error in �2 with respect to the hierarchical ranks:
as a consequence of Theorem 3.5, the error of best low-rank approximation of u is
controlled by the decay of its hierarchical singular values.

To quantify the sparsity of sequences, we use weak-�p-norms. For a given sequence
a = (ak)k∈N ∈ �2(N), let a∗n denote the n-th largest of the values |ak |. Then
for p > 0, the space w�p is defined as the collection of sequences for which
|a|w�p := supn∈N n1/pa∗n is finite, and this quantity defines a quasi-norm on w�p for
0 < p < 1, and a norm for p ≥ 1. It is closely related to the �p-spaces, since for
p < p′, one has ‖a‖

�p
′ ≤ |a|w�p ≤ ‖a‖�p .

Algebraic decay of the hierarchical singular values can be quantified in terms of

‖u‖w�
p∗ :=max

η∈E
|ση(u)|w�p . (5.5)

Note that the p-thSchatten class, which one obtains by replacing w�
p∗ in (5.5) by �p,

is contained in w�
p∗ . For these spaces, from Theorem 3.5 we obtain the following

low-rank approximation error estimate.

Proposition 5.1 Let u ∈ w�
p∗ for 0 < p < 2. Then there exists a tensor û such that

‖u− û‖ ≤ C
√
d ‖u‖w�

p∗
(
max
η∈E

rankη(û)
)−s

with s = 1

p
− 1

2
.

It has been shown in [122] that, for instance, mixed Sobolev spaces are contained
in the Schatten classes; we refer to [122] also for a more precise formulation and
a discussion of the resulting data complexity. The results in [13] for approximation
of functions with mixed smoothness in the canonical format also have implications
for approximability in tensor networks. However, classical notions of regularity in
Sobolev and Besov spaces provide only a partial answer, since one can easily construct
functions of very low regularity that still have finite-rank representations.

A central question is therefore for which problems one can obtain low-rank approx-
imability beyond that guaranteed by regularity. In particular, under which conditions
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do assumptions on the low-rank approximability of input data imply that the solution
is again of comparable low-rank approximability?

Instead of using regularity as in [122], one can also exploit structural features of the
considered problems to infer low-rank approximability of corresponding solutions.
For linear operator equations, as shown in [92], if an operator on a space endowed
with a cross-norm is well-conditioned and has a finite-rank representation, with finite-
rank right-hand side, one obtains error bounds for the solution that decay algebraically
with respect to the ranks; similar results are shown for eigenvalue problems. As noted
in Sect. 5.1, however, when problems on standard Sobolev spaces are represented on
spaces with cross-norm such as �2(Nd), the conditions of bounded condition number
and finite representation ranks are in general mutually exclusive, and in such cases the
results of [92] are therefore restricted to finite discretisations.

In the particular case of the inverse Laplacian, using exponential sums one can
obtain low-rank approximations which converge almost exponentially. Also in these
results, the particular norms inwhich the problem is considered have a strong influence.
For instance, the following is shown in [36]: If f ∈ H−1+δ(Ω) for δ > 0, then for
A:= −Δ,

∥∥A−1 f − Er (A) f
∥∥
H1 ≤ C exp

(
−δπ

2

√
r
)
‖ f ‖H−1+δ , (5.6)

where C > 0 and again

Er (A) =
r∑

k=1
ωr,ke

−αr,k A (5.7)

with certain ωr,k, αr,k > 0. Since the operators etΔ, t > 0, are of rank one, this yields
almost exponentially convergent rank-r approximations of the inverse Laplacian. In
the dependence on the particular topologies in (5.6), there is a marked difference to the
results in [59], which are also based on approximations of the form (5.7) but consider
the error in Euclidean norm for discretised problems.

The situation is simpler in the case of parameter-dependent PDEs, which are typi-
cally posed on tensor product spaces with cross-norm such as H1

0 (Ω)⊗L2(U ), where
Ω is the lower-dimensional spatial domain andU = U1×· · ·×Ud is a domain of para-
meter values (see also Sect. 7.1). Convergence of low-rank approximations faster than
any algebraic rate or of exponential type has been established for particular problems
of this class in [5,85,90].

