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1 Introduction

The bifurcation locus of a polynomial map f : Rn → R
p, n ≥ p, is the smallest

subset B( f ) ⊂ R
p such that f is a locally trivial C∞-fibration over Rp\B( f ). It is

well known that B( f ) is the union of the set of critical values f (Sing f ) and the set
of bifurcation values at infinity B∞( f ) (see Definition 2.1) which may be non-empty
and disjoint from f (Sing f ) even in very simple examples. Finding the bifurcation
locus in the cases p > 1 or p = 1 and n > 2 is yet an unreached ideal. Nevertheless,
one can obtain approximations by supersets of B∞( f ) from exploiting asymptotical
regularity conditions [2,6,9,10,13,15,16,18,19,21,23,24] etc.

Improving the effectivity of the detection of asymptotically non-regular values
becomes an important issue; for instance, it leads to applications in optimization
problems [11,22]. Along this trend, Jelonek and Kurdyka [14] produced recently an
algorithm for finding the set of asymptotically critical valuesK∞( f ) in case p = 1. It
is known that in this case, K∞( f ) is finite and includes B∞( f ). A sharper estimation
ofB∞( f ) has been found in the real setting [7] by approximating the set of asymptotic
ρa-non-regular values of f . The later method provides a finite set of values A( f )with
the following property: B∞( f ) ⊂ A( f ) ⊂ K∞( f ).

In case p > 1, the bifurcation locus B∞( f )may be no more finite. Actually, by the
Morse–Sard result proved by Kurdyka et al. [16] for K∞( f ), or by the one obtained
in [6] for the sharper estimation B∞( f ) ⊂ S0( f ) ⊂ K∞( f ), one only knows that the
sets K∞( f ) and S0( f ) are contained in a 1-codimensional semi-algebraic subsets of
R

p.
Our approach is based on the setS∞( f ) of non-regular values at infinitywith respect

to theEuclidean distance function fromanypoint as origin, andwhich includesB∞( f ).
Since the set of critical values f (Sing f ) is the image of an algebraic set and the well-
known estimation methods apply, we consider it as the “trivial” part of the job. The
most difficult task is to apprehend the complements of f (Sing f ) to the bifurcation
locus B∞( f ).

We shall detect here the “non-trivial” part NS∞( f ) of the bifurcation locus at
infinity (defined at Sect. 2.6) which, roughly speaking, contains the values of S∞( f )
which are not coming from the branches at infinity of the singular locus Sing f .

This note answers a question raised by the results [14] and [7], as of how can one
detect the bifurcation locus by rational arcs in the case p > 1.

More precisely, given a polynomialmap f = ( f1, . . . , f p) : Rn → R
p, deg fi ≤ d,

we find all the values of the “non-trivial” part NS∞( f ) of S∞( f ) and hence of non-
trivial part NB∞( f ) of the bifurcation locus B∞( f ), as follows:

(1) We consider a set of rational paths: (x(t), y(t)) =
(∑

−ds≤i≤s ai t
i ,

∑
−ds≤ j≤0

b j t j
) ⊂ R

n × R
p, where s = [p(d − 1) + 1]n−p[p(d − 1)(n − p) + 2]p−1.

This means a finite number of vectorial coefficients ai ∈ R
n , for −ds ≤ i ≤ s,

and b j ∈ R
p, for −ds ≤ j ≤ 0.

(2) The coefficients are subject to several conditions, namely: ‖b0‖ = 1, ∃k > 0,
ak 
= 0 ∈ R

n , we ask the annulation of the coefficients of the terms with positive
exponents in the expansion of f (x(t)) and the annulation of the coefficients of
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the terms with nonnegative exponents in the expressions xi (t)φ j (x(t), y(t)), for
all i, j ∈ {1, . . . , n} (cf (13) for the definition).

