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Abstract Greedy algorithms which use only function evaluations are applied to
convex optimization in a general Banach space X . Along with algorithms that use
exact evaluations, algorithms with approximate evaluations are treated. A priori upper
bounds for the convergence rate of the proposed algorithms are given. These bounds
depend on the smoothness of the objective function and the sparsity or compressibility
(with respect to a given dictionary) of a point in X where the minimum is attained.
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1 Introduction

Convex optimization is an important and well-studied subject of numerical analysis.
The canonical setting for such problems is to find the minimum of a convex function
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E over a domain in Rd . Various numerical algorithms have been developed for mini-
mization problems, and a priori bounds for their performance have been proven. We
refer the reader to [1,9–11] for the core results in this area.

In this paper, we are concerned with the more general setting where E is defined
on a domain D in a general Banach space X with norm ‖ · ‖ = ‖ · ‖X . Thus, our main
interest is in approximating

E∗ := inf
x∈D E(x). (1.1)

Problems of this type occur in many important application domains, such as statistical
estimation and learning, optimal control, and shape optimization. Another important
motivation for studying such general problems, even for finite dimensional spaces X ,
is that when the dimension d of X is large, we would like to obtain bounds on the
convergence rate of a proposed algorithm that are independent of this dimension.

Solving (1.1) is an example of a high-dimensional problemand is known to suffer the
curse of dimensionality without additional assumptions on E which serve to reduce its
dimensionality. These additional assumptions take the form of smoothness restrictions
on E and assumptions which imply that the minimum in (1.1) is attained on a subset
of D with additional structure. Typical assumptions for the latter involve notions of
sparsity or compressibility, which are by now heavily employed concepts for high-
dimensional problems. We will always assume that there is a point x∗ ∈ D where the
minimum E∗ is attained, E(x∗) = E∗. We do not assume x∗ is unique. Clearly, the
set D∗ = D∗(E) ⊂ D of all points where the minima is attained is convex.

The algorithms studied in this paper utilize dictionaries D of X . A set of elements
D ⊂ X , whose closed linear span coincides with X is called a symmetric dictionary
if ‖g‖ := ‖g‖X = 1, for all g ∈ D, and in addition g ∈ D implies −g ∈ D. The
simplest example of a dictionary isD = {±ϕ j } j∈� where {ϕ j } j∈� is a Schauder basis
for X . In particular for X = R

d , one can take the canonical basis {e j }dj=1.
Given, such a dictionaryD, there are several types of domains D that are employed

in applications. Sometimes, these domains are the natural domain of the physical
problem. Other times these are constraints imposed on the minimization problem to
ameliorate high dimensionality. We mention the following three common settings.
Sparsity constraints The set �n(D) of functions

f =
∑

g∈�

cgg, #(�) = n, � ⊂ D, (1.2)

is called the set of sparse functions of order n with respect to the dictionary D. One
common assumption is to minimize E on the domain D = �n(D), i.e., to look for an
n sparse minimizer of (1.1).
�1 constraints A more general setting is to minimize E over the closure A1(D) (in X )
of the convex hull of D. A slightly more general setting is to minimize E over one of
the sets

LM := {g ∈ X : g/M ∈ A1(D)}. (1.3)
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Sometimes M is allowed to vary as in model selection or regularization algorithms
from statistics. This is often referred to as �1 minimization.
Unconstrained optimization Imposed constraints, such as sparsity or assuming D =
A1(D), are sometimes artificial and may not reflect the original optimization problem.
We consider therefore the unconstrained minimization where D = X .We always make
the assumption that the minimum of E is actually assumed. Therefore, there is a point
x∗ ∈ X where

E∗ = E(x∗). (1.4)

We do not require that x∗ is unique. Notice that in this case the minimum E∗ is attained
on the set

D0 := {x ∈ X : E(x) ≤ E(0)}. (1.5)

Inwhat follows, we refer tominimization over D0 to be the unconstrainedminimization
problem.

A typical greedy optimization algorithm builds approximations to E∗ of the form
E(Gm),m = 1, 2, . . .where the elementsGm are built recursively using the dictionary
D and typically are in�m(D).Wewill always assume that the initial pointG0 is chosen
as the 0 element. Given that Gm−1 has been defined, one first searches for a direction
ϕm ∈ D for which E(Gm−1 + αϕm) decreases significantly as α moves away from
zero. Once, ϕm is chosen, then one selects Gm = Gm−1 + αmϕm or more generally
Gm = α′

mGm−1 + αmϕm , using some recipe for choosing αm or more generally
αm, α′

m . Algorithms of this type are referred to as greedy algorithms and will be the
object of study in this paper.

There are different strategies for choosing ϕm and αm, α′
m (see, for instance, [2–

4,6,8,13,19,20] and [7]). One possibility to choose ϕm is to use the Fréchet derivative
E ′(Gm−1) of E to choose a steepest descent direction. This approach has been amply
studied and various convergence results for steepest descent algorithms have been
proven, even for the general Banach space setting.We refer the reader to the papers [17,
18,20] which are representative of the convergence results known in this case. The
selection of αm, α′

m is commonly referred to as relaxation and is well studied in
numerical analysis, although the Banach space setting needs additional attention.

Our interest in the present paper are greedy algorithms that do not utilize E ′. They
are preferred since E ′ is not given to us and therefore, in numerical implementations,
must typically be approximated at any given step of the algorithm. We will analyze
several different algorithms of this type which are distinguished from one another by
how Gm is gotten from Gm−1 both in the selection of ϕm and the parameters αm, α′

m .
Our algorithms are built with ideas similar to the analogous, well-studied, greedy
algorithms for approximation of a given element f ∈ X . We refer the reader to [16]
for a comprehensive description of greedy approximation algorithms.

In this introduction, we limit ourselves to two of the main algorithms studied in this
paper. The first of these, which we call the relaxed E-Greedy algorithm (REGA(co))
was introduced in [20] under the name sequential greedy approximation.
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Relaxed E-Greedy Algorithm (REGA(co))We define G0 := 0. For m ≥ 1, assum-
ing Gm−1 has already been defined, we take ϕm ∈ D and 0 ≤ λm ≤ 1 such that

E((1 − λm)Gm−1 + λmϕm) = inf
0≤λ≤1;g∈D

E((1 − λ)Gm−1 + λg)

and define

Gm := (1 − λm)Gm−1 + λmϕm .