There are also relevant counterexamples where the ranks required for a certain
accuracy grow strongly with respect to d. A variety of such counterexamples originate
from ground state computations of quantum lattice systems, such as one- to three-
dimensional spin systems, which in many cases exhibit translation symmetries that
allow a precise analysis. There is a number of works on area laws in quantum physics,
see, e.g. [3] and the references given there.

6 Iterative Thresholding Schemes

Let us consider the variational formulation of the original operator equation u =
arg minv∈�2(I ) J (v) with J as in (4.2) or (4.3). In the methods we have considered in
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Sect. 4, this problem is approached in a manner analogous to Ritz–Galerkin discreti-
sations: one restricts the minimisation to the manifoldHr of hierarchical tensors with
given fixed rank r, or better to its closureH≤r, and attempts to solve such constrained
minimisation problems for J . However, since Hr and H≤r are not convex, there are
generally multiple local minima. Roughly speaking, in this approach one has fixed the
model class and aims to achieve a certain accuracy within this class.

Instead, one can also first prescribe an accuracy to obtain a convex admissible set
Cε:={v ∈ �2(I ) : ‖Av − b‖ ≤ ε}. Over this admissible set, one may now try to
minimise the computational costs. Roughly speaking, we want to minimise the largest
hierarchical rank of v. This can be seen as a motivation for the various methods based
on rank truncations that we consider in this section. Note that even in the matrix case
d = 2, the functional A �→ rank(A) is not convex. The nuclear norm can be regarded
as a convex relaxation of this functional, and its minimisation over Cε by proximal
gradient techniques leads to soft thresholding iterations as in Sect. 6.2 below.

Themethods considered in this section, in contrast to those in Sect. 4, thus iteratively
modify the tensor ranks of the approximations. Note that while the following theoret-
ical considerations apply to infinite-dimensional sequence spaces with I = N

d , in
practice these schemes again operate on fixed finite I . They can also be employed,
however, as part of methods that adaptively identify suitable finite I for control-
ling the error with respect to the solution of the continuous problem, as described in
Sect. 5.2.

6.1 Iterative Hard Thresholding Schemes

Starting froma (preconditioned) gradient stepun+1 = un−C−1n ∇ J (un) in the ambient
space �2(I ), in order to keep our iterates of low rank, we introduce projection or
truncation operators Rn and Tn , realised by hard thresholding (3.20) of the singular
values in the HSVD,

un+1 := Rn
(
un − Tn[C−1n ∇ J (un)]). (6.1)

If we take Tn :=I and Rn :=Hr (the HSVD projection (3.20)), this can be considered
as an analogue of iterative hard thresholding in compressive sensing [19] and matrix
recovery [56,131]. In the context of low-rank approximation, such truncated iterations
based on various representation formats have a rather long history, see, e.g. [7,10,17,
18,68,85,90].

We consider the choice Tn :=I, and Rn :=Hr in more detail, using the trivial pre-
conditioner Cn :=I. Defining the mapping B on �2(I ) by B(u):=u−∇ J (u), we then
have the iteration

yn+1:=B(un), un+1:=Hr(yn+1), n ∈ N. (6.2)

Let u be a fixed point of B, that is, a stationary point of J . As a consequence of
Theorem 3.5, denoting by ur the best approximation of u of ranks r, we have the
quasi-optimality property
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‖yn −Hr(yn)‖ ≤ cd‖yn − ur‖, (6.3)

where cd =
√
d − 1 in the case of tensor trains, and cd =

√
2d − 3 in the case of

the hierarchical format. Making use of this property, one can proceed similarly to [18,
Sect. 4]: since u = B(u) and yn+1 = B(un), and by (6.3),

‖un+1 − u‖ ≤ ‖Hr(yn+1)− yn+1‖ + ‖B(un)− B(u)‖
≤ cd‖B(un)− ur‖ + ‖B(un)− B(u)‖
≤ cd‖u− ur‖ + (1+ cd)‖B(un)− B(u)‖.