We denote by Arc∞( f ) the algebraic subset of arcs obtained by this construction
[steps (1) and (2) above], and by α0(Arc∞( f )) the set of limits limt→∞ f (x(t)), i.e.,
the free coefficient in the expansion of f (x(t) for (x(t), y(t)) ∈ Arc∞( f ). Then, our
main result, Theorem 3.5, proves the inclusions:

NS∞( f ) ⊂ α0(Arc∞( f )) ⊂ K∞( f ).

2 Regularity Conditions at Infinity and Bifurcation Loci

2.1 Bifurcation Locus

Let f = ( f1, . . . , f p) : Rn → R
p be a polynomial map, n ≥ p.

Definition 2.1 We say that t0 ∈ R
p is a typical value of f if there exists a disk

D ⊂ R
p centered at t0 such that the restriction f| : f −1(D) → D is a locally trivial

C∞-fibration. Otherwise, we say that t0 is a bifurcation value (or atypical value). We
denote by B( f ) the set of bifurcation values of f .

We say that f isC∞-trivial at infinity at t0 ∈ R
p if there exists a compact setK ⊂ R

n

and a disk D ⊂ R
p centered at t0 such that the restriction f| : f −1(D)\K → D is a

locally trivial C∞-fibration. Otherwise, we say that t0 is a bifurcation value at infinity
of f . We denote by B∞( f ) the bifurcation locus at infinity of f .

2.2 The Rho-Regularity

Let a = (a1, . . . , an) ∈ R
n and let ρa : Rn → R≥0, ρa(x) = (x1 −a1)2 + . . .+ (xn −

an)2, be the Euclidian distance function to a. Let f : Rn → R
p be a polynomial map,

where n ≥ p.

Definition 2.2 (Milnor set at infinity and the ρa-non-regularity locus) [7] The critical
setMa( f ) of themap ( f, ρa) : Rn → R

p+1 is called theMilnor set of f (with respect
to the distance function). The following semi-algebraic set, cf [6, Theorem 5.7] and
[7, Theorem 2.5]:

Sa( f ) :=
{
t0 ∈ R

p | ∃{x j } j∈N⊂Ma( f ), lim
j→∞ ‖x j‖=∞ and lim

j→∞ f (x j )= t0

}

(1)
will be called the set of asymptotic ρa-non-regular values. If t0 /∈ Sa( f ), we say that
t0 is ρa-regular at infinity. Let S∞( f ) := ⋂

a∈Rn Sa( f ).

Lemma 2.3 S∞( f ) is a semi-algebraic set.

Proof Let f : Rn → R
p be a polynomial mapping and let us consider the following

semi-algebraic set:

W := {
(x, a) ∈ R

n × R
n | x ∈ Ma( f )

}
.
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By the definition of S∞( f ), we have:

S∞( f ) := {
y ∈ R

p | ∀a ∈ R
n, ∃{(xk, a)} ⊂ W such that f (xk) → y

}
,

which tells that S∞( f ) can be written by using first-order formulas. This means that
S∞( f ) is a semi-algebraic set, see, for instance, [4, pp. 28–29] and [1, Prop. 2.2.4]. �

It has been proved in [6,7,24] that one has the inclusion B∞( f ) ⊂ Sa( f ), for any
a ∈ R

n , thus in particular:
B∞( f ) ⊂ S∞( f ). (2)

It was believed, cf [7, Conjecture 2.11], that (2) was an equality. We show here by
an example that this is not the case, at least in the real setting.

2.3 Example for B∞( f ) �= S∞( f )

We consider the two-variable real polynomial1 constructed in [25], f : R2 → R,
f (x, y) = y(2x2y2 − 9xy + 12). We show that S∞( f ) = {0} and B∞( f ) = ∅.
It was already proved in [25] that f has no singular value, no bifurcation value and

that S0( f ) ⊂ {0}. We shall prove here that this inclusion is an equality. Moreover, we
prove here that {0} ⊂ Sa( f ) for any center a ∈ R

2.
For any fixed a = (a1, a2) ∈ R

2, we have:

Ma( f ) =
{
(x, y) ∈ R

2 | y2(4xy − 9)(y − a2) = 6(x − a1)(xy − 1)(xy − 2).
}

For x = 0, we eventually get solutions of the above equation but which have no
influence on the set Sa( f ). By removing these solutions from Ma( f ), we pursue
with the resulting set, which we denote by M′

a( f ). Thus, assuming that x 
= 0 and
multiply the equation by x3, we obtain:

M′
a( f )=

{
(x, y) ∈ R

2 | x2y2(4xy−9)(xy−xa2)=6x3(x−a1)(xy−1)(xy−2)
}

.

