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Abstract The method of alternating projections is a classical tool to solve feasibility
problems. Here we prove local convergence of alternating projections between sub-
analytic sets A, B under a mild regularity hypothesis on one of the sets. We show that
the speed of convergence is O(k−ρ) for some ρ ∈ (0,∞).
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1 Introduction

The method of alternating projections is a classical tool to solve the following feasi-
bility problem: Given closed sets A, B in R

n , find a point x∗ ∈ A ∩ B. Alternating
projections can be traced back to the work of Schwarz [26] in 1869 and were popu-
larized in lecture notes of von Neumann [23] since the 1930s. The method generates
sequences ak ∈ PA(bk−1), bk ∈ PB(ak), where PA, PB are the set-valued orthogonal
projection operators on A and B. If the alternating sequence ak, bk is bounded and
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satisfies ak − bk → 0, then each of its accumulation points is a solution of the fea-
sibility problem. The fundamental question is when such a sequence converges to a
single limit point x∗ ∈ A ∩ B.

For convex sets, alternating projections are globally convergent as soon as A∩ B �=
∅, and the survey [2] gives an excellent state of art of the convex theory. In one of
the earliest contributions to the non-convex case, Combettes and Trussell [11] proved
in 1990 that the set of accumulation points of a bounded sequence of alternating
projections with ak − bk → 0 is either a singleton or a nontrivial compact continuum.
In 2013, it was shown in [6] by way of an example that the continuum case may indeed
occur. This shows that without convexity, a sequence of alternating projections ak, bk

may fail to converge even when it is bounded and satisfies ak − bk → 0.
In 2008, Lewis andMalick [20] proved that a sequence ak, bk of alternating projec-

tions converges locally linearly if A, B are C2-manifolds intersecting transversally.
Expanding on this in 2009, Lewis et al. [21] proved local linear convergence for gen-
eral A, B intersecting non-tangentially in the sense of linear regularity, where one of
the sets is superregular. In 2013, Bauschke et al. [4,5] investigated the case of non-
tangential intersection further and proved linear convergence under weaker regularity
and transversality hypotheses.

Here we prove local convergence under less restrictive conditions, where A, B may
also intersect tangentially. We propose a new geometric concept, called separable
intersection, which gives local convergence of alternating projections when combined
with Hölder regularity, a mild hypothesis less restrictive than prox-regularity.

Separable intersection has wide scope for applications, as it not only includes non-
tangential intersection, but goes beyond and allows also a large variety of cases where
A, B intersect tangentially. In particular, we prove that closed subanalytic sets A, B
always intersect separably. This leads to the central result that alternating projections
between subanalytic sets converge locally with rate O(k−ρ) for some ρ ∈ (0,∞)

if one of the sets is Hölder regular with respect to the other. As these hypotheses
are satisfied in practical situations, we obtain a theoretical explanation for the fact,
observed in practice, that even without convexity, alternating projections converge
well in the neighborhood of A ∩ B. As an application, we obtain a local convergence
proof for the classical Gerchberg–Saxton error reduction algorithm in phase retrieval.

The structure of the paper is as follows: Sect. 3 introduces the concept of separable
intersection of two closed sets. Then 0-separability is related to existing transversality
concepts. In Sect. 4, we discuss Hölder regularity and compare it to older regularity
concepts like prox-regularity, Clarke regularity, and superregularity. The central Sect. 5
gives the convergence proof with rate for sets intersecting separably. In Sect. 6, we
show that subanalytic sets intersect separably and then deduce the convergence result
for subanalytic sets. Section 6 gives also some applications indicating the versatility
of our convergence test. In particular, we prove local convergence of an averaged
projection method related to in [1, Corollary 12], where the authors use the Kurdyka-
Łojasiewicz inequality. The final Sect. 7 gives limiting examples.

After the initial version of this article appeared, a concept related to our notion of
0-separability, called intrinsic transversality, was announced in [12]. We compare this
to our own transversality and regularity concepts in Sects. 3 and 4.
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2 Preparation

Given a non-empty closed subset A of Rn , the projection onto A is the set-valued
mapping PA associating with x ∈ R

n the non-empty set

PA(x) = {a ∈ A : ‖x − a‖ = dA(x)} ,

where ‖ · ‖ is the Euclidean norm, induced by the scalar product 〈·, ·〉, and where
dA(x) = min{‖x − a‖ : a ∈ A}. The closed Euclidean ball with center x and radius r
is denoted B(x, r). We write a ∈ PA(b) since the projection is potentially set-valued,
while a = PA(b) means it is unique.

A sequence of alternating projections between non-empty closed sets A, B satisfies
bk ∈ PB(ak), ak+1 ∈ PA(bk), k ∈ N. We occasionally switch to the following index-
free notation, which is standard in optimization:

b ∈ PB(a), a+ ∈ PA(b), b+ ∈ PB(a+), etc.

The sequence of alternating projections is then . . . , a, b, a+, b+, a++, b++, . . . . We
refer to a → b → a+, respectively, b → a+ → b+, as the building blocks of the
sequence, where it is always understood that b ∈ PB(a), a+ ∈ PA(b), b+ ∈ PB(a+),
etc.

Notions from non-smooth analysis are covered by [22,25]. The proximal normal
cone to A at a ∈ A is the set N p

A(a) = {λu : λ ≥ 0, a ∈ PA(a + u)}. The normal
cone to A at a ∈ A is the set NA(a) of vectors v for which there exist ak ∈ A with
ak → a and vk ∈ N p

A(ak) such that vk → v. The Fréchet normal cone ̂NA(a) to A

at a ∈ A is the set of v for which lim supAa′→a
〈v,a′−a〉
‖a′−a‖ ≤ 0; cf. [22, (1.2)]. We

have the inclusions N p
A(a) ⊂ ̂NA(a) ⊂ NA(a); cf. [22, Chapter 2.D and (1.6)] or

[4, Lemma 2.4]. For any function f : Rn → R ∪ {∞}, the epigraph of f is the set
epi f = {(x, ξ) ∈ R

n × R : ξ ≥ f (x)}. The proximal subdifferential ∂p f (x) of a
lower semi-continuous function f at x ∈ dom f is the set of vectors v ∈ R

n such that
(v,−1) ∈ N p

epi f (x, f (x)); [22, (2.81)]. The subdifferential ∂ f (x) of f at x ∈ dom f

is the set of v satisfying (v,−1) ∈ Nepi f (x, f (x)). The Fréchet subdifferential̂∂ f (x)

at x ∈ dom f is the set of v ∈ R
n such that (v,−1) ∈ ̂Nepi f (x, f (x)), cf. [22, (1.51)].

3 Tangential and Non-tangential Intersection

In this section, we introduce the fundamental concept of separable intersection of sets
A, B, which plays the central role in our convergence theory.

Definition 1 (Separable intersection). We say that B intersects A separably at x∗ ∈
A ∩ B with exponent ω ∈ [0, 2) and constant γ > 0 if there exists a neighborhood U
of x∗ such that for every building block b → a+ → b+ in U , the condition

〈b − a+, b+ − a+〉 ≤ (1 − γ ‖b+ − a+‖ω
) ‖b − a+‖‖b+ − a+‖ (1)

is satisfied.
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We say that B intersects A separably at x∗ if (1) holds for some ω ∈ [0, 2), γ > 0.
If it is also true that A intersects B separably, that is, if the analogue of (1) holds for
building blocks a → b → a+, then we obtain a symmetric condition, and in that case,
we say that A, B intersect separably at x∗.

Remark 1 Condition (1) discloses itself if we introduce the angle α = � (b−a+, b+−
a+) and rewrite (1) in the more suggestive form

1 − cosα

‖a+ − b+‖ω
≥ γ, (1′)

calling this the angle condition for the building block b → a+ → b+. For ω ∈ (0, 2)
the interpretation of (1), or (1′), is that if the angle α between b − a+ and b+ − a+ for
two consecutive projection steps b → a+ → b+ shrinks down to 0 as the alternating
sequence approaches x∗, then α should not shrink too fast. Namely, through (1′), the
angle is linked to the shrinking distance between the sets. For ω = 0, the meaning of
(1′) is that the angle α stays away from 0.

Remark 2 Suppose B intersects A separably with exponent ω ∈ [0, 2) and constant
γ > 0 at x∗. Let ω′ ∈ (ω, 2) and γ ′ ∈ (0, γ ]. Then B intersects A also ω′-separably
with constant γ ′. In consequence, 0-separability is the severest condition, while ω-
separability gets less restrictive as ω increases.

As we shall see, for ω ≥ 2, property (1) can still be formulated, but turns out too
weak to be meaningful. For an illustration, see Example 7.8.

Remark 3 Informally, when the angle α = � (b − a+, b+ − a+) between two consec-
utive projection steps shrinks to zero, A, B must in some sense intersect tangentially
at x∗. In contrast, when α stays away from 0, the case of 0-separability, one could say
that A, B intersect transversally, or at an angle. In that case, alternating projections
are expected to behave well and converge linearly. Tangential intersection is the more
embarrassing case, where convergence could be slowed down or even fail. Our concept
of ω-separability gives new insight into the case of tangential intersection.

There has been considerable effort in the literature to avoid tangential intersection
by making transversality assumptions. We mention transversal intersection in [20],
the generalized non-separation property in [22], linearly regular intersection in [21],
or the notion of constraint qualification in [4]. In the following, we relate these notions
to 0-separability.

Bauschke et al. [4, Definition 2.1] introduce an extension of the Mordukhovich
normal cone called the B-restricted normal cone N B

A (x∗) to A at x∗ ∈ A. They define
u ∈ N B

A (x∗) if there exist an ∈ A, an → x∗, and un → u such that

un = λn (bn − an)

for some λn > 0 and bn ∈ B with an ∈ PA(bn). They then establish basic inclusions
between the restricted normal cone and various classical cones [4, Lemma 2.4]. In
particular for any a ∈ A and B, one has N B

A (a) ⊂ NA(a).
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Now let ˜A and ˜B be non-empty subsets ofRn . In [4, Definition 6.6] the authors say
that (A, ˜A, B, ˜B) satisfies the CQ-condition at x∗ ∈ A ∩ B if

N
˜B
A (x∗) ∩

(

−N
˜A
B (x∗)
)

⊂ {0}. (2)

This condition is to be understood as a transversality hypothesis, because we have the
following

Proposition 1 (CQ implies 0-separability). Let PA(∂ B\A) ⊂ ˜A, PB(∂ A\B) ⊂ ˜B,
and suppose (A, ˜A, B, ˜B) satisfies the CQ-condition at x∗ ∈ A ∩ B. Then A, B
intersect 0-separably at x∗.

Proof According to [4, Definition 2.1] the ˜B-restricted proximal normal cone ̂N B̃
A (a)

of A at a ∈ A is the set of vectors u of the form u = λ(b̃ − a) for some λ > 0 and
some˜b ∈ ˜B satisfying a ∈ PA(˜b). The cone ̂N Ã

B (b) at b ∈ B is defined analogously.
Then by [4, Definition 6.1], specialized to the case of two sets, the CQ-number at x∗
associated with (A, ˜A, B, ˜B) is

θδ(A, ˜A, B, ˜B)

= sup
{

〈u, v〉 : u ∈ ̂N ˜BA (a),−v ∈ ̂N ˜AB (b), ‖u‖ ≤ 1, ‖v‖ ≤ 1, a, b ∈ B(x∗, δ)
}

and the limiting CQ-number is

θ(A, ˜A, B, ˜B) = lim
δ→0+ θδ(A, ˜A, B, ˜B).