From this, we immediately obtain the following convergence result.

Proposition 6.1 Let ‖B(v) − B(w)‖ ≤ ρ‖v − w‖ for all v, w ∈ �2(I ), where
β:=(1+ cd)ρ < 1 with cd as in (6.3). Then for any u0 ∈ �2(I ),

‖un − u‖ ≤ βn‖u0 − u‖ + cd
1− β

‖u− ur‖. (6.4)

We thus obtain lim supn ‖un − u‖ � ‖u − ur‖; for this we need, however, an
extremely restrictive contractivity property for B. For instance, in the case of the least
squares problem (4.3), where one hasB = I−ωA∗Awith suitableω > 0, this amounts
to the requirement

(1− δ2)‖v‖2 ≤ ‖Av‖2 ≤ (1+ δ2)‖v‖2, v ∈ �2(I ), (6.5)

with 0 < δ < 1/
√
1+ cd , or in other words, cond(A) <

√
1+ 2/cd .

Note that the above arguments can be applied also in the case of nontrivial pre-
conditioners Cn in (6.1). Since obtaining such extremely strong preconditioning is
essentially as difficult as solving the original problem, the action of C−1n will typically
need to be realised by another iterative solver, as considered in [18]. The setting of
Proposition 6.1 in itself may thus be of most interest when it suffices to have (6.5)
only on a small subset of �2(I ), as in compressive sensing-type problems.

A more common approach is to take Rn = Hrn with each rn adapted to achieve
a certain error bound, for instance such that for an ε > 0 each un+1:=Hrn (B(un)),
now with a general mapping B in (6.2), satisfies ‖un+1 −B(un)‖ ≤ ε. In this case, in
the setting of Proposition 6.1, but assuming only ρ < 1 (i.e., contractivity of B), we
obtain

‖un − u‖ ≤ ρn‖u0 − u‖ + ε

1− ρ
. (6.6)

Note that one now has a much weaker assumption on B, but in contrast to (6.2) one
generally does not obtain information on the ranks of un . To enforce convergence to
u, the parameter ε needs to be decreased over the course of the iteration.

When one proceeds in this manner, the appropriate choice of these truncation tol-
erances is crucial: One does not have direct control over the ranks, and they may
become very large when ε is chosen too small. A choice of truncation parameters that
ensures that the ranks of un remain comparable to those required for the current error
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‖un − u‖, while maintaining convergence, is a central part of the adaptive method for
linear operator equations in [7,8] that has been mentioned in Sect. 5.

The choice Rn = I and Tn :=Hrn leads to the basic concept of the AMEn algorithm
[44], although actually a somewhat different componentwise truncation is used for
Tn , and this is combined with componentwise solves as in the ALS scheme. Note that
the basic version of this method with Rn = I, for which the analysis was carried out in
[44], increases the ranks of the iterates in every step; the practically realised version in
fact also uses for Rn a particular type of HSVD truncation. Although the theoretically
guaranteed error reduction rates depend quite unfavourably on d, this method shows
very good performance in practical tests, for instance coarse discretisations of elliptic
problems (see [44, Sect. 7]). Further issues affecting the convergence of the method,
however, arise with finer discretisations (see [6, Sect. 4.2] and [80]).

6.2 Iterative Soft Thresholding Schemes

Soft thresholding of sequences by applying sκ(x):=sgn(x)max{|x |−κ, 0} for a κ > 0
to each entry is a non-expansivemapping on �2, cf. [33,37]. A soft thresholding oper-
ation Sκ for matrices (and Hilbert–Schmidt operators) can be defined as application
of sκ to the singular values. Then Sκ is non-expansive in the Frobenius (or Hilbert–
Schmidt) norm [9,22].