(3)
We show that we can find solutions (xk, yk)k∈N of the equality in (3) such that
‖(xk, yk)‖ → ∞ and f (xk, yk) → 0. Indeed, setting z := xy our equation (3)
becomes z2(4z − 9)(z − a2x) = 6x3(x − a1)(z − 1)(z − 2). We then consider each
side as a curve of variable z with x as parameter. We consider the graphs of these
two curves and observe that for each sign of a2, the two graphs intersect at least once
for any fixed and large enough |x | and that this happens at some value of z in the
interval ]0, 1[ (and in the interval ]1, 2[ in case a2 = 0, respectively). This shows that
we can find solutions (xk, yk) ∈ Ma( f ) with modulus tending to infinity, and since
zk = xk yk is bounded and yk tends to 0, we get that f (xk, yk) → 0.

In conclusion, we have shown that S∞( f ) = {0}, which impliesB∞( f ) 
= S∞( f ).

1 We thank Y. Chen for suggesting us to test this example.
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2.4 Generic Dimension of the Non-singular Part of the Milnor Set

The following statement has been noticed in case p = 1 in [10] (see also [8,
Lemma 2.2] or [7]). We outline the proof in case p > 1, some details of which
will be used in Sect. 3.

Lemma 2.4 Let f = ( f1, . . . , f p) : Rn → R
p be a polynomial map, where n > p

and deg fi ≤ d,∀i . There exists an open dense subset � f ⊂ R
n such that, for every

a ∈ � f , the set Ma( f )\Sing f is either a smooth manifold of dimension p, or it is
empty.

Proof We denote by MI [D( f )(x)] (respectively, MI [D( f, ρa)(x)]) the minor of the
Jacobian matrix D( f )(x) (respectively D( f, ρa)(x)) indexed by the multi-index I . We
set

Z := {
(x, a) ∈ R

n × R
n | x ∈ Ma( f )\Sing f

}
. (4)

If Z = ∅, then Ma( f )\Sing f = ∅,∀a ∈ R
n . From now on, let us consider the

case that Z 
= ∅. Let (x0, a0) ∈ Z . Since Sing f is closed, there is a neighborhood
U ⊂ R

n of x0 such that U ∩ Sing f = ∅. This means that there exists a multi-index
I = (i1, . . . , i p) of size p, 1 ≤ i1 < . . . < i p ≤ n, such that MI [D f (x)] 
= 0,
∀x ∈ U .

Let SI := {J = ( j1, . . . , jp+1) | I ⊂ J } be the set of multi-indices of size p + 1
such that 1 ≤ j1 < . . . < jp+1 ≤ n and i1, . . . , i p ∈ { j1, . . . , jp+1}. There are
(n − p) multi-indices J ∈ SI ; we set

mJ (x, a) := MJ [D( f, ρa)(x)], (x, a) ∈ U × R
n . (5)

From the definitions of Z ,U and the functions mJ , we have:

Z ∩ (U × R
n) = {

(x, a) ∈ U × R
n | mJ (x, a) = 0; ∀J ∈ SI

}
. (6)

Let ϕ : U × R
n → R

n−p be the map consisting of the functions mJ for J ∈ SI .
Then, ϕ−1(0) = Z ∩ (U × R

n) and we notice that Dϕ(x, a) has rank (n − p) at any
(x, a) ∈ U × R

n . Indeed, let

(
∂ϕ

∂ak
(x, a)

)

(n−p)×(n−p)
, k /∈ I, (x, a) ∈ U × R

n .