We assume that there exist such minimizing ϕm and λm .
We note that the REGA(co) is a modification of the classical Frank–Wolfe algo-
rithm [5]. For convenience, we have assumed the existence of a minimizing ϕm and
λm . However, we also analyze algorithms with only approximate implementation
which avoids this assumption.

Observe that this algorithm is in a sense built for A1(D) because each Gm is
obviously in A1(D). The next algorithm, called the E-Greedy algorithm with free
relaxation (EGAFR(co)), makes some modifications in the relaxation step that will
allow it to be applied to the more general unconstrained minimization problem on D0.

E-Greedy Algorithm with free relaxation (EGAFR(co)) We define G0 := 0. For
m ≥ 1, assuming Gm−1 has already been defined, we take ϕm ∈ D, αm, βm ∈ R

satisfying (assuming existence)

E(αmGm−1 + βmϕm) = inf
α,β∈R;g∈D

E(αGm−1 + βg)

and define

Gm := αmGm−1 + βmϕm .

It is easy to see that each of these algorithms has the following monotonicity

E(G0) ≥ E(G1) ≥ E(G2) ≥ · · · .

Our main goal in this paper is to understand what can be said a priori about the
convergence rate of a specific greedy optimization algorithm of the above form. Such
results are built on two assumptions: (i) the smoothness of E , (ii) assumptions that
the minimum is attained at a point x∗ satisfying a constraint such as the sparsity or �1
constraint. In what follows to measure the smoothness of E , we introduce the modulus
of smoothness

ρ(E, u) := ρ(E, S, u) := 1

2
sup

x∈S,‖y‖=1
|E(x + uy) + E(x − uy) − 2E(x)|, (1.6)

of E on any given set S. We say that E is uniformly smooth on S if ρ(E, S, u)/u → 0
as u → 0.
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The following theorem for REGA(co) is a prototype of the results proved in this
paper.

Theorem 1.1 Let E∗ := inf
x∈A1(D)

E(x).

(i) If E is uniformly smooth on A1(D), then the REGA(co) converges:

lim
m→∞ E(Gm) = E∗. (1.7)

(ii) If in addition, ρ(E, A1(D), u) ≤ γ uq , 1 < q ≤ 2, then

E(Gm) − E∗ ≤ C(q, γ )m1−q , (1.8)

with a positive constant C(q, γ ) which depends only on q and γ .

The case q = 2 of this theorem was proved in [20]. We prove this theorem in Sect. 2.
As we have already noted, the EGAFR(co) is designed to solve the unconstrained

minimization problem where the domain D = X . The performance of this algorithm
will depend not only on the smoothness of E but also on the compressibility of a point
x∗ ∈ D∗ where E takes its minimum. To quantify this compressibility, we introduce

A(ε) := A(E, ε) := inf{M : ∃y ∈ LM such that E(y) − E∗ ≤ ε}. (1.9)

An equivalent way to quantify this compressibility is the error

e(E, M) := inf
y∈LM

E(y) − E∗. (1.10)

Notice that the functions A and e are pseudo-inverses of one another.
The following theorem states the convergence properties of the EGAFR(co).

Theorem 1.2 Let E be uniformly smooth on X and let E∗ := inf
x∈X E(x) = inf

x∈D0
E(x).

(i) The EGAFR(co) converges:

lim
m→∞ E(Gm) = inf

x∈X E(x) = inf
x∈D0

E(x) = E∗.

(ii) If the modulus of smoothness of E satisfies ρ(E, u) ≤ γ uq , 1 < q ≤ 2, then, the
EGAFR(co) satisfies

E(Gm) − E∗ ≤ C(E, q, γ )εm, (1.11)

where

εm := inf{ε : A(ε)qm1−q ≤ ε}. (1.12)

123



374 Found Comput Math (2016) 16:369–394

In particular, if for some r > 0, we have e(E, M) ≤ γ̃ M−r , for all M ≥ 1, then

E(Gm) − E∗ ≤ C(E, q, γ, γ̃ , r)m
1−q
1+q/r . (1.13)

We note that the EGAFR(co) is a modification of the weak greedy algorithm with
free relaxation (WGAFR(co)) studied in [17]. In the WGAFR(co), we first choose
the dictionary direction and then optimize over a two-dimensional subspace. In more
precise words, we perform the following two steps at the mth iteration.

(1) Choose ϕm ∈ D as any element satisfying

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g〉.

(2) Find wm and λm such that

E((1 − wm)Gm−1 + λmϕm) = inf
λ,w

E((1 − w)Gm−1 + λϕm)

and define

Gm := (1 − wm)Gm−1 + λmϕm .

Also note that if x∗ ∈ LM then the estimate in Theorem 1.2 reads

E(Gm) − E∗ ≤ C(E, q, γ )Mqm1−q . (1.14)

We show in the following section howTheorems 1.1 and 1.2 are easily proven using
existing results for greedy algorithms. We also introduce and analyze another greedy
algorithm for convex minimization.

The most important results of the present paper are in Sect. 3 and are motivated
by numerical considerations. Very often, we cannot calculate the values of E exactly.
Even if we can evaluate E exactly, we may not be able to find the exact value of, say,
the quantity

inf
0≤λ≤1;g∈D

E((1 − λ)Gm−1 + λg)

in the REGA(co). This motivates us to study in Sect. 3 various modifications of the
above algorithms. For example, the following algorithm, which is an approximate
variant of the REGA(co), was introduced in [20].
Relaxed E-Greedy Algorithm with error δ (REGA(δ)) Let δ ∈ (0, 1]. We define
G0 := 0. Then, for each m ≥ 1 we have the following inductive definition: We take
any ϕm ∈ D and 0 ≤ λm ≤ 1 satisfying

E((1 − λm)Gm−1 + λmϕm) ≤ inf
0≤λ≤1;g∈D

E((1 − λ)Gm−1 + λg) + δ
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and define

Gm := (1 − λm)Gm−1 + λmϕm .

In Sect. 3, we give modifications of this type to the above algorithms and then prove
convergence results for these modifications. For example, the following convergence
result is proven for the REGA(δ).

