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Abstract Entropy solutions have beenwidely accepted as the suitable solution frame-
work for systems of conservation laws in several space dimensions. However, recent
results in De Lellis and Székelyhidi Jr (AnnMath 170(3):1417–1436, 2009) and Chio-
daroli et al. (2013) have demonstrated that entropy solutions may not be unique. In
this paper, we present numerical evidence that state-of-the-art numerical schemes
need not converge to an entropy solution of systems of conservation laws as the mesh
is refined. Combining these two facts, we argue that entropy solutions may not be
suitable as a solution framework for systems of conservation laws, particularly in
several space dimensions. We advocate entropy measure-valued solutions, first pro-
posed by DiPerna, as the appropriate solution paradigm for systems of conservation
laws. To this end, we present a detailed numerical procedure which constructs stable
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approximations to entropy measure-valued solutions, and provide sufficient condi-
tions that guarantee that these approximations converge to an entropy measure-valued
solution as the mesh is refined, thus providing a viable numerical framework for
systems of conservation laws in several space dimensions. A large number of numer-
ical experiments that illustrate the proposed paradigm are presented and are utilized
to examine several interesting properties of the computed entropy measure-valued
solutions.

Keywords Hyperbolic conservation laws · Uniqueness · Stability · Entropy
condition · Measure-valued solutions · Atomic initial data · Random field · Weak BV
estimate · Weak* convergence

Mathematics Subject Classification 65M06 · 35L65 · 35R06

“There is no theory for the initial value problem for compressible flows in two space dimensions once
shocks show up, much less in three space dimensions. This is a scientific scandal and a challenge.”

P. D. Lax, 2007 Gibbs Lecture [48].
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1 Introduction

A large number of problems in physics and engineering are modeled by systems of
conservation laws

∂t u + ∇x · f (u) = 0 (1a)

u(x, 0) = u0(x). (1b)

Here, the unknown u = u(x, t) : Rd ×R+ → R
N is the vector of conserved variables

and f = ( f 1, . . . , f d) : RN → R
N×d is the flux function. We denote R+ := [0,∞).

The system (1a) is hyperbolic if the flux Jacobian ∂u( f ·n) has real eigenvalues for
all n ∈ R

d with |n| = 1. Examples of hyperbolic systems of conservation laws include
the shallow water equations of oceanography, the Euler equations of gas dynamics,
the magnetohydrodynamics (MHD) equations of plasma physics, the equations of
nonlinear elastodynamics and the Einstein equations of general relativity. We refer to
[16,37] for more theory on hyperbolic conservation laws.

1.1 Mathematical Framework

It is well known that solutions of the Cauchy problem (1) can develop discontinu-
ities such as shock waves in finite time, even when the initial data is smooth. Hence,
solutions of hyperbolic systems of conservation laws (1) are sought in the weak (dis-
tributional) sense.

Definition 1 A function u ∈ L∞(Rd ×R+,RN ) is a weak solution of (1) if it satisfies
(1) in the sense of distributions:

∫
R+

∫
Rd

∂tϕ(x, t)u(x, t) + ∇xϕ(x, t) · f (u(x, t)) dxdt +
∫
Rd

ϕ(x, 0)u0(x) dx = 0

(2)

for all test functions ϕ ∈ C1
c (Rd × R+).

Weak solutions are in general not unique: Infinitely many weak solutions may
exist after the formation of discontinuities. Thus, to obtain uniqueness, additional
admissibility criteria have to be imposed. These admissibility criteria take the form of
entropy conditions, which are formulated in terms of entropy pairs.

Definition 2 A pair of functions (η, q) with η : RN → R, q : RN → R
d is called an

entropy pair if η is convex and q satisfies the compatibility condition q ′ = η′ · f ′.

Definition 3 A weak solution u of (1) is an entropy solution if the entropy inequality

∂tη(u) + ∇x · q(u) � 0 in D′(
R

d × R+
)
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is satisfied for all entropy pairs (η, q), that is, if

∫
R+

∫
Rd

∂tϕ(x, t)η(u(x, t))+∇xϕ(x, t) · q(u(x, t)) dxdt+
∫
Rd

ϕ(x, 0)η(u0(x)) dx �0

(3)

for all nonnegative test functions 0 � ϕ ∈ C1
c (Rd × R+).

For the special case of scalar conservation laws (N = 1), every convex function η

gives rise to an entropy pair by letting q(u) := ∫ u
η′(ξ) f ′(ξ)dξ . This rich family of

entropy pairs was used by Kruzkhov [45] to obtain existence, uniqueness and stability
of solutions for scalar conservation laws.

Corresponding (global) well-posedness results for systems of conservation laws are
much harder to obtain. Lax [47] showed existence and stability of entropy solutions
for one-dimensional systems of conservation laws for the special case of Riemann
initial data. Existence results for the Cauchy problem for one-dimensional systems
were obtained by Glimm [35] using the random choice method and by Bianchini and
Bressan [5] with the vanishing viscosity method. Uniqueness and stability results for
one-dimensional systems were shown by Bressan et al. [9]. All of these results rely
on an assumption that the initial data is “sufficiently small,” i.e., lies sufficiently close
to a constant state.

On the other hand, no global existence and uniqueness (stability) results are cur-
rently available for a generic system of conservation laws in several space dimensions.
In fact, recent results (see [17–19] and references therein) provide counterexamples
which illustrate that entropy solutions for multi-dimensional systems of conservation
laws are not necessarily unique. These results raise serious questions whether the
notion of entropy solutions is too restricted to serve as the standard solution frame-
work for systems of conservation laws. It can be argued that one needs to impose
even further admissibility criteria, in addition to the entropy inequality (3), to single
out a solution among the infinitely many solutions constructed in [17–19]. One pos-
sible approach in determining these selection criteria is to employ suitable numerical
schemes and observe which, if any, of the entropy solutions are approximated by these
schemes.

1.2 Numerical Schemes

Numerical schemes have played a leading role in the study of systems of conservation
laws, and a wide variety of numerical methods for approximating (1) are currently
available. These include the very popular and highly successful numerical framework
of finite volume and finite difference schemes, based on approximate Riemann solvers
or on Riemann-solver-free central differencing (see [10,13,37,50]) which utilize TVD
[38], ENO [39] or WENO [42] non-oscillatory reconstruction techniques and strong
stability preserving (SSP) Runge–Kutta time integrators [34]. Another popular alter-
native is the discontinuous Galerkin finite element method [14].
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The primary goal in the analysis of numerical schemes approximating (1) is proving
convergence to an entropy solution as themesh is refined. This issue has been addressed
in the special case of (first-order) monotone schemes for scalar conservation laws
(see [15] for the one-dimensional case and [12] for multiple dimensions) using the
TVDproperty.Corresponding convergence results for (formally) arbitrarily high-order
accurate finite difference schemes for scalar conservation laws were obtained recently
in [28], see also [27]. Convergence results for (arbitrarily high order) space time DG
discretization for scalar conservation laws were obtained in [41] and for the spectral
viscosity method in [62].

The question of convergence of numerical schemes for systems of conservation
laws is significantly more difficult. Currently, there are no rigorous proofs of conver-
gence for any kind of finite volume (difference) and finite element methods to the
entropy solutions of a generic system of conservation laws, even in one space dimen-
sion. Convergence aside, even the stability of numerical approximations to systems
of conservation laws is mostly open. The only notion of numerical stability for sys-
tems of conservation laws that has been analyzed rigorously so far is that of entropy
stability—the design of numerical approximations that satisfy a discrete version of
the entropy inequality. Such schemes have been devised in [27,40,60,61]. However,
entropy stability may not suffice to ensure the convergence of approximate solutions.

1.3 Two Numerical Experiments

Given the lack of rigorous stability and convergence results for systems of conservation
laws, it has become customary in the field to rely on numerical benchmark tests to
demonstrate the convergence of the scheme empirically. One such benchmark test case
is the radial Sod shock tube [50].

1.3.1 Sod Shock Tube

In this test, we consider the compressible Euler equations of gas dynamics in two
space dimensions (see Sect. 6) as a prototypical hyperbolic system of conservation
laws. The initial data for the two-dimensional version of the well-known Sod shock
tube problem is given by

u0(x) =
{

uL if |x | � r0
u R if |x | > r0,

(4)

with ρL = pL = 3, ρR = pR = 1, w1 = w2 = 0. The computational domain is
[−0.5, 0.5]2, with r0 = 0.15, and we use periodic boundary conditions.

To begin with, we consider a perturbed version of the Sod shock tube by setting the
initial data

uε
0(x) = u0(x) + εX (x), (5)
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where ε > 0 is a small amplitude of the perturbation X (·) associatedwith the following
state variables—ρ, p and w = (w1, w2)�,

Xρ = X p = 0, Xw1(x) = sin(2πx1), Xw2(x) = sin(2πx2). (6)

First we set ε = 0.01 and compute the approximate solutions of the two-
dimensional Euler equations (31) with the second-order TeCNO2 finite difference
scheme of [27]. In Fig. 1, we present the computed densities at time t = 0.24 for
three different mesh resolutions. The figure clearly indicates convergence as the mesh
is refined. To further quantify this convergence, we compute the difference in the
approximate solutions on two successive mesh resolutions:

E
x =
∥∥∥u
x − u
x/2

∥∥∥
L1([−0.5,0.5]2) , (7)

and plot the results for density in Fig. 2a. The results clearly indicate that the numer-
ical approximations form a Cauchy sequence in L1 and hence converge. The same
numerical experiment was performed with a different scheme: a second-order high-
resolution scheme based on an HLLC solver using theMC limiter, implemented in the
FISH code [44]. Similar convergence results were obtained (omitted here for brevity).

Next, we investigate numerically the issue of stability of this system with respect
to perturbations in the initial data. To this end, we use exactly the same set up as the
previous numerical experiment but let the perturbation amplitude ε → 0 in (5) and
plot in Fig. 2b the error in computed density (at a fixed mesh resolution of 10242

points) for successively lower values of ε. The reference solution is computed with
the finest mesh resolution of 10242 using the unperturbed initial data (4). The results
clearly show convergence to the unperturbed solution in the ε → 0 limit.

The above numerical example suggests convergence of the approximate numerical
solutions to an entropy solution, at least for some benchmark test cases. The computed
solutions were observed to be stable with respect to perturbations of the initial data.
In the literature, it is not uncommon to extrapolate from benchmark test cases like the
Sod shock tube and expect that the numerical approximations converge as the mesh is
refined for all possible sets of flow configurations.

Fig. 1 Density for the Sod shock tube problem, computed with TECNO2 finite difference scheme of [27],
with initial data (5) at time t = 0.24. Left to right 
x = 1/128, 1/256, 1/512
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Fig. 2 L1 differences in density
ρ at time t = 0.24 for the Sod
shock tube problem with initial
data (5). a L1 Cauchy rates (7)
(y-axis) in the density at time
t = 0.24 versus number of
gridpoints (x-axis). b L1 error
with respect to the unperturbed
solution (4) (y-axis) versus the
perturbation parameter ε

(x-axis)

64 128 256 512
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10
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1.3.2 Kelvin–Helmholtz Problem

Wequestion the universality of the above observed empirical convergence and stability
results by considering the following set of initial data for the two-dimensional Euler
equations (see Sect. 6):

u0(x) =
{

uL if 0.25 < x2 < 0.75

u R if x2 � 0.25 or x2 � 0.75,
(8)

with ρL = 2, ρR = 1, w1
L = −0.5, w1

R = 0.5, w2
L = w2

R = 0 and pL = pR = 2.5.
It is readily seen that this is a steady state, i.e., that u(x, t) ≡ u0(x) is an entropy
solution.

Next, we add the same perturbation (5) to the initial data (8) and compute approxi-
mate solutions in the computational domain [0, 1]2 with periodic boundary conditions,
for different 
x > 0. A series of approximate solutions using the TeCNO2 scheme
of [27] and perturbation amplitude ε = 0.01 are shown in Fig. 3. The results show
that there is no sign of any convergence as the mesh is refined. As a matter of fact,
structures at smaller and smaller scales are formed with mesh refinement. This lack of
convergence is quantified by plotting the differences between successive mesh levels
(7) for the density in Fig. 4a. The results show that as the mesh is refined, the approx-
imate solutions do not seem to form a Cauchy sequence in L1 (at least for the mesh
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Fig. 3 Density for the Kelvin–Helmholtz problem (8) with perturbation (5) and perturbation parameter
ε = 0.01. Left to right 
x = 1/128, 1/256, 1/512, at time t = 1

Fig. 4 L1 differences in density
ρ at time t = 2 for the
Kelvin–Helmholtz problem (8).
a L1 Cauchy rates (7) (y-axis)
versus number of gridpoints
(x-axis) for the perturbed
problem (5), (8) with ε = 0.01.
b L1 error with respect to the
steady-state solution (8) of the
unperturbed Kelvin–Helmholtz
problem (y-axis) versus
perturbation parameter ε, at a
fixed mesh with 10242 points 64

(a)

(b)
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resolutions that have been tested) and hence may not converge. The results presented
in Figs. 3 and 4a are computed with the TeCNO scheme of [27]. Very similar results
were also obtained with the FISH code [44] and the ALSVID finite volume code [31].
Furthermore, convergence in even weaker W −1,p, 1 < p � ∞, norms was also not
observed. Thus, one cannot deduce convergence of even bulk properties of the flow,
such as the average domain temperature, in this particular case.

Finally, we check stability of the numerical solutions as the perturbation parameter
ε → 0. We compute numerical approximations at a fixed fine grid resolution of 10242

points with successively lower values of ε. These results are comparedwith the steady-
state solution (8) and are presented in Fig. 4b. The L1 difference results clearly show
that there is no convergence to the steady-state solution (8) as ε → 0.
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1.4 A Different Notion of Solutions

The above experiment clearly demonstrates that in general, a whole host1 of state-
of-the-art numerical schemes do not seem to converge (even for very fine mesh
resolutions) to an entropy solution formulti-dimensional systems of conservation laws.
In fact, structures at smaller and smaller scales are formed as the mesh is refined. This
fact does not imply that the numerical approximations are at fault (given that all the
tested schemes, based on different design philosophies, behaved in the same manner),
but rather, that the notion of entropy solutions does not adequately describe the com-
plex flow phenomena that are modeled by systems of conservation laws such as the
compressible Euler equations.

When combined with the recent results on the non-uniqueness of entropy solutions
of systems of conservation laws ([17,18] and references therein), our numerical evi-
dence strongly suggests, in more than one way, that entropy solutions need not be
an appropriate solution framework for systems of conservation laws. In particular,
entropy solutions may not suffice to characterize the limits of numerical approxima-
tions to conservation laws in a stable manner.

Based on the fact that oscillations persist on finer and finer scales in numeri-
cal approximations of (1) shown in Fig. 3, we focus on the alternative concept of
entropy measure-valued solutions, introduced by DiPerna in [22], see also [23]. In
this framework, solutions of the system of conservation laws (1) are no longer inte-
grable functions, but parameterized probability measures, or Young measures, which
are able to represent the limit behavior of sequences of oscillatory functions. This
solution concept was further based on the work of Tartar [63] on characterizing the
weak limits of bounded sequences of functions.More recently, Glimm and co-workers
([11,51] and references therein) have also hypothesized that entropy measure-valued
solutions are the appropriate notion of solutions for hyperbolic conservation laws,
particularly in several space dimensions.