This is a minor of Dϕ(x, a) of size (n− p). Interchanging if necessary the order of its
lines, it is a diagonal matrix with all the entries on the diagonal equal to−2MI [D f (x)]
and hence nonzero. This and (6) show that Z is a manifold of dimension n + p.

We next consider the projection τ : Z → R
n , τ(x, a) = a. Thus, τ−1(a) =

(Ma( f )\Sing f ) × {a}. By Sard’s Theorem, we conclude that, for almost all a ∈ R
n ,

τ−1(a) = (Ma( f )\Sing f ) × {a} ∼= (Ma( f )\Sing f ) is either a smooth manifold of
dimension p or an empty set. �
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2.5 The Relation to the Malgrange–Rabier Condition

Definition 2.5 ([21]) Let f : Rn → R
p be a polynomial map, n ≥ p. Denote by

D f (x) the Jacobian matrix of f at x . We consider

K∞( f ) :=
{
t ∈ R

p | ∃{x j } j∈N ⊂ R
n, lim

j→∞ ‖x j‖ = ∞,

lim
j→∞ f (x j ) = t and lim

j→∞ ‖x j‖ν(D f (x j )) = 0

}
, (7)

where
ν(A) := inf‖y‖=1

‖A∗(y)‖, (8)

for a linear map A and its adjoint A∗.
We call the set K∞( f ) of asymptotic critical values of f . If t0 /∈ K∞( f ), we say

that f verifies the Malgrange–Rabier condition at t0.

We have the following relation between ρa-regularity and Malgrange–Rabier con-
dition:

Theorem 2.6 ([7, Th. 2.8]) Let f = ( f1, . . . , f p) : Rn → R
p be a polynomial

map, where n > p. Let φ :]0, ε[→ Ma( f ) ⊂ R
n be an analytic path such that

limt→0 ‖φ(t)‖ = ∞ and limt→0 f (φ(t)) = c. Then, limt→0 ‖φ(t)‖ν(D f (φ(t))) =
0. In particular, Sa( f ) ⊂ K∞( f ) for any a ∈ R

n, and S∞( f ) ⊂ K∞( f ).

Remark 2.7 See [6] and more precisely [7, Theorem 2.5] for a structure result and a
fibration result on S∞( f ). The inclusion S∞( f ) ⊂ K∞( f ) may be strict (e.g., [20]
and [7, Example 2.9]). The inclusion B∞( f ) ⊂ S∞( f ) may be strict, see the above
Example Sect. 2.3. One may also have Sa( f ) 
= Sb( f ) for some a 
= b, see [7,
Example 2.10].

2.6 The Non-trivial Bifurcation Locus at Infinity

We have discussed up to now three types of bifurcation loci: B∞( f ), S∞( f ) and
K∞( f ). All of themmay contain points of the critical locus f (Sing f ). This locus can
be estimated separately since it is the image by f of an algebraic set and the known
estimation methods apply. What is more difficult to apprehend are the respective
complements of f (Sing f ). We define here the “non-trivial parts” of the bifurcation
loci and next describe a procedure to estimate the one of S∞( f ).

From the definitions of Ma( f ) and Sa( f ), we have the equality Sa( f ) =
J ( f|Ma( f )), where J ( f|Ma( f )) is the non-properness set of f|Ma( f ). Jelonek defined
this set in general:

Definition 2.8 ([12, Definition 3.3], [14]). Let g : M → N be a continuous map,
where M, N are topological spaces. One says that g is proper at the value t ∈ N if
there exists an open neighborhood U ⊂ N of t such that the restriction g|g−1(U ) :

123



Found Comput Math (2017) 17:837–849 843

g−1(U ) → U is a proper map. We denote by J (g) the set of points at which g is not
proper.