Theorem 1.3 Let E be a uniformly smooth on A1(D) convex function with modulus
of smoothness ρ(E, u) ≤ γ uq , 1 < q ≤ 2. Then, for the REGA(δ) we have

E(Gm) − E∗ ≤ C(q, γ, E, c)m1−q , m ≤ δ−1/q ,

where E∗ := inf
f ∈A1(D)

E(x).

In the case q = 2, Theorem 1.3 was proved in [20]. We note that our analysis is
different from that in [20].

In the REGA(co) and the REGA(δ), we solve the univariate convex optimization
problem with respect to λ

inf
0≤λ≤1

E((1 − λ)Gm−1 + λg), (1.15)

respectively, exactly and with an error δ. It is well known (see [10]) that there are
fast algorithms to solve problem (1.15) approximately. We discuss some of them in
Sect. 4.

In the EGAFR(co) and the EGAFR(δ) (see Sect. 3 for this algorithm), we solve the
convex optimization problem for a function on two variables

inf
λ,w

E((1 − w)Gm−1 + λg), (1.16)

respectively, exactly and with an error δ. We describe in Sect. 5 how univariate opti-
mization algorithms can be used for approximate solution of (1.16).

2 Analysis of Greedy Algorithms

We begin this section by showing how to prove the results for REGA(co) and
EGAFR(co) stated in the introduction, namely Theorems 1.1 and 1.2. The proof of
convergence results for greedy algorithms typically is done by establishing a recursive
inequality for the error E(Gn) − E∗. To analyze the decay of this sequence of errors
will need the following lemma.

Lemma 2.1 If a sequence am,m ≥ 0, of nonnegative numbers satisfies

am ≤ am−1(1 − ca p
m−1), m ≥ 1, (2.1)
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with c > 0 and p > 0. Then

an ≤ Cn−1/p, n ≥ 1, (2.2)

with the constant C depending only on p and c. In the case p ≥ 1we have C ≤ c−1/p.

Proof In the case p ≥ 1 which is used in this paper this follows from Lemma 2.16
of [16]. In the case p ≥ 1, Lemma 2.1 was often used in greedy approximation in
Banach spaces (see [16], Chapter 6). For the general case p > 0 see Lemma 4.2
of [12]). ��

To establish a recursive inequality for the error in REGA(co), we will use the
following lemma about REGA(co).

Lemma 2.2 Let E be a uniformly smooth convex functionwithmodulus of smoothness
ρ(E, u). Then, for any f ∈ A1(D) and the iterations Gm of the REGA(co), we have

E(Gm) ≤ E(Gm−1)+ inf
0≤λ≤1

(−λ(E(Gm−1)−E( f ))+2ρ(E, 2λ)), m = 1, 2, . . . .

(2.3)

Proof A similar result was proved in Lemma 3.1 of [17] for a different greedy algo-
rithm denoted by WRGA(co) in [17]. In order to distinguish the two algorithms, we
denote by Ḡm the output of WRGA(co). The relaxation step in WRGA(co) is exactly
the same as in our REGA(co). However, the choice of direction ϕ̄m in WRGA(co) was
based on a maximal gradient descent. This means that at each step the Ḡm−1 is also
possibly different than ourGm−1 of REGA(co). However, an examination of the proof
of Lemma 3.1 shows that it did not matter what Ḡm−1 is as long as it is in �m−1(D).
So Lemma 3.1 holds for our Gm−1 and if we let G̃m denote the result of applying
WRGA(co) to our Gm−1, then we have

E(Gm) ≤ E(G̃m) ≤ E(Gm−1) + inf
0≤λ≤1

(−λ(E(Gm−1) − E( f )) + 2ρ(E, 2λ)).

(2.4)

Here, the first inequality is because REGA(co) minimizes error over all choices of
directionsϕ from the dictionary and all choices of the relaxation parameter and thereby
is at least as good as the choice from WRGA(co). The last inequality is from Lemma
3.1 of [17]. Thus, we have proven the lemma. ��
Proof of Theorem 1.1 The proof of this theorem is similar to the proof of Theorem
3.1 and Theorem 3.2 in [17]. We illustrate the proof of (1.8). If we denote by am :=
E(Gm)−E∗, then subtracting E∗ fromboth sides of (2.3) gives the recursive inequality

am ≤ am−1 + inf
0≤λ≤1

{−λam−1 + 2γ (2λ)q}. (2.5)

If we choose λ to satisfy

λam−1 = 4γ (2λ)q (2.6)
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provided it is not >1 and choose 1 otherwise and use this value in (2.5), we obtain in
case λ ≤ 1

am ≤ am−1

(
1 − ca

1
q−1
m−1

)
, (2.7)

with c > 0 a constant depending only on γ and q. This recursive inequality then gives
the decay announced in Theorem 1.1 because of Lemma 2.1. The case λ = 1 can be
treated as in the proof of Theorem 3.2 from [17]. ��
Proof of Theorem 1.2 This proof is derived from results in [17] in a similar way to
how we have proved Theorem 1.1 for REGA(co). An algorithm, called WGAFR(co),
was introduced in [17] which differs from EGAFR(co) only in how each ϕm is chosen.
One then uses the analysis in WGAFR(co). Also, part (ii) of Theorem 1.2 follows
from Theorem 3.8 with δ = 0.

The above-discussed algorithms REGA(co) and EGAFR(co) provide sparse
approximate solutions to the corresponding optimization problems. These approxi-
mate solutions are sparse with respect to the given dictionary D, but they are not
obtained as an expansion with respect to D. This means that at each iteration of these
algorithms we update all the coefficients of sparse approximants. Sometimes it is
important to build an approximant in the form of expansion with respect to D. The
reader can find a discussion of greedy expansions in [16, Section 6.7]. For comparison
with the algorithms, we have already introduced, we recall a greedy-type algorithm
for unconstrained optimization which uses only function values and builds sparse
approximants in the form of expansion that was introduced and analyzed in [18]. Let
C := {cm}∞m=1 be a fixed sequence of positive numbers. ��
E-Greedy Algorithm with coefficients C(EGA(C)) We define G0 := 0. Then, for
each m ≥ 1 we have the following inductive definition:

(i) Let ϕm ∈ D be such that (assuming existence)

E(Gm−1 + cmϕm) = inf
g∈D

E(Gm−1 + cmg).

(ii) Then define

Gm := Gm−1 + cmϕm .