1.5 Aims and Scope of the Current Paper

In the current paper:

– We consider entropy measure-valued solutions for the Cauchy problem (1), in
the sense of DiPerna [22]. We study the existence and stability of the entropy
measure-valued solutions.

– The main aim of the current paper is to approximate entropy measure-valued
solutions numerically. To this end,wepropose an algorithmbasedon the realization
of Young measures as the law of random fields and approximate the solution
random fields with suitable finite difference (volume) numerical schemes. We
propose a set of sufficient conditions that a scheme has to satisfy in order to

1 We have tested at least three types of schemes, TeCNO scheme of [27], the high-resolution HLLC scheme
of [44] and the finite volume scheme of [31], and obtained similar non-convergence and instability results
Footnote 1 continued
as presented above. We strongly suspect that any numerical method will not converge or be stable with
respect to perturbations in the initial data for this particular example.
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converge to an entropy measure-valued solution as the mesh is refined. Examples
of such convergent schemes are also provided. This provides a viable and rigorous
numerical framework for multi-dimensional systems of conservation laws, within
the framework of entropy measure-valued solutions.

– We present a large number of numerical experiments to validate the proposed
theory. The numerical approximations are also employed to study the stability as
well as other interesting properties of entropy measure-valued solutions.

The rest of this paper is organized as follows: In Sect. 2, we provide a short but
self-contained description of Young measures (see also Appendix 1) and then define
entropymeasure-valued solutions for a generalized Cauchy problem, corresponding to
the system of conservation law (1). The well posedness of the entropy measure-valued
solutions is discussed in Sect. 3. In Sect. 4, we discuss finite difference schemes
approximating (1) and propose abstract criteria that these schemes have to satisfy
in order to converge to entropy measure-valued solutions. Two schemes satisfying
the abstract convergence framework are presented in Sect. 5. In Sect. 6, we present
numerical experiments that illustrate the convergence properties of the schemes and
discuss the stability and related properties of entropy measure-valued solutions.

2 Young Measures and Entropy Measure-Valued Solutions

A Young measure on a set D ⊂ R
k (in our setting, D = R

d × R+ will represent
space–time) is a function ν which assigns to every point y ∈ D a probability measure
νy ∈ P(RN ) on the phase space RN . The set of all Young measures from D to R

N is
denoted by Y(D,RN ). We can compose a Young measure with a continuous function
g by defining

〈
νy, g

〉 := ∫
RN g(ξ)dνy(ξ), the expectation of g with respect to the

probability measure νy . Note that this defines a real-valued function of y ∈ D.
Every measurable function u : D → R

N gives rise to a Young measure by letting

νy := δu(y),

where δξ is the Dirac measure centered at ξ ∈ R
N . Such Young measures are called

atomic.
If ν1, ν2, . . . is a sequence of Young measures, then there are two notions of con-

vergence. We say that νn converge weak* to a Young measure ν (written νn ⇀ ν) if

〈νn, g〉 ∗
⇀ 〈ν, g〉 in L∞(D) for all g ∈ C0(R

N ), that is, if

∫
D

ϕ(z)
〈
νn

z , g
〉
dz →

∫
D

ϕ(z) 〈νz, g〉 dz ∀ ϕ ∈ L1(D). (9)

By the fundamental theorem of Young measures (see Theorem 13), any suitably
bounded sequence of Young measures has a weak* convergent subsequence.

We say that the sequence {νn} converges strongly to ν (written νn → ν) if

∥∥Wp(ν
n, ν)

∥∥
L p(D)

→ 0 (10)
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for some p ∈ [1,∞), where Wp is the p-Wasserstein distance

Wp(μ, ρ) := inf

{∫
RN ×RN

|ξ − ζ |p dπ(ξ, ζ ) : π ∈ Π(μ, ρ)

}1/p

whichmetrizes the topologyofweakconvergenceon the setPp(RN ) :={μ ∈ P(RN ) :
〈μ, |ξ |p〉 < ∞}. Here, Π(μ, ρ) is the set of probability measures on R

N × R
N with

marginals μ, ρ ∈ Pp(RN ) (see also Appendix A.1.3).
We refer to Appendix 1 for a more rigorous and detailed introduction to Young

measures.

2.1 The Measure-Valued (MV) Cauchy Problem

As mentioned in the introduction, we will seek a more general (weaker) notion of
solutions to the Cauchy problem for a system of conservation laws (1) by requiring
that the solutions be Young measures, instead of integrable functions. Equipped with
the notation of the previous section, we propose the following generalized Cauchy
problem (corresponding to the system (1)): find a ν ∈ Y(Rd × R+,RN ) such that

∂t 〈ν, id〉 + ∇x · 〈ν, f 〉 = 0

ν(x,0) = σx ,
(11)

where σ ∈ Y(Rd ,RN ) is the initial measure-valued data and id(ξ) = ξ is the identity
function on R

N . The above MV Cauchy problem is interpreted as follows.

Definition 4 (DiPerna [22]) A Young measure ν ∈ Y(Rd × R+,RN ) is a measure-
valued (MV) solution of (11) if (11) holds in the sense of distributions, i.e.,

∫
R+

∫
Rd

∂tϕ(x, t)
〈
ν(x,t), id

〉+ ∇xϕ(x, t) · 〈ν(x,t), f
〉
dxdt

+
∫
Rd

ϕ(x, 0) 〈σx , id〉 dx = 0 (12)

for all test functions ϕ ∈ C1
c (Rd × R+).

Definition 5 (DiPerna [22]) A Young measure ν ∈ Y(Rd × R+,RN ) is an entropy
measure-valued (EMV) solution of (11) if in addition to being a measure-valued solu-
tion (satisfying (12)), it also satisfies

∂t 〈ν, η〉 + ∇x · 〈ν, q〉 � 0 in D′(
R

d × R+
)

(13)
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for every entropy pair (η, q), that is, if

∫
R+

∫
Rd

∂tϕ(x, t)
〈
ν(x,t), η

〉+ ∇xϕ(x, t) · 〈ν(x,t), q
〉
dxdt

+
∫
Rd

ϕ(x, 0) 〈σx , η〉 dx � 0 (14)

for all nonnegative test functions 0 � ϕ ∈ C1
c (Rd × R+).

Remark 1 The formulations (12) and (14) impose the initial dataσ in a very weak man-
ner. The weak formulation (12) requires, roughly speaking, that limt→0

〈
ν(x,t), id

〉 =
〈σx , id〉, i.e., that the barycenters (or mean) of ν(x,0) and σx should coincide. The
inequality (14) implies that lim supt→0

〈
ν(x,t), η

〉
� 〈σx , η〉 (in Theorem 2, we

require a slightly stronger form of this inequality). The requirement that the (strictly)
η-weighted barycenters of twomeasures should “coincide” (up to the entropic inequal-
ity) will imply that the measures themselves coincide only if σx is a Dirac mass.
Correspondingly, our condition for initial data implies equality at t = 0 only when the
initial data is atomic. This is precisely the setting which we choose to focus on in the
present paper. In a forthcoming paper [25], we consider the question of uniqueness
when the initial data is non-atomic, and how to interpret the initial condition in this
more complex setting.

We denote by E(σ ) the set of all entropy MV solutions of the MV Cauchy problem
(11) with initial MV data σ . It is readily seen that every entropy solution u of (1) gives
rise to an EMV solution of (11) with σ = δu0 , by defining ν(x,t) := δu(x,t), the atomic
Young measure concentrated at u. Thus, the set E(σ ) is at least as large as the set of
entropy solutions of (1) whenever σ is atomic, σ = δu0 .

Remark 2 Although our focus in the current paperwill be on the specific case of atomic
initial data, we still consider the more general setting of the MV Cauchy problem (11)
as it enables us to formulate numerical approximations in a unified manner.

In practice, the initial data u0 in (1a) is obtained from ameasurement or observation
process. Sincemeasurements (observations) are intrinsically uncertain, it is customary
to model this initial uncertainty statistically by considering the initial data u0 as a
random field. Given the fact that the law of a random field is a Young measure, we can
also model this initial uncertainty with non-atomic initial measures in the measure-
valued (MV) Cauchy problem (11). Thus, our formulation suffices to include various
formalisms for uncertainty quantification of conservation laws, i.e., the determination
of solution uncertainty given uncertain initial data. See [52–54] and references therein
for an extensive discussion on uncertainty quantification for conservation laws.

3 Well Posedness of EMV Solutions

The questions of existence, uniqueness and stability of EMV solutions of (11) are of
fundamental significance. We start with a discussion of the scalar case.
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3.1 Scalar Conservation Laws

The question of existence of EMV solutions for scalar conservation laws was consid-
ered by DiPerna [22]. We slightly generalize his result for a non-atomic initial data as
follows.

Theorem 1 Consider the MV Cauchy problem (11) for a scalar conservation law.
If the initial data σ is uniformly bounded (see Appendix A.2.2), then there exists an
EMV solution of (11).

Proof By Proposition 2 in Appendix A.3.2, there exists a probability space (Ω,F, P)

and a random field u0 : Ω ×R
d → R with law σ . By the uniform boundedness of σ ,

we have ‖u0‖L∞(Ω×Rd ) < ∞.
For eachω ∈ Ω , let u(ω; x, t) be the entropy solution of (1) with initial data u0(ω),

and define ν as the law of u. Then for every entropy pair (η, q) and every test function
0 � ϕ ∈ C1

c (Rd × R+), we have by Fubini’s theorem and the entropy stability of
u(ω) for each ω,

∫
R+

∫
Rd

∂tϕ(x, t)
〈
ν(x,t), η

〉+ ∇xϕ(x, t) · 〈ν(x,t), q
〉
dxdt

=
∫
R+

∫
Rd

∂tϕ(x, t)
∫

Ω

η(u(ω; x, t)) dP(ω)

+ ∇xϕ(x, t) ·
∫

Ω

q(u(ω; x, t)) dP(ω)dxdt

=
∫

Ω

∫
R+

∫
Rd

∂tϕ(x, t)η(u(ω; x, t)) + ∇xϕ(x, t) · q(u(ω; x, t)) dxdtdP(ω)

� −
∫

Ω

∫
Rd

ϕ(x, 0)η(u0(ω; x)) dxdP(ω)

= −
∫
Rd

ϕ(x, 0) 〈σx , η〉 dx .

This proves the entropy inequality (14). ��
Although EMV solutions exist for scalar conservation laws with non-atomic

measure-valued initial data, they may not be unique. Here is a simple counter-example
(see also Schochet [58]).

Example 1 Consider Burgers’ equation

∂t u + ∂x

(
u2

2

)
= 0.

Denote by λ the Lebesgue measure on R and by λA the restriction of λ to a subset
A ⊂ R, i.e., λA(B) = λ(A ∩ B). We define Ω = [0, 1], F = B([0, 1]) (the Borel
σ -algebra on [0, 1]) and P = λ[0,1]. Let u0 and ũ0 be the random fields
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u0(ω; x) :=
{
1 + ω for x < 0

ω for x > 0,

ũ0(ω; x) :=
{
1 + ω for x < 0

1 − ω for x > 0,
ω ∈ [0, 1], x ∈ R.

It is readily checked that the law of both u0 and ũ0 in (Ω,F, P) equals

σx =
{

λ[1,2] for x < 0

λ[0,1] for x > 0.

Note that both of the random fields u0 and ũ0 model the Burgers’ equation with
uncertainty in initial shock location which is widely considered in the UQ literature,
see [52] and references therein. Although their laws are the same—i.e., that the ini-
tial Young measure is the same in both cases—the resulting two-point correlations
(particularly for points left and right of the origin) differ.

The entropy solutions u(ω) and ũ(ω) of the Riemann problems with initial data
u0(ω) and ũ0(ω) are given by

u(ω; x, t) =
{
1 + ω if x/t < 1/2 + ω

ω if x/t > 1/2 + ω,
ũ(ω; x, t) =

{
1 + ω if x/t < 1

1 − ω if x/t > 1.

To compute the law ν of u, we rewrite u as

u(ω; x, t) =
{
1 + ω if x/t − 1/2 < ω

ω if x/t − 1/2 > ω.

Hence, if x/t − 1/2 < 0, then ν(x,t) = λ[1,2], whereas if x/t − 1/2 > 1, then ν(x,t) =
λ[0,1]. When 0 � x/t − 1/2 � 1, we have for every g ∈ C0(R

N )

〈
ν(x,t), g

〉 =
∫ 1

0
g(u(ω; x, t)) dω =

∫ 1

x/t−1/2

g(1 + ω) dω +
∫ x/t−1/2

0
g(ω) dω

=
∫ 2

x/t+1/2

g(ω) dω +
∫ x/t−1/2

0
g(ω) dω

=
∫
R

g(ω) dλ[x/t+1/2,2](ω) +
∫
R

g(ω) dλ[0,x/t−1/2](ω).

After a similar calculation for ν̃, we find that

ν(x,t) =

⎧⎪⎨
⎪⎩

λ[1,2] if x/t < 1/2

λ[x/t+1/2,2] + λ[0,x/t−1/2] if 1/2 < x/t < 3/2

λ[0,1] if 3/2 < x/t,

ν̃(x,t) =
{

λ[1,2] if x/t < 1

λ[0,1] if x/t > 1.
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Note that in fact ν(x,t) and ν̃(x,t) converges to σx strongly as t → 0 for all x �= 0. Thus,
ν and ν̃ are EMV solutions with the same initial MV data σ , but do not coincide. ��

The above example clearly illustrates that the MV Cauchy problem (11) may not
have unique solutions, even for the scalar case, when the initial data is a non-atomic
Young measure. Hence, it raises serious questions whether the notion of an entropy
measure-valued solution is useful. However, the following result shows that when
restricting attention to the relevant class of atomic initial data, EMV solutions of the
scalar MV Cauchy problem (11) are stable.

Theorem 2 Consider the scalar case N = 1. Let u0 ∈ L1 ∩ L∞(Rd) and let σ ∈
Y(Rd) be uniformly bounded. Let u ∈ L1 ∩ L∞(Rd × R+) be the entropy solution
of the scalar conservation law (1) with initial data u0. Let ν be any EMV solution of
(11) which satisfies

lim sup
T →0

1

T

∫ T

0

∫
Rd

〈
ν(x,t), |u(x, t) − ξ |〉 dxdt �

∫
Rd

〈σx , |u0(x) − ξ |〉 dx . (15)

Then for all t > 0,

∫
Rd

〈
ν(x,t), |u(x, t) − ξ |〉 dx �

∫
Rd

〈σx , |u0(x) − ξ |〉 dx,

or equivalently,

∥∥∥W1
(
ν(·,t), δu(·,t)

)∥∥∥
L1(Rd )

�
∥∥∥W1

(
σ, δu0

)∥∥∥
L1(Rd )

.

In particular, if σ = δu0 then ν = δu.

Proof We follow DiPerna [22] who proved the uniqueness of scalar MV solutions
subject to atomic initial data. Here, we quantify stability in terms of the W1-metric,
which is related to the L1(x, v)-stability of kinetic solutions associated with (1), see
[57].