In our setting f : Rn → R
p, let us define the non-trivial ρ-bifurcation set at infinity

NS∞( f ) := ⋂
a∈Rn NSa( f ), where:

NSa( f )

:=
{
t ∈ R

p | ∃{x j } j∈N ⊂ Ma( f )\Sing f, lim
j→∞ ‖x j‖=∞, and lim

j→∞ f (x j )= t

}

and note that S∞( f ) = NS∞( f ) ∪ J ( f|Sing f ) and that NS∞( f ) is a closed set
since each set NSa( f ) is closed, which fact follows from the arguments of [6, Theo-
rem 5.7(a)].

Similarly, we introduce the following notation for the non-trivial bifurcation set at
infinity which is the object of our main result, Theorem 3.5:

NB∞( f ) := B∞( f )\J ( f|Sing f ). (9)

By the above definitions and by Theorem 2.6, we immediately get:

Proposition 2.9

NB∞( f ) ⊂ NS∞( f ) ⊂ K∞( f ).

Remark 2.10 If f has a compact singular set Sing f or, more generally, if J ( f|Sing f ) =
∅, then NS∞( f ) = S∞( f ), and NB∞( f ) = B∞( f ). However, these equalities may
fail whenever J ( f|Sing f ) 
= ∅.

In this matter, let us point out here that the proofs of [7, Proposition 3.1, Theo-
rem 3.4] run actually for the set NS∞( f ); therefore, in the statements of those results,
one has to read NS∞( f ) instead of S∞( f ).

3 Detection of Bifurcation Values at Infinity by Parametrized Curves

3.1 Effective Curve Selection Lemma at Infinity Via the Milnor Set

If t0 ∈ NS∞( f ), then t0 ∈ NSa( f ) for any a ∈ R
n and in particular for a ∈ � f ,

where � f is as in Lemma 2.4.

Theorem 3.1 Let f = ( f1, . . . , f p) : Rn → R
p be a polynomial mapping such that

deg fi ≤ d,∀i = 1, . . . , p, and n > p. Let t0 ∈ NSa( f ) for some a ∈ � f . Then,
there exists an analytic path:

x(t) =
∑

−∞≤i≤s

ai t
i , (10)
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with

s ≤ [p(d − 1) + 1]n−p[p(d − 1)(n − p) + 2]p−1

and such that:

(a) x(t) ∈ Ma( f )\Sing f , for any t ≥ R, for some large enough R ∈ R+;
(b) ‖x(t)‖ → ∞, as t → ∞;
(c) f (x(t)) → t0, as t → ∞.

Proof The case p = 1 is [7, Theorem 3.4]. We assume in the following that p > 1.
From Lemma 2.4, we have that Ma( f )\Sing f is a smooth semi-algebraic set of

dimension p since non-empty by our hypothesis on t0. Moreover, by the proof of the
same lemma, Ma( f )\Sing f is locally a complete intersection defined by (n − p)
equations, each of which is of degree at most p(d − 1) + 1. So let us denote by
g1, . . . , gn−p these functions.

Let X = graph f be the closure of the graph of f in P
n × R

p and let X∞ the
intersection ofXwith the hyperplane at infinity {x0 = 0}. Let i : Rn → X ⊂ P

n×R
p,

x �→ (x, f (x)) be the graph embedding. We need to work in the following with
the closure in X of the image i(Ma( f )\Sing f ), which we denote (abusively) by
Ma( f )\Sing f , in particular since we have to keep track of condition (c), namely
f (x(t)) → t0.
Let therefore w := (x, t0) ∈ Ma( f )\Sing f ∩ X

∞. Let U × R
p be a chart at

(x, t0) ∈ P
n × R

p, where U � R
n is an affine chart at infinity of Pn and assume

(without loss of generality) that the point x is the origin.Wemay then use an “effective
curve selection lemma” to show that there is a curve � ⊂ Ma( f )\Sing f such that
w ∈ � ⊂ Ma( f )\Sing f and that this curve has a one-sided bounded parametrization.
To do so, we combine Milnor’s basic construction in [17] with the idea of Jelonek and
Kurdyka given in [14, Lemma 6.4].