The authors show in [4, Theorem 6.8] that for two sets the CQ-condition N ˜BA (x∗) ∩
(−N ˜AB (x∗)) ⊂ {0}, implies θ(A, ˜A, B, ˜B) < 1.

Using this, pick δ > 0 such that θδ(A, ˜A, B, ˜B) =: 1−γ < 1. Consider a building
block b → a+ → b+ as in Definition 1 with b, a+, b+ ∈ U := B(x∗, δ). Then we
have b ∈ ˜B and a+ ∈ ˜A. Hence, b − a+ ∈ ̂N ˜BA (a+) and a+ − b+ ∈ ̂N ˜AB (b+), and
also

u = (b − a+)/‖b − a+‖ ∈ ̂N ˜BA (a+) and v = (b+ − a+)/‖b+ − a+‖ ∈ −̂N ˜AB (b+).

Therefore, if α = � (b−a+, b+−a+), then cosα = 〈u, v〉 ≤ θδ(A, ˜A, B, ˜B) = 1−γ

by the definition of θδ , because b, a+, b+ ∈ B(x∗, δ) and ‖u‖ = ‖v‖ = 1. That shows
1 − cosα ≥ γ > 0 and proves that B intersects A 0-separably at x∗ with constant γ .
The estimate for building blocks a → b → a+ is analogous. ��

Example 7.3 shows that the converse of proposition 1 is not true. In fact, 0-
separability seems more versatile in applications, while still guaranteeing linear con-
vergence. We conclude by noting that linearly regular intersection in the sense of [21],
and transversality in the sense of [20], imply 0-separability.
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Following [21, section 2,(2.2)], A and B have linearly regular intersection at x∗ ∈
A ∩ B if

NA(x∗) ∩ (−NB(x∗)
) = {0}. (3)

This property is called strong regularity in [18] and the basic qualification condition for
sets in [22,Definition 3.2 (i)]. As a consequence of N ˜BA (a) ⊂ NA(a), N ˜AB (b) ⊂ NB(b),
linearly regular intersection implies that (A, ˜A, B, ˜B) satisfies the CQ-condition at x∗
for any non-empty ˜A and ˜B in Rn ; cf. [5]. By Proposition 1, we therefore have:

Corollary 1 (Linear regularity implies 0-separability). Suppose A, B intersect lin-
early regularly at x∗ ∈ A ∩ B. Then they intersect 0-separably at x∗. ��

As we mentioned before, in the context of alternating projections, linear regularity
and theCQ-condition are to be understood as transversality type hypotheses, indicating
that the sets A, B intersect at an angle at x∗, as opposed to intersecting tangentially.
This is confirmed by relating 0-separability to the classical notion of transversality.
Following [20, def.3], two C2-manifolds A, B in R

n intersect transversally at x∗ ∈
A ∩ B if

TA(x∗) + TB(x∗) = R
n, (4)

where TM (x∗) is the tangent space to M at x∗ ∈ M . We then have the following

Corollary 2 Let A, B be C2-manifolds which intersect transversally at x∗. Then A
and B intersect 0-separably at x∗.

Proof Indeed, as shown in [20, Theorem 18], classical transversality (4) implies linear
regular intersection (3), and hence, we can apply Corollary 1. ��

After the initial version of this workwas published, a related concept termed ‘intrin-
sic transversality”was proposed in [12]. Following [12,Def. 2.2], A, B are intrinsically
transversal at x∗ ∈ A ∩ B with constant κ ∈ (0, 1] if there exists a neighborhood U
of x∗ such that for every a+ ∈ A ∩ U\B and every b+ ∈ B ∩ U\A the estimate

max

{

d

(

a+ − b+

‖a+ − b+‖ , N p
B (b+)

)

, d

(

a+ − b+

‖a+ − b+‖ ,−N p
A(a+)

)}

≥ κ > 0 (5)

is satisfied. This relates to 0-separability as follows:

Proposition 2 (Intrinsic transversality implies 0-separability). Suppose A, B are
intrinsically transversal at x∗ ∈ A ∩ B with transversality constant κ ∈ (0, 1]. Then
they intersect 0-separably at x∗ with constant γ = κ2/2.

Proof By assumption, there exists a neighborhood U of x∗ on which (5) is satisfied.
Now let b+ ∈ PB(a+)∩U , a+ �= b+, a+ ∈ A∩U . Then since a+−b+ ∈ N p

B (b+), we
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have d
(

a+−b+
‖a+−b+‖ , N p

B (b+)
)

= 0, so by (5) we must have d
(

a+−b+
‖a+−b+‖ ,−N p

A(a+)
)

≥
κ . Since b − a+ ∈ N p

A(a+), we obtain

2 − 2
〈b+ − a+, b − a+〉

‖a+ − b+‖‖b − a+‖ ≥ κ2,

and this readily gives

〈b+ − a+, b − a+〉 ≤
(

1 − κ2

2

)

‖a+ − b+‖‖b − a+‖,

which is (1) for the case ω = 0 and γ = κ2/2, as claimed. ��
We will resume the discussion of separable intersection of sets in Sect. 6.

4 Hölder Regularity

In this section, we introduce the concept of Hölder regularity. We then relate it to other
regularity notions like Clarke regularity, prox-regularity, superregularity in the sense
of [21], and its extension in [4].

Definition 2 (Hölder regularity). Let σ ∈ [0, 1). The set B is σ -Hölder regular with
respect to A at b∗ ∈ A∩ B if there exists a neighborhood U of b∗ and a constant c > 0
such that for every a+ ∈ A ∩ U , and every b+ ∈ PB(a+) ∩ U one has

B(a+, (1+c)r)∩{b ∈ PA(a+)−1 : 〈a+−b+, b−b+〉 >
√

crσ+1‖b−b+‖}∩ B = ∅,

(6)
where r = ‖a+ − b+‖. We say that B is Hölder regular with respect to A if it is
σ -Hölder regular with respect to A for every σ ∈ [0, 1).
Remark 4 Using the angle β = � (a+ − b+, b − b+) and r = ‖a+ − b+‖, condition
(6) can be rewritten in the following more suggestive form

B(a+, (1 + c)r) ∩ {b ∈ PA(a+)−1 : cosβ >
√

crσ } ∩ B = ∅. (6′)

Geometrically, this means that the right circular cone with axis a+ − b+ and aperture
β = arccos

√
crσ truncated by the ball B(a+, (1+ c)r) and the B-restricted proximal

normal cone ̂N B
A (a+) contains no points of B other than b+.

In the remainder of this section, we relate Hölder regularity to older geometric and
analytic regularity concepts. We first consider notions related to 0-Hölder regularity.
The case of σ -Hölder regularity with σ > 0 will be considered later.

Definition 3 (Superregularity [21, Proposition 4.4]). A closed set B in R
n is called

superregular at b∗ ∈ B if for every ε > 0 there exists δ > 0 such that for all
b, b+ ∈ B(b∗, δ) ∩ B and u ∈ N p

B (b+), the estimate 〈u, b − b+〉 ≤ ε‖u‖‖b − b+‖ is
satisfied.
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Definition 4 ((A, ε, δ)-regularity [4, Definition 8.1, (i)]). Let A, B be closed sets in
R

n . B is called (A, ε, δ)-regular at b∗ ∈ A ∩ B if for all b, b+ ∈ B(b∗, δ) ∩ B and
every u ∈ ̂N A

B (b+), the estimate 〈u, b − b+〉 ≤ ε‖u‖‖b − b+‖ is satisfied.

The two concepts are linked as follows: B is superregular at b∗ ∈ B if and only if
for every ε > 0 there exists δ > 0 such that B is (Rn, ε, δ)-regular at b∗ in the sense
of Definition 4, see [4, Definition 8.1].

Proposition 3 (0-Hölder regularity from superregularity). Suppose B is (A, ε, δ)-
regular at b∗ ∈ A ∩ B. Then B is 0-Hölder regular at b∗ with respect to A with
constant c = ε2. In particular, if B is superregular at b∗, then B is 0-Hölder regular
with respect to A with constant c that may be chosen arbitrarily small.

Proof Since superregularity of B at b∗ implies that for every ε > 0 there exists δ > 0
such that B is (A, ε, δ)-regular at b∗, [4], it remains to prove the first part of the
statement.

In order to check 0-Hölder regularity, we have to provide a neighborhood U of b∗
and c > 0 such that (6) is satisfied with σ = 0. We choose U = B(b∗, δ

4(1+ε2)
) and

put c = ε2. To check (6) pick a+, b+ ∈ U such that b+ ∈ PB(a+), a+ ∈ A. That
gives r = ‖b+ − a+‖ ≤ δ

2(1+c) . By the definition of the restricted normal cone, we

have u := a+ − b+ ∈ ̂N A
B (b+). Now let b ∈ B, b �= b+. We have to show that b

is not an element of the set in (6) for σ = 0. Suppose b ∈ B(a+, (1 + c)r). Then
we have to show 〈a+ − b+, b − b+〉 ≤ √

cr‖b − b+‖. Observe that ‖b − b∗‖ ≤
‖b − a+‖ + ‖a+ − b∗‖ ≤ (1 + c)r + δ

4(1+c) ≤ (1 + c) δ
2(1+c) + δ

4(1+c) < δ. Hence,

(A, ε, δ)-regularity implies 〈u, b − b+〉 ≤ ε‖u‖‖b − b+‖ = √
c‖u‖‖b − b+‖, and

the claim follows. ��
Remark 5 Example 7.1 shows that the converse of proposition 3 is not true. The
difference between superregularity and its extension (A, ε, δ)-regularity on the one
hand, and 0-Hölder regularity on the other, is the following: In (6), we exclude points
in the intersection of a restricted right circular cone with vertex b+, axis a+ − b+,
and aperture β = arccos

√
crσ and the shrinking ball B(a+, (1 + c)r). In contrast,

(A, ε, δ)-regularity forbids many more points, namely all points in that same cone,
but within the fixed ball B(b∗, δ). In consequence, this type of regularity is not suited
to deal with singularities pointing inwards, like the prototype in Example 7.1.

Remark 6 If B is σ -Hölder regular at b∗ with respect to A with constant c > 0 on the
neighborhood U of b∗, and if σ ′ < σ , then for every c′ ∈ (0, c), there exists a neigh-
borhood V ⊂ U of b∗ such that B is σ ′-Hölder regular at b∗ with constant c′. Indeed,
if b ∈ B(a+, (1 + c′)r) in (6), then also b ∈ B(a+, (1 + c)r), hence by assumption
cosβ ≤ √

crσ = √
crσ−σ ′

rσ ′ ≤ √
c′rσ ′

if V is chosen so that
√

crσ−σ ′
<

√
c′.