For ξ ∈ R, let (η(ξ, u), q(ξ, u)) be the Kruzkov entropy pair, defined as

η(ξ, u) := |ξ − u|, q(ξ, u) := sgn(ξ − u)( f (ξ) − f (u)), u, ξ ∈ R.

By [22, Theorem 4.1] we know that for any entropy solution u of (1) and any entropy
MV solution ν of (11), we have

∂t
〈
ν(x,t), η

(
ξ, u(x, t)

)〉+ ∇x · 〈ν(x,t), q
(
ξ, u(x, t)

)〉
� 0 in D′(Rd × (0,∞)),

that is, ∫
R+

∫
Rd

(
∂tϕ(x, t)

∫
RN

η
(
ξ, u(x, t)

)
dν(x,t)(ξ)

+∇xϕ(x, t) ·
∫
RN

q
(
ξ, u(x, t)

)
dν(x,t)(ξ)

)
dxdt � 0
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for all test functions 0 � ϕ ∈ C1
c

(
R

d × (0,∞)
)
. Setting ϕ(x, t) = θ(t) for a θ ∈

C∞
c

(
(0,∞)

)
, we get

∫
R+

θ ′(t)V (t) dt � 0, V (t) :=
∫
Rd

〈
ν(x,t), |ξ − u(x, t)|〉 dx .

Letting θ be a smooth approximation of the indicator function on an interval [0, t0],
we find in light of (15) that V (t0) �

∫
Rd 〈σx , |u0(x) − ξ |〉 dx for almost every t0 > 0.

��

3.2 Systems of Conservation Laws

It is clear from the above discussion that non-atomic initial data might lead to multiple
EMV solutions, see also the discussions in Remark 2.3. However, the scalar results
also suggest some possible stability with respect to perturbations of atomic initial data.
Based on these considerations, we propose the following (weaker) notion of stability.

Terminology 3 The MV Cauchy problem (11) is MV stable if the following property
holds.

For every u0 ∈ L∞(Rd ,RN ) and σ ∈ Y(Rd ,RN ) such that

D
(
δu0 , σ

)� 1,

there exists an EMV solution ν ∈ E(δu0) such that

D
(
ν, νσ

)� 1

for every EMV solution νσ ∈ E(σ ) (or a subset thereof).

(Recall that E(σ ) denotes the set of all entropy MV solutions to the MV Cauchy
problem (11).) We have intentionally left out several details in the above definition:
the admissible set of initial data; the subset of E(·) for which the MV Cauchy problem
is stable; and the distance D on the set of Young measures. Still, the concept of MV
stability carries one of the main messages in this paper: Despite the well-documented
instability of entropic weak solutions, as shown for example in the introduction and
in Sect. 6, one could still hope for a stable solution of systems of conservation laws,
when it is interpreted as a measure-valued solution, subject to atomic initial data.

Carrying out the full scope of this paradigm for general systems of conservation laws
is currently beyond reach. Instead, we examine the question of whether EMV solutions
of selected systems of conservation laws are stable or not with the aid of numerical
experiments reported in Sect. 6. As for the analytical aspects, we recall that in the scalar
case, measure-valued perturbations of atomic initial data are stable (Theorem 2). In
the following theorem, we prove the MV stability in the case of systems, provided we
further limit ourselves to MV perturbations of classical solutions of (11). The proof,
along the lines of [20, Theorem 2.2], implies weak–strong uniqueness, as in [8]. In
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particular, the theorem provides consistency of EMV solutions with classical solutions
of (1), as long as the latter exists.

Theorem 4 Assume that there exists a classical solution u ∈ W 1,∞(Rd × R+,RN )

of (1) with initial data u0, both taking values in a compact set K ⊂ R
N . Let ν be an

EMV solution of (11) such that the supports of both ν and its initial MV data σ are
contained in K . Assume that η is uniformly convex on K . Then for all t > 0, there
exists a constant C depending on u, such that

∫
Rd

〈
ν(x,t), |u(x, t) − ξ |2

〉
dx � eCt

∫
Rd

〈
σx , |u0(x) − ξ |2

〉
dx,

or equivalently,

∥∥∥W2
(
ν(·,t), δu(·,t)

)∥∥∥
L2(Rd )

� eCt
∥∥∥W2

(
σ, δu0

)∥∥∥
L2(Rd )

.

In particular, if σ = δu0 then ν = δu, and so any (classical, weak or measure-valued)
solution must coincide with u.

Proof Denote u := 〈ν, id〉 and u0 := 〈σ, id〉. Define the entropy variables v =
v(x, t) := η′(u(x, t)) and denote v0 := v(x, 0) = η′(u0). It is readily verified that
vt = −( f i )′(u)∂iv (where ∂i = ∂

∂xi
). Here and in the remainder of the proof, we use

the Einstein summation convention.
Subtracting (12) from (2) and putting ϕ(x, t) = v(x, t)θ(t) for some θ ∈ C1

c (R+)

gives

0 =
∫
R+

∫
Rd

(u − u) · (vtθ + vθ ′)+
(〈

ν, f i
〉
− f i (u)

)
· ∂ivθ dxdt

+
∫
Rd

(u0 − u0) · v0θ(0) dx

=
∫
R+

∫
Rd

(u − u) · vθ ′ +

⎛
⎜⎜⎝
〈
ν, f i

〉
− f i (u) − ( f i )′(u)(u − u)︸ ︷︷ ︸

=:Zi

⎞
⎟⎟⎠ · ∂ivθ dxdt

+
∫
Rd

(u0 − u0) · v0θ(0) dx

Next, note that since u is a classical solution, the entropy inequality (3) is in fact an
equality. Hence, subtracting (14) from (3) and putting ϕ(x, t) = θ(t) gives

0 �
∫
R+

∫
Rd

(〈ν, η〉 − η(u)
)
θ ′ dxdt +

∫
Rd

(〈σ, η〉 − η(u0)
)
θ(0) dx .

123



780 Found Comput Math (2017) 17:763–827

Subtracting these two expressions thus gives

0 �
∫
R+

∫
Rd

η̂θ ′ − Zi · ∂ivθ dxdt +
∫
Rd

η̂0θ(0) dx . (16)

where

η̂ := 〈ν, η〉 − η(u) − (u − u) · v, η̂0 := 〈σ, η〉 − η(u0) − (u0 − u0) · v0.

Let δ > 0, and let t > 0 be a Lebesgue point for the function s �→ ∫
R

η̂(x, s) dx .
We define

θ(s) :=

⎧⎪⎨
⎪⎩
1 s < t

1 − s−t
δ

t � s < t + δ

0 t + δ � s.

Taking the limit δ → 0 in (16) then gives

∫
Rd

η̂(t, x) dx � −
∫ t

0

∫
Rd

Z i · ∂iv dxds +
∫
Rd

η̂0 dx .

Since ν(x,s) is a probability distribution, it follows from the uniform convexity of η

that

η̂ =
∫

K
η(ξ) − η(u) − η′(u) · (ξ − u) dν(x,s)

� c
∫

K
|u − ξ |2 dν(x,s) = c

〈
ν(x,s), |u − ξ |2

〉
.

Similarly, by the L∞ bound on both u and ∂iv, we have

η̂0 � C
〈
σ, |u0 − ξ |2

〉
and |Zi · ∂iv| � C

〈
ν, |u − ξ |2

〉
.

Hence,

∫
Rd

〈
ν(x,t), |u − ξ |2

〉
dx

� C
∫ t

0

∫
R

〈
ν(x,s), |u − ξ |2

〉
dxds + C

∫
Rd

〈
σx , |u0 − ξ |2

〉
dx .

By the integral form of Grönwall’s lemma, we obtain the desired result. ��
Remark 3 In addition to proving consistency of entropy measure-valued solutions
with classical solutions (when they exist), the above theorem also provides local (in
time) uniqueness of MV solutions in the following sense. Let u0 ∈ W 1,∞(Rd ,RN ) be
the initial data in (1), then by standard results [16], we have local (in time) existence
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of a unique classical solution u ∈ W 1,∞(Rd ×R+,RN ). By the above theorem, δu is
also the unique EMV solution of the MV Cauchy problem (11) with initial data δu0 .
However, uniqueness can break down once this MV solution develops singularities.

4 Construction of Approximate EMV Solutions

Although existence results for specific systems of conservation laws such as polycon-
vex elastodynamics [20], two-phase flows [32,33] and transport equations [11] are
available, there exists no global existence result for a generic system of conservation
laws. We pursue a different approach by constructing approximate EMV solutions
and proving their convergence. A procedure for constructing approximate EMVs is
outlined in the present section. It provides a constructive proof of existence of EMV
solutions for a generic system of conservation laws, and it is implemented in the
numerical simulations reported in Sect. 6.

4.1 Numerical Approximation of EMV Solutions

The construction of approximate EMV solutions consists of several ingredients. It
begins with a proper choice of a numerical scheme for approximating the system of
conservation laws (1).

4.1.1 Numerical Schemes for One- and Multi-dimensional Conservation Laws

For simplicity, we begin with the description of a numerical scheme for a one-
dimensional system of conservation laws, (1) with d = 1. We discretize our
computational domain into cells Ci := [xi−1/2, xi+1/2) with mesh size 
x = xi+1/2 −
xi−1/2 and midpoints

xi := xi−1/2 + xi+1/2

2
.

Note that we consider a uniform mesh size 
x only for the sake of simplicity of
the exposition. Next, we discretize the one-dimensional system, ∂t u + ∂x f (u) = 0,
with the following semi-discrete finite difference scheme for u
x

i (t) ≡ u
x (xi , t) (cf.
[37,50]):

d

dt
u
x

i (t) + 1


x

(
F
x

i+1/2(t) − F
x
i−1/2(t)

)
= 0 t > 0, i ∈ Z

u
x
i (0) = u
x

0 (xi ) i ∈ Z.

(17a)

Here, u
x
0 is an approximation to the initial data u0. Henceforth, the dependence of

u and F on 
x will be suppressed for notational convenience. The numerical flux
function Fi+1/2(t) is a function depending on u(x j , t) for j = i − p +1, . . . , i + p for
some p ∈ N. It is assumed to be consistent with f and locally Lipschitz continuous,
i.e., for every compact K ⊂ R

N there is a C > 0 such that
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|Fi+1/2(t) − f (ui (t))| � C
i+p∑

j=i−p+1

|u j − ui |

whenever u(x j , t) ∈ K for j = i − p + 1, . . . , i + p.
The semi-discrete scheme (17a) needs to be integrated in time to define a fully

discrete numerical approximation. Again for simplicity, we will use an exact time
integration, resulting in

u
x
i (t + Δt) = u
x

i (t) − 1


x

∫ t+Δt

t

(
Fi+1/2(τ ) − Fi−1/2(τ )

)
dτ. (17b)

The function t �→ u(xi , t) is then Lipschitz, that is,

∣∣∣u
x (xi , t) − u
x (xi , s)
∣∣∣ � C


x
|t − s| ∀ i ∈ Z, t, s ∈ [0, T ].

In particular, for all 
x > 0 and i ∈ N, the function t �→ u(xi , t) is differ-
entiable almost everywhere. We denote the evolution operator associated with the
one-dimensional scheme (17) with mesh size 
x by SΔx , so that u
x = SΔx u0.

A similar framework applies to systemsof conservation laws in several space dimen-
sions. To simplify the notation, we restrict ourselves to the two-dimensional case (with
the usual relabeling (x1, x2) �→ (x, y)), ∂t u + ∂x f x (u) + ∂y f y(u) = 0.

We discretize our two-dimensional computational domain with into cells withmesh
size Δ := (
x1,
x2): With the usual relabeling (
x1,
x2) �→ (
x,
y)), these
two-dimensional cells Ci, j := [xi−1/2, xi+1/2) × [y j−1/2, y j+1/2) are assumed to a
have a fixed mesh ratio, 
x = xi+1/2 − xi−1/2 and 
y = y j+1/2 − y j−1/2, such that

y = c
x for some constant c. Let

(
xi , y j

) =
(

xi−1/2 + xi+1/2

2
,

y j−1/2 + y j+1/2

2

)

denote the mid-cells. We end up with the following semi-discrete finite difference
scheme for uΔ

i j = uΔ(xi , y j , t) (cf. [37,50]):

d

dt
uΔ

i j (t) + 1


x

(
F x,
x

i+1/2, j (t) − F x,
x
i−1/2. j (t)

)

+ 1


y

(
F y,
y

i, j+1/2(t) − F y,
y
i, j−1/2(t)

)
= 0, t > 0,

uΔ
i j (0) = uΔ

0 (xi , y j ) i ∈ Z.

(18a)

Here, uΔ
0 ≈ u0 is the approximate initial data and F x,
x

i+1/2, j , F y,
y
i, j+1/2 are the locally

Lipschitz numerical flux functions which are assumed to be consistent with the flux
function f = ( f x , f y). We integrate the semi-discrete scheme (18a) exactly in time
to obtain
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uΔ
i j (t + Δt) = uΔ

i j (t) − 1


x

∫ t+Δt

t

(
F x,
x

i+1/2, j (τ ) − F x,
x
i−1/2, j (τ )

)
dτ

− 1


y

∫ t+Δt

t

(
F y,
y

i, j+1/2(τ ) − F y,
y
i, j−1/2(τ )

)
dτ.

(18b)

We denote the evolution operator corresponding to (18) and associated with the two-
dimensional mesh size Δ := (
x,
y) by SΔ.

4.1.2 Weak∗ Convergent Schemes

The next ingredient in the construction of approximate EMV solutions for (11) is to
employ the above numerical schemes in the following three-step algorithm.

Algorithm 5

Step 1: Let u0 : Ω �→ L∞(Rd) be a random field on a probability space (Ω,F, P)

such that the initial Young measure σ in (11) is the law of the random field u0 (see
Proposition 2).
Step 2: We evolve the initial random field by applying the numerical scheme (17a)
for every ω ∈ Ω to obtain an approximation uΔx (ω) := SΔx u0(ω) to the solution
random field u(ω), corresponding to the initial random field u0(ω).
Step 3: Define the approximate measure-valued solution νΔx as the law of uΔx

with respect to P (in Appendix A.3.1).

By Proposition 1 in Appendix A.3.1, νΔx is a Youngmeasure. This sequence of Young
measures νΔx serves as approximations to the EMV solutions of (11).

Next, we show that if the numerical scheme (17a) satisfies a set of criteria, then the
approximate Young measures νΔx generated by Algorithm 4.1 will converge weak*
to an EMV solution of (11). Specific examples for such weak* convergent schemes
are provided in Sect. 5. To simplify the presentation, we restrict attention to the one-
dimensional case; the argument is readily extended to the general multi-dimensional
case, and the details can be found in [28] (see Sect. 3.2, in particular Lemmas 3.4 and
3.5).

Theorem 6 Assume that the approximate solutions uΔx generated by the one-
dimensional numerical scheme (17) satisfy the following.