In the above definition, we can restrict ourselves to positive numbers because of the
symmetry of the dictionary D.

For the analysis of this algorithm, we will assume that the sets

DC := {x : E(x) ≤ E(0) + C}

are bounded for all finite C . We recall two results for the EGA(C) that were proved
in [18].
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Theorem 2.3 Let μ(u) = o(u) as u → 0 and let E be a uniformly smooth convex
function satisfying

E(x + uy) − E(x) − u〈E ′(x), y〉 ≤ 2μ(u), (2.8)

for x ∈ D2, ‖y‖ = 1, |u| ≤ 1. Assume that the coefficients sequence C := {c j }, c j ∈
[0, 1] satisfies the conditions

∞∑

k=1

ck = ∞, (2.9)

∞∑

k=1

μ(ck) ≤ 1. (2.10)

Then, for each dictionary D, the EGA(C) satisfies

lim
m→∞ E(Gm) = inf

x∈X E(x) =: E∗.

Theorem 2.4 Let E be a uniformly smooth convex function with modulus of smooth-
ness ρ(E, u) ≤ γ uq , q ∈ (1, 2] on D2. We set s := 2

1+q and Cs := {ck−s}∞k=1 with

c chosen in such a way that γ cq
∑∞

k=1 k
−sq ≤ 1. Then, the EGA(Cs) converges with

the following rate: for any r ∈ (0, 1 − s)

E(Gm) − inf
x∈A1(D)

E(x) ≤ C(r, q, γ )m−r .

Let us now turn to a brief comparison of the above algorithms and their known
convergence rates. The REGA(co) is designed for solving optimization problems on
domains D ⊂ A1(D) and requires that D∗ ∩ A1(D) �= ∅. The EGAFR(co) is not
limited to the A1(D) but applies for any optimization domain as long as E achieves
its minimum on a bounded domain. As we have noted earlier, if there is a point
D∗ ∩ A1(D) �= ∅, then EGAFR(co) provides the same convergence rate (O(m1−q))

as REGA(co). Thus, EGAFR(co) is more robust and requires the solution of only a
slightly more involved minimization at each iteration.

The advantage of EGA(C) is that it solves a simpler minimization problem at
each iteration since the relaxation parameters are set in advance. However, it requires
knowledge of the smoothness order q of E and also gives a poorer rate of convergence
than REGA(co) and the EGAFR(co).

To continue this discussion, let us consider the very special case where X = �dp and

the dictionaryD is finite, sayD = {g j }Nj=1. In such a case, the existence of ϕm in all the
above algorithms is easily proven. The EGA(C) simply uses Nm function evaluations
to make m iterations. The REGA(co) solves a one-dimensional optimization problem
at each iteration for each dictionary element, thus N such problems. We discuss this
problem in Sect. 4 and show that each such problem can be solved with exponential
accuracy with respect to the number of evaluations needed from E .
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3 Approximate Greedy Algorithms for Convex Optimization

We turn now to the main topic of this paper which is modifications of the above
greedy algorithms to allow imprecise calculations or less strenuous choices for descent
directions and relaxation parameters. We begin with a discussion of the weak relaxed
greedy algorithm WRGA(co) which was introduced and analyzed in [17] and which
we already referred to in Sect 2. TheWRGA(co) uses the gradient to choose a steepest
descent direction at each iteration. The interesting aspect of WRGA(co), relative to
imprecise calculations, is that it uses a weakness parameter tm < 1 to allow some
relative error in estimating supg∈D〈−E ′(Gm−1), g −Gm−1〉. Here and below we use
a convenient bracket notation: for a functional F ∈ X∗ and an element f ∈ X wewrite
F( f ) = 〈F, f 〉. We concentrate on a modification of the second step of WRGA(co).
Very often, we cannot calculate values of E exactly. Even in case, we can evaluate E
exactly we may not be able to find the exact value of the inf0≤λ≤1 E((1− λ)Gm−1 +
λϕm). This motivates us to study the following modification of the WRGA(co). Let
τ := {tk}∞k=1, tk ∈ [0, 1], k = 1, 2, . . ., be a weakness sequence.

Weak relaxed Greedy Algorithm with error δ(WRGA(δ)). Let δ ∈ (0, 1]. We
define G0 := 0. Then, for each m ≥ 1, we have the following inductive definition.

(1) ϕm := ϕ
δ,τ
m ∈ D is taken any element satisfying

〈−E ′(Gm−1), ϕm − Gm−1〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g − Gm−1〉.

(2) Then 0 ≤ λm ≤ 1 is chosen as any number such that

E((1 − λm)Gm−1 + λmϕm) ≤ inf
0≤λ≤1

E((1 − λ)Gm−1 + λϕm) + δ.

With these choices, we define

Gm := (1 − λm)Gm−1 + λmϕm .

Thus, this algorithm differs from the REGA(δ) given in the introduction, only in the
choice of the direction ϕm at each step. Both of these algorithms are directed at solving
the minimization of E over A1(D). The following theorem analyzes the WRGA(δ).

Theorem 3.1 Let E be uniformly smooth on A1(D) whose modulus of smoothness
ρ(E, u) satisfies

ρ(E, u) ≤ γ uq , 1 < q ≤ 2. (3.1)

If the weakness sequence τ := {tk}∞k=1 is such that tk = t, k = 1, 2, . . . , then the
WRGA(δ) satisfies

E(Gm) − E∗ ≤ C(q, γ, t, E)m1−q , m ≤ δ−1/q , (3.2)

where E∗ := inf
f ∈A1(D)

E(x).
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We develop next some results which will be used to prove this theorem. Let us first
note that when E is Fréchet differentiable, the convexity of E implies that for any x, y

E(y) ≥ E(x) + 〈E ′(x), y − x〉 (3.3)

or, in other words,

E(x) − E(y) ≤ 〈E ′(x), x − y〉 = 〈−E ′(x), y − x〉. (3.4)

The following simple lemma holds.

Lemma 3.2 Let E be Fréchet differentiable convex function. Then the following
inequality holds for x ∈ S

0 ≤ E(x + uy) − E(x) − u〈E ′(x), y〉 ≤ 2ρ(E, u‖y‖). (3.5)

We use these remarks to prove the following.