On this basis, a non-expansive soft thresholding operation for the rank reduction of
hierarchical tensors is constructed in [9] as follows.By Sκ,η wedenote soft thresholding
applied to the η-matricisation Mη(·), that is, Sκ,η(v) = M−1

η ◦ Sκ ◦Mη(u). The soft
thresholding operatorSκ : �2(I )→ �2(I ) is then given as the successive application
of this operation to each matricisation, that is,

Sκ(v) := Sκ,ηE ◦ . . . ◦ Sκ,η1(v), (6.7)

where η1, . . . , ηE is an enumeration of the effective edges E. It is easy to see that the
operator Sκ defined in (6.7) is non-expansive on �2(I ), that is, for any v, w ∈ �2(I )

and κ > 0, one has ‖Sκ(v)− Sκ(w)‖ ≤ ‖v − w‖.
We now consider the composition of Sκ with an arbitrary convergent fixed point

iteration with a contractive mapping B : �2(I )→ �2(I ), where ρ ∈ (0, 1) such that

‖B(v)− B(w)‖ ≤ ρ‖v − w‖ , v, w ∈ �2(I ) . (6.8)

Lemma 6.2 ([9]) Assuming (6.8), let u be the unique fixed point of B. Then for any
κ > 0, there exists a uniquely determined uκ ∈ �2(I ) such that uκ = Sκ

(
B(uκ)

)
,

which satisfies

(1+ ρ)−1‖Sκ(u)− u‖ ≤ ‖uκ − u‖ ≤ (1− ρ)−1‖Sκ(u)− u‖ . (6.9)

Let u0 ∈ �2(I ), then ‖un − uκ‖ ≤ ρn‖u0 − uκ‖ for un+1:=Sκ

(
B(un)

)
.

For fixed κ , the thresholded gradient iteration thus converges (at the same rate ρ as
the unperturbed iteration) to a modified solution uκ , and the distance of uκ to the exact
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solution u is proportional to the error of thresholding u. This needs to be contrasted
with (6.4) and (6.6) in the case of hard thresholding, where the thresholded iterations
are not ensured to converge, but only to enter a neighbourhood of the solution, and
properties like (6.9) that establish a relation to best approximation errors are much
harder to obtain (for instance, by strong contractivity of B as in Proposition 6.1).

Here we now consider the particular case of a quadratic minimisation problem (4.2)
with symmetric elliptic A, corresponding to a linear operator equation, where B =
I−ωA with a suitable ω > 0. For this problem, based on Lemma 6.2, in [9] a linearly
convergent iteration of the form un+1:=Sκn

(
B(un)

)
with κn → 0 is constructed,

where each iterate un is guaranteed to have quasi-optimal ranks. More specifically,
for instance if u belongs to w�

p∗ as defined in Sect. 5, then with a constant C > 0,

‖un − u‖ ≤ Cd1+2s‖u‖w�
p∗
(
max
η∈E

rankη(un)
)−s

, s = 1

p
− 1

2
.

An analogous quasi-optimality statement holds in the case of exponential-type decay
σ

η
k (u) = O(e−ckβ

) with some c, β > 0.
The central issue in achieving these bounds is how to choose κn . Clearly, the κn

need to decrease sufficiently to provide progress of the iteration towards u, but if
they decrease too rapidly this can lead to very large tensor ranks of the iterates. As
shown in [9], both linear convergence and the above quasi-optimality property hold
if one proceeds as follows: whenever ‖un+1 − un‖ ≤ 1−ρ

2‖A‖ρ ‖Aun+1 − b‖ holds, set
κn+1 = 1

2κn ; otherwise set κn+1 = κn . The resulting procedure is universal in the
sense that in order to achieve the stated rank bounds, nothing needs to be known a
priori about the low-rank approximability of u.

This method has not been combined with an adaptive choice of discretisation so
far, but the asymptotic bounds on the ranks of each iterate that this method provides
are somewhat stronger than those for the adaptive methods in [7,8], in the sense that
they do not depend on the low-rank structure of A.