– Uniform boundedness:

∥∥u
x (ω)
∥∥

L∞(R×R+)
� C, ∀ ω ∈ Ω, 
x > 0. (19a)

– Weak BV: There exists 1 � r < ∞ such that

lim

x→0

∫ T

0

∑
i

∣∣u
x
i+1(ω, t) − u
x

i (ω, t)
∣∣r 
xdt = 0 ∀ ω ∈ Ω (19b)
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– Entropy consistency: The numerical scheme (17a) is entropy stable with respect
to an entropy pair (η, q) i.e., there exists a numerical entropy flux Q = Qi+1/2(t),
consistent with the entropy flux q and locally Lipschitz, such that computed solu-
tions satisfy the discrete entropy inequality

d

dt
η(u
x ) + 1


x

(
Q
x

i+1/2 − Q
x
i−1/2

)
� 0 ∀ t > 0, i ∈ Z, ω ∈ Ω. (19c)

– Consistency with initial data: If σ
x is the law of u
x
0 , then

lim

x→0

∫
R

ψ(x)
〈
σ
x

x , id
〉

dx =
∫
R

ψ(x) 〈σx , id〉 dx ∀ ψ ∈ C1
c (R). (19d)

and

lim sup

x→0

∫
R

ψ(x)
〈
σ
x

x , η
〉

dx �
∫
R

ψ(x) 〈σx , η〉 dx ∀ 0 � ψ ∈ C1
c (R) (19e)

Then the approximate Young measures ν
x converge weak* (up to a subsequence) as
Δx → 0, to an EMV solution ν ∈ Y(R × R+,RN ) of (11).

Proof From the assumption (19a) that u
x is L∞-bounded, it follows that ν
x is
uniformly bounded, in the sense that its support supp ν
x

(x,t) lies in a fixed compact

subset ofRN for every (x, t); see Appendix A.2.2. The fundamental theorem of Young
measures (see Appendix A.2.6) gives the existence of a ν ∈ Y(Rd × R+,RN ) and a
subsequence of ν
x such that ν
x ⇀ ν weak*.

First, we show that the limit Young measure ν satisfies the entropy inequality (14).
To this end, let ϕ ∈ C1

c (R × [0, T )). Then

∫ T

0

∫
Rd

〈
ν(x,t), η

〉
∂tϕ(x, t) + 〈ν(x,t), q

〉
∂xϕ(x, t) dxdt

= lim

x→0

∫ T

0

∫
Rd

〈
ν
x
(x,t), η

〉
∂tϕ(x, t) +

〈
ν
x
(x,t), q

〉
∂xϕ(x, t) dxdt

by the weak* convergence ν
x ⇀ ν. Denote η
x (ω, x, t) := η(u
x (ω, x, t)). Then
for every 
x > 0 we have

∫ T

0

∫
Rd

〈
ν
x
(x,t), η

〉
∂tϕ(x, t) dxdt +

∫
Rd

ϕ(x, 0)
〈
σ
x

x , η
〉
dx

=
∫
R

∫ T

0
−∂t

〈
ν
x
(x,t), η

〉
ϕ(x, t) dtdx

=
∫

Ω

∫
R

∫ T

0
−∂tη


x (ω, x, t)ϕ(x, t) dtdxdP(ω)

�
∫

Ω

∫
R

∫ T

0

∑
i

1Ci (x)
Qi+1/2(ω, t) − Qi−1/2(ω, t)


x
ϕ(x, t)dtdxdP(ω)
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=
∫

Ω

∫ T

0

∑
i

Qi+1/2(ω, t) − Qi−1/2(ω, t)


x

∫
Ci

ϕ(x, t) dxdtdP(ω)

=
∫

Ω

∫ T

0

∑
i

(
Qi+1/2(ω, t) − Qi−1/2(ω, t)

)
ϕ
x

i (t) dtdP(ω)

= −
∫

Ω

∫ T

0

∑
i

Qi+1/2(ω, t)
ϕ
x

i+1(t) − ϕ
x
i (t)


x

xdtdP(ω)

= −
∫

Ω

∫ T

0

∑
i

q(u
x
i (ω, t))

ϕ
x
i+1(t) − ϕ
x

i (t)


x

xdtdP(ω)

−
∫

Ω

∫ T

0

∑
i

(
Qi+1/2(ω, t) − q(u
x

i (ω, t))
) ϕ
x

i+1(t) − ϕ
x
i (t)


x

xdtdP(ω).

(We have written ϕ
x
i (t) := 1


x

∫
Ci

ϕ(x, t) dx .) The first term can be written as

−
∫

Ω

∫ T

0

∑
i

q
(
u
x

i (ω, t)
) ϕ
x

i+1(t) − ϕ
x
i (t)


x

xdt

= −
∫ T

0

∑
i

〈
ν
x
(xi ,t)

, q
〉 ϕ
x

i+1(t) − ϕ
x
i (t)


x

xdtdP(ω)

→ −
∫ T

0

∫
R

〈
ν(x,t), q

〉
∂xϕ(x, t) dxdt.

The second term goes to zero:

∣∣∣
∫

Ω

∫ T

0

∑
i

(
Qi+1/2(ω, t) − q(u
x

i (ω, t))
) ϕ
x

i+1(t) − ϕ
x
i (t)


x

xdtdP(ω)

∣∣∣

� C
∫

Ω

∫ T

0

∑
i

∣∣u
x
i+1(ω, t) − u
x

i (ω, t)
∣∣
∣∣∣∣∣
ϕ
x

i+1(t) − ϕ
x
i (t)


x

∣∣∣∣∣ 
xdtdP(ω)

� C sup
ω

(∫ T

0

∑
i

∣∣u
x
i+1(ω, t) − u
x

i (ω, t)
∣∣r 
xdt

)1/r

‖∂xϕ‖Lr ′
(R×(0,T ))

→ 0

by (19b), where r ′ is the conjugate exponent of r . In conclusion, the limit ν satisfies
(14).

The proof that the limit measure ν satisfies (12) follows from the above by setting
η = ± id and q = ± f . ��

A similar construction can be readily performed in several space dimensions. To
this end, we replace S
x in Step 2 of Algorithm 5 with the two-dimensional solution
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operator SΔ, and the corresponding approximate solution u
x with uΔ. The weak*
convergence of the resulting approximate Young measure νΔ is described below.

Theorem 7 Assume that the approximate solutions uΔ generated by scheme (18a)
satisfy the following.

– Uniform boundedness:

‖uΔ(ω)‖L∞(R2×R+) � C, ∀ω ∈ Ω,
x,
y > 0. (20)

– Weak BV: There exists 1 � r < ∞ such that ∀ ω ∈ Ω

lim

x,
y→0

∫ T

0

∑
i, j

(∣∣∣uΔ
i+1, j (ω, t) − uΔ

i, j (ω, t)
∣∣∣r

+
∣∣∣uΔ

i, j+1(ω, t) − uΔ
i, j (ω, t)

∣∣∣r
)


x
ydt = 0. (21)

– Entropy consistency: The numerical scheme (18a) is entropy stable with respect
to an entropy pair (η, q), in the sense that there exist locally Lipschitz numerical
entropy fluxes (Qx,
x , Qy,
y) = (Qx,
x

i+1/2, j (t), Qy,
y
i, j+1/2(t)), consistent with the

entropy flux q = (qx , q y), such that computed solutions satisfy the discrete entropy
inequality, namely ∀ t > 0, i, j ∈ Z, ω ∈ Ω

d

dt
η(uΔ) + 1


x

(
Qx,
x

i+1/2, j − Qx,
x
i−1/2, j

)
+ 1


y

(
Qy,
y

i, j+1/2 − Qy,
y
i, j−1/2

)
� 0. (22)

– Consistency with initial data: Let σΔ be the law of the random field uΔ
0 that

approximates the initial random field u0. Then, the consistency conditions (19d)
and (19e) hold.

Then, the approximate Young measures νΔ converge weak* (up to a subsequence) to
a Young measure ν ∈ Y(R2 ×R+,RN ) as 
x,
y → 0 and ν is an EMV solution of
(11), i.e.,

The proof of the above theorem is a simple generalization of the proof of convergence
theorem 6, see Section 3.2 of [28] (in particular Lemmas 3.4 and 3.5) for details. The
above construction can also be readily extended to three spatial dimensions.

Remark 4 The uniform L∞ bound (19a), (20) is a technical assumption thatwe require
in this article. This assumption can be relaxed to only an L p bound. This extension is
described in a forthcoming paper [29].

Remark 5 The conditions (19d) and (19e), which say that σ
x → σ in a certain sense,
are weaker thanweak* convergence. It is readily checked that a sufficient condition for
this is that u0 ∈ L1(R;RN ) ∩ L∞(R;RN ) and u
x

0 (ω, ·) → u0(ω, ·) in L1(Rd ;RN )

for all ω ∈ Ω (which in fact implies that σ
x → σ strongly).
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4.1.3 Weak∗ Convergence with Atomic Initial Data

In view of the non-uniqueness example 1, one can not expect an unique construction
of EMV solutions for general MV initial data. Instead, as argued before, we focus our
attention on perturbations of atomic initial data σ = δu0 for some u0 ∈ L1(Rd ,RN )∩
L∞(Rd ,RN ). We construct approximate EMV solutions of (11) in this case using the
following specialization of Algorithm 4.1.

Algorithm 8 Let (Ω,F, P) be a probability space and let X : Ω → L1(Rd) ∩
L∞(Rd) be a random variable satisfying ‖X‖L1(Rd ) � 1 P-almost surely.

Step 1 Fix a small number ε > 0. Perturb u0 by defining uε
0(ω, x) := u0(x) +

εX (ω, x). Let σε be the law of uε
0.

Step 2 For each ω ∈ Ω , let uΔx,ε(ω) := SΔx uε
0(ω), with SΔx being the solution

operator corresponding to the numerical scheme (17).
Step 3 Let νΔx,ε be the law of uΔx,ε with respect to P. ��

Theorem 9 Let {ν
x,ε} be the family approximate EMV solutions constructed by
Algorithm 8. Then there exists a subsequence (
xn, εn) → 0 such that

ν
xn ,εn ⇀ ν ∈ E(δu0),

that is, ν
xn ,εn converges weak* to an EMV solution ν with atomic initial data u0.

Proof By Theorem 6, we know that for every ε > 0 there exists a subsequence ν
xn ,ε

which converges weak* to an EMV solution νε of (11) with initial data σε. Thus,
(14) holds with (ν, σ ) replaced by (νε, σ ε); we abbreviate the corresponding entropy
statement as (14)ε. The convergence of the sequence νεn as εn → 0 is a consequence
of the fundamental theorem of Young measures: By Theorem 13, there exists a weak*
convergent subsequence νεn ⇀ ν. The fact that ν is an EMV solution follows at once
by taking the limit εn → 0 in (14)εn . ��

4.2 What are We Computing? Weak* Convergence of Space–Time Averages

We begin by quoting [48, p. 143]: “Just because we cannot prove that compressible
flows with prescribed initial values exist doesn’t mean that we cannot compute them.”
The question is what are the computed quantities encoded in the EMV solutions.

According to Theorems 6, 9, the approximations generated by Algorithm 4.1 and
4.5 converge to an EMV solution in the following sense: For all g ∈ C0(R

N ) and
ψ ∈ L1(Rd × R+),

lim

x→0

∫
R+

∫
Rd

ψ(x, t)
〈
νΔx
(x,t), g

〉
dxdt =

∫
R+

∫
Rd

ψ(x, t)
〈
ν(x,t), g

〉
dxdt. (23)

As we assume that the approximate solutions are L∞-bounded (property (19a)), any
g ∈ C(RN ) can serve as a test function in (23), see Appendix A.2.6. In particular, we
can choose g(ξ) = ξ to obtain the mean of the measure-valued solution. Similarly,
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the variance can be computed by choosing the test function g(ξ) = ξ ⊗ ξ . Higher
statistical moments can be computed analogously.

In practice, the goal of any numerical simulation is to accurately compute statistics
of space–time averages or statistics of functionals of interest of solution variables and
to compare them to experimental or observational data. Thus, the weak* convergence
of approximate Young measures, computed by Algorithms 4.1 and 4.5, provides an
approximation of exactly these observable quantities of interest.

4.2.1 Monte Carlo Approximation

In order to compute statistics of space–time averages in (23), we need to compute
phase space integrals with respect to the measure ν
x :

〈
ν
x
(x,t), g

〉
:=
∫

RN

g(ξ) dν
x
(x,t)(ξ).

The last ingredient in our construction of EMV solutions, therefore, is numerical
approximation which is necessary to compute these phase space integrals. To this end,
we utilize the equivalent representation of the measure ν
x as the law of the random
field u
x :

〈
ν
x
(x,t), g

〉
:=
∫

RN

g(ξ) dν
x
(x,t)(ξ) =

∫
Ω

g
(
u
x (ω; x, t)

)
dP(ω). (24)

We will approximate this integral by a Monte Carlo sampling procedure:

Algorithm 10 Let 
x > 0 and let M be a positive integer. Let σ
x be the initial
Young measure in (11) and let u
x

0 be a random field u
x
0 : Ω ×R

d → R
N such that

σ
x is the law of u
x
0 .

Step 1 Draw M independent and identically distributed random fields u
x,k
0 for

k = 1, . . . , M.
Step 2 For each k and for a fixed ω ∈ Ω , use the finite difference scheme (17a)
to numerically approximate the conservation law (1) with initial data u
x,k

0 (ω).

Denote u
x,k(ω) = S
x u
x,k
0 (ω).

Step 3 Define the approximate measure-valued solution ν
x,M := 1
M

∑M
k=1

δu
x,k (ω).

For every g ∈ C(RN ), we have

〈
ν
x,M , g

〉
= 1

M

M∑
k=1

g
(
u
x,k(ω)

)
.
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Thus, the space–time average (23) is approximated by

∫
R+

∫
Rd

ψ(x, t)
〈
ν
x
(x,t), g

〉
dxdt

≈ 1

M

M∑
k=1

∫
R+

∫
Rd

ψ(x, t)g
(
u
x,k(ω; x, t)

)
dxdt. (25)

Note that, as in any Monte Carlo method, the approximation ν
x,M depends on the
choice of ω ∈ Ω , i.e., the choice of seed in the random number generator. However,
we can prove that the quality of approximation is independent of this choice, P-almost
surely:

Theorem 11 (Convergence for large samples) Algorithm 10 converges, that is,

ν
x,M ⇀ ν
x weak*,

and, for a subsequence M → ∞, P-almost surely. Equivalently, for every ψ ∈
L1(Rd × R+) and g ∈ C(RN ),

lim
M→∞

1

M

M∑
k=1

∫
R+

∫
Rd

ψ(x, t)g
(
u
x,k(x, t)

)
dxdt

=
∫
R+

∫
Rd

ψ(x, t)
〈
ν
x
(x,t), g

〉
dxdt. (26)

The limits are uniform in 
x.

The proof involves an adaptation of the law of large numbers for the present setup
and is provided in Appendix 2. Combining (26) with the convergence established in
Theorem 6, we conclude with the following.