We next justify our notion of Hölder regularity by proving that prox-regular sets
are σ -Hölder regular for every σ ∈ (0, 1]. Recall that a set B in Rn is prox-regular at
b∗ ∈ B if there exists a neighborhood U of b∗ such that PB(y) is single-valued for
every y ∈ U , cf. [25, Chapter 13].

Consider b ∈ B and let d ∈ N p
B (b) be a unit proximal normal to B at b. Define the

reach of B at b along d as
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R(b, d) = sup{R ≥ 0 : b = PB(b + td) for every 0 ≤ t ≤ R}. (7)

Then R(b, d) ∈ (0,∞], and the case R(b, d) = ∞ occurs, e.g., if B is convex and b
a boundary point of B. We can say that B(b + R(b, d)d, R(b, d)) is the largest ball
with its center on b +R+d which touches B in b from outside, i.e., has no points from
B in its interior.

It was shown in [24, Thm. 1.3(h)] that B is prox-regular at b∗ ∈ B if and only
if there exists r > 0 and a neighborhood U of b∗ such that R(b, d) ≥ r for every
b ∈ U ∩ B and every d ∈ N p

B (b)with ‖d‖ = 1. An immediate consequence is that sets
of positive reach in the sense of Federer [15] are prox-regular; see, e.g., [24, Theorem
1.3]. Therefore, prox-regularity is a local version of positive, or non-vanishing, reach.

We now relax the concept of non-vanishing reach to sets where the reach may
vanish at some boundary points, but slowly so.

Definition 5 Let σ ∈ (0, 1]. The set B has σ -slowly vanishing reach with respect to
the set A at b∗ ∈ A ∩ B if there exists 0 ≤ τ < 1 such that

lim sup
Aa→b∗,b∈PB (a)

‖a − b‖σ

R(b, d)
≤ τ, (8)

where d = (a − b)/‖a − b‖. We say that the reach vanishes with exponent σ and rate
τ .

Proposition 4 If B is prox-regular at b∗ ∈ A ∩ B, then it has slowly vanishing reach
at b∗ with respect to A with rate τ = 0 and arbitrary exponent σ ∈ (0, 1].
Proof Let τ ′ > 0. By [24, Thm. 1.3(h)] prox-regularity at b∗ implies that there exist
ε > 0 and r > 0 such that R(b, d) ≥ r for every b ∈ B with ‖b − b∗‖ ≤ ε and every
d ∈ N p

B (b)with ‖d‖ = 1. By shrinking ε if necessary, wemay assume εσ /(2σ r) < τ ′.
Now let a ∈ A∩B(b∗, ε

2 ) be arbitrary, choose b ∈ PB(a), and let d = (a−b)/‖a−b‖.
Then as b∗ ∈ A∩ B, we have ‖b−b∗‖ ≤ ‖b−a‖+‖a −b∗‖ ≤ 2‖a −b∗‖ ≤ ε. Since
d ∈ N p

B (b), the above gives us R(b, d) ≥ r . Therefore, since ‖a − b‖ = dB(a) ≤
‖a − b∗‖, the quotient in (8) satisfies

‖a − b‖σ

R(b, d)
≤ εσ

2σ r
< τ ′,

and since τ ′ > 0 was arbitrary, this shows that (8) is satisfied with τ = 0. ��
Proposition 5 (Hölder regularity from slowly vanishing reach). Let σ ∈ (0, 1). Sup-
pose B has σ -slowly vanishing reach with rate τ ∈ [0, 1) with respect to A at
b∗ ∈ A ∩ B. Then B is (1 − σ)-Hölder regular with respect to A with any constant
c > 0 satisfying

τ

2

√
2 + c < 1. (9)

In particular, c may be chosen arbitrarily small.
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Proof 1) We have to show that there exists a neighborhood U of b∗ such that (6) is
satisfied with c as in (9) and with exponent 1 − σ .

By condition (9), we can choose τ ′ > τ and ε > 0 such that

τ ′

2

(

ε +
√

ε2 + 2 + c
)

< 1.

By condition (8), and since τ < τ ′, there exists a neighborhood U of b∗ such that
whenever a+, b+ ∈ U , a+ ∈ A, b+ ∈ PB(a+) and d = (a+ − b+)/‖a+ − b+‖, then
rσ /R(b+, d) < τ ′, where r := ‖a+ − b+‖. On shrinking U further if necessary, we
may arrange that a+, b+ ∈ U implies r1−σ = ‖a+ − b+‖1−σ < ε. We will show that
U is the neighborhood we need in condition (6).

2) To prove this, pick a+, b+ ∈ U , a+ ∈ A, b+ ∈ PB(a+), put r = ‖a+ − b+‖,
and let b ∈ B, b �= b+. We have to show that b is not an element of the set (6′). To
check this, let β be the angle β = � (a+ −b+, b −b+). Since there is nothing to prove
for b /∈ B(a+, (1+ c)r), we assume b ∈ B(a+, (1+ c)r). Now we have to show that
cosβ ≤ √

cr1−σ . As this is clear for cosβ ≤ 0, we may assume cosβ > 0.
Let us define

R := r

2

⎛

⎝1 +
√

1 + 2c + c2

cos2 β

⎞

⎠ , (10)

where r, β are as before. We claim that the ball B(b+ + Rd, R) contains b, where as
above d = (a+ − b+)/‖a+ − b+‖. To prove this, note that by the cosine theorem,
applied in the triangle a+, b+, b, we have

‖a+ − b‖2 = r2 + ‖b − b+‖2 − 2r‖b − b+‖ cosβ.

Since ‖a+ − b‖ ≤ (1 + c)r , we obtain

r2 + ‖b − b+‖2 − 2r‖b − b+‖ cosβ ≤ (1 + c)2r2,

which on completing squares turns out to be the same as

‖b − b+‖ ≤ r

(

cosβ +
√

2c + c2 + cos2 β

)

= 2R cosβ.

Here, the last equality uses the definition (10) of R. We therefore obtain

‖b − b+‖2 ≤ 2R cosβ‖b − b+‖,

and using the cosine theorem again, now in the triangle b+ + Rd, b+, b, we deduce

‖b+ + Rd − b‖2 = R2 + ‖b − b+‖2 − 2R‖b − b+‖ cosβ ≤ R2.

This gives b ∈ B(b+ + Rd, R) as claimed.
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3) By the definition (7) of R(b+, d), any radius R′ < R(b+, d) must give rise to
a ball with B(b+ + R′d, R′) ∩ B = {b+}. But as we have shown in part 2), the ball
B(b+ + Rd, R) contains b, so necessarily R ≥ R(b+, d). Hence, by the choice of U
in part 1), rσ /R ≤ rσ /R(b+, d) < τ ′, or what is the same, rσ < Rτ ′. Substituting
the definition (10) of R and multiplying by r−σ , we deduce

1 < r1−σ τ ′
⎛

⎝

1

2
+ 1

2

√

1 + 2c + c2

cos2 β

⎞

⎠ .

Now suppose that cosβ >
√

cr1−σ , contrary to what we wish to show. Then

1 < r1−σ τ ′
⎛

⎝

1

2
+ 1

2

√

1 + 2c + c2

cr2(1−σ)

⎞

⎠

= τ ′

2

(

r1−σ +
√

r2(1−σ) + 2 + c
)

<
τ ′

2

(

ε +
√

ε2 + 2 + c
)

< 1,

a contradiction. That proves the result. ��
Since prox-regularity at b∗ ∈ B implies slowly vanishing reach at b∗ with respect

to any closed set A containing b∗, we have the following immediate consequence.

Corollary 3 (Hölder regularity from prox-regularity). Let B be prox-regular. Then B
is σ -Hölder regular with respect to A for every σ ∈ [0, 1) with a constant c > 0 that
may be chosen arbitrarily small.

Proof For σ = 0, this follows from Proposition 3, because prox-regularity implies
superregularity. For σ ∈ (0, 1), we obtain it by combining Propositions 4 and 5. ��

Consider the case of a Lipschitz domain B. Here Hölder regularity may be related
to a property of the boundary ∂ B of B.

Proposition 6 Let σ ∈ (0, 1). Suppose B is the epigraph of a locally Lipschitz function
f : Rn−1 → R. Let x∗ ∈ R

n−1 and suppose there exists a neighborhood V of x∗
and μ > 0 such that for every x0 ∈ V and every proximal subgradient g ∈ ∂p f (x0)
the one-sided Hölder estimate f (x0) + 〈g, x − x0〉 − μ‖x − x0‖1+σ ≤ f (x) is
satisfied for all x ∈ V . Then B is σ -Hölder regular at (x∗, f (x∗)) ∈ B with respect
to every closed set A containing (x∗, f (x∗)), and for every constant c > 0 satisfying
μ ≤ √

c/(2 + c)σ .

Proof We have to find a neighborhood U of b∗ = (x∗, f (x∗)) ∈ B such that (6)
is satisfied with exponent σ and constant c satisfying μ ≤ √

c/(2 + c)σ . Choose
ε > 0 such that B(x∗, ε) ⊂ V . Now choose δ > 0 with δ < ε/(2 + c) and define
U = B(b∗, δ). We will show that U is as required.
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In order to check (6), choose a+ ∈ A\B and b+ ∈ PB(a+) such that a+, b+ ∈ U .
As b+ ∈ PB(a+) ∩ U , we get b+ = (x0, f (x0)) ∈ B for some x0 ∈ V ⊂ R

n−1,
while a+ /∈ B = epi f implies a+ = (x1, ξ1) for some ξ1 < f (x1). Since a+ − b+ is
a proximal normal to B at b+, there exists a proximal subgradient g ∈ ∂p f (x0) such
that (x1, ξ1) = (x0, f (x0))+ t (g,−1) for some t > 0. Using ‖a+ − b+‖ = r , we can
therefore write

a+ − b+ =
(

rg
√

1 + ‖g‖2 ,− r
√

1 + ‖g‖2
)

.

Now consider b ∈ B, b �= b+ such that ‖a+ − b‖ ≤ (1 + c)r . To verify (6′) we have
to show that cosβ ≤ √

crσ , where β = � (a+ −b+, b −b+). Since there is nothing to
prove for cosβ ≤ 0, we assume cosβ > 0. By the definition of B, we have b = (x, ξ)

for some x ∈ R
n−1 and ξ ≥ f (x). Now

cosβ = 〈g, x − x0〉 − ξ + f (x0)
√

1 + ‖g‖2
√

‖x − x0‖2 + (ξ − f (x0))2

≤ 〈g, x − x0〉 − f (x) + f (x0)

‖x − x0‖
≤ μ‖x − x0‖1+σ

‖x − x0‖ = μ‖x − x0‖σ ≤ √
crσ .

Here the first inequality uses the fact that ξ ≥ f (x). The second inequality uses the
one-sided Hölder estimate from the hypothesis. In order to be allowed to use this
estimate, we have to assure that x ∈ V . This follows from

‖x − x∗‖ ≤ ‖b − b∗‖ ≤ ‖b − a+‖ + ‖a+ − b∗‖
≤ (1 + c)‖a+ − b+‖ + ‖a+ − b∗‖
≤ (2 + c)‖a+ − b∗‖ ≤ (2 + c)δ < ε.