7 Applications

In principle, high-dimensional partial differential equations on product domains can
be discretised directly by tensor product basis functions. This is suitable in our first
example of uncertainty quantification problems.We also discuss two further examples,
one from quantum chemistry and another one from molecular dynamics, where such
a direct approach is not adequate. In these applications, certain reformulations that
exploit specific features are much better suited, and we describe how our general
setting of tensor approximations can be adapted to these cases.

7.1 Uncertainty Quantification

We consider linear diffusion problems on a domain Ω ⊂ R
m , m = 1, 2, 3, with given

parameter-dependent diffusion coefficients a(x, y) for x ∈ Ω and y ∈ U , and with
the set of parameter values U to be specified. The parametrised problem reads
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−∇x ·
(
a(x, y)∇xu(x, y)

) = f (x), x ∈ Ω , y ∈ U,

with appropriate boundary conditions, for instance homogeneous Dirichlet conditions
u(x, y) = 0 for all y ∈ U and x ∈ ∂Ω . In our setting, we aim to solve such problems
in the Bochner space H = L2(U, H1

0 (Ω), μ), where μ is an appropriate measure.
Examples of particular parameterisations that arise in deterministic formulations

of stochastic problems are the affine case

a(x, y) = a0(x)+
∞∑

k=1
ykak(x), (7.1)

where U = [−1, 1]N and μ is the uniform measure on U , and the lognormal case

a(x, y) = exp
(
a0(x)+

∞∑

k=1
ykak(x)

)
, (7.2)

where U = R
N and μ is the tensor product of standard Gaussian measures (so that

the yk correspond to independent identically distributed normal random variables).
In each case, the solution u can be expressed as a tensor product polynomial expan-

sion (also referred to as polynomial chaos) of the form

u(x, y) =
∑

k

u(x, k)
∞∏

i=1
pki (yi ),

where p�, � ∈ N, are the univariate polynomials orthonormal with respect to the under-
lying univariate measure, and the summation over k runs over the finitely supported
multi-indices in N

N

0 . We refer to [14,29,30,57,58,98,125,145] and the references
therein.

In both cases (7.1) and (7.2), due to the Cartesian product structure of U , the
underlying energy space V � H1

0 (Ω)⊗ L2(U, μ) is a (countable) tensor product of
Hilbert spaces, endowed with a cross-norm. By truncation of the expansions in (7.1),
(7.2), one obtains a finite tensor product.

In this form, tensor decompositions can be used for solving these problems, for
instance combined with a finite element discretisation of H1

0 (Ω), cf. [47]. The total
solution error is then influenced by the finite element discretisation, the truncation
of coefficient expansions and polynomial degrees, and by the tensor approximation
ranks. An adaptive scheme that balances these error contributions by a posteriori error
estimators, using tensor train representations and ALS for tensor optimisation with
increasing ranks after a few iterations, can be found with numerical tests in [48].

7.2 Quantum Physics: Fermionic Systems

The electronic Schrödinger equation describes the stationary state of a non-relativistic
quantum mechanical system of N electrons in a field of K classical nuclei of charge
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Zη ∈ N and fixed positions Rη ∈ R
3, η = 1, . . . , K . It is an operator eigenvalue

equation for the Hamilton operator H , given by

H := − 1

2

N∑

ξ=1
Δξ + Vext + 1

2

N∑

ξ=1

N∑

ζ=1
ζ �=ξ

1

|xξ − xζ | , Vext:= −
N∑

ξ=1

K∑

η=1

Zη

|xξ − Rη| ,

which acts on wave functions Ψ that depend on the N spatial coordinates xξ ∈ R
3

and on the N spin coordinates sξ ∈ Z2 of the electrons. By the Pauli principle, the
wave function Ψ needs to be antisymmetric with respect to the particle variables, that
is, it needs to change sign under exchange of two distinct variable pairs (xξ , sξ ) and
(xζ , sζ ), see, e.g. [129]. The corresponding space of wave functions is (see, e.g. [23])

H
1
N =

[
H1(R3 × Z2,C)

]N ∩
N∧

ξ=1
L2(R

3 × Z2,C),

where the symbol ∧ denotes the antisymmetric tensor product (exterior product). For
the sake of simplicity, we focus on the approximation of ground states, where one
aims to find

Ψ0 = argmin
{〈Φ, HΦ〉 : 〈Φ,Φ〉 = 1, Φ ∈ H

1
N

}

and the corresponding energy E0 = 〈Ψ0, HΨ0〉. It is sufficient in the present setting
to consider only real-valued functions, that is, C can be replaced by R.