Corollary 1 (Convergence with mesh refinement) There are subsequences 
x → 0
and M → ∞ such that

ν
x,M ⇀ ν weak*,

or equivalently, for every ψ ∈ L1(Rd × R+) and g ∈ C(RN ),

lim

x→0

lim
M→∞

1

M

M∑
k=1

∫
R+

∫
Rd

ψ(x, t)g
(
u
x,k(x, t)

)
dxdt

=
∫
R+

∫
Rd

ψ(x, t)
〈
ν(x,t), g

〉
dxdt (27)

The limits in 
x and M are interchangeable.
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5 Examples of Weak* Convergent Numerical Schemes

In this section, we provide concrete examples of numerical schemes that satisfy the
criteria (19) of Theorem 6, for weak* convergence to EMV solutions of (11). We start
with scalar conservation laws.

5.1 Scalar Conservation Laws

We begin by considering scalar conservation laws. Monotone finite difference (vol-
ume) schemes (see [15,37] for a precise definition) for scalar equations are uniformly
bounded in L∞ (as they satisfy a discrete maximum principle), satisfy a discrete
entropy inequality (using the Crandall-Majda numerical entropy fluxes [15]) and are
TVD—the total variation of the approximate solutions is non-increasing over time.
Consequently, the approximate solutions satisfy the weak BV estimate (19b) (resp,
(21) in the multi-dimensional case) with r = 1. Thus, monotone schemes, approxi-
mating scalar conservation laws, satisfy all the abstract criteria of Theorem 6.

In fact, one can obtain a precise convergence rate for monotone schemes [46]:

∥∥u
x (ω, ·, t) − u(ω, ·, t)
∥∥

L1(Rd )
� Ct TV(u0(ω))

√|
x | ∀ ω, (28)

where u(ω) = lim
x→0 u
x (ω) denotes the entropy solution of the Cauchy problem
for a scalar conservation law with initial data u0(ω). Using this error estimate, we
obtain the following strong convergence results for monotone schemes.

Theorem 12 Let ν
x be generated by Algorithm 5, and let ν be the law of the entropy
solution u(ω). If TV(u0(ω)) � C for all ω ∈ Ω , then ν
x → ν strongly as 
x → 0.

Proof Define π
x
z ∈ P(RN ×R

N ) as the law of the random variable
(
u
x (z), u(z)

)
,

π
x
z (A) := P

((
u
x (z), u(z)

) ∈ A
)
, A ⊂ R × R Borel measurable.

Then π
x
z is a Young measure for all z and 
x > 0. Clearly, π
x

z ∈ Π
(
ν
x

z , νz
)
, and

hence

W1

(
ν
x

z , νz

)
�
∫
RN ×RN

|ξ − ζ | dπ
x
z (ξ, ζ ) =

∫
Ω

|u
x (ω, x, t) − u(ω, x, t)| dP(ω).

Hence, by Kutznetsov’s error estimate (28),

∫ T

0

∫
R

W1

(
ν
x

z , νz

)
dxdt � C

√|
x | → 0 as 
x → 0.

��
Remark 6 We can relax the uniform boundedness of TV(u0(ω)) to just integrability
of the function ω �→ TV(u0(ω)).
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Remark 7 Note that, in light of Theorem 1 and Example 1, the limit entropy measure-
valued solution ν is unique only if the initial measure-valued data σ is atomic.

5.2 Systems of Conservation Laws

The convergence theorems 6 and 7 specify that the ensemble-based algorithms con-
verge if the underlying numerical scheme satisfies the criteria (19). We recall from
remark 4 that the L∞ bound (19a), (20), is a technical assumption that cannot be rig-
orously verified for any of the existing numerical schemes approximating systems of
conservation laws. Although this assumption holds for many numerical examples (for
instance in all the numerical experiments presented in the next section), it is unclear
whether this bound holds for systems of conservation laws with general L∞ initial
data. However, this assumption can be relaxed to requiring uniform L p bounds on
numerical schemes with 1 � p < ∞, if the underlying systems of conservation laws
possess a strictly convex entropy. Then, the solution framework utilizes generalized
Young measures that allow for concentrations as well as persistent oscillations in
sequences of approximations. Consequently, any entropy stable scheme for conser-
vation laws with strictly convex entropy will satisfy an uniform L2 bound and will
converge to the corresponding (generalized) entropy measure-valued solution. Such
an extension is presented in a forthcoming paper [29].

Hence, we will present numerical schemes for approximating systems of conser-
vation laws that satisfy the weak BV bounds (19b), (21) and the discrete entropy
inequalities (19c). We present examples of such schemes below.

5.2.1 The ELW Scheme

The ELW (entropy stable Lax–Wendroff) scheme, introduced in [28, Section 4.2], is
finite difference scheme of the form (17a) with flux function

Fi+1/2 := F̃ p
i+1/2 − ci+1/2

∣∣�v�i+1/2

∣∣p−1
�v�i+1/2 (29)

where F̃ p
i+1/2 is a pth order accurate (p ∈ N) entropy conservative numerical flux (see

[49,61]), ci+1/2 is some positive number, �v�i+1/2 := vi+1 − vi and v := η′(u) is the
entropy variable.

This schemewas shown to be (formally) p-th order accurate, entropy stable, satisfies
the weak BV bound (19b), and converges pointwise for scalar conservation laws
[28, Proposition 4.2 and 4.3]. The two-dimensional version of the scheme, with the
corresponding discrete entropy inequality andweak BV bound (21), is straightforward
to construct. Hence, under the assumptions (19a),(20) that the scheme is bounded
in L∞, the approximate measure-valued solutions generated by the ELW scheme
converge to an entropy measure-valued solution of (11).
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5.2.2 TeCNO Finite Difference Schemes

The TeCNO schemes, introduced in [27,28], are finite difference schemes of the form
(17a) with flux function

Fi+1/2 := F̃ p
i+1/2 − 1

2
Di+1/2

(
v−

i+1 − v+
i

)
. (30)

Here, F̃ p
i+1/2 is an entropy conservative flux as in (29), Di+1/2 is a positive definite

matrix, and v±
j are the cell interface values of a p-th order accurate ENO reconstruction

of the entropy variable v (see [26,39]). The multi-dimensional (Cartesian) version was
also designed in [27], see also [28]. It was shown in [27,28] that the TeCNO schemes

– are (formally) p-th order accurate
– are entropy stable—they satisfy a discrete entropy inequality of the form (19c)
(see Theorem 4.1 of [27] for the one-dimensional case and Theorem 6.1 of [27]
for the multi-dimensional case)

– have weakly bounded variation when p = 1 and p = 2, i.e., they satisfy a bound
of the form (19b) in the one-dimensional case and (21) in two dimensions (see
Theorem 6.6 of [28] and in general section 3.2 of [28] for the multi-dimensional
case).

The weak total variation bound for p � 3 depends on a conjectured result for the ENO
reconstruction method which remains to be proven (see [28, Section 5.5]). In light of
these properties, and under the assumption (19a) that the scheme is bounded in L∞,
the approximate measure-valued solutions generated by the TeCNO scheme converge
to an EMV solution of (11).

5.2.3 Shock Capturing Space–Time Discontinuous Galerkin (DG) Schemes

Although suitable for Cartesian grids, finite difference schemes of the type (17a) are
difficult to extend to unstructured grids in several space dimensions. For problemswith
complex domain geometry that necessitates the use of unstructured grids (triangles,
tetrahedra), an alternative discretization procedure is the space–time discontinuous
finite element procedure of [4,40,41,43]. In this procedure, the entropy variables
serve as degrees of freedom and entropy stable numerical fluxes like (30) need to be
used at cell interfaces. Further stabilization terms like streamline diffusion and shock
capturing terms are also necessary. In a recent paper [40], it was shown that a shock
capturing streamline diffusion space–time DG method satisfied a discrete entropy
inequality and a suitable version of the weak BV bound (19b), see Theorem 3.1 of
[40] for the precise statements and results. Hence, this method was also shown to
converge to an EMV solution in [40] (see Theorems 4.1 and 4.2 of [40]). We remark
that the space–time DG methods are fully discrete, in contrast to semi-discrete finite
difference schemes such as (17a).
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6 Numerical Results

Our overall goal in this section will be to compute approximate EMV solutions of
(11) with atomic initial data using Algorithm 8, as well as to investigate the stability
of these solutions with respect to initial data. In Sects. 6.1 and 6.2, we consider the
Kelvin–Helmholtz problem (8). In Section 6.3, we consider the Richtmeyer–Meshkov
problem, see, e.g., [36] and the references therein.

For the rest of the section, we will present numerical experiments for the two-
dimensional compressible Euler equations

∂

∂t

⎛
⎜⎜⎜⎝

ρ

ρw1

ρw2

E

⎞
⎟⎟⎟⎠+ ∂

∂x1

⎛
⎜⎜⎜⎝

ρw1

ρ(w1)2 + p

ρw1w2

(E + p)w1

⎞
⎟⎟⎟⎠+ ∂

∂x2

⎛
⎜⎜⎜⎝

ρw2

ρw1w2

ρ(w2)2 + p

(E + p)w2

⎞
⎟⎟⎟⎠ = 0. (31)

Here, the density ρ, velocity field (w1, w2), pressure p and total energy E are related
by the equation of state

E = p

γ − 1
+ ρ

(
(w1)2 + (w2)2

)
2

.

The relevant entropy pair is given by

η(u) = −ρs

γ − 1
, q1(u) = w1η(u), q2(u) = w2η(u).

with s = log(p)−γ log(ρ) being the thermodynamic entropy. The adiabatic constant
γ is set to 1.4.

6.1 Kelvin–Helmholtz Problem: Mesh Refinement (Δx↓0)

As our first numerical experiment, we consider the two-dimensional compressible
Euler equations of gas dynamics (31) with the initial data

u0(x, ω) =
{

uL if I1 < x2 < I2
u R if x2 � I1 or x2 � I2,

x ∈ [0, 1]2 (32)

with ρL = 2, ρR = 1, w1
L = −0.5, w1

R = 0.5, w2
L = w2

R = 0 and pL = pR = 2.5.
The computational domain is [0, 1]2, andwe consider periodic boundary conditions.

Furthermore, the interface profiles
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Fig. 5 Representative initial data for the Kelvin–Helmholtz problem: sinusoidal (left) and discontinuous
(right) phase perturbation with ε = 0.01

I j = I j (x, ω) := J j + εY j (x, ω), j = 1, 2

are chosen to be small perturbations around J1 := 0.25 and J2 := 0.75, respectively,
with

Y j (x, ω) =
m∑

n=1

an
j (ω) cos

(
bn

j (ω) + 2nπx1
)

, j = 1, 2.

Here, an
j = an

j (ω) ∈ [0, 1] and bn
j = bn

j (ω) ∈ [−π, π ], i = 1, 2, n = 1, . . . , m
are randomly chosen numbers. The coefficients an

j have been normalized such that∑m
n=1 an

j = 1 to guarantee that |I j (x, ω) − J j | � ε for j = 1, 2. We set m = 10.
Observe that by making ε small, this ω-ensemble of initial data lies inside an

arbitrarily small ball centered at u0. Indeed, it is readily checked that measured in, say,
the L p([0, 1]2)-norm, every sample u0(·, ω) is O(ε1/p) away from the unperturbed
steady state in (8).

A representative (single realization with fixed ω) initial datum for the density is
shown in Fig. 5 (left). We observe that the resulting measure-valued Cauchy problem
involves a random perturbation of the interfaces between the two streams (jets). This
should be contrasted to initial value problem (8), (5), where the amplitude was ran-
domly perturbed.We note that the law of the above initial datum can readily be written
down and serves as the initial Young measure in the measure-valued Cauchy problem
(11). Observe that this Young measure is non-atomic for some points in the domain.

6.1.1 Lack of Sample Convergence

We approximate the above MV Cauchy problem with the second-order entropy stable
TeCNO2 scheme of [27]. In Fig. 6, we show the density at time t = 2 for a single
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Fig. 6 Approximate density for the Euler equations (31) with initial data (32), ε = 0.01 and for a fixed ω

(single sample), computed with the second-order TeCNO2 scheme of [27], at time t = 2 at different mesh
resolutions

sample, i.e., for a fixed ω ∈ Ω , at different grid resolutions, ranging from 1282

points to 10242 points. The figure suggests that the approximate solutions do not seem
to converge as the mesh is refined. In particular, finer and finer-scale structures are
formed as the mesh is refined, as already shown in Fig. 3. To further verify this lack of
convergence, we compute the L1 difference of the approximate solutions at successive
mesh levels (7) and present the results in Fig. 7. We observe that this difference does
not go to zero, suggesting that the approximate solutions may not converge as the
mesh is refined.

6.1.2 Convergence of the Mean and Variance

The lackof convergence of the numerical schemes for single samples is not unexpected,
given the results already mentioned in the introduction. Next, we will compute sta-
tistical quantities of the interest for this problem. First, we compute the Monte Carlo
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Fig. 7 Cauchy rates (7) at t = 2
for the density (y-axis) for a
single sample of the
Kelvin–Helmholtz problem,
versus different mesh resolutions
(x-axis)

128 256 512 1024

10
−0.5

10
−0.3

10
−0.1

approximation of themean (25), denoted by ū
x (x, t), at every point (x, t) in the com-
putational domain. This sample mean of the density computed with M = 400 samples
and the second-order TeCNO2 scheme is presented in Fig. 8 for a set of successively
refined grid resolutions. The figure clearly suggests that the sample mean converges
as the mesh is refined. This stands in stark contrast to the lack of convergence, at the
level of single samples, as shown in Figs. 3 and 6. Furthermore, Fig. 8 also shows
that small-scale structures, present in single sample (realization) computations, are
indeed smeared or averaged out in the mean. This convergence of the mean is further
quantified by computing the L1 difference of the mean,

‖ū
x − ū
x/2‖L1([0,1]2). (33)

and plotting the results in Fig. 9a. As predicted by the theory presented in Theorems 7
and 9, these results confirm that the sequence of approximate means forms a Cauchy
sequence and hence converges to a limit as the mesh is refined. Similar convergence
results were also observed for the means of the other conserved variables, namely
momentum and total energy (not shown here). Furthermore, Fig. 8 also shows that
the mean is varying in the y-direction only. This is completely consistent with the
symmetries of the equations, of the initial data and the fact that periodic boundary
conditions are employed. This is also in sharp contrast to the situation for single
realizations where there is strong variation along both directions (see Fig. 6).

Next, we compute the sample variance and show the results in Fig. 10. The results
suggest that the variance also converges with grid resolution. This convergence is also
demonstrated quantitatively by plotting the L1 differences of the variance at successive
levels of resolution, shown in Fig. 9b. Again, the figure suggests that the sequence
forms a Cauchy sequence and hence is convergent. Furthermore, the variance itself
shows no small-scale features, even on very fine mesh resolutions (see Fig. 10). This
figure also reveals that the variance is higher near the initial mixing layer.

6.1.3 Strong Convergence to an EMV Solution

Convergence of the mean and variance (as well as higher moments (not shown here))
confirm the weak* convergence predicted by (the multi-dimensional version of) The-
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Fig. 8 Approximate sample means of the density for the Kelvin–Helmholtz problem (32) at time t = 2
and different mesh resolutions. All results are with 400 Monte Carlo samples

orems 6 and 9. Note that the convergence illustrated in Fig. 9 is in L1 of the spatial
domain. Next, we test strong convergence of the numerical approximations by com-
puting the Wasserstein distance between two successive mesh resolutions:

W1

(
ν
x
(x,t), ν


x/2
(x,t)

)
(34)

(see Appendix A.1.4). In Fig. 11, we show the L1-norm of the Wasserstein distance
between successive mesh resolutions

∥∥∥W1

(
ν
x
(·,t), ν


x/2
(·,t)

)∥∥∥
L1([0,1]2) (35)

at time t = 2; recall that this is the quantity appearing in (10). The figure suggests
that this difference between successive mesh resolutions converges to zero. Hence, the
approximate Young measures converge strongly in both space–time and phase space
to a limit Young measure.