Lemma 3.3 Let E be uniformly smooth on A1(D) with modulus of smoothness
ρ(E, u). Then, for any f ∈ A1(D), we have that the WRGA(δ) satisfies

E(Gm) ≤ E(Gm−1) + inf
0≤λ≤1

(−λtm(E(Gm−1) − E( f ))

+ 2ρ(E, 2λ)) + δ, m = 1, 2, . . .

and therefore

E(Gm) − E∗ ≤ E(Gm−1) − E∗ + inf
0≤λ≤1

(−λtm(E(Gm−1) − E∗) + 2ρ(E, 2λ))

+ δ, m = 1, 2, . . . (3.6)

where E∗ := inf f ∈A1(D) E(x).

Proof We have

Gm := (1 − λm)Gm−1 + λmϕm = Gm−1 + λm(ϕm − Gm−1)

and from the definition of λm ,

E(Gm) ≤ inf
0≤λ≤1

E(Gm−1 + λ(ϕm − Gm−1)) + δ.

By Lemma 3.2 we have for any λ

E(Gm−1 + λ(ϕm − Gm−1)) ≤ E(Gm−1) − λ〈−E ′(Gm−1), ϕm − Gm−1〉
+ 2ρ(E, 2λ) (3.7)
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and by step (1) in the definition of the WRGA(δ) and Lemma 2.2 from [17] (see also
Lemma 6.10, p. 343 of [16]) we get

〈−E ′(Gm−1), ϕm − Gm−1〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g − Gm−1〉

= tm sup
φ∈A1(D)

〈−E ′(Gm−1), φ − Gm−1〉

≥ tm〈−E ′(Gm−1), f − Gm−1〉.

From (3.4), we obtain

〈−E ′(Gm−1), f − Gm−1〉 ≥ E(Gm−1) − E( f ).

Thus,

E(Gm) ≤ inf
0≤λ≤1

E(Gm−1 + λ(ϕm − Gm−1)) + δ

≤ E(Gm−1) + inf
0≤λ≤1

(−λtm(E(Gm−1) − E( f )) + 2ρ(E, 2λ)) + δ,

(3.8)

which proves the lemma. ��
Finally, for the proof of Theorem 3.1, we will need the following result about

sequences.

Lemma 3.4 If a nonnegative sequence a0, a1, . . . , aN satisfies

am ≤ am−1 + inf
0≤λ≤1

(−λvam−1 + Bλq) + δ, B > 0, δ ∈ (0, 1], 0 < v ≤ 1,

(3.9)

for m ≤ N := [δ−1/q ], q ∈ (1, 2], then

am ≤ C(q, v, B, a0)m
1−q , m ≤ N , (3.10)

with C(q, v, B, a0) ≤ C ′(q, B, a0)v−q .

Proof By taking λ = 0, (3.9) implies that

am ≤ am−1 + δ, m ≤ N . (3.11)

Therefore, for all m ≤ N we have

am ≤ a0 + Nδ ≤ a0 + 1, 0 ≤ m ≤ N .

Now fix any value of m ∈ [0, N ] and define λ1 := ( vam−1
2B

) 1
q−1 , so that

λ1vam−1 = 2Bλ
q
1 . (3.12)
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If λ1 ≤ 1 then

inf
0≤λ≤1

(−λvam−1 + Bλq) ≤ −λ1vam−1 + Bλ
q
1

= −1

2
λ1vam−1 = −C1(q, B)v pa p

m−1, p := q

q − 1
.

If λ1 > 1 then for all λ ≤ λ1 we have λvam−1 > 2Bλq and specifying λ = 1 we get

inf
0≤λ≤1

(−λvam−1 + Bλq) ≤ −1

2
vam−1

≤ −1

2
va p

m−1(a0 + 1)1−p = −C1(q, a0)va
p
m−1.

Thus, in any case, settingC2 := C2(q, v, B, a0) := min(C1(q, B)v p,C1(q, a0)v)we
obtain from (3.9)

am ≤ am−1 − C2a
p
m−1 + δ, C2 ≥ C ′

2(q, B, a0)v
p, (3.13)

holds for all 0 ≤ m ≤ N .
Now, to establish (3.10), we let n ∈ [0, N ] be the smallest integer such that

C2a
p
n−1 ≤ 2δ. (3.14)

If there is no such n, we set n = N . In view of (3.13), we have

am ≤ am−1 − (C2/2)a
p
m−1, 1 ≤ m ≤ n. (3.15)

If we modify the sequence am by defining it to be zero if m > n, then this modified
sequence satisfies (3.15) for all m and Lemma 2.1 gives

am ≤ C3m
1−q , 1 ≤ m ≤ n, C3 ≤ C ′

3(q, B, a0)v
−q . (3.16)

If n = N , we have finished the proof. If n < N , then, by (3.11), we obtain for
m ∈ [n, N ]

am ≤ an−1 + (m − n + 1)δ ≤ an−1 + Nδ ≤ an−1 + NN−q ≤
[
2δ

C2

]1/p
+ C4N

1−q ,

where we have used the definition of N . Since δ1/p ≤ N−q/p = N−q+1, we have

am ≤ C5N
1−q ≤ C5m

1−q , n ≤ m ≤ N , C5 ≤ C ′
5v

−1,

where C ′
5 depends only on q, B, a0. This completes the proof of the lemma. ��
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Proof of Theorem 3.1 We take

an := E(Gn) − E∗ ≥ 0.

Then, taking into account that ρ(E, u) ≤ γ uq , we get from Lemma 3.3

am ≤ am−1 + inf
0≤λ≤1

(−λtam−1 + 2γ (2λ)q) + δ. (3.17)

Applying Lemma 3.4 with v = t, B = 21+qγ we complete the proof of Theorem 3.1.
��

We can establish a similar convergence result for the REGA(δ).

Theorem 3.5 Let E be a uniformly smooth on A1(D) convex function with modulus
of smoothness ρ(E, u) ≤ γ uq , 1 < q ≤ 2. Then, for the REGA(δ) we have

E(Gm) − E∗ ≤ C(q, γ, E)m1−q , m ≤ δ−1/q ,

where E∗ := inf
f ∈A1(D)

E(x).

Proof From the definition of the REGA(δ), we have

E(Gm) ≤ inf
0≤λ≤1;g∈D

E((1 − λ)Gm−1 + λg) + δ.