The third inequality can be seen as follows: We have

‖x − x0‖ ≤ ‖b − b+‖ ≤ ‖b − a+‖ + ‖a+ − b+‖
≤ (2 + c)‖a+ − b+‖ = (2 + c)r.

Hence,

μ‖x − x0‖σ ≤ μ(2 + c)σ rσ ≤ √
crσ

by the choice of c. That completes the argument. ��
Remark 7 The nomenclature in Proposition 6 can be explained as follows: Lipschitz
smoothness [14] of − f at x0 is a well-known second-order property equivalent to the
second difference quotient
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�2(x) = f (x) − f (x0) − 〈g, x − x0〉
‖x − x0‖2 ≥ −μ > −∞

being bounded below for g ∈ ∂ f (x0) and x in a neighborhood of x0. The Hölder
estimate in Proposition 6 is the analogous butweaker condition�1+σ (·) ≥ −μ > −∞
for some σ ∈ (0, 1). In analogy with [14] one could call this σ -Hölder smoothness of
− f at x0.

We consider the following natural modification of amenability from [25]. The set
B ⊂ R

n is called σ -Hölder amenable at x∗ ∈ B if there exists a neighborhood U of
x∗, a class C1,σ -mapping G : Rn → R

m , and a closed convex set C ⊂ R
m , such

that B ∩ U = {x ∈ U : G(x) ∈ C} and NC (G(x∗)) ∩ ker
(

DG(x∗)T
) = {0},

where DG(x∗) denotes the first-order differential of G at x∗. A typical example in
optimization is when B is defined by C1,σ equality and inequality constraints, where
the Mangasarian–Fromowitz constraint qualification holds at x∗, see [24, Prop. 2.3],
[25, Chap10,F.], [21, Prop. 4.8].

Proposition 7 (Hölder regularity from Hölder amenability). Suppose the closed set
B is σ ′-Hölder amenable at x∗ for some σ ′ ∈ (0, 1]. Then B is σ -Hölder regular at
x∗ with respect to any closed set A containing x∗ for every σ ∈ (0, σ ′), and with
arbitrary constant c.

The proof may be adopted from on [21, Prop. 4.8] with minor changes, and we skip
the details. This result suggests that Hölder regularity is settled between the weaker
superregularity and the stronger prox-regularity. This is true as long as we consider
this type of regularity as a property of B alone. We stress, however, that it is the
combination with A and the shrinking distance between the sets in (6) which makes
our definition 3 truly versatile in applications. This is corroborated by the following
observation.

Proposition 8 (Hölder regularity from intrinsic transversality). Suppose A, B are
intrinsically transversal at x∗ with constant of transversality κ ∈ (0, 1]. Then B is
σ -Hölder regular at x∗ with respect to A for every σ ∈ [0, 1), with any constant c > 0
satisfying c < κ2

1−κ2
.

Proof 1) By [12, Def. 2.2] and [12, Prop. 6.9] there exists a neighborhood V of x∗
such that max

{

dist(u, NB(b)), dist(u,−NA(a+))
} ≥ κ > 0 for all a+ ∈ A ∩ V \B,

b ∈ B ∩ V \A, and u = (a+ − b)/‖a+ − b‖. Following entirely the argument in [12,
page 6], one can now find a smaller neighborhood U of x∗ such that the following is
true: If b ∈ B ∩ U and a+ ∈ PA(b) ∩ U , then even dB(a+) ≤ (1 − κ2)‖b − a+‖.

2) We claim that U is the neighborhood required in σ -Hölder regularity with con-
stant c. To check this, we have to show that the set (6) is empty. We assume that b ∈ U
is an element of that set. Then b ∈ PA(a+)−1 ∩ B and b ∈ B(a+, (1 + c)r). Hence,
we are in the situation of part 1), which means r = dB(a+) ≤ (1 − κ2)‖b − a+‖ ≤
(1 − κ2)(1 + c)r < r , a contradiction. Hence, the set (6) is empty. ��

123



438 Found Comput Math (2016) 16:425–455

5 Convergence

In this section, we prove themain convergence result. Alternating projections converge
locally for setswhich intersect separably, if oneof the sets isHölder regularwith respect
to the other. The proof requires the following preparatory lemma.

Lemma 1 (Three-point estimate). Suppose B intersects A separably at x∗ ∈ A ∩ B
with exponent ω ∈ [0, 2) and constant γ > 0 on the neighborhood U of x∗. Suppose
B is also ω/2-Hölder regular at x∗ ∈ A ∩ B with respect to A on U with constant
c > 0 satisfying c <

γ
2 . Then there exists 0 < � < 1, depending only on γ, c and U,

such that

‖a+ − b+‖2 + �‖b − b+‖2 ≤ ‖a+ − b‖2 (11)

for every building block b → a+ → b+ in U.

Proof 1) By the cosine theorem, we have

‖a+ − b‖2 = ‖a+ − b+‖2 + ‖b − b+‖2 − 2‖a+ − b+‖‖b − b+‖ cosβ,

where β = � (b − b+, a+ − b+). Hence, in order to assure (11) we have to find
� ∈ (0, 1) such that

1−�
2 ‖b − b+‖ ≥ ‖a+ − b+‖ cosβ (12)

for all building blocks b → a+ → b+ in U . We consider two cases. Case I is when
β ∈ (π

2 , π ]. Case II is β ∈ [0, π
2 ].

2) We start by discussing case I. For angles β ∈ (π
2 , π ], we have cosβ < 0, and

hence (12) is trivially true if we choose any 0 < � < 1. For instance, � = 1
2 will do.

To establish (12), we may now concentrate on case II, where β ∈ [0, π
2 ].

3) In case II, we want to use ω/2-Hölder regularity of B with respect to A. We
subdivide case II in two subcases. Case IIa is when cosβ ≤ √

c‖a+ − b+‖ ω
2 . Case

IIb is when cosβ >
√

c‖a+ − b+‖ ω
2 .

Let us start with case IIa, where cosβ ≤ √
c‖a+ − b+‖ ω

2 . Observe that

‖b − b+‖2 = ‖b − a+‖2 + ‖a+ − b+‖2 − 2〈b − a+, b+ − a+〉
= (‖b − a+‖ − ‖a+ − b+‖)2 + 2‖b − a+‖‖a+ − b+‖ (1 − cosα)

≥ 2‖b − a+‖‖a+ − b+‖ (1 − cosα) ,

where α = � (b − a+, b+ − a+). By the angle condition (1′), we have 1 − cosα ≥
γ ‖a+ − b+‖ω for every building block b → a+ → b+ in U . Hence,

‖b − b+‖2 ≥ 2γ ‖b − a+‖‖a+ − b+‖1+ω ≥ 2γ ‖a+ − b+‖2+ω,
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where the last estimate uses b+ ∈ PB(a+). Altogether we obtain

‖b − b+‖ ≥ √2γ ‖a+ − b+‖1+ ω
2 ≥
√

2γ

c
‖a+ − b+‖ cosβ,

bearing in mind that we are in case IIa. To assure (12) we put � = 1 −
√

2c
γ
. Then

� ∈ (0, 1), because of the hypothesis c <
γ
2 .

4) Let us now deal with case IIb, where cosβ >
√

c‖a+ − b+‖ ω
2 . By Hölder

regularity (6) of B with respect to A and since a+ ∈ PA(b), we have b /∈ B(a+, (1 +
c)r), where r = ‖a+ − b+‖. In other words, ‖b − a+‖ > (1 + c)‖a+ − b+‖. Using
this and the cosine theorem again, we have

‖b − b+‖2 = ‖b − a+‖2 − ‖a+ − b+‖2 + 2‖b − b+‖‖a+ − b+‖ cosβ

≥ c(c + 2)‖a+ − b+‖2 + 2‖b − b+‖‖a+ − b+‖ cosβ.

Since a+ �= b+, this may be rearranged as

‖b − b+‖2
‖a+ − b+‖2 − 2

‖b − b+‖
‖a+ − b+‖ cosβ − c(c + 2) ≥ 0. (13)

Hence, (13) implies that the polynomial P(X) = X2 − 2X cosβ − c(c + 2) is non-

negative at X = ‖b−b+‖
‖a+−b+‖ . But for non-negative X , non-negativity P(X) ≥ 0 is

equivalent to

X ≥ cosβ +
√

cos2 β + c(c + 2) = cosβ

(

1 +
√

1 + c(c + 2)

cos2 β

)

.

Hence, for X = ‖b−b+‖
‖a+−b+‖ we know that

‖b − b+‖
‖a+ − b+‖ ≥ cosβ

(

1 +
√

1 + c(c + 2)

cos2 β

)

. (14)

Put �r,β = 1+
√

1 + c(c+2)
cos2 β

, then �r,β ≥ c + 2. Hence, � = c
2+c assures (12) in case

IIb.
5) In conclusion, if we put � = min

{

1
2 , 1 −

√

2c
γ

, c
2+c

}

, with c <
γ
2 , then (12) is

satisfied in all cases. ��
Theorem 1 (Local convergence). Suppose B intersects A separably at x∗ ∈ A ∩ B
with exponent ω ∈ [0, 2) and constant γ and is ω/2-Hölder regular at x∗ with respect
to A and constant c <

γ
2 . Then there exists a neighborhood V of x∗ such that every

sequence of alternating projections between A and B which enters V converges to a
point b∗ ∈ A ∩ B.
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Proof 1) By hypothesis, there exists a neighborhood U = B(x∗, 4ε) of x∗ ∈ A ∩ B
such that every building block b → a+ → b+ with b, a+, b+ ∈ U satisfies the angle
condition 1− cosα ≥ γ ‖b+ −a+‖ω, where α = � (b −a+, b+ −a+). In addition, by
shrinkingU if necessary, wemay assume that B isω/2-Hölder regular at x∗ onU with
constant c <

γ
2 . Then by the three-point estimate (Lemma 1), there exists � ∈ (0, 1)

depending only on c, γ and U , such that ‖a+ − b+‖2 + �‖b − b+‖2 ≤ ‖a+ − b‖2
for every such building block. Since ‖a+ − b‖ ≤ ‖a − b‖, we deduce the following
four-point estimate

dB(a+)2 + �‖b − b+‖2 ≤ dB(a)2 (15)

for building blocks a → b → a+ → b+ with b, a+, b+ ∈ U .
2) Define the constants θ = (ω + 2)/4 and C = 1/((1− θ)�

√
2γ )). Choose δ > 0

such that

9δ + C22(1−θ)δ2(1−θ) <
ε

4
,

which implies 16δ < ε. Then define the neighborhood V as V = B(x∗, δ). We have
to show that if the alternating sequence enters V , then it converges to a unique limit
b∗ ∈ A ∩ B. By relabeling the sequence, we may without loss of generality assume
that b0 ∈ V = B(x∗, δ). The case where the ak’s reach V first is treated analogously.

We shall prove by induction that for every k ≥ 1, we have

bk, ak+1, bk+1 ∈ B(x∗, ε) (16)

and

k
∑

j=1

‖b j − b j+1‖ ≤ 1

2

k
∑

j=1

‖b j−1 − b j‖ + C

2

(

dB(a1)
2(1−θ) − dB(ak+1)

2(1−θ)
)

.