Discretisations can be constructed based on antisymmetric tensor products of
single-particle basis functions, so-called Slater determinants. For a given orthonormal
one-particle set

{ϕμ : μ = 1, . . . , d} ⊂ H1(R3 × Z2), (7.3)

the corresponding Slater determinants ϕμ1 ∧ · · · ∧ ϕμd , μ1 < · · · < μd , form an
orthonormal basis of a space V d

N , called the Full-CI space. A Ritz–Galerkin approxi-
mation toΨ0 can then be obtained byminimising over the finite-dimensional subspace
V d
N ⊂ H

1
N , which leads to the discretised eigenvalue problem of finding the lowest

E ∈ R and corresponding Ψ ∈ V d
N such that

〈Φ, HΨ 〉 = E〈Φ,Ψ 〉 for all Φ ∈ V d
N . (7.4)

Starting from a single-particle basis (7.3), where d is greater than the number N of
electrons, every ordered selection ν1, . . . , νN of N ≤ d distinct indices corresponds
to an N -particle Slater determinant ΨSL [ν1, . . . , νN ]. The index of each such basis
function can be encoded by a binary stringβ = (β1, . . . , βd) of length d, whereβi = 1
if i ∈ {ν1, . . . , νN }, and βi = 0 otherwise. Setting e0:=(1, 0)T , e1 := (0, 1)T ∈ R

2,
the linear mapping defined by
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ι : ΨSL [ν1, . . . , νN ] �→ eβ1 ⊗ . . .⊗ eβd ∈ Bd :=
d⊗

μ=1
R
2

is a unitary isomorphism between the Fock space Fd = ⊕d
M=0V

d
M and Bd . The

solution of the discretised N -electron Schrödinger equation (7.4) is an element ofFd ,
subject to the constraint that it contains only N -particle Slater determinants, which
are eigenfunctions of the particle number operator P with eigenvalue N .

On Bd one can apply tensor approximation techniques without having to deal
explicitly with the antisymmetry requirement. The representation of the discretised
Hamiltonian H : Bd → Bd is given by H = ι ◦ H ◦ ι†. For a given particle number
N , we have to restrict the eigenvalue problem to the subspace ker(P − NI), with the
discrete particle number operator P = ι ◦ P ◦ ι†. For electrically neutral systems, the
exact ground state is an N -particle function, and this constraint can be dropped.

The discrete Hamilton operator H has a canonical tensor product representation in
terms of the one- and two-electron integrals. By the Slater-Condon rules [73,129],
one finds

H =
d∑

p,q=1
hqp a†paq +

d∑

p,q,r,s=1
gp,q
r,s a†r a†s apaq ,

where the coefficients hqp, g
r,s
p,q are given by

h p
q =

〈
ϕp,

{ 1
2Δ+ Vext

}
ϕq

〉
, gr,sp,q =

〈
ϕpϕr ,

(| · |−1 ∗ ϕqϕs
)〉
.

Here the discrete annihilation operators ap and creation operators a†q can be written
as Kronecker products of the 2× 2-matrices

A:=
(
0 1
0 0

)
, A† =

(
0 0
1 0

)
, S:=

(
1 0
0 −1

)
, I:=

(
1 0
0 1

)
,

where ap:=S⊗ . . .⊗S⊗A⊗ I⊗ . . .⊗ I with A appearing in the p-th position. Note
that compared to the dimension 2d of the ambient space Bd , representation ranks of
H thus scale only as O(d4). For further details, see also [99,130] and the references
given there.