In Fig. 12, we show the pointwise difference in Wasserstein distance (35) between
two successive mesh levels. The figure reveals that this distance decreases as the mesh
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Fig. 9 Cauchy rates (33) for the
sample mean and variance of the
density (y-axis) versus mesh
resolution (x-axis) for the
Kelvin–Helmholtz problem (32).
a Mean, b variance

128 256 512
(a)

(b)

1024

10
−1

128 256 512 1024

10
−1.9

10
−1.6

10
−1.3

is refined.Moreover, we see that theWasserstein distance between approximate Young
measures at successive resolutions is concentrated at the interface mixing layers. This
is to be expected as the variance is also concentrated along these layers (cf. the variance
plots in Fig. 10).

6.2 Kelvin–Helmholtz: Vanishing Variance Around Atomic Initial Data (ε↓0)

Our aim is to compute the entropy measure-valued solutions of the two-dimensional
Euler equations with atomic initial measure, concentrated on the Kelvin–Helmholtz
data (8). We utilize Algorithm 8 for this purpose and consider the perturbed initial
data (32). Observe that this perturbed initial data converges strongly (cf. (10)) to the
initial data (8) as ε → 0. Following Algorithm 8, we wish to study the limit behavior
of approximate solutions ν
x,ε as ε → 0. To this end, we retain the same set up
as the previous numerical experiment and compute approximate solutions using the
TeCNO2 scheme of [27] at a very fine mesh resolution of 10242 points for different
values of ε.

Results for a single sample at time t = 2 and different ε’s are presented in Fig. 13.
The figures indicate that there is no convergence as ε → 0. The spread of the mixing
region seems to remain large even when the perturbation parameter is reduced. This
lack of convergence is further quantified in Fig. 14, where we plot the L1 difference of
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Fig. 10 Approximate sample variances of the density for the Kelvin–Helmholtz problem (32) at time t = 2
and different mesh resolutions. All results are with 400 Monte Carlo samples

Fig. 11 Cauchy rates in the
Wasserstein distance (35) at time
t = 2 for the density (y-axis)
with respect to different mesh
resolutions (x-axis), for the
Kelvin–Helmholtz problem (32)
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0

the approximate density for successively reduced values of ε. This difference remains
large even when ε is reduced by an order of magnitude.

Next, we compute themean of the density over 400 samples at a fixed grid resolution
of 10242 points and for different values of the perturbation parameter ε. This sample
mean is plotted in Fig. 15. The figure clearly shows pointwise convergence as ε → 0, to
a limit different from the steady-state solution (8). This convergence of the mean with
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Fig. 12 Wasserstein distances between the approximate Young measure (density) (34) at successive mesh
resolutions, at time t = 2

respect to decaying ε is quantified in Fig. 16a, where we compute the L1 difference
of the mean for successive values of ε. We observe that the mean forms a Cauchy
sequence and hence converges.

Similarly the computations of the sample variance for different values of ε are
presented in Fig. 17. Note that this figure, as well as the computations of the difference
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Fig. 13 Approximate density, computed with the TeCNO2 scheme for a single sample with initial data
(32) for different initial perturbation amplitudes ε on a grid of 10242 points

Fig. 14 Cauchy rates (L1

difference for successively
reduced ε) for the density
(y-axis) at t = 2 for a single
sample versus different values of
the perturbation parameter ε

(x-axis)

0.0025 0.005 0.01 0.02

0.1

0.2

0.4

in variance in L1 for successive reductions of the perturbation parameter ε (shown in
Fig. 16b), clearly shows convergence of variance as ε → 0. Moreover, Fig. 17 clearly
indicates that in the ε → 0 limit, the limit variance is nonzero. Hence, this strongly
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Fig. 15 Approximate sample means of the density for the Kelvin–Helmholtz problem (32) at time t = 2
and different values of perturbation parameter ε. All the computations are on a grid of 10242 mesh points
and 400 Monte Carlo samples
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Fig. 16 Cauchy rates for the sample mean and the sample variance of the density (y-axis) for the Kelvin–
Helmholtz problem (32) for different values of ε (x-axis). All the computations are on a grid of 10242 mesh
points and 400 Monte Carlo samples. a Mean, b variance
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Fig. 17 Approximate sample variances of the density for the Kelvin–Helmholtz instability at time t = 2
and different values of perturbation parameter ε. All the computations are on a grid of 10242 mesh points
and 400 Monte Carlo samples

suggests the fact that EMV solution can be non-atomic, even for atomic initial data.
These results are consistent with the claims of Theorem 9.

To further demonstrate the non-atomicity of the resulting measure-valued solution,
we have plotted the probability density functions (approximated by empirical his-
tograms) for density at the points x = (0.5, 0.7) and x = (0.5, 0.8) in Fig. 18 for a
fixed mesh of size 10242. We see that the initial unit mass centered at ρ = 2 (ρ = 1,
respectively) at t = 0 is smeared out over time, and at t = 2 the mass has spread out
over a range of values of ρ between 1 and 2.

Figure 19 shows the same quantities, but for a fixed time t = 2 over a series of
meshes. Although a certain amount of noise seems to persist on the finer meshes—
most likely due to the low number of Monte Carlo samples—it can be seen that the
probability density functions seem to converge with mesh refinement.

6.3 Richtmeyer–Meshkov Problem

As a second numerical example, we consider the two-dimensional Euler equations
(31) in the computational domain x ∈ [0, 1]2 with initial data:
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Fig. 18 Approximate PDF for density ρ at the points x = (0.5, 0.7) (first row) and x = (0.5, 0.8) (second
row) on a grid of 10242 mesh points
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Fig. 19 Approximate PDF for density ρ at the points x = (0.5, 0.7) (first row) and x = (0.5, 0.8) (second
row) on a series of meshes

p(x) =
{
20 if |x − (0.5, 0.5)| < 0.1

1 otherwise,

ρ(x) =
{
2 if |x − (0.5, 0.5)| < I (x, ω)

1 otherwise,
w1 = w2 = 0. (36)

The radial density interface I (x, ω) = 0.25 + εY (ϕ(x), ω) is perturbed with

Y (ϕ, ω) =
m∑

n=1

an(ω) cos
(
ϕ + bn(ω)

)
, (37)

where ϕ(x) = arccos((x1 − 1/2)/|x − (0.5, 0.5)|) and an, bn, k are the same as in
Sect. 6.1.
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Fig. 20 Approximate density for a single sample for the Richtmeyer–Meshkov problem (36) for different
grid resolutions at time t = 4

We repeat that the computational domain is [0, 1]2, and we use periodic boundary
conditions in both directions.

6.3.1 Lack of Sample Convergence

As in the case of the Kelvin–Helmholtz problem, we test whether numerical approxi-
mations for a single sample converge as the mesh is refined. To this end, we compute
the approximations of the two-dimensional Euler equations with initial data (36) using
a second-order MUSCL type finite volume scheme, based on the HLLC solver, and
implemented in the FISH code [44]. The numerical results, presented in Fig. 20, show
the effect of grid refinement on the density for a single sample at time t = 4. Note
that by this time, the leading shock wave has exited the domain but has reentered from
the corners on account of the periodic boundary conditions. Furthermore, this reen-
try shock wave interacts and strongly perturbs the interface forming a very complex
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Fig. 21 Cauchy rates (7) for the density (y-axis) in a single sample of the Richtmeyer–Meshkov problem
(36) at time t = 4, with respect to different grid resolutions (x-axis)

region of small-scale eddy-like structures. As seen from Fig. 20, there seems to be no
convergence as the mesh is refined. This lack of convergence is quantified in Fig. 21,
where we present differences in L1 for successive mesh resolutions (7) and see that
the approximate solutions for a single sample do not form a Cauchy sequence.

6.3.2 Convergence of the Mean and the Variance

Next, we test for convergence of statistical quantities of interest as the mesh is refined.
First, we check the convergence of the mean through the Monte Carlo approximation
(25) with M = 400 samples. The numerical results for the density at time t = 4
at different grid resolutions are presented in Fig. 22. The figure clearly shows that
the mean converges as the mesh is refined. This convergence is further verified in
Fig. 23a where we plot the difference in mean (33) for successive resolutions. This
figure proves that the mean of the approximations forms a Cauchy sequence and hence
converges. Figure 22 shows that small-scale features are averaged out in the mean and
only large-scale structures, such as the strong reentrant shocks (mark the periodic
boundary conditions) and mixing regions, are retained through the averaging process.

Next, we check for the convergence of the variance for the Richtmeyer–Meskhov
problem (36). The results, shown in Fig. 24 for time t = 4, at differentmesh resolutions
and with 400 Monte Carlo approximations, clearly indicate that the variance of the
approximateYoungmeasures converge as themesh is refined. This is also verified from
Fig. 23b where the difference in L1 of the variances at successive mesh resolutions is
plotted and shown to form a Cauchy sequence. Furthermore, Fig. 24 also demonstrates
that the variance is concentrated at the shocks and even more so in the mixing layer,
around the original interface.
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Fig. 22 Mean density for the Richtmeyer–Meshkov problem with initial data (36) for different grid reso-
lutions at time t = 4. All results are obtained with 400 Monte Carlo samples

6.4 Measure-Valued (MV) Stability

The above experiments clearly illustrate that the numerical procedure proposed here
does succeed in computing an EMV solution of the underlying systems of conserva-
tion laws (11). Are the computed solutions stable? As argued in Sect. 3, uniqueness
(stability) of EMV solutions for a general measure-valued initial data is not neces-
sarily true, even for scalar conservation laws. Moreover, the scalar case suggests that
at most a weaker concept of stability, that of MV stability can be expected for EMV
solutions (see Terminology 3). As stated before, MV stability amounts to stability
with respect to perturbations of atomic initial data. We examine this weaker notion of
stability through numerical experiments.

To this end, we consider the Kelvin–Helmholtz problem as our test bed and inves-
tigate stability with respect to the following perturbations:
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(a)

(b)

Fig. 23 Cauchy rates (33) for the mean and variance (y-axis) of the Richtmeyer–Meshkov problem (36) at
time t = 4 and at different grid resolutions (x-axis). All results are obtained with 400Monte Carlo samples.
a Mean, b variance

6.4.1 Stability with Respect to Different Numerical Schemes

As a first check of MV stability, we consider the perturbed Kelvin–Helmholtz initial
data (32) with a fixed perturbation size ε = 0.01 and compute approximate measure-
valued solutions using Algorithm 5. Three different schemes are compared:

1. (Formally) second-order TeCNO2 scheme of [27].
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Fig. 24 Variance of the density with initial data (36) for different grid resolutions at time t = 4. All results
are obtained with 400 Monte Carlo samples

2. Third-order TeCNO3 scheme of [27].
3. Second-order high-resolution finite volume scheme, based on the HLLC approx-

imate Riemann solver, and implemented in the FISH code [44].

We will compare the mean and the variance of the approximate measures, at a res-
olution of 10242 points and 400 Monte Carlo samples, at time t = 2. As the mean
and the variance with TeCNO2 scheme have already been depicted in Figs. 8d and
10d, respectively, we plot the mean and variance with the TeCNO3 and FISH schemes
in Fig. 25. These results, together with the results for the TeCNO2 scheme (Figs. 8d,
10d), clearly show that mean and variance of the approximatemeasure-valued solution
are very similar even though the underlying approximation schemes are different. In
particular, comparing the TeCNO2 and TeCNO3 schemes, we remark that although
both schemes have the same design philosophy (see [27] and Sect. 5), their formal
order of accuracy is different. Hence, the underlying numerical viscosity operators
are different. In spite of different numerical regularizations, both schemes seem to
be converging to the same measure-valued solution—at least in terms of its first and
secondmoments. This agreement is evenmore surprising for the FISH scheme of [44].
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Fig. 25 Mean and variance of the density for the Kelvin–Helmholtz problem with initial data (32), at time
t = 2 at a resolution of 10242 points and with 200 Monte Carlo samples. Different numerical schemes are
compared. a Mean, TeCNO3; b mean, FISH; c variance, TeCNO3; d variance, FISH

This scheme utilizes a very different design philosophy based on HLLC approximate
Riemann solvers and an MC slope limiter. Furthermore, it is unclear whether this
particular scheme satisfies the discrete entropy inequality (22) or the weak BV bound
(21). Nevertheless, the measure-valued solutions computed by this scheme seem to
converge to the same EMV solution as computed by the TeCNO schemes. We have
observed similar agreement between different schemes for smaller values of the per-
turbation parameter ε as well as in the Richtmeyer–Meshkov problem. Furthermore,
all the three schemes agree with respect to higher moments as well. These numerical
results at least indicateMV stability with respect to different numerical discretizations.

6.4.2 MV Stability with Respect to Different Perturbations

A more stringent test of MV stability is with respect to different types of initial per-
turbations. To be more specific, we consider the Kelvin–Helmholtz problem with the
phase perturbations of (32) and compare them with amplitude perturbations (5) and
(8). Note that for small values of the perturbation parameter ε, both the amplitude
and phase perturbations are close to the atomic initial data (8) and to one another (for
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Fig. 26 Mean (top) and variance (bottom) of the density for the Kelvin–Helmholtz problem with different
initial data: phase perturbations (32) (left) and amplitude perturbations (8), (5) (right), at time t = 2 at
a resolution of 10242 points and with 400 Monte Carlo samples. All computations are with the TeCNO3
scheme. a Mean, phase perturbation; b mean, amplitude perturbation; c variance, phase perturbation; d
variance, amplitude perturbation

instance in the Wasserstein metric). We test whether the resulting approximate MV
solutions are also close. To this end, we compute the approximate measure-valued
solutions with the phase perturbation and amplitude perturbation, for ε = 0.0005,
with the TeCNO3 scheme, at a grid resolution of 10242 points and 400 Monte Carlo
samples, and plot the results in Fig. 26. The results show that the mean and vari-
ance with different initial perturbations are very similar when the amplitude ε of the
perturbations is small.