(17)

Let us first do the induction step and suppose that hypotheses (16), (17) are true at
k − 1 for some k ≥ 2. We have to show that they also hold at k.

2.1) Firstlywe check (16) at k. By (16) at k−1weknow thatbk−1, ak, bk ∈ B(x∗, ε).
So it remains to prove ak+1, bk+1 ∈ B(x∗, ε). We claim that bk ∈ B(x∗, ε

4 ). Indeed,
using the induction hypothesis (17) at k − 1 gives

k−1
∑

j=1

‖b j − b j+1‖ ≤ 1

2

k−1
∑

j=1

‖b j − b j−1‖ + C

2

(

dB(a1)
2(1−θ) − dB(ak)

2(1−θ)
)

.

Hence,
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k−1
∑

j=1

‖b j − b j+1‖ ≤ ‖b0 − b1‖ + C dB(a1)
2(1−θ) − C dB(ak)

2(1−θ) − ‖bk−1 − bk‖

≤ ‖b0 − b1‖ + C dB(a1)
2(1−θ).

Therefore,

‖bk − x∗‖ ≤ ‖bk − b1‖ + ‖b1 − x∗‖ ≤
k−1
∑

j=1

‖b j+1 − b j‖ + ‖b1 − x∗‖

≤ ‖b0 − b1‖ + C dB(a1)
2(1−θ) + ‖b1 − x∗‖. (18)

Since b0 ∈ B(x∗, δ), we have ‖b0 − a1‖ ≤ ‖b0 − x∗‖ ≤ δ, hence a1 ∈ B(x∗, 2δ).
Then ‖a1 − b1‖ ≤ ‖a1 − x∗‖ ≤ 2δ, which gives ‖b1 − x∗‖ ≤ 4δ. It follows that
‖b0 − b1‖ ≤ 5δ.Now since dB(a1) = ‖a1 − b1‖ ≤ 2δ, going back to (18), we obtain

‖bk − x∗‖ ≤ 9δ + C22(1−θ)δ2(1−θ) <
ε

4
,

which is our above claim. Now this implies

‖ak+1 − x∗‖ ≤ ‖ak+1 − bk‖ + ‖bk − x∗‖ ≤ 2‖bk − x∗‖ <
ε

2
< ε,

and

‖bk+1 − x∗‖ ≤ ‖ak+1 − bk+1‖ + ‖ak+1 − x∗‖ ≤ 2‖ak+1 − x∗‖ < ε.

This proves ak+1 ∈ B(x∗, ε) and bk+1 ∈ B(x∗, ε) and therefore (16) at k.
2.2) Let us now prove that (17) is true at k. Using the induction hypothesis (16) at

k − 1, that is, bk−1, ak , bk ∈ B(x∗, ε), we apply part 1) of the proof to the building
block bk−1 → ak → bk , which gives

1 − cosαk

‖ak − bk‖ω
≥ γ, (19)

where αk = � (bk−1 −ak, bk −ak). By part 2.1), which is already proved, we have bk ,
ak+1, bk+1 ∈ B(x∗, ε) andB(x∗, ε) ⊂ U , so that we can apply the four-point estimate
of part 1) to the building block bk → ak+1 → bk+1. This gives

dB(ak+1)
2 + �‖bk − bk+1‖2 ≤ dB(ak)

2. (20)

Now using the cosine theorem and (19), we obtain
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‖bk−1 − bk‖2 = ‖bk−1 − ak‖2 + ‖ak − bk‖2 − 2‖bk−1 − ak‖‖ak − bk‖ cosαk

= (‖bk−1 − ak‖ − ‖ak − bk‖)2 + 2‖bk−1 − ak‖‖ak − bk‖(1−cosαk)

≥ (‖bk−1 − ak‖ − ‖ak − bk‖)2 + 2γ ‖bk−1 − ak‖‖ak − bk‖ω+1

≥ 2γ ‖bk−1 − ak‖‖ak − bk‖ω+1.

Since bk ∈ PB(ak) and bk−1 ∈ B, we have ‖bk−1 − ak‖ ≥ ‖ak − bk‖ = dB(ak).
Hence, ‖bk−1 − bk‖2 ≥ 2γ dB(ak)

ω+2, or what is the same

‖ak − bk‖−(ω+2)/2‖bk−1 − bk‖ ≥ √2γ . (21)

Recalling that θ = (ω + 2)/4, we have θ ∈ [ 12 , 1), because ω ∈ [0, 2). By concavity
of the function s �→ s1−θ /(1 − θ), we have s1−θ

1 − s1−θ
2 ≥ (1 − θ)s−θ

1 (s1 − s2).
Applying this to s1 = dB(ak)

2 and s2 = dB(ak+1)
2, we obtain

dB(ak)
2(1−θ) − dB(ak+1)

2(1−θ) ≥ (1 − θ)dB(ak)
−2θ
(

dB(ak)
2 − dB(ak+1)

2
)

= (1−θ)‖ak −bk‖−2θ
(

‖ak −bk‖2−‖ak+1−bk+1‖2
)

≥ (1 − θ)�
√

2γ
‖bk − bk+1‖2
‖bk−1 − bk‖ ,

where the last estimate uses (20) and (21). Multiplying by ‖bk − bk−1‖ and recalling
that C = 1/((1 − θ)�

√
2γ ), this gives

C
(

dB(ak)
2(1−θ) − dB(ak+1)

2(1−θ)
)

‖bk − bk−1‖ ≥ ‖bk − bk+1‖2.

By comparison of the arithmetic and geometric mean, a2 ≤ bc implies a ≤ 1
2b + 1

2c
for positive a, b, c, hence we obtain

‖bk − bk+1‖ ≤ 1

2
‖bk − bk−1‖ + C

2

(

dB(ak)
2(1−θ) − dB(ak+1)

2(1−θ)
)

. (22)

By the induction hypothesis, we have (17) at k − 1, that is,

k−1
∑

j=1

‖b j − b j+1‖ ≤ 1

2

k−1
∑

j=1

‖b j−1 − b j‖ + C

2

(

dB(a1)
2(1−θ) − dB(ak)

2(1−θ)
)

.

Adding this and (22) gives (17) at index k.
2.3) Let us now prove that the hypotheses (16) and (17) hold at k = 1. Concerning

(16), since b1 ∈ B(x∗, 4δ) and ‖b1 − a2‖ ≤ 4δ ≤ ε
4 , we have a2 ∈ B(x∗, ε

2 ). Then
using ‖a2 − b2‖ ≤ ε

2 gives b2 ∈ B(x∗, ε), so (16) is true at k = 1.
Concerning the validity of (17) at k = 1, observe that using b0, b1, a1 ∈ B(x∗, ε

4 ),
we may repeat the argument in the induction step starting before formula (20) with
k = 1 in the place of k. The conclusion is formula (22) at k = 1, that is,
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‖b1 − b2‖ ≤ 1

2
‖b1 − b0‖ + C

2

(

dB(a1)
2(1−θ)) − dB(a2)

2(1−θ)
)

,

and this is precisely (17) at k = 1. This concludes the induction argument.
3) Having proved (16), (17) for all indices k ≥ 1, we see from (18) that the series
∑∞

j=1 ‖b j −b j+1‖ converges, whichmeans bk is a Cauchy sequence, which converges
to a limit b∗ ∈ B ∩B(x∗, ε). Using relation (21) we conclude that ak converges to the
same limit b∗ ∈ A ∩ B. ��

Our next result gives the convergence rate for ω ∈ (0, 2). The case ω = 0, where
linear convergence is obtained, will be treated separately in Theorem 3.

Corollary 4 (Rate of convergence). Under the hypotheses of Theorem 1, with ω ∈
(0, 2), the convergence rates are ‖bk − b∗‖ = O

(

k− 2−ω
2ω

)

and ‖ak − b∗‖ =
O
(

k− 2−ω
2ω

)

.

Proof Summing (22) from k = N to k = M gives

−1

2
‖bN − bN−1‖ + 1

2

M−1
∑

k=N

‖bk − bk+1‖ + ‖bM − bM+1‖

≤ C

2

(

dB(aN )2(1−θ) − dB(aM+1)
2(1−θ)
)

.

Passing to the limit M → ∞ gives

−1

2
‖bN − bN−1‖ + 1

2

∞
∑

k=N

‖bk − bk+1‖ ≤ C

2
dB(aN )2(1−θ).

Introducing SN =∑∞
k=N ‖bk − bk+1‖, this becomes

−1

2
(SN−1 − SN ) + 1

2
SN ≤ C

2
dB(aN )2(1−θ).

Consequently,

1

2
SN ≤ 1

2
(SN−1 − SN ) + C dB(aN )2(1−θ).

Nowusing estimate (21), we have dB(aN )2(1−θ) ≤ (2γ )− 1−θ
2θ ‖bN−1−bN ‖ 1−θ

θ . Putting

C ′ := C(2γ )− 1−θ
2θ and substituting this gives

1

2
SN ≤ 1

2
(SN−1 − SN ) + C ′ (SN−1 − SN )

1−θ
θ . (23)
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Since θ ∈ ( 12 , 1
)

, we have (1 − θ)/θ ∈ (0, 1). Moreover, SN → 0 implies SN−1 −
SN → 0, so the second term (SN−1 − SN )

1−θ
θ on the right of (23) dominates the first

term 1
2 (SN−1 − SN ). That means, there exists another constant C ′′ > 0 such that

S
θ

1−θ

N ≤ C ′′(SN−1 − SN )

for all N ∈ N. We claim that there exists yet another constant C ′′′ such that

1 ≤ C ′′(SN−1 − SN )S
− θ

1−θ

N ≤ C ′′′
(

S
− 2θ−1

1−θ

N − S
− 2θ−1

1−θ

N−1

)

. (24)

Assuming this proved, summation of (24) from N = 1 to N = M gives

M ≤ C ′′′
(

S
− 2θ−1

1−θ

M − S
− 2θ−1

1−θ

1

)

.

Hence, for yet two other constants C ′′′′, C ′′′′′,

SM ≤ C ′′′′
[

S
− 2θ−1

1−θ

1 + M

]− 1−θ
2θ−1 ≤ C ′′′′′M− 1−θ

2θ−1 .

Since ‖bM − b∗‖ ≤ SM by the triangle inequality, that proves the claimed speed of
convergence.