Namely, we consider small enough spheres centered at x ∈ U of equation ρw = β

and a function hl := x0l, for some linear function l in the coordinates of U . One can
then prove like in [14, Lemma 6.4] (where an apparently more particular situation was
considered, but the proof works as well) that, for a general such linear function l, the
set of critical points of the map (ρw, hl) : U × R

p ∩ Ma( f )\Sing f → R+ × R is
an analytic curve and its branches at w = (x, t0) are the families of singular points of
the restrictions of the quadratic function hl to the levels {ρw = β} ∩ Ma( f )\Sing f .
It is shown in [14, Lemmas 6.5 and 6.6] that these singular points are all Morse for a
generic choice of l, and that there is at least one Morse point on each level, for small
enough β > 0.

Let us then consider a branch of this analytic curve as our x(t). By its definition,
this curve verifies conditions (a), (b) and (c) and is a solution of the following system
of equations: g1 = 0, . . . , gn−p = 0 and dg1 ∧ · · ·∧dgn−p ∧dρw ∧dhl = 0, the first
of which are of degree at most p(d − 1) + 1 and the last one means the annulation
of p − 1 minors of degree at most p(d − 1)(n − p) + 2. Thus, our algebraic set of
solutions has degree δ verifying the inequality:

δ ≤ [p(d − 1) + 1]n−p[p(d − 1)(n − p) + 2]p−1.
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Finally, by using the effective Curve Selection Lemma of Jelonek and Kurdyka
[14, Lemma 3.1 and Lemma 3.2] which says that there exists a parametrization of our
curve x(t) bounded by the degree δ of the curve, we get exactly an expansion like
(10). This finishes the proof of our theorem. �

3.2 Finite Length Expansion for Curves Detecting Asymptotically Critical
Values

We need a preliminary result which follows by applying [14, Lemma 3.3] to each
function hi in the following statement:

Lemma 3.2 Let h = (h1, . . . , hm) : Rk → R
m be a polynomial map and deg hi ≤

d̃,∀i . Let x(t) = ∑
−∞≤i≤s ai t

i , where t ∈ R , ai ∈ R
k , s > 0 and that ‖x(t)‖ → ∞

and h(x(t)) → b. Then, for any D ≤ −d̃s + s, the truncated curve

x̃(t) =
∑

D≤i≤s

ai t
i ,

verifies ‖x̃(t)‖ → ∞ and h(x̃(t)) → b.

If we try to replace x(t) given in (10) by a truncated path, we may go out of the
set Ma( f )\Sing f . Bearing in mind the inclusion Sa( f ) ⊂ K∞( f ) of Theorem 2.6,
instead of searching in vain a truncated expansion inside the Milnor set, we may
show that there exists a truncation which verifies the Malgrange–Rabier condition (7).
The proof of the following result employs the technique of [6, Theorem 3.2] and [5,
Theorem 2.4.8], where we have used the t-regularity to find a geometric interpretation
for K∞( f ).

Proposition 3.3 Let f = ( f1, . . . , f p) : Rn → R
p be a polynomial map such that

n > p and that deg fi ≤ d,∀i . Let

x(t) = (x1(t), . . . , xn(t)) =
∑

−∞≤i≤s

ai t
i ,

where t ∈ R, ai ∈ R
n, s > 0 and such that:

(a) ‖x(t)‖ → ∞, as t → ∞;
(b) f (x(t)) → b, as t → ∞;
(c) ‖x(t)‖ν(D f (x(t))) → 0, as t → ∞.

Then, the truncated expansion

x̃(t) =
∑

−ds≤i≤s

ai t
i ,

verifies the following conditions:

(i) ‖x̃(t)‖ → ∞, as t → ∞;
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(ii) f (x̃(t)) → b, as t → ∞;
(iii) ‖x̃(t)‖ν(D f (x̃(t))) → 0, as t → ∞.