With the representation of the particle number operator P = ∑d
p,q=1 a†paq , finding

the ground state of the discretised Schrödinger equation in binary variational form
amounts to solving

min
v∈Bd

{〈Hv, v〉 : 〈v, v〉 = 1 , Pv = Nv
}
. (7.5)

Treating this problem by hierarchical tensor representations (e.g. by tensor trains, in
this context usually referred to as matrix product states) for the d-fold tensor prod-
uct space Bd , one can obtain approximations of the wave function Ψ that provide
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insight into separation of quantum systems into subsystems and their entanglement.
The formulation (7.5) is fundamental in the modern formulation of many-particle
quantum mechanics in terms of second quantisation. For a recent survey of related
MPS techniques in physics see [124].

The practical application of the concepts described above in quantum chemistry is
challenging due to the high accuracy requirements. For numerical examples, we refer
to, e.g. [26,130,144]. The approach can be especially advantageous in the case of
strongly correlated problems, such as the dissociation of molecules as considered in
[107], which cannot be treated by classical methods such as Coupled Cluster. The ten-
sor structure can also be exploited for the efficient computation of several eigenstates
[43,88].

Remark 7.1 Variants of the above binary coding can also be used in a much more
general context. This leads to vector-tensorisation [64,67], in the tensor train context
also called quantised TT representation [82,115], which can be applied to vectors
x ∈ K

N ,K ∈ {R,C}, with N = 2d that are identified with tensors u ∈ ⊗d
i=1K2. This

identification can be realised by writing each index j ∈ {0, . . . , 2d − 1} in its binary
representation j = ∑d−1

i=0 ci2i , ci ∈ {0, 1}. The identification j � (c1, . . . , cd), ci ∈
{0, 1} defines a tensor u of order d with entries u(c1, . . . , cd):=x( j). In many cases of
interest, the hierarchical representations or approximations of these tensors have low
ranks. In particular, for polynomials, exponentials, and trigonometric functions, the
ranks are bounded independently of the grid size, and almost exponentially convergent
approximations can be constructed for functionswith isolated singularities [61,80,81].
There is also a relation to multiresolution analysis [83].

7.3 Langevin Dynamics and Fokker–Planck Equations

Let us consider the Langevin equation, which constitutes a stochastic differential
equation (SDE) of the form

dx(t) = −∇V (
x(t)

)
dt +

√
2

γ
dWt , γ = 1

kbT
, x(t) ∈ R

d , (7.6)

where Wt is a d-dimensional Brownian motion, see, e.g. [116]. The corresponding
Fokker–Planck equation describes the transition probability,

and is given by

∂t u(x, t) = Lu(x, t):=∇ · (u(x, t)∇V (x)
)+ 1

γ
Δu(x, t), u(x, 0) = u0(x).

The transitionprobability is the conditional probability densityu(x, t) = p(x, t | x0, 0)
for a particle starting at x0 to be found at time t at point x .

For simplicity, let us assume that x ∈ Ω:=[−R, R]d with homogeneous Neumann
boundary conditions. Under rather general conditions, the operator L has a discrete
spectrum 0 = λ0 ≥ λ1 ≥ . . . λ j ≥ . . ., λ j → −∞ if j → ∞ and smooth
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eigenfunctions ϕ j , j ∈ N0. It is easy to check that ϕ0(x) = 1
Z e
−βV (x) is an eigen-

function ϕ0 for the eigenvalue λ0 = 0, with some normalisation constant 1
Z satisfying∫

Ω
ϕ0(x) dx = 1. Under reasonable conditions [116] it can be shown that ϕ0 is the

stationary or equilibrium distribution, ϕ0(x) = limt→∞ u(x, t).
Instead of L , see, e.g. [42], we consider the transfer operator defined by mapping

a given probability density u0(x) to a density at some time τ > 0,

u0(x) �→ Tτu0(x):=u(x, τ ), x ∈ Ω = [−R, R]d .