In order to prove (24), we divide the set of indices into I = {N : 2SN ≥ SN−1}
and J = {N : 2SN < SN−1}. For N ∈ I, we have

(SN−1 − SN )S
− θ

1−θ

N ≤ 2
θ

1−θ (SN−1 − SN )S
− θ

1−θ

N−1

≤ 2
θ

1−θ

∫ SN−1

SN

S− θ
1−θ dS

= 2
θ

1−θ
1 − θ

2θ − 1

(

S
− 2θ−1

1−θ

N − S
− 2θ−1

1−θ

N−1

)

,

proving (24). In contrast, for N ∈ J we have

S
− 2θ−1

1−θ

N − S
− 2θ−1

1−θ

N−1 ≥ 2
2θ−1
1−θ S

− 2θ−1
1−θ

N−1 − S
− 2θ−1

1−θ

N−1 =
(

2
2θ−1
1−θ − 1

)

S
− 2θ−1

1−θ

N−1 → ∞

in view of SN−1 → 0, 2θ−1
1−θ

> 0 and 2
2θ−1
1−θ − 1 > 0. So on the set J estimate

(24) is also satisfied. Finally, the same estimate for ak follows from ‖ak+1 − b∗‖ ≤
‖ak+1 − bk‖ + ‖bk − b∗‖ ≤ 2‖bk − b∗‖. ��
Theorem 2 (Local convergence with linear rate). Let A, B intersect 0-separably at x∗
with constant γ ∈ (0, 2). Suppose B is 0-Hölder regular at x∗ with respect to A with
constant c <

γ
2 . Then there exists a neighborhood V of x∗ such that every sequence

of alternating projections that enters V converges R-linearly to a point b∗ ∈ A ∩ B.

123



Found Comput Math (2016) 16:425–455 445

Proof Applying Lemma 1 and Theorem 1 in the caseω = 0, we obtain convergence of
the sequence ak, bk to a point b∗ ∈ A ∩ B from summability of

∑

k ‖bk−1 −bk‖. Now
from the Proof of Corollary 4, we see that in the case θ = 1

2 equation (23) simplifies
to

1

2
SN ≤ 1

2
(SN−1 − SN ) + C ′(SN−1 − SN ),

or what is the same

SN ≤ 1 + 2C ′

2 + 2C ′ SN−1.

This proves Q-linear convergence of SN to 0, hence R-linear convergence of bN → b∗.
��

Remark 8 Theorem 2 extends the results in [21, Thm. 5.2] and [4, Thm. 3.14] in
two ways. Firstly, as seen in Example 7.1, 0-Hölder regularity includes sets B which
have singularities pointing inwards, where superregularity [21] and its extension in
[4] fail. Secondly, 0-separability is weaker than linear regularity or the CQ in [4], see
Example 7.4.

We now obtain the following consequence of Theorem 1, originally proved in [5]
for more general families of sets. When specialized to the case of two sets we have

Corollary 5 (Bauschke et al. [5, Theorem 3.14]). Suppose (A, Ã, B, B̃) satisfies the
CQ-condition (2) at x∗ ∈ A ∩ B, where PA(∂ B\A) ⊂ Ã, PB(∂ A\B) ⊂ B̃. Moreover,
suppose for every ε > 0 there exists δ > 0 such that B is (A, ε, δ) regular at x∗. Then
there exists a neighborhood V of x∗ such that every alternating sequence which enters
V converges R-linearly to a point in A ∩ B. ��
Remark 9 While [4, Thm.3.14] is slightly more restrictive than Theorem 2 as far as
the regularity and transversality hypotheses are concerned, the authors of [4,5] go on
the other hand further than our present contribution in two ways. They discuss the case
of more than two sets, and they quantify the size of the neighborhood on which the
observed convergence rate is attained. A fine analysis of the Proof of Lemma 1 and
Corollary 4 should in principle allow a similar more quantitative version of Theorem 2.

As already shown in [5] one readily derives

Corollary 6 (Lewis, Luke, Malick [21]). Suppose A, B intersect linearly regularly
and B is superregular. Then alternating projections converge locally R-linearly to a
point in the intersection. ��

The following is now a consequence of Theorem 2, using Propositions 2 and 8.

Corollary 7 (Drusvyatskiy, Ioffe, Lewis [12]). Suppose A, B intersect intrinsically
transversally at x∗. Then there exists a neighborhood U of x∗ such that every sequence
of alternating projections entering U converges R-linearly to a point in the intersection.
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Proof By Proposition 2, the sets A, B intersect 0-separably at x∗ with constant γ =
κ2/2 ∈ (0, 1]. By Proposition 8, B is 0-Hölder regular with respect to A at x∗ with
any constant c < κ2/(1 − κ2) = γ /(2 − γ ). Choosing c < γ/2 allows us therefore
to apply Theorem 2. ��
Remark 10 Drusvyatskiy et al. [12] stress that their approach gives local R-linear
convergence under a transversality hypothesis alone, while the older [5,21] as well as
our present approach still need regularity assumptions. However, this statement should
be read with care, because Propositions 2 and 8 show that intrinsic transversality
amalgamates transversality and regularity aspects. In particular, it is more restrictive
than 0-Hölder regularity in tandem with 0-separability, so that Theorem 2 is stronger
than the main result in [12].

6 Subanalytic Sets

Following [8], a subset A of Rn is called semianalytic if for every x ∈ R
n there exists

an open neighborhood V of x such that

A ∩ V =
⋃

i∈I

⋂

j∈J

{x ∈ V : φi j (x) = 0, ψi j (x) > 0} (25)

for finite sets I, J and real-analytic functions φi j , ψi j : V → R. The set B in R
n

is called subanalytic if for every x ∈ R
n there exist a neighborhood V of x and

a bounded semianalytic subset A of some R
n × R

m , m ≥ 1, such that B ∩ V =
{x ∈ R

n : ∃y ∈ R
m such that (x, y) ∈ A}. Finally, an extended real-valued function

f : Rn → R∪{∞} is called subanalytic if its graph is a subanalytic subset ofRn ×R.
We consider the function f : Rn → R∪{∞} defined as f (x) = i A(x)+ 1

2dB(x)2,
where i A is the indicator function of A; cf. [22, p.84].

Lemma 2 Let f = i A + 1
2d2

B. Let a+ ∈ A be projected from b ∈ B and v =
λ(b − a+) ∈ N p

A(a+), where λ ≥ 0. Then v + a+ − PB(a+) ⊂̂∂ f (a+).

Proof Note that a+ − PB(a+) ⊂̂∂ ( 12d2
B

)

(a+) by [22, 1.3.3] or [25, Example 8.53].
Next observe that ̂∂i A(a+) = ̂NA(a+) by [22, Proposition 1.79] or [25, Exercice
8.14]. Hence, v ∈ N p

A(a+) ⊂ ̂NA(a+) = ̂∂i A(a+) using [4, Lemma 2.4]. Finally,
by the sum rule [19, Prop. 1.12], we havê∂i A(a+) +̂∂ 1

2d2
B(a+) ⊂ ̂∂ f (a+), which

completes the proof. ��
Definition 6 Let f : Rn → R ∪ {∞} be lower semi-continuous with closed domain
such that f |dom f is continuous. We say that f satisfies the Łojasiewicz inequality
with exponent θ ∈ [0, 1) at the critical point x∗ of f if there exists γ > 0 and a
neighborhoodU of x∗ such that | f (x)− f (x∗)|−θ‖g‖ ≥ γ for every x ∈ U and every
g ∈̂∂ f (x).

Here x∗ is critical if 0 ∈ ∂ f (x∗), see [22,25].
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Lemma 3 Suppose f = i A + 1
2d2

B satisfies the Łojasiewicz inequality with exponent
θ ∈ [0, 1) at a∗ = b∗ ∈ A ∩ B and constant γ > 0. Then in fact θ > 1

2 . Moreover,
B intersects A separably with exponent ω = 4θ − 2 ∈ (0, 2) and constant γ ′ =
2−2θ−1γ 2.

Proof Note that f (a∗) = 0. Therefore, there exists a neighborhood U of a∗ ∈ A ∩ B
such that

f (a+)−θ‖g‖ ≥ γ > 0 (26)

for every a+ ∈ A ∩ U and every g ∈ ̂∂ f (a+). Now let a → b → a+ → b+ be a
building block with a, b, a+, b+ ∈ U . From Lemma 2, g = v + a+ − b+ ∈̂∂ f (a+)

for every v ∈ N p
A(a+) of the form v = λ(b −a+). This uses the fact that a+ ∈ PA(b).

Hence, by (26) we have

2θ dB(a+)−2θ‖λ(b − a+) + a+ − b+‖ ≥ γ > 0

for every λ ≥ 0. We deduce

dB(a+)−2θ min
λ≥0

‖λ(b − a+) + a+ − b+‖ ≥ 2−θ γ . (27)

Let us for the time being consider angles α = � (b − a+, b+ − a+) smaller than 90◦.
Then the minimum value in (27) is dB(a+)−2θ‖a+ − b+‖ sin α. Therefore,

sin α

dB(a+)2θ−1 ≥ 2−θ γ . (28)

Since 1 − cosα ≥ 1
2 sin

2 α, estimate (28) implies

1 − cosα

dB(a+)4θ−2 ≥ 2−2θ−1γ 2. (29)

This shows that we must have θ > 1
2 , because the numerator tends to 0, so the

denominator has to go to zero, too, which it does for 4θ − 2 > 0.
Let us now discuss the case where α ≥ 90◦. We claim that the same estimate (29)

is still satisfied. Since cosα < 0, the numerator 1 − cosα in (29) is ≥ 1. Moreover,
the infimum in (27) is now attained at λ = 0 with the value ‖a+ − b+‖ = dB(a+).
Hence, estimate (27) implies dB(a+)1−2θ ≥ 2−θ γ , hence dB(a+)2−4θ ≥ 2−2θγ 2 >

2−2θ−1γ 2, so that (29) is satisfied. This completes the proof. ��
Theorem 3 Let A, B be closed subanalytic sets. Then A, B intersect separably.

Proof We assume A ∩ B �= ∅, otherwise there is nothing to prove. Consider the
function f : Rn → R∪ {∞} defined as f (x) = i A(x) + 1

2dB(x)2. Then f has closed
domain A and is continuous on A, which makes it amenable to Definition 6. Every
x∗ ∈ A ∩ B is a critical point of f . Since A, B are subanalytic sets, f is subanalytic.
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That can be seen as follows: First observe that dB is subanalytic by [27, I.2.1.11]. Then
d2

B is subanalytic as the product of two subanalytic functions by [27, I.2.1.9]. Finally,
graph( f ) = (A × R) ∩ graph

( 1
2d2

B

)

shows that f is subanalytic.
Now we invoke Theorem 3.1 of [9], which asserts that f satisfies the Łojasiewicz

inequality at x∗ for some θ ∈ (0, 1). Hence, (26) is true for every g ∈ ∂ f (a+), and
therefore also for every g ∈̂∂ f (a+). Applying Lemma 3, we deduce that B intersects
A separably with ω = 4θ − 2. Interchanging the roles of A and B, it follows also that
A intersects B separably. ��
Corollary 8 (Local convergence for subanalytic sets). Let A, B be subanalytic. Sup-
pose B is Hölder regular at x∗ ∈ A ∩ B with respect to A. Then there exists a neigh-
borhood V of x∗ such that every sequence of alternating projections ak, bk which
enters V converges to some b∗ ∈ A ∩ B with rate ‖bk − b∗‖ = O(k−ρ) for some
ρ ∈ (0,∞). ��
Corollary 9 Let A, B be closed subanalytic sets and suppose B has slowly vanishing
reach with respect to A. Let x∗ ∈ A ∩ B, then there exists a neighborhood U of x∗
such that every sequence of alternating projections ak, bk which enters U converges
to some b∗ ∈ A ∩ B with rate ‖bk − b∗‖ = O(k−ρ) for some ρ ∈ (0,∞). ��

Recall from [8,27] that a subset A ofRn is called semialgebraic if for every x ∈ R
n

there exists a neighborhood V of x such that (25) is satisfiedwithφi j , ψi j polynomials.
Naturally, this means that every semialgebraic set is semianalytic, hence subanalytic.
By combining Theorems 1 and 3, we therefore obtain the following result.