In the same way that we have proved (2.3), we obtain

E(Gm) ≤ E(Gm−1) + inf
0≤λ≤1

(−λ(E(Gm−1) − E∗) + 2ρ(E, 2λ)) + δ. (3.18)

Inequality (3.18) is of the same form as inequality (3.6) from Lemma 3.3. Thus,
repeating the above proof of Theorem 3.1, we complete the proof of Theorem 3.5. ��

We now introduce and analyze an approximate version of the WGAFR(co).

Weak Greedy algorithm with free relaxation and error δ(WGAFR(δ)). Let τ :=
{tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define G0 := 0. Then, for each
m ≥ 1, we have the following inductive definition.

(1) ϕm ∈ D is any element satisfying

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g〉. (3.19)

(2) Find wm and λm such that

E((1 − wm)Gm−1 + λmϕm) ≤ inf
λ,w

E((1 − w)Gm−1 + λϕm) + δ
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and define

Gm := (1 − wm)Gm−1 + λmϕm .

Theorem 3.6 Let E be a uniformly smooth convex function on X with modulus of
smoothness ρ(E, D1, u) ≤ γ uq , 1 < q ≤ 2 and let E∗ := inf

x∈X E(x) = inf
x∈D0

E(x).

Then, for the WGAFR(δ), we have

E(Gm) − E∗ ≤ C(E, q, γ )εm, m ≤ δ−1/q (3.20)

where

εm := inf{ε : A(ε)qm1−q ≤ ε} (3.21)

and A(ε) is defined by (1.9).

Proof We begin with a lemma. ��
Lemma 3.7 Let E be a uniformly smooth convex functionwithmodulus of smoothness
ρ(E, u) on D ⊂ D1. Take a number ε ≥ 0 and an element f ε from D such that

E( f ε) ≤ inf
x∈D E(x) + ε, f ε/B ∈ A1(D),

with some number B ≥ 1. Suppose that Gm−1 ∈ D ⊂ D1 and ϕm ∈ D is any element
satisfying

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g〉.

Then, we have

inf
λ≥0,w

E(Gm−1 − wGm−1 + λϕm) − E( f ε) ≤ E(Gm−1) − E( f ε)

+ inf
λ≥0

(−λtm B
−1(E(Gm−1) − E( f ε)) + 2ρ(E,C0λ)), (3.22)

for m = 1, 2, . . ..

Proof We use Lemma 3.2

E(Gm−1 + λϕm − wGm−1) ≤ E(Gm−1) − λ〈−E ′(Gm−1), ϕm〉
−w〈E ′(Gm−1),Gm−1〉 + 2ρ(E, ‖λϕm − wGm−1‖) (3.23)

and estimate

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g〉

= tm sup
φ∈A1(D)

〈−E ′(Gm−1), φ〉 ≥ tm B
−1〈−E ′(Gm−1), f ε〉.
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We set w∗ := λtm B−1 and obtain

E(Gm−1 − w∗Gm−1 + λϕm)

≤ E(Gm−1) − λtm B
−1〈−E ′(Gm−1), f ε − Gm−1〉. (3.24)

By (3.4), we obtain

〈−E ′(Gm−1), f ε − Gm−1〉 ≥ E(Gm−1) − E( f ε).

Thus,

inf
λ≥0,w

E(Gm−1 − wGm−1 + λϕm) ≤ E(Gm−1) + inf
λ≥0

(−λtm B
−1(E(Gm−1)

− E( f ε)) + 2ρ(E, ‖λϕm − w∗Gm−1‖)). (3.25)

We now estimate

‖w∗Gm−1 − λϕm‖ ≤ w∗‖Gm−1‖ + λ.

Next, Gm−1 ∈ D ⊂ D1. Our assumption on boundedness of D1 implies that
‖Gm−1‖ ≤ C1 := diam(D1). Thus, under assumption B ≥ 1, we get

w∗‖Gm−1‖ ≤ C1λtm ≤ C1λ.

Finally,

‖w∗Gm−1 − λϕm‖ ≤ C0λ.

This completes the proof of Lemma 3.7. ��
By the definition of Gm

E(Gm) ≤ inf
λ≥0,w

E(Gm−1 − wGm−1 + λϕm) + δ.

In the case of exact evaluations in theWGAFR(co), we had the monotonicity property
E(G0) ≥ E(G1) ≥ · · · which implied that Gn ∈ D0 for all n. In the case of the
WGAFR(δ) Lemma 3.7 with D = D(m−1)δ,m ≤ δ−1/q implies

E(Gm) ≤ E(Gm−1) + δ. (3.26)

Therefore, Gm ∈ Dmδ and for all m ≤ N := [δ−1/q ]

E(Gm) ≤ E(0) + 1,

which implies Gn ∈ D1 for all n ≤ N .
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Denote

an := E(Gn) − E( f ε).

The number B in Lemma 3.7 can be taken arbitrarily close to A(ε). Therefore, inequal-
ity (3.22) implies

am ≤ am−1 + inf
λ≥0

(−λt A(ε)−1am−1 + 2γ (C0λ)q) + δ.

It is similar to (3.17) with the only point that we now cannot guarantee that am−1 ≥ 0.
However, if n is the smallest number from [1, N ] such that an < 0 then form ∈ [n, N ]
(3.26) implies easily am ≤ Cm1−q . Thus, it is sufficient to assume that an ≥ 0. We
apply Lemma 3.4 with v = t A(ε)−1, B = 2γCq

0 and complete the proof.
We have discussed above two algorithms the WRGA(δ) and the REGA(δ). Results

for the REGA(δ) (see Theorem 3.5) were derived from the proof of the corresponding
results for the WRGA(δ) (see Theorem 3.1). We now discuss a companion algorithm
for the WGAFR(δ) that uses only function evaluations.

E-Greedy algorithm with free relaxation and error δ(EGAFR(δ)). We define
G0 := 0. For m ≥ 1, assuming Gm−1 has already been defined, we take ϕm ∈ D and
αm , βm ∈ R satisfying

E(αmGm−1 + βmϕm) ≤ inf
α,β∈R;g∈D

E(αGm−1 + βg) + δ

and define

Gm := αmGm−1 + βmϕm .

In the same way as Theorem 3.5 was derived from the proof of Theorem 3.1, one
can derive the following theorem from the proof of Theorem 3.6.