Proof We treat here the case p > 1. See Remark 3.4 for the case p = 1.
By the definition of ν (Definition 2.5 and (8)), condition (c) means:

‖x(t)‖
(

inf‖y‖=1
‖D f (x(t))∗(y)‖

)
→ 0, as t → ∞, (11)

where D f (x(t))∗ denotes the adjoint of D f (x(t)).
Since ν is a semi-algebraic mapping (see, for example, [16, Proposition 2.4]), the

Curve Selection Lemma and (11) imply that there exists an analytic path (see also the
proofs of [6, Theorem 3.2] and [3, Proposition 2.4] for this argument):

y(t) =
∑

−∞≤i≤0

b j t
j = (y1(t), . . . , yp(t)), b j ∈ R

p,

such that ‖y(t)‖ = 1,∀t � 0, and that:

‖x(t)‖
∥∥∥∥y1(t)

∂ f1
∂x

(x(t)) + · · · + yp(t)
∂ f p
∂x

(x(t))

∥∥∥∥ → 0, as t → ∞, (12)

where ∂ fi
∂x (x(t)) :=

(
∂ fi
∂x1

(x(t)), . . . , ∂ fi
∂xn

(x(t))
)
for i = 1, . . . , p.

For any fixed j ∈ {1, . . . , n}, we set φ j : Rn × R
p → R,

φ j (x, y) :=
(
y1

∂ f1
∂x j

(x) + · · · + yp
∂ f p
∂x j

(x)

)
. (13)

It then follows that degφ j ≤ d and that our path:

(x(t), y(t)) :=
⎛
⎝ ∑

−∞≤i≤s

ai t
i ,

∑
−∞≤i≤0

b j t
j

⎞
⎠

verifies the conditions:

(1) ‖x(t)‖ → ∞ as t → ∞, and ‖y(t)‖ = 1;
(2) xi (t)φ j (x(t), y(t)) → 0 as t → ∞, for any i, j ∈ {1, . . . , n}.
Applying Lemma 3.2 to the mapping (xiφ j )

n
i, j=1, we get that, for any D ≤ −(d +

1)s + s = −ds, the truncated path:

(x̃(t), ỹ(t)) :=
⎛
⎝ ∑

D≤i≤s

ai t
i ,

∑
D≤i≤0

b j t
j

⎞
⎠

verifies the conditions:
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(1’) ‖x̃(t)‖ → ∞ and ‖ỹ(t)‖ → 1 as t → ∞;
(2’) x̃i (t)φ j (x̃(t), ỹ(t)) → 0, as t → ∞, for any i, j ∈ {1, 2, . . . , n}.
These imply:

‖x̃(t)‖
∥∥∥∥ỹ1(t)

∂ f1
∂x

(x̃(t)) + · · · + ỹp(t)
∂ f p
∂x

(x̃(t))

∥∥∥∥ → 0 as t → ∞, (14)

and since ‖ỹ(t)‖ → 1, we obtain:

‖x̃(t)‖ 1

‖ỹ(t)‖
∥∥∥∥ỹ1(t)

∂ f1
∂x

(x̃(t)) + · · · + ỹp(t)
∂ f p
∂x

(x̃(t))

∥∥∥∥ → 0, as t → ∞. (15)

The later implies that ‖x̃(t)‖ν(D f (x̃(t))) → 0, as t → ∞, which shows (iii).
Next, (i) follows by (1’), and (ii) follows from Lemma 3.2 for h := f , since

−ds < −ds + s. �
Remark 3.4 In case p = 1, in the proof of Proposition 3.3wemay considerφ j : Rn →
R, φ j (x, y) = ∂ f

∂x j
(x) since in this case y = 1. Then, degφ j ≤ d − 1 and by applying

Lemma 3.2 as above to the mapping (xiφ j )
n
i, j=1 we get that, for any D ≤ −ds + s,

the truncation ˜̃x(t) = ∑
D≤i≤s ai t

i satisfies (i), (ii) and (iii).
In the definition of Arc( f ), the lower bound is −ds + s instead of −ds. Since the

value of the degree s from Theorem 3.1 is dn−1 in case p = 1, we recover the result
in [7].