An evenmore stringent test of stability is provided by the following phase perturba-
tion of the Kelvin–Helmholtz problem (32). The same set up (computational domain
of [0, 1]2 and periodic boundary conditions) as in the description of (32) is used but
with an interface perturbation of the form:

I j = I j (x1, ω) := J j + εY j (x1, ω). (38)

As in (32), we set J1 = 0.25 and J2 = 0.75 but with an interface variation of the form:
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Fig. 27 Mean (top) and variance (bottom) of the density for the Kelvin–Helmholtz problem with different
initial data: discontinuous phase perturbations (38) with uniformly distributed coefficients in (39) (left) and
with (standard) normally distributed coefficients in (39) (right), at time t = 2 at a resolution of 10242 points
and with 400 Monte Carlo samples. All computations are with the second-order FISH scheme. a Mean,
uniform distribution; b mean, normal distribution; c variance, uniform distribution; d variance, normal
distribution

Y j (x1, ω) =
k∑

n=1

an
j 1An , j = 1, 2. (39)

Here, an
j = an

j (ω) ∈ [−1/2, 1/2] are randomly chosen numbers from a uniform distri-
bution. As a second variant, the an

j are drawn from the standard normal distribution.
The An are equally spaced intervals, i.e., An = [(n − 1)h, nh) with h = 1/32. Thus,
the initial interface perturbation is discontinuous, with uncorrelated random variation
of the interface inside each interval. Such types of random initial data are motivated
from observed or measured data, see [54]. A representative realization of this initial
datum is shown in Fig. 5 (right).
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The resulting approximate MV solutions, computed with a perturbation of size
ε = 0.005, at time t = 2 and at a resolution of 10242 are shown in Fig. 27. The mean
(top) and variance (bottom) are plotted. Results with the coefficients an

j , chosen from
both an uniform distribution (left) and a standard normal distribution (right) are shown.
As seen from the figure, the computed mean appears identical for the two choices of
distributions. The same holds for the variance, where the resulting variances for both
sets of distributions are very similar. Furthermore, they are also very similar to the
corresponding statistical quantities, computed with the amplitude perturbation (5) and
(8) as well as the sinusoidal phase perturbation (32) (compare with Fig. 26). Thus, we
observe that the computed MV solutions are very similar to each other, even for four
different sets of initial perturbations. Similar results were also observed for higher
moments. This clearly indicates MV stability of the computed MV solution with the
Kelvin–Helmholtz initial data.

7 Discussion

We conclude with a brief discussion on the highlights of the current paper which
are put in perspective for future results. Currently, the notion of entropy solutions is
the generic framework for interpreting the notion of solutions for N × N systems
of hyperbolic conservation laws (1) in d spatial dimensions. Entropy solutions are
bounded functions which satisfy the Eq. (2) and its associated entropy inequality(-
ies) (3) in the sense of distributions. Though the existence and uniqueness of entropy
solutions has been established for scalar conservation laws (N = 1) and for one-
dimensional systems (d = 1), there are no known global existence and uniqueness
(stability) results for generic multi-dimensional systems, when N , d > 1. In fact,
recent papers [17–19] provide examples of multi-dimensional systems with infinitely
many entropy solutions.

7.1 What Do the Numerical Experiments Tell Us

Despite a wide variety of numerical methods, such as finite volume, finite differ-
ence and discontinuous Galerkin methods that have been developed and successfully
employed to approximate systems of conservation laws, none of these methods has
been shown to converge to an entropy solution for a generic system of conservation
laws. Given this background, we investigate here the issues of convergence of numer-
ical approximations as well as the stability of the underlying entropy solutions. Our
numerical experiments demonstrate that even state-of-the-art numerical methods may
not necessarily converge as the mesh is refined. As shown in Figs. 3 and 6, finer and
finer structures emerge as the grid is refined. The production of oscillations at finer and
finer scales prevents convergence under mesh refinement. We also present numerical
experiments that demonstrate the lack of stability of entropy solutions with respect to
perturbations of initial data, see Figs. 4b and 13.

This lack of convergence to entropy solutions should not be considered as a fail-
ure of the numerical methods. Rather, they illustrate the shortcomings of the notion
of entropy solutions to multi-dimensional systems of conservation laws. In particu-
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lar, these experiments support the contention that entropy solutions are inadequate in
describing some of the complex flow features that are modeled by systems of conser-
vation laws such as the persistence of structures on finer and finer scales. Together with
the recent results on the non-uniqueness of entropy solutions, our numerical evidence
motivated us to seek a different, more versatile notion of solutions for these equations.

To this end,we focus on the notion of entropy measure-valued (EMV) solutions, first
introduced by DiPerna in [22], see also [23]. We propose a measure-valued Cauchy
problem (11) and seek solutions that are Young measures (parametrized probability
measures). These entropy measure-valued solutions are sought to be consistentwith the
underlying equations in the sense of distributions (12) and satisfy a suitable form of the
entropy inequality (13).The main aim of the current paperwas then to design numerical
procedure that can be rigorously shown to converge to an EMV solution. We work
with an equivalent representation ofmeasures as probability laws of randomfields. The
resulting initial randomfield is then evolved using a “reliable” entropy stable numerical
scheme. The law of the resulting (random)weak* convergent approximations provides
an approximation to themeasure-valued solution. For a numerical scheme to be weak*
convergent, it is required to satisfy a set of minimal criteria outlined in Theorem 6:

– Uniform boundedness of the approximations in L∞;
– Discrete entropy inequality;
– Space–time weak BV bound.

The TeCNO schemes of [27] and the space–time DG schemes of [40] are examples
of (formally) high-order schemes satisfying the discrete entropy inequality and weak
BV bounds. The uniform L∞ bound is a technical assumption that will be relaxed in
a forthcoming paper [29]. Thus, we provide sufficient conditions that can guide the
design of such “reliable” numerical methods for systems of conservation laws, with
particular attention to multi-dimensional systems. Note that for systems of conserva-
tion laws, the above conditions play a role similar to that played by the well-known
criteria of discrete maximum principle(s), entropy inequalities and the TVD property
in the numerical analysis of scalar conservation laws.

The convergence of numerical approximations to an EMV solution of (11) is
interpreted in the weak* sense, namely that statistics of space–time averages of the
unknowns converge as the mesh is refined. A Monte Carlo method is used to approx-
imate the EMV solution, and we also show convergence of the resulting numerical
procedure. To our knowledge, this provides the first set of rigorous convergence results
for numerical approximations of generic multi-dimensional systems of conservation
laws. These convergence results are illustrated by a large number of numerical exper-
iments, and we make the following key observations:

– In general, there is no observed convergence of numerical approximations (nei-
ther in L1 or in weaker norms) for single realizations (samples), with respect to
increasing mesh resolutions. This has been demonstrated with two examples for
the two-dimensional Euler equations.

– However, as predicted by the theory, statistical quantities of interest such as the
mean and the variance (or even higher moments) of an ensemble of solutions do
converge as the mesh is refined.
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– In fact, a stronger convergence is observed. The approximate Young measures
seem to converge in the strong sense (10) to an EMV solution.

The numerical approximation procedure, presented inAlgorithm8,was also employed
to compute EMV solutions with respect to atomic initial data. In general, the computed
measure-valued solution is not necessarily atomic, see Figs. 17, 18 and 19. This is
particularly striking in the specific case of the Kelvin–Helmholtz problem, where an
entropy solution (the steady-state data (8)), interpreted as an atomic entropy measure-
valued solution, exists but is unstable.

This key observation implies that the solution operator can act to spread the support
of the initial atomic measure. This bursting out of the initial atomic measure is, in
our opinion, very significant. Just as the formation of shock waves precludes the
existence of global classical solutions, leading to the replacement of point values with
local averages as the appropriate solution concept, this observed bursting out of an
initial atomic measure into a non-atomic measure implies that we have to look beyond
integrable functions in order to obtain existence of solutions to systems of conservation
laws. The concept of entropy measure-valued solutions, based on one-point statistics,
appears to be a natural extension. In particular, given the proposed Algorithm 8, we
are also able to address Lax’s question raised in Sect. 4.2: What we are computing
are the statistics—ensemble average, variance, etc.—of an entropy measure-valued
solution.

7.1.1 Stability

As the results of this paper and the forthcoming paper [29] show, the convergence of
numerical approximations also provides a (constructive) proof of existence for EMV
solutions of (11). The questions of uniqueness and stability are much more delicate.
From Remark 1, Example 1 and the results of [58] and references therein, we know
that EMV solutions may not be unique if the initial measure is non-atomic, even for
scalar conservation laws. We propose a weaker stability concept, that of measure-
valued stability. This concept implies possible stability for the statistics of space–
time averages in problems where the initial measure is close to atomic. Numerical
experiments examining this weaker concept of stability were presented in Sect. 6.4.
From these experiments, we observed that

– Different numerical schemes appear to converge to the same EMV solution as the
mesh is refined.

– Different types of perturbations of atomic initial data were considered, and the
resulting approximate EMV solutions seemed to converge to the same EMV solu-
tion, corresponding to atomic initial data.

These experiments indicate that our approximation procedure is indeed stable. Further-
more, they also suggest that the weaker notion ofMV stability might be an appropriate
framework to discuss the question of stability of EMV solutions.
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Issues for Future Investigation

Our results raise several issues which are left open. We conclude this section with a
few comments suggesting possible paths for future investigation.
On the notion of stability The only rigorous results available are of the measure-
valued-strong uniqueness type, see Theorem 4 and [8,20]. Here, the stability is
ensured when a classical solution (an atomic measure concentrated on a Lip-
schitz solution) is present. This also implies local (in time) uniqueness of EMV
solutions for atomic initial data, concentrated on smooth functions. Given the
paucity of rigorous stability results, there is a considerable open territory for future
theoretical investigation of weaker concepts of stability, such as measure-valued
stability for systems of conservation laws. Moreover, additional admissibility cri-
teria such as entropy rate criteria of [16] or other variants might be necessary to
ensure even MV stability of the EMV solution. This issue is dealt extensively in
a forthcoming paper [25] where the concept of measure-valued solutions is fur-
ther augmented with additional admissibility criteria, in the form of conditions on
multi-point correlations, that increase the chance of singling out a unique solu-
tion.
Weak* convergent schemes As mentioned before, we provided here a numerical
procedure, as well as sufficient conditions on numerical schemes, such that the approx-
imations converge to an EMV solution. Some examples of schemes satisfying these
criteria were presented. These results will hopefully encourage the development of
other kinds of numerical schemes, such as of the WENO, RKDG and spectral vis-
cosity type, that satisfy the abstract criteria of this paper, and hence converge to
measure-valued solutions of systems of conservation laws, even in several space
dimensions.
Computing the measure-valued solutions requires evaluation of phase space integrals.
Our proposal in this paper was to employ Monte Carlo sampling. This procedure can
be very expensive computationally, on account of the slow convergence with respect
to the number of samples. We foresee the design of more computationally efficient
methods by adapting schemes such as multi-level Monte Carlo [52–54], stochastic
collocation finite volume methods [55] and gPC-based stochastic Galerkin methods
[21], which have recently been developed to deal with uncertainty quantification for
systems of conservation laws. Such extensions are the subject of ongoing research.
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Appendix 1: Young Measures

We provide here a very short introduction to Young measures. The reader may wish
to consult [7,30] on the theory of Radon measures and probability measures and [2,3]
on the theory of Young measures.
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Probability Measures

A.1.1 We denote byM(RN ) the set of finite Radon measures on RN , which are inner
regular Borel measuresμwith finite total variation |μ|(RN ). Let C0(R

N ) be the space
of continuous real-valued functions onRN which vanish at infinity, equipped with the
supremum norm. Then it can be shown (see, e.g., [30, Section 7.3]) thatM(RN ) can be
identifiedwith the dual space ofC0(R

N ) through the pairing 〈μ, g〉 = ∫
RN g(ξ)dμ(ξ).

We do not distinguish between these two equivalent definitions of M. By a slight
abuse of notation, we shall sometimes write 〈μ, g(ξ)〉 = ∫

RN g(ξ) dμ(ξ). We will
be particularly interested in the pairing 〈μ, id〉 = ∫

RN ξ dμ(ξ) between μ and the
identity function id(ξ) = ξ .

A.1.2The duality betweenC0(R
N ) andM(RN ) induces a weak* topology onM(RN ),

that ofweak* convergence. A sequenceμn ∈ M(RN ) convergesweak* toμ ∈ M(RN )

provided 〈μn, g〉 → 〈μ, g〉 for all g ∈ C0(R
N ). (This is also called weak or vague

convergence, see [7,30].)

A.1.3 The set of probability measures on R
N is the subset

P(RN ) :=
{
μ ∈ M(RN ) : μ � 0, μ(RN ) = 1

}
.

Let Pp(RN ) ⊂ P(RN ) for p ∈ [1,∞) denote the set of probability measures μ such
that 〈μ, |ξ |p〉 < ∞. For μ, ρ ∈ Pp(RN ) the Wasserstein metric Wp is defined as

Wp(μ, ρ) := inf

{∫
RN ×RN

|ξ − ζ |p dπ(ξ, ζ ) : π ∈ Π(μ, ρ)

}1/p

,

where Π(μ, ρ) is the set of probability measures on RN ×R
N with marginals μ and

ρ:

Π(μ, ρ) :=
{
π ∈ P(RN × R

N ) : π(A × R
N ) = μ(A),

π(RN × A) = ρ(A) ∀ Borel A ⊂ R
N
}
.

It can be shown that Wp for any p metrizes the topology of weak convergence on
Pp(RN ) (see [1, Proposition 7.1.5] or [64, Chapter 7]).

A.1.4 Let μ, ρ ∈ P(R), and let F, G : R → [0, 1] be their distribution functions,

F(x) := μ((−∞, x]), G(y) := ρ((−∞, y]).

Then it can be shown that

Wp(μ, ρ) =
(∫ 1

0

∣∣∣F−1(s) − G−1(s)
∣∣∣p ds

)1/p

,
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see [64, p. 75]. This gives rise to an efficient algorithm for computing the Wasserstein
distance between discrete probability distributions. Let x1, . . . , xn and y1, . . . , yn be
random numbers drawn from the probability distributions μ and ρ, respectively, and
define the discrete distributionsμn := (δx1+· · ·+δxn )/n andρn := (δy1+· · ·+δyn )/n.
By the law of large numbers, we haveμn → μ and ρn → ρ weak* as n → ∞, almost
surely. Moreover, their distribution functions are

Fn(x) = #{x j : x j � x}
n

, Gn(y) = #{y j : y j � y}
n

.

Hence, if the sequences x j and y j are sorted in increasing order, then

Wp(μn, ρn)p =
∫ 1

0

∣∣∣F−1
n (s) − G−1

n (s)
∣∣∣p ds = 1

n

n∑
j=1

|x j − y j |p.

The latter expression is very easy to implement on a computer.
The analogous problem when μ, ρ ∈ P(RN ) is more complex, but can be solved

in O(n3) time using the so-called Hungarian algorithm, see [56].

Young Measures

A.2.1 A Young measure from D ⊂ R
k to R

N is a function which maps z ∈ D to a
probability measure on RN . More precisely, a Young measure is a weak* measurable
map ν : D → P(RN ), that is, the mapping z �→ 〈ν(z), g〉 is Borel measurable for
every g ∈ C0(R

N ). We denote the image of z ∈ D under ν by νz := ν(z) ∈ P(RN ).
The set of all Young measures from D intoRN is denoted by Y(D,RN ). When N = 1
we write Y(D) := Y(D,R).

A.2.2 A Young measure ν ∈ Y(D,RN ) is uniformly bounded if there is a compact set
K ⊂ R

N such that supp νz ⊂ K for all z ∈ D. Note that if ν is atomic, ν = δu , then
ν is uniformly bounded if and only if ‖u‖L∞(D) < ∞.

A.2.3 If u : Rk → R
N is any measurable function, then νz := δu(z) defines a Young

measure, and we have u(z) = 〈νz, id〉 for every z. Conversely, we will say that a given
Young measure ν is atomic if it can be written as ν = δu for a measurable function u.