Theorem 3.8 Let E be a uniformly smooth convex function on X with modulus of
smoothness ρ(E, D1, u) ≤ γ uq , 1 < q ≤ 2 and let E∗ := inf

x∈X E(x) = inf
x∈D0

E(x).

Then, for the EGAFR(δ), we have

E(Gm) − E∗ ≤ C(E, q, γ )εm, m ≤ δ−1/q (3.27)

where

εm := inf{ε : A(ε)qm1−q ≤ ε} (3.28)

and A(ε) is defined by (1.9).

Theorem 2.4 provides the rate of convergence of the EGA(C)where we assume that
function evaluations are exact and we can find infg∈D exactly. However, in practice,
we very often cannot evaluate functions exactly and (or) cannot find the exact value of
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the infg∈D. In order to address this issue, we modify the EGA(C) into the following
algorithm EGA(C, δ).

E-Greedy algorithm with coefficients C and error δ(EGA(C, δ)). Let δ ∈ (0, 1].
We define G0 := 0. Then, for eachm ≥ 1, we have the following inductive definition.

(1) ϕδ
m ∈ D is such that

E(Gm−1 + cmϕδ
m) ≤ inf

g∈D
E(Gm−1 + cmg) + δ.

(2) Let

Gm := Gm−1 + cmϕδ
m .

We prove an analog of Theorem 2.4 for the EGA(C, δ).

Theorem 3.9 Let E be a uniformly smooth convex function with modulus of smooth-
ness ρ(E, u) ≤ γ uq , q ∈ (1, 2] on D3. We set s := 2

1+q and Cs := {ck−s}∞k=1 with

c ≤ 1 chosen in such a way that γ cq
∑∞

k=1 k
−sq ≤ 1. Then, the EGA(Cs, δ) provides

the following rate: for any r ∈ (0, 1 − s)

E(Gm) − E∗ ≤ C(r, q, γ )m−r , m ≤ δ− 1
1+r ,

where E∗ := inf
x∈A1(D)

E(x).

We first accumulate some results that we will use in the proof of this theorem. Let

N := [δ− 1
1+r ], where [a] is the integer part of a and let Gm,m ≥ 0 be the sequence

generated by the EGA(Cs, δ).
Claim 1 Gm ∈ D3, i.e., E(Gm) ≤ E(0) + 3, for all 0 ≤ m ≤ N .

To see this, let t ∈ (0, 1) and ϕm be such that

〈−E ′(Gm−1), ϕm〉 ≥ t ED(Gm−1), ED(G) := sup
g∈D

〈−E ′(G), g〉. (3.29)

Then

inf
g∈D

E(Gm−1 + cmg) ≤ E(Gm−1 + cmϕm).

Thus, it is sufficient to estimate E(Gm−1 + cmϕm) with ϕm satisfying (3.29). By (3.5)
under assumption that Gm−1 ∈ D3, we get with μ(u) := γ uq

E(Gm−1 + cmϕm) ≤ E(Gm−1) + cm〈E ′(Gm−1), ϕm〉 + 2μ(cm).

Using the definition of ϕm , we obtain

E(Gm−1 + cmϕm) ≤ E(Gm−1) − cmt ED(Gm−1) + 2μ(cm). (3.30)
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We now prove by induction that Gm ∈ D3 for all m ≤ N . Indeed, clearly G0 ∈ D3.
Suppose that Gk ∈ D3, k = 0, 1, . . . ,m − 1, then (3.30) holds for all k = 1, . . . ,m
instead of m and, therefore,

E(Gm) ≤ E(0) + 2
m∑

k=1

μ(ck) + mδ ≤ E(0) + 3,

proving the claim.

We also need the following lemma from [18].

Lemma 3.10 If f ∈ LA, then for

Gk :=
k∑

j=1

c jϕ j , ϕ j ∈ D, j = 1, . . . , k,

we have

ED(Gk) ≥ (E(Gk) − E( f ))/(A + Ak), Ak :=
k∑

j=1

|c j |.

Proof of Theorem 3.9 E attains E∗ at a point x∗ ∈ A1(D). If we start with (3.30) and
then use the above lemma with f = x∗, fact that we obtain

E(Gm) ≤ E(Gm−1) − tcm(E(Gm−1) − E∗)
1 + Am−1

+ 2γ cqm + δ. (3.31)

The left-hand side of (3.31) does not depend on t , therefore the inequality holds with
t = 1:

E(Gm) ≤ E(Gm−1) − cm(E(Gm−1) − E∗)
1 + Am−1

+ 2γ cqm + δ. (3.32)

We have

Am−1 = c
m−1∑

k=1

k−s ≤ c

(
1 +

∫ m

1
x−sdx

)
= c(1 + (1 − s)−1(m1−s − 1)))

and

1 + Am−1 ≤ 1 + c(1 − s)−1m1−s .

Therefore, for m ≥ C1, we have with v := (r + 1 − s)/2

cm
1 + Am−1

≥ v + 1 − s

2(m − 1)
. (3.33)
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To conclude the proof, we need the following technical lemma. This lemma is a more
general version of Lemma 2.1 from [14] (see also Remark 5.1 in [15] and Lemma 2.37
on p. 106 of [16]). ��
Lemma 3.11 Let four positive numbers α < β ≤ 1, A,U ∈ N be given and let a
sequence {an}∞n=1 have the following properties: a1 < A and we have for all n ≥ 2

an ≤ an−1 + A(n − 1)−α; (3.34)

if for some ν ≥ U we have

aν ≥ Aν−α

then

aν+1 ≤ aν(1 − β/ν). (3.35)

Then, there exists a constant C = C(α, β, A,U ) such that for all n = 1, 2, . . . we
have

an ≤ Cn−α.

We apply this lemma with an := E(Gn) − E∗, n ≤ N , an := 0, n > N , α :=
r, β := v := (r +1− s)/2,U = C1 and A specified later. Let us check the conditions
(3.34) and (3.35) of Lemma 3.11. It is sufficient to check these conditions form < N .
By the inequality

E(Gm) ≤ E(Gm−1) + 2ρ(E, cm) + δ ≤ E(Gm−1) + 2γ cqm−sq + δ

the condition (3.34) holds for A ≥ 2γ cq + 1. Using sq ≥ 1 + r we get

cqm = cqm−sq ≤ cqm−1−r , δ ≤ m−1−r . (3.36)

Assume that am ≥ Am−r . Setting A to be big enough to satisfy

δ + 2γ cqm ≤ A(1 − s − β)

2m1+r

we obtain from (3.32), (3.33), and (3.36)

am+1 ≤ am(1 − β/m)

provided am ≥ Am−r . Thus, (3.35) holds. Applying Lemma 3.11, we get

am ≤ C(r, q, γ )m−r .