Corollary 10 (Borwein, Li, Yao [10]). Let A, B be closed convex semialgebraic sets
with non-empty intersection. Then there exists ρ ∈ (0,∞) such that every sequence
of alternating projections converges with rate ‖bk − b∗‖ = O(k−ρ). ��

As a variant of the method of alternating projects, consider the averaged projection
method. Given closed sets C1, . . . , Cm , the method generates a sequence xn by the
recursion xn+1 ∈ 1

m

(

PC1(xn) + · · · + PCm (xn)
)

.

Corollary 11 Let C1, . . . , Cm be subanalytic sets in R
d , and let c∗ ∈ C1 ∩ · · · ∩

Cm. Then there exists a neighborhood U of c∗ such that whenever a sequence xn of
averaged projections enters U, then it converges to some x∗ ∈ C1 ∩ · · · ∩ Cm with
rate ‖xk − x∗‖ = O(k−ρ) for some ρ ∈ (0,∞).

Proof We follow a standard procedure and define closed sets in the product space
R

d × · · · × R
d (m times) as B = {(x, · · · , x) : x ∈ R

d}, and A = C1 × · · · × Cm .
Note that A is again subanalytic by [27, I.2.1.1], whereas B is convex and subana-
lytic.We have PB(x1, · · · , xm) = ( 1m (x1 + · · · + xm), . . . , 1

m (x1 + · · · + xm)
)

, while
PA(x1, . . . , xm) = (PC1(x1), . . . , PCm (xm)). Therefore, a sequence of averaged pro-
jections between C1, . . . , Cm generates a sequence of alternating projections between
A, B.

Since B is convex, it is prox-regular hence Hölder regular with respect to A, so by
Corollary 8 there exists a neighborhood U = U × · · · × U of (c∗, . . . , c∗) ∈ A ∩ B
such that every alternating sequence which entersU converges to some (x∗, . . . , x∗) ∈
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A ∩ B with rate O(k−ρ) for some ρ ∈ (0,∞). Now consider an averaged projection
sequence xk entering U . It follows that (xk, . . . , xk) ∈ U , hence xk converges to x∗
with that same rate. ��
Remark 11 We mention a related averaged projection method in [1, Corollary 12],
where the authors use the Kurdyka-Łojasiewicz inequality. The employed technique
indicates that results in the spirit of Theorem 3 could be obtained for more general
classes of sets definable in an o-minimal structure [1].

We conclude this section with an application of Theorem 1, demonstrating its
versatility as a convergence test in practical situations. Let CN be a finite dimensional
unitary space, and consider the discrete Fourier transform

x̂(ω) = 1√
N

N−1
∑

t=0

e2π i t ·ω/N x(t), ω = 0, . . . , N − 1

as a unitary linear operator x → x̂ ofCN . The phase retrieval problem [13,16] consist
in estimating an unknown signal x ∈ C

N whose Fourier amplitude |̂x(ω)| = a(ω),
ω = 0, . . . , N − 1, is known. In physical terminology, identifying x means retrieving
its unknown phase x̂(ω)/|̂x(ω)| in frequency domain.

Formally, given a function a(·) : {0, . . . , N − 1} → [0,∞), we have to find an
element of the set B = {x ∈ C

N : |̂x(ω)| = a(ω) for all ω = 0, . . . , N − 1}. Since
this problem is underdetermined, additional information about x in a different Fourier
plane or in the time domain is added. We represent it in the abstract form x ∈ A for a
closed set A. Then the phase retrieval problem is to find x ∈ A ∩ B.

The famous Gerchberg–Saxton error reduction algorithm [16] computes a solu-
tion of the phase retrieval problem by generating a sequence of estimates as fol-
lows: Given x ∈ C

N , compute x̂ and correct its Fourier amplitude by putting
y(ω) = a(ω) x̂(ω)/|̂x(ω)| if x̂(ω) �= 0, and y(ω) = a(ω) if there is extinction
x̂(ω) = 0. For short, y = ax̂/|̂x | with the convention 0/|0| = 1. Then compute the
inverse discrete Fourier transform ỹ of y and build the new iterate x+ by projecting ỹ
on the set A, that is x+ ∈ PA(ỹ). In condensed notation:

x+ ∈ PA
(

(ax̂/|̂x |)∼) . (30)

Corollary 12 (Gerchberg–Saxton error reduction). Suppose the constraint x ∈ A is
represented by a closed subanalytic set A. Let x∗ ∈ A ∩ B be a solution of the phase
retrieval problem. Then there exists ε > 0 such that whenever a Gerchberg–Saxton
sequence xk enters B(x∗, ε), then it converges to a solution x̄ ∈ A ∩ B of the phase
retrieval problem with rate of convergence ‖xk − x̄‖ = O(k−ρ) for some ρ ∈ (0,∞).

Proof With the convention 0/|0| = 1, the mapping x �→ (a x̂/|̂x |)∼ is an orthogonal
projection on the set B = {x ∈ C

N : |̂x(·)| = a(·)}. (See for instance [3, (8),(10)],
where the authors consider even the function space case). Therefore, the Gerchberg–
Saxton algorithm (30) is an instance of the alternating projection methods between
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the subanalytic set A and the Fourier amplitude set B. We show that B is subanalytic
and prox-regular. Local convergence with rateO(k−ρ) then follows from Corollary 9.

As far as subanalyticity of B is concerned, observe that on identifying C
N with

R
2N via x̂(ω) = x̂1(ω) + i x̂2(ω), we have

B =
N−1
⋂

ω=0

{

x ∈ C
N : x̂1(ω)2 + x̂2(ω)2 − a(ω)2 = 0

}

,

which is clearly a representation of the form (25), since the discrete Fourier transform
x �→ x̂ is analytic.

To show prox-regularity of B, we have to show that the projection on B is single-
valued in a neighborhood of B. With the same identification C

N ∼= R
2N evoked

before, the projection on B splits into N projections inR2, given as (̂x1(ω), x̂2(ω)) →
a(ω)

(

x̂1(ω)√
x̂1(ω)2+x̂2(ω)2

,
x̂2(ω)√

x̂1(ω)2+x̂2(ω)2

)

. In the case a(ω) = 0 this is the projection

onto the origin, which is clearly single-valued. For a(ω) > 0 this is the orthogonal
projection onto the sphere of radius a(ω) in R

2, which is single-valued except at
the origin (̂x1(ω), x̂2(ω)) = (0, 0). This means the projection on B is unique on the
neighborhood U = {x ∈ C

N : |̂x(·)| ≥ a(·)/2} of B, proving prox-regularity of B.
��

Remark 12 The constraint x ∈ A may represent additional measurements, or it may
include prior information about the unknown image. In the original work [16], x ∈
A represents Fourier amplitude information from a second Fourier plane, which is
a constraint analogous to x ∈ B. The constraint x ∈ A may also represent prior
information about the support supp(x) of the unknown signal x in physical domain. It
may for instance be known that supp(x) ⊂ S, where S is a subset of {0, . . . , N−1}with
card(S) � N , or with a periodic structure. This is known as an atomicity constraint
in crystallographic phase retrieval [13]. For A = {x ∈ C

N : x(t) = 0 for t /∈ S}, PA

is simply truncation y → y · 1S . Here the Gerchberg–Saxton error correction method
has the explicit form

x+(t) =
{

(ax̂/|̂x |)∼ (t) if t ∈ S
0 else

Other choices of the constraint x ∈ A have been discussed in the literature, see, e.g.,
[13]. Our convergence result requires only subanalyticity of A, a condition which is
always satisfied in practice.

7 Examples

Example 7.1 (Packman gulping an ice-cream cone the wrong way). Consider
packman B = {(x, y) ∈ R

2 : x2 + y2 ≤ 1, x ≤ |y|} the instant before it scarfs
down the ice-cream cone section A = {(x, y) ∈ R

2 : 0 ≤ x2 + y2 ≤ 1, 2|y| ≤ x}
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fitting symmetrically into its notch. We have A ∩ B = {(0, 0)}, leaving an angular gap
of 15◦ on both sides.

Let a+ = (x, 1
2 x) ∈ ∂ A, then b+ = PB(a+) = ( 34 x, 3

4 x
) ∈ ∂ B, which means

r = ‖b+ − a+‖ =
√
2
4 x . It is easy to see that condition (6) is satisfied for every c < 1

and arbitrary σ ∈ [0, 1), i.e., B is Hölder regular with respect to A. This example
shows that Hölder regularity applies to sets which have inward corners and fail Clarke
regularity.

Note that since B is not Clarke regular at x∗ = (0, 0), it is not superregular in the
sense of [21].What is more, B is not (A, ε, δ)-regular in the sense of [4] at x∗ = (0, 0),
regardless how ε, δ > 0 are chosen, because the cone b+ + {v : 〈a+ − b+, v〉 ≤
ε‖a+ − b+‖‖v‖} with vertex at the projected point b+ = ( 34 x, 3

4 x
) ∈ B hits B

at points b′ ∈ B other than b on the opposite side of A, regardless how small ε

is chosen. And this cannot be prevented by shrinking the neighborhood B(x∗, δ).
Note that A, B intersect 0-separably at (0, 0), hence alternating projections converge
linearly by Theorem 2. This cannot be obtained from the results in [4,21].

In [17, Def. 2.9], Hesse and Luke discuss a related concept called (ε, δ)-
subregularity. In [17, Thm 3.11] they prove linear convergence under (ε, δ)-
subregularity of B with respect to A ∩ B, in tandem with a transversality assump-
tion at x∗, called local linear regularity. Note that B above is (0, 1)-subregular with
respect to A ∩ B = {x∗} at x∗ = (0, 0). However, if we change the set A to
A = {(x, y) : 0 ≤ x2 + y2 ≤ 1,− 1

2 x ≤ y ≤ x, x ≥ 0}, then B is no longer (ε, δ)-
subregular with respect to A ∩ B at x∗, regardless how small ε ∈ (0, 1), δ > 0 are
chosen. Since now S = A ∩ B = {(x, y) : x2 + y2 ≤ 1, y = x, x ≥ 0}, fixing δ > 0,
we can find x ∈ B ∩B(x∗, δ), x = (ξ,−ξ)with ξ > 0, and x̄ = (η, η) ∈ S ∩B(x∗, δ)
with η > 0 such that cos � (vx , x̄ − x) is arbitrarily close to 1. Note that B is still
0-Hölder regular at x∗ with respect to A, so Theorem 2 is still applicable.