A.2.4 Two topologies on Y(D,RN ) arise naturally in the study of Young measures:
those of weak* and strong convergence. A sequence νn ∈ Y(D,RN ) convergesweak*

to ν ∈ Y(D,RN ) if 〈νn, g〉 ∗
⇀ 〈ν, g〉 in L∞(D) for all g ∈ C0(R

N ), that is,

∫
D

ϕ(z)
〈
νn

z , g
〉
dz →

∫
D

ϕ(z) 〈νz, g〉 dz ∀ ϕ ∈ L1(D).

We say that νn ∈ Y(D,RN ) converges strongly to ν ∈ Y(D,RN ) if

∥∥Wp(ν
n, ν)

∥∥
L p(D)

→ 0
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for some p ∈ [1,∞). If ν is atomic, ν = δu for some u : D → R
N , then νn → ν

strongly if and only if

∫
D

∫
RN

|ξ − u(z)|p dνn
z (ξ)dz → 0.

A.2.5 The fundamental theorem of Young measures was first introduced by Tartar for
L∞-bounded sequences [63] and then generalized by Schonbek [59] and Ball [3]
for sequences of measurable functions. We provide a further generalization: Every
sequence νn ∈ Y(D,RN ) which does not “leak mass at infinity” (condition (40)) has
a weak* convergent subsequence:

Theorem 13 Let νn ∈ Y(D,RN ) for n ∈ N be a sequence of Young measures. Then
there exists a subsequence νm which converges weak* to a nonnegative measure-
valued function ν : D → M+(RN ) in the sense that

(i)
〈
νm

z , g
〉 ∗
⇀ 〈ν, g〉 in L∞(D) for all g ∈ C0(R

N ),

and moreover satisfies

(ii) ‖νz‖M(RN ) � 1 for a.e. z ∈ D;
(iii) If K ⊂ R

N is closed and supp νn
z ⊂ K for a.e. z ∈ D and n large, then

supp νz ⊂ K for a.e. z ∈ D.

Suppose further that for every bounded, measurable E ⊂ D, there is a nonnegative
κ ∈ C(RN ) with lim|ξ |→∞ κ(ξ) = ∞ such that

sup
n

∫
E

〈
νn

z , κ
〉

dz < ∞. (40)

Then

(iv) ‖νz‖M(RN ) = 1 for a.e. z ∈ D,

whence ν ∈ Y(D,RN ).

Proof The proof is a generalization of Ball [3].
Denote by L∞

w (D;M(RN )) the set of weak* measurable functions μ : D →
M(RN ), equipped with the norm

‖μ‖∞,M := ess sup
z∈D

‖μz‖M.

From the fact that C0(R
N ) is separable, it can be shown (see [24, Theorem 8.18.2])

that L∞
w (D;M(RN )) is isometrically isomorphic to the dual of L1(D; C0(R

N )). The
sequence μn is bounded in L∞

w (D;M(RN )) since ‖μn‖∞,M ≡ 1, and hence there
is a μ ∈ L∞

w (D;M(RN )) and a weak* convergent subsequence μm of μn such that
〈μm, Ψ 〉∞,M → 〈μ,Ψ 〉∞,M, or equivalently,

∫
D

〈
μm

z , Ψ (z, ·)〉 dz →
∫

D
〈μz, Ψ (z, ·)〉 dz as m → ∞
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for all Ψ ∈ L1(D; C0(R
N )). In particular, letting Ψ (z, ξ) = ϕ(z)g(ξ) for ϕ ∈ L1(D)

and g ∈ C0(R
N ), we obtain (i). We claim that μz � 0 for a.e. z ∈ D. If not, then there

would be a nonnegative Ψ ∈ L1(D; C0(R
N )) such that

∫
D 〈μz, Ψ (z, ·)〉 dz < 0. But

then

0 >

∫
D

〈μz, Ψ (z, ·)〉 dz = lim
m→∞

∫
D

〈
μm

z , Ψ (z, ·)〉 dz � 0

(since μm
z � 0 for all z), a contradiction.

(ii) follows from the weak* lower semi-continuity of the norm ‖ · ‖∞,M. To see
that (iii) holds, let g ∈ C0(R

N ) be such that g
∣∣
K = 0. Since μm → K in measure, it

follows that 〈μm, g〉 → 0 in measure (that is, |{z ∈ D : | 〈μm
z , g

〉 | > δ}| → 0 for all
δ > 0). Hence,

∫
D

ϕ(z) 〈μz, g〉 dz = lim
m

∫
D

ϕ(z)
〈
μm

z , g
〉
dz = 0

and therefore 〈μz, g〉 = 0 for a.e. z ∈ D. This is precisely (ii).
Assume now that (40) holds. Fix a set E ⊂ D of finite, nonzero Lebesgue measure

|E |, and denote the average integral over E as −
∫

E = 1
|E |
∫

E . For every R > 0, we
define

θR(ξ) =

⎧⎪⎨
⎪⎩
1 κ(ξ) � R

1 + R − κ(ξ) R < κ(ξ) � R + 1

0 R + 1 < κ(ξ).

Then θR ∈ C0(R
N ), so

lim
m

−
∫

E

〈
μm

z , θR
〉
dz = −

∫
E

〈μz, θR〉 dz � −
∫

E
‖μz‖Rdz � 1,

the last inequality following from the fact that ‖μz‖R � 1 for all z. Conversely,

0 � −
∫

E

(
1 − 〈μm

z , θR
〉)

dz = −
∫

E

〈
μm

z , 1 − θR
〉
dz � 1

R
−
∫

E

〈
μm

z , κ
〉
dz,

so (40) gives

1 � lim
R→∞ lim

m
−
∫

E

〈
μm

z , θR
〉
dz + lim

R→∞ sup
m

1

R
−
∫

E

〈
μm

z , κ
〉
dz

= lim
R→∞ −

∫
E

〈μz, θR〉 dz

� −
∫

E
‖μz‖M(RN )dz � 1,

whence −
∫

E ‖μz‖M(RN ) dz = 1. Since E ⊂ D is arbitrary, (iv) follows. ��
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A.2.6 An important special case of (40) is when κ(ξ) = |ξ |p for 1 � p < ∞, which
translates to the L p bound

sup
n

∫
D

〈
μn, |ξ |p〉 dz < ∞.

The case p = ∞ translates to the support of νn
z lying in a compact set K ⊂ R

N for
a.e. z and all n. Part (iii) of Theorem 13 then holds for all g ∈ C(RN ), and condition
(40) is automatically satisfied for any such κ . The latter is the original form of the
theorem given by Tartar [63].

Random Fields and Young Measures

A.3.1 If (Ω,F, P) is a probability space, D ⊂ R
k is a Borel set and u : Ω × D → R

N

is a random field (i.e., a jointly measurable function), then we can define its law by

νz(F) := P (u(z) ∈ F) = P ({ω : u(ω, z) ∈ F}) (41a)

for Borel subsets F ⊂ R
N of phase space, or equivalently,

〈νz, g〉 :=
∫

Ω

g(u(ω, z)) dP(ω) (41b)

for g ∈ C0(R
N ). This defines a Young measure:

Proposition 1 If u : Ω × D → R
N is jointly measurable, then (41) defines a Young

measure from D to R
N .

Proof First of all, for fixed z ∈ D the set
{
ω : u(ω, z) ∈ U

}
is P-measurable for

Borel sets U . Indeed, if w(ω) := u(ω, z) denotes the z-section of the measurable
function (ω, y) �→ u(ω, y), then

{
ω : u(ω, z) ∈ U

} = w−1(U ) is measurable.
We need to show that the definition of ν is independent of the choice of mapping in

the equivalence classes of mappings fromΩ × D → R
N . Let û, ũ : Ω × D → R

N be
two mappings such that û(ω, z) = ũ(ω, z) for P × λ-a.e. (ω, z). We apply Tonelli’s
theorem to find that

0 =
∫

Ω×D
1{û �=ũ}(ω, z) d(P × λ)(ω, z) =

∫
D

P({û(z) �= ũ(z)}) dz.

Hence, P(û(z) �= ũ(z)) = 0 for a.e. z ∈ D, so for every Borel set U ⊂ R
N ,

P
(
û(z) ∈ U

) = P (ũ(z) ∈ U )

for a.e. z ∈ D.
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Finally, ν is weak* measurable since

〈νz, g〉 =
∫
RN

g(ξ) dνz(ξ) =
∫

Ω

g(u(ω, z)) dP(ω),

which is measurable in z for any g ∈ C0(R
N ). ��

A.3.2 It is well known that every measure onRN can be realized as the law of a random
variable. Here we show that for every Young measure ν, there is always a random field
with law ν.

Proposition 2 For every Young measure ν ∈ Y(D,RN ), there exist a probability
space (Ω,F, P) and a Borel measurable function u : Ω × D → R

N such that u has
law ν, i.e., for all Borel sets E,

νz(E) = P(u(ω, z) ∈ E).

In particular, we can choose (Ω,F, P) to be the Borel σ -algebra on Ω = [0, 1) with
Lebesgue measure.

Proof The method of proof is standard, see, e.g., [6, Theorem 5.3].
We assume that N = 1. The generalization to N > 1 is straightforward but tedious.

For n ∈ N and j ∈ Z, we set

F j
n :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−∞,−2n) if j = −22n[
2−n( j − 1), 2−n j

)
if j = −22n + 1, . . . , 22n

[2n,∞) if j = 22n + 1

∅ otherwise.

Let p j
n(z) :=∑l� j νz(Fl

n). Note that p j
n : R → [0, 1] is measurable for all n, j , and

that 0 � p− j
n � . . . � p j

n = 1 for j large enough. Choose any ξ
j

n ∈ F j
n , and for

ω ∈ Ω := [0, 1), define

un(ω, z) := ξ
j

n for j such that p j−1
n (z) � ω < p j

n .

We claim that un is measurable on the product σ -algebra between F and the Borel
σ -algebra on D. Each function un takes only finitely many values ξ

j
n , so it suffices to

show that u−1
n ({ξ j

n }) is measurable for every ξ
j

n . Indeed,
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u−1
n ({ξ j

n }) =
{
(ω, z) ∈ Ω × D : p j

n(z) � ω < p j+1
n (z)

}

=
(
Ω × D

)
∩
{
(ω, z) ∈ R × D : p j

n(z) � ω
}

∩
{
(ω, z) ∈ R × D : ω < p j+1

n (z)
}
,

the intersection between the epigraph of p j
n and the hypograph of p j+1

n , which are
measurable by the measurability of the functions p j

n and p j+1
n .

Because the partition {F j
m} j∈Z is a refinement of {F j

n } j∈Z whenever m > n, it

follows that |un(ω, z) − um(ω, z)| < diam(F j
n ) = 2−n for any (ω, z) whenever m, n

are large enough. Hence, un converges pointwise to some function u : Ω × D → R,
which is measurable by the measurability of each un .

Finally, for every g ∈ C0(R) and almost every z ∈ D, we have by Lebesgue’s
dominated convergence theorem

∫
Ω

g(u(ω, z)) dP(ω) = lim
n

∫
Ω

g(un(ω, z)) dP(ω)

= lim
n

∑
j

νz(F j
n )g(ξ

j
n ) =

∫
R

g(ξ) dνz(ξ).

Hence, u(·, z) has law νz . ��

Appendix 2: Proof of Theorem 11

Proof For any random field ζ : Ω → L1(Rd ×R+) ∩ L∞(Rd ×R+) on (Ω,F, P),
we denote the expectation with respect to the probability measure P as

E(ζ ) :=
∫

Ω

ζ(ω)dP(ω).

For 1 � k � M , denote

G(ω) =
∫
R+

∫
Rd

ψ(x, t)g
(
u
x (ω; x, t)

)
dxdt,

Gk(ω) =
∫
R+

∫
Rd

ψ(x, t)g
(

u
x,k(ω; x, t)
)
dxdt.

(42)

Henceforth, we suppress the ω-dependence of G and Gk for notational convenience.
The L2(P) error in the approximation can be written as
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E

⎛
⎝
(
E(G) − 1

M

M∑
k=1

Gk

)2⎞
⎠ = E

⎛
⎝ 1

M2

(
M∑

k=1

(E(G) − Gk)

)2⎞
⎠ ,

= E

⎛
⎝ 1

M2

⎛
⎝ M∑

k=1

(
E(G) − Gk

)2 + 2
M∑

k=1

∑
l �=k

(
E(G) − Gk

)(
E(G) − Gl

)
⎞
⎠
⎞
⎠

= 1

M2

M∑
k=1

E

((
E(G) − Gk

)2)

︸ ︷︷ ︸
=: T1

+ 2

M2

M∑
k=1

∑
l �=k

E

((
E(G) − Gk

)(
E(G) − Gl

))
︸ ︷︷ ︸

=: T kl
2

.

As u
x,1, . . . , u
x,M are independent and identically distributed, it follows from
the definition of Gk that G1, . . . , G M are independent and identically distributed
random variables. Hence, E(Gk) = E(G) and E(Gk Gl) = E(Gk)E(Gl) for all k, l.
Consequently, a simple calculation shows that T kl

2 = 0 for all 1 � k, l � M and
k �= l.

The fact that G1, . . . , G M are independent and identically distributed yields

T1 = 1

M

(
E(G2) − E(G)2

)
.

Hence,

E

⎛
⎝
(
E(G) − 1

M

M∑
k=1

Gk

)2⎞
⎠ = 1

M

(
E(G2) − (E(G))2

)

� 1

M

∥∥g(u
x )
∥∥2

L∞(Ω×Rd×R+)
‖ψ‖2L1(Rd×R+)

(by definition (42))

� C

M
(by assumption (19a)).

In conclusion, the sample mean

1

M

M∑
k=1

∫
R+

∫
Rd

ψ(x, t)g
(

u
x,k(x, t)
)
dxdt

converges to the corresponding ensemble average,
∫
R+
∫
Rd ψ(x, t)

〈
ν
x

x,t , g
〉
dxdt in

L2(Ω; P), with a convergence rate of 1√
M
. Taking a subsequence M ′ → ∞, the

convergence also holds P-almost surely. ��
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Appendix 3: Time Continuity of Approximations

From the time integration procedure (17b), we can show that the approximate MV
solutions are time continuous. Consequently, the initial data is attained in a certain
sense, and moreover, it is meaningful to evaluate the MV solution at a specific time t .

We state the theorem without proof, since the results are straightforward general-
izations of “deterministic” counterparts.

Theorem 14 Let ψ ∈ C1
c (R) and assume that (19a) and (19b) are satisfied. Let ν
x

be generated by Algorithm 5. Then the functions

Ψ 
x (t) :=
∫
R

ψ(x)
〈
ν
x
(x,t), id

〉
dx

and

Ψ (t) :=
∫
R

ψ(x)
〈
ν(x,t), id

〉
dx

are Hölder continuous with exponent γ := r−1
r and with constant independent of 
x,

and Ψ 
x (t) → Ψ (t) as 
x → 0 for a.e. t ∈ [0, T ]. Moreover,

Ψ (0) = lim
t→0

Ψ (t) =
∫
R

ψ(x) 〈σx , id〉 dx .
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