In general Tτ can be defined by a stochastic transition function p(x, y; τ), which
describes the conditional probability of the system travelling from x to y in a finite
time step τ > 0. We do not require explicit knowledge of p, but we make use of the
fact that it satisfies the detailed balance condition π(x) p(x, y, τ ) = π(y) p(y, x, τ ),
where π :=ϕ0. Then Tτ is self-adjoint with respect to the inner product with weight
π−1,

〈u, v〉π :=
∫

Ω

u(x) v(x) π−1(x) dx,

that is, 〈Tτu, v〉π = 〈u, Tτ v〉π . It has the same eigenfunctions ϕ j as the Fokker–Planck
operator L and eigenvalues σ j = e−λ j τ , with σ j ∈ [0, 1], which accumulate at zero.
For the description of meta-stable states, we are interested in the first eigenfunctions
ϕ j , j = 0, 1, . . . ,m, where the corresponding eigenvalues σ j of Tτ are close to
one. This provides a good approximation of the dynamics after the fast eigenmodes
corresponding to σ j ≈ 0 are damped out.

In contrast to L , the operator Tτ is bounded in L2(Ω), and the eigenvalue problem
can be tackled by Galerkin methods using a basis Φk , k ∈ I , and the weighted inner
product 〈·, ·〉π : with the ansatz ϕ j = ∑

k u j,kΦk , the unknown coefficients u and
approximate eigenvalues σ are solutions of a generalised discrete eigenvalue problem
Mu = σ M0u, where Mk,� = 〈Φk, TτΦ�〉π and M0

k,� = 〈Φk, Φ�〉π .
We do not have a low-rank representation of the operator Tτ at our disposal. How-

ever, we can discretise the closely related backward Kolmogorov operator, where the
matrix entries can be estimated from time series: if samples of sufficiently long tra-
jectories of the SDE (7.6) are available, then the corresponding matrix entries Mk,�

and M0
k,� can be computed by Monte Carlo integration.

Typical choices of basis functionsΦk are, for instance, piecewise constant functions
(Markov state models [120]) or Gaussians combined with collocation (diffusion maps
[32]). Here we propose a tensor product basis obtained from univariate basis functions
xi �→ χμi (xi ), xi ∈ R, combined with a low-rank tensor representation of basis
coefficients.

For instance, combining tensor train (TT) representations with DMRG iteration for
finding good low-rank approximations of the eigenfunctions, in preliminary numerical
tests we observe that surprisingly small ranks are sufficient to obtain comparable
accuracy as with state-of-the-art alternative methods. This will be reported on in more
detail in a forthcoming work.
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8 Outlook

In view of the rapidly growing literature on the subject of this article, the overview that
we have given here is necessarily incomplete. Still, we would like to mention some
further topics of interest:

– Adaptive sampling techniques analogous to adaptive cross approximation (ACA)
[12,109], which provide powerful tools to recover not only matrices, but also
low-rank hierarchical tensors,

– Tensor completion or tensor recovery [35,89,117], the counterpart tomatrix recov-
ery in compressive sensing,

– Applications of hierarchical tensors in machine learning [27,28,31],
– Greedy methods, based on successive best rank-one approximations [18,24,53],
– Rank-adaptive alternating optimisation methods based on local residuals or low-
rank approximations of global residuals [43,44,88],

– HSVD truncation estimates in L∞-norm, see [66],
– Optimisation of the dimension tree for the hierarchical format [11], which can give
substantially more favourable ranks [21,62].

Some aspects of low-rank approximations can be considered as topics of future
research. For instance, so far the exploitation of sparsity of the component tensors
has not been addressed. Combination of hierarchical tensor representations with lin-
ear transformations of variables (as in ridge function approximations) has not been
explored so far either.

Acknowledgements M.B. was supported by ERC AdG BREAD; R.S. was supported through Matheon
by the Einstein Foundation Berlin and DFG project ERA Chemistry.
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