Example 7.2 (Regularity cannot be dispensedwith). Following [6], consider the spiral
z(φ) = (1+e−φ)eiφ ,φ ∈ [0,∞) in the complex planewhich approaches the unit circle
S = {|z| = 1} form outside. Define a sequence zn = z(φn) with φ1 < φ2 < · · · → ∞
such that ‖zn+1 − zn‖ < ‖zn − zn−1‖ → 0, P{zk :k �=n}∪S(zn) = zn+1, and such that
every z ∈ S is an accumulation point of the zn . In [6] an explicit construction with
these properties is obtained recursively as

zn = z(φn), ‖z(φn+1) − z(φn)‖ = rn, rn+1 = e−φn+1
1 − e−2π

2
. (31)

Let A = {z2n : n ∈ N} ∪ S, B = {z2n−1 : n ∈ N} ∪ S, then A ∩ B = S. Note
that for starting points |z0| > 1, the sequence of alternating projections between A
and B is a tail of the sequence zn , so none of the alternating sequences converges.
Note that � (zn+1 − zn, zn−1 − zn) → π , hence A, B intersect 0-separably at every
x∗ ∈ S = A ∩ B. The CQ in the sense of [4] is satisfied at every x∗ ∈ A ∩ B.
Namely, for z ∈ S, N B

A (z) = N A
B (z) = R+(−i z). Indeed, as an = PA(bn) approaches

z, the direction un = (bn − an)/‖bn − an‖ approaches a direction perpendicular
to z, and since the spiral turns counterclockwise, this direction is −i z. Therefore,
N B

A (z) ∩ (−N A
B (z)) = {0} for every z ∈ S.
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Since the sequence zn fails to converge, we conclude that this must be due to the
lack of regularity at points in S. Indeed, Hölder regularity fails for every 0 ≤ σ < 1.
This can be seen as follows: Since the angle � (b−a+, b+ −a+) for the building block
b → a+ → b+ approaches π , the corresponding angle β = � (b − b+, a+ − b+)

goes to 0, so cosβ → 1, and for σ ∈ (0, 1) we cannot find c > 0 such that cosβ ≤√
crσ . Therefore, in order to assure (6), we would need b /∈ B(a+, (1 + c)r), where

r = ‖a+ − b+‖. This, however, would imply linear convergence of the alternating
sequence, which fails. As a consequence of Proposition 3, the other regularity concepts
fail, as does intrinsic transversality.

Example 7.3 (Discrete spiral I). We consider a discrete approximation of the loga-
rithmic spiral, generated by 8 equally spaced rays emanating from the origin. Starting
on one of the rays, we project perpendicularly on the neighboring ray, going coun-
terclockwise. We label the projected points a1, b1, a2, . . .. This defines two sets A =
{ai : i ∈ N}∪ {(0, 0)} and B = {bi : i ∈ N}∪ {(0, 0)}with A ∩ B = {(0, 0)} such that
PB(ai ) = bi and PA(bi ) = ai+1. Every sequence of alternating projections between A
and B not starting at the origin is a tail of the sequence an, bn and converges to (0, 0).

Since α = � (b − a+, b+ − a+) = 135◦, A, B intersect 0-separably at x∗ = (0, 0).
We check whether the intersection satisfies the CQ in the sense on [4]. Consider one of
the rays on which a point a+ is situated. Then u = b−a+ ∈ ̂N B

A (a+) is perpendicular
to a+ − x∗, i.e., perpendicular to the ray in question. As u is the same for all a+ on
that ray, we have u ∈ N B

A (0, 0). Altogether, N B
A (0, 0) = lin{u1, u3,−u1,−u3} for

four directions spaced 90◦. Similarly, N A
B (0, 0) = {u2, u4,−u2,−u4} spaced 90◦,

and intertwined with the directions of N B
A (0, 0). We have N B

A (0, 0) = −N B
A (0, 0),

and similarly for N A
B (0, 0), and since N A

B (0, 0)∩ N B
A (0, 0) = {(0, 0)}, the intersection

does indeed satisfy the CQ in the sense of [4] for ˜A = A, ˜B = B.
How about regularity at (0, 0)? Naturally, A, B are not superregular at (0, 0),

because they are not Clarke regular. Concerning (A, ε, δ)-regularity of B in the sense
of [4], suppose in a building block b → a+ → b+ we wish to set up a cone with
apex b+ and axis b+ + R+(a+ − b+) by choosing its aperture small enough through
the choice of ε such that all previous points of A are avoided, then we have to choose
smaller and smaller angles β to do this, so this type of regularity fails.

On the other hand, we have σ -Hölder regularity for every σ ∈ [0, 1). Suppose we
start at a1 = (1, 0), then b1 = ( 12 , 1

2

)

and a2 = (0, 1
2 ). After a tour of 360

◦, the spiral
comes back to the horizontal ray R+(1, 0) at a5 = ( 116 , 0

)

. So while at the beginning
the spiral turns within the square [−1, 1]2, from the second tour onward it will stay
in the square [− 1

16 ,
1
16 ]2. As the circle B(b1,

7
16

√
2) contains no points of the small

square in its interior, the distance of b1 to the small square being R = 7
16

√
2, writing

R = (1+c)r ,we conclude thatwe can take c = 7
8

√
2−1 > 0 in (6).Nowup to a scaling

and a rotation, the situation is precisely the same for every building blocka → b → a+
starting in a square of length 2‖a‖. After one 360◦-tour, we end up at a++++ on the
same ray as a, and from there on, the spiral will stay in that smaller square of length
2 1
16‖a‖ = 2‖a++++‖. As a consequence of theorem 2, the sequence converges to

(0, 0) with linear rate. None of the approaches of [4,20,21] allows to derive this.
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Example 7.4 (Discrete spiral II). We can modify the above construction by fixing
φ ∈ (0, π

4 ) and generating rays kφ, k ∈ N. Turning counterclockwise, and keeping
only the projected points, we generate iterates ak, bk with the property that ak has
angle 2kφ mod 2π with the horizontal, bk has angle (2k + 1)φ mod 2π . We put
A = {ak : k ∈ N} ∪ {(0, 0)}, B = {bk : k ∈ N} ∪ {(0, 0)}, then A ∩ B = {(0, 0)}
and PB(ak) = bk , PA(bk) = ak+1 by adapting the argument in Example 7.3. The
sequence represents again a discrete version of the logarithmic spiral, turning inwards
counterclockwise. However, if we now choose φ such that φ/(2π) is irrational, there
will be no periodicity, and the set of directions ak/‖ak‖ will be dense in S

1, and so
for bk/‖bk‖. We have � (b+ − a+, b − a+) = π − φ, which means A, B intersect 0-
separably at (0, 0). They intersect at an angle, this angle being π −φ. However, A, B
do not intersect linearly regularly in the sense of [4,21]. Indeed, let us fix ψ ∈ [0, 2π)

and u = (cosψ, sinψ). Then there exist rays 2kφ arbitrarily close toψ and ak on these
rays, projected from bk−1 on ray (2k − 1)φ. That means, uk = (bk − ak)/‖bk − ak‖
gets arbitrarily close to the direction u⊥ = (− sinψ, cosψ), so u⊥ ∈ N B

A (0, 0). This

shows N ˜BA (0, 0) = R
2 and N ˜AB (0, 0) = R

2 for ˜A = PA(∂ B\A), ˜B = PB(∂ A\B), so
linear regularity and extensions fail.

Example 7.5 (Spiral and cylinder [7]). Consider the cylinder B = {(x1, x2, x3) :
x21 +x22 ≤ 1, 0 ≤ x3 ≤ 1} and the spiral A = {((1+e−t ) cos t, (1+e−t ) sin t, e−t/2) :
t ≥ 0}∪ S, where S = {(cosα, sin α, 0) : α ∈ [0, 2π ]}. Clearly A∩ B = S. As shown
in [7], any sequence of alternating projections between A and B started at a ∈ A\S
wanders down following the spiral, turning infinitely often around the cylinder with
shrinking an − bn → 0. In particular, every x∗ ∈ S is an accumulation point of
an, bn , so convergence fails. Since B, being convex, is clearly Hölder regular with
respect to A, we deduce that the angle condition (1) must fail, so in particular A is not
subanalytic. This is interesting, as A is the projection of an unbounded semianalytic
set in R4. For a picture, see [7].

Example 7.6 (Failure of intrinsic transversality). We consider the sets A = {2−2n :
n ∈ N} ∪ {0}, B = {2−2n+1 : n ∈ N} ∪ {0} in R, so that A ∩ B = {0}. The
sequence of alternating projections is 1, 1

2 ,
1
4 , . . . and converges Q-linearly to 0. We

have N B
A (0) = N A

B (0) = R+, hence A, B intersect with the CQ in the sense of [4] at
0, hence also 0-separably. Note that B is not (A, ε, δ)-regular at 0 in the sense of [4],
but it is σ -Hölder regular for every σ ∈ [0, 1). Note that intrinsic transversality fails
here, because it uses the cones NA(a), NB(b), which in this case are too large because
they coincide with the whole line.

We modify this example as follows: Let an = 2−n , A = {an : n ∈ N} ∪ {0},
bn = 1

2 (an + an+1) − δn , B = {bn : n ∈ N} ∪ {0}, where δn < 2−n(an − bn). Then
‖an+1 − bn‖ shrinks only by a factor 1 − δn → 1 with respect to ‖bn − an‖, while
shrinkage between ‖an+1 − bn‖ and ‖an+1 − bn+1‖ is by a factor close to 1

2 . This
shows that an alternating sequence may converge R-linearly without a fixed shrinkage
factor 1 − κ2 in every half step. Note that Theorem 2 still applies in this case.

Example 7.7 We give an example where A, B intersect tangentially, but not ω-
separably for any ω ∈ [0, 2). Let f : R → R be differentiable with f ′ continuous at
0, f (0) = 0, f (x) > 0 for x �= 0, and define A = epi f = {(x, y) ∈ R

2 : y ≥ f (x)},
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B = {(x, y) ∈ R
2 : y ≤ 0}, then A ∩ B = {(0, 0)}. We consider a building block

b → a+ → b+. Let b+ = (x, 0), then a+ = (x, f (x)). Suppose b = (y, 0), then
y = x + f (x) f ′(x). Then the quotient q in (1′) reads

q(x) =
√

1 + f ′(x)2 − 1

f (x)ω
√

1 + f ′(x)2
= f ′(x)2

f (x)ω
√

1 + f ′(x)2(
√

1 + f ′(x)2 + 1)
≤ f ′(x)2

2 f (x)ω
.

Therefore, if the angle condition (1) is to hold for some ω, then lim infx→0
f ′(x)2

f (x)ω
≥

γ > 0. It is possible to construct f such that this fails for every ω ∈ [0, 2). Take for
instance

f (x) =
{

e
− 1

x2 if x �= 0
0 if x = 0

,

then q(x) ≤ 2x−6 exp(−x−2(2 − ω)) → 0 as x → 0 for 0 < ω < 2. Separability
with ω = 0 is also impossible because f ′(x) → 0 as x → 0. In conclusion, the sets
A and B intersects tangentially, but not separably for any ω ∈ [0, 2).
Example 7.8 Using the same function f and A, B, observe that forω ≥ 2 the quotient
q(x) stays away from 0, so that condition (1′) is satisfied. This explains why values
ω ≥ 2 are not meaningful in Definition 1.
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