3.3 Arc Space and the Main Result

We may now apply to a polynomial map f = ( f1, . . . , f p) : Rn → R
p, deg fi ≤ d,

a similar procedure as the one described by Jelonek and Kurdyka [14] in case p = 1.
Thus, in case p > 1, we consider the following space of arcs associated with f :

Arc( f ) :=
⎧⎨
⎩(x(t), y(t)) =

⎛
⎝ ∑

−ds≤i≤s

ai t
i ,

∑
−ds≤ j≤0

b j t
j

⎞
⎠ , (ai , bi ) ∈ R

n × R
p

⎫⎬
⎭ ,

(16)
where s := [p(d − 1) + 1]n−p[p(d − 1)(n − p) + 2]p−1, as in Theorem 3.1. Then,
Arc( f ) is a vector space of finite dimension.

Referring to the notations in (16), we define, in a similar manner as [14, Defini-
tion 6.10], the asymptotic variety of arcs Arc∞( f ) ⊂ Arc( f ), as the algebraic subset
of the rational arcs (x(t), y(t)) ∈ Arc( f ) verifying the following conditions:

(a′) ∃k > 0 such that ak 
= 0 ∈ R
n , and ‖b0‖ = 1.

(b′) ordt f (x(t)) ≤ 0.
(c′) ordt

(
xi (t)φ j (x(t), y(t))

)
< 0, for any i, j ∈ {1, . . . , n}, where φ j is defined

at (13) in the proof of Proposition 3.3.
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Let us then set α0 : Arc∞( f ) → R
p, α0(ξ(t)) := limt→∞ f (x(t)), where ξ(t) =

(x(t), y(t)).
In view of the above results, we may now give an estimation of the non-trivial ρ-

bifurcation set at infinity NS∞( f ), thus of the non-trivial bifurcation locus NB∞( f ),
cf Proposition 2.9:

Theorem 3.5 NS∞( f ) ⊂ α0(Arc∞( f )) ⊂ K∞( f ).

Proof If α ∈ NS∞( f ), then α ∈ NSa( f ) for any fixed a ∈ � f . By Theorem 3.1,
there exists a path

x(t) =
∑

−∞≤i≤s

ai t
i ∈ Ma( f )\Sing f,

such that limt→∞ f (x(t)) = α. It follows from Theorem 2.6 that x(t) verifies the
conditions (a)–(c) of Proposition 3.3. Moreover, the truncation x̃ defined in the same
Proposition 3.3 verifies the properties (i)–(iii). Since conditions (i)–(iii) are equivalent
to conditions (a′)–(c′), we conclude that the first inclusion holds.

The second inclusion α0(Arc∞( f )) ⊂ K∞( f ) is a direct consequence of the def-
initions of Arc∞( f ) and K∞( f ) since properties (a′), (b′) and (c′) characterize the
values α0 ∈ K∞( f ) as shown in the proof of Proposition 3.3. This completes our
proof. �

Let us remark that the first inclusion can be strict, as shown by the next example:

Example 3.6 ([7, Example 2.10]) Let f : R2 → R, f (x, y) = y(x2y2 + 3xy + 3).
We have NS∞( f ) = ∅, 0 ∈ α0(Arc∞( f )) and 0 ∈ K∞( f ).

In trying to prove the equality in place of the second inclusion in Theorem 3.5,
one notices that the inverse inclusion depends on the possibility of truncating paths
which detect some value α0 ∈ K∞( f ) at the order provided by Theorem 3.1. But our
Theorem 3.1 is based on paths in the Milnor set Ma( f )\Sing f , which provide in
principle lower degrees than working with the Malgrange–Rabier condition (7), and
we know that the later is not equivalent to ρ-regularity (cf Sect. 2). Else, for the same
reason, it would be difficult to obtain examples to disprove the inverse inclusion.
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