This completes the proof of Theorem 3.9.
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4 Univariate Convex Optimization

The relaxation step in each of the above algorithms involves either a univariate or
bivariate optimization of a convex function. The univariate optimization problem
called line search is well studied in optimization theory (see [10]). The purpose of
the remaining two sections of this paper is to show that such problems can be solved
efficiently. Results of these two sections are known. We present them here for com-
pleteness.

In this section, we consider the class F of convex on [0, 1] functions which belong
to Lip 1 class with constant 1. We are interested in how many function evaluations are
needed in order to find for a given ε > 0 and a given f ∈ F a point xε ∈ [0, 1] such
that

f (xε) ≤ min
x∈[0,1] f (x) + ε?

We begin with a known upper bound.

Proposition 4.1 If the algorithm, described below in the proof of Proposition 4.2, with
δ = 0 is applied to any f ∈ F and m ∈ N, then after 3 + 2m function evaluations, it
produces a point xm ∈ [0, 1] such that

f (xm) ≤ min
x∈[0,1] f (x) + 2−m . (4.1)

We next analyze what happens if we do not receive the exact values of f when we
query in the above algorithm.We assume that whenwe query f at a point x , we receive
the corrupted value y(x) where | f (x) − y(x)| ≤ δ for each x ∈ [0, 1]. We assume
that we know δ.

Proposition 4.2 Supposewemake function evaluationswith an error δ. The algorithm
described below applied to f ∈ F and m ∈ N takes 3+ 2m function evaluations and
produces a point xm ∈ [0, 1] such that

f (xm) ≤ min
x∈[0,1] f (x) + 2−m + (4m + 1)δ. (4.2)

Proof In the argument that follows, we use the following property of convex functions.
For any 0 ≤ a < b ≤ c < d ≤ 1 we have

f (b) − f (a)

b − a
≤ f (d) − f (c)

d − c
. (4.3)

Proof of Proposition 4.2 goes by cases.At the first iteration,we evaluate our function
at 0, 1/2, 1. Without loss of generality, we assume that y(0) ≤ y(1).

A. Suppose y(0) ≤ y(1/2). Then f (0) ≤ f (1/2) + 2δ and by (4.3) with a =
0, b = 1/2, c = 1/2, d = x, x ∈ (1/2, 1] we obtain

f (x) ≥ f (1/2) − 2δ, x ∈ [1/2, 1].
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Therefore, restricting our search for a minimum to [0, 1/2], we make an error of at
most 2δ.

B. Suppose y(1/2) < y(0). In this case, we make an additional evaluation of the
function at 1/4.

Ba. Suppose y(1/4) < y(1/2) − 2δ. Then f (1/4) < f (1/2) and by (4.3), we
obtain that

min
x∈[1/2,1] f (x) ≥ min

x∈[0,1/2] f (x).

Therefore, we can again restrict our search to the interval [0, 1/2].
Bb. Suppose y(1/4) ≥ y(1/2)−2δ. In this case, we make an additional evaluation

of the function at 3/4. If y(3/4) < y(1/2) − 2δ then as in Ba we can restrict our
search to the interval [1/2, 1]. If y(3/4) ≥ y(1/2) − 2δ we argue as in the case A and
obtain

min
x∈[0,1/4] f (x) ≥ min

x∈[1/4,1/2] f (x) − 4δ, min
x∈[3/4,1] f (x) ≥ min

x∈[1/2,3/4] f (x) − 4δ.

Therefore, we restrict our search to the interval [1/4, 3/4] with an error at most 4δ.
At each iteration, we add two evaluations and then find that we can restrict our

search to an interval of half the size of the original while incurring an additional error
at most 4δ. Finally, the evaluation of y gives us an error at most δ with that of f . ��

We note that convexity of functions from F plays a dominating role in obtaining
exponential decay of error in Proposition 4.1. For instance, the following simple known
statement holds for the Lip11 class.

Proposition 4.3 Let A(m) denote the class of algorithms (adaptive) which use at
most m function evaluations and provide an approximate for the minimum value of a
function. Then,

inf
A∈A(m)

sup
f ∈Lip11

| min
x∈[0,1] f (x) − A( f )| = 1

4m
.

Proof The upper bound follows from evaluating f at the midpoints x j of the intervals
[( j −1)/m, j/m], j = 1, . . . ,m and giving the approximate value min j f (x j )− 1

4m .
The lower bound follows from the following observation. For any m points 0 ≤ ξ1 <

ξ2 < · · · < ξm ≤ 1 there are two functions f1, f2 ∈ Lip11 such that f1(ξ j ) =
f2(ξ j ) = 0 for all j and minx f1(x) − minx f2(x) ≥ 1

2m . ��

5 Multivariate Convex Optimization

In this section, we discuss an analog of Proposition 4.1 for d-variate convex functions
on [0, 1]d . The d-variate algorithm is a coordinate wise application of the algorithm
from Proposition 4.1 with an appropriate δ. We begin with a simple lemma.
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Lemma 5.1 Let f (x), x = (x1, . . . , xd) ∈ [0, 1]d be a convex on [0, 1]d function.
Define xd := (x1, . . . , xd−1) ∈ [0, 1]d−1 and

fd(x
d) := min

xd
f (x).

Then fd(xd) is a convex function on [0, 1]d−1.

Proof Let u, v ∈ [0, 1]d−1. Then, there are two points w, z ∈ [0, 1]d such that

fd(u) = f (w), fd(v) = f (z)

and u = wd , v = zd . From the convexity of f (x), we have

f (tw + (1 − t)z) ≤ t f (w) + (1 − t) f (z) = t fd(u) + (1 − t) fd(v), t ∈ [0, 1].
(5.1)

Clearly,

fd((tw + (1 − t)z)d) ≤ f (tw + (1 − t)z), t ∈ [0, 1]. (5.2)

Inequalities (5.1) and (5.2) imply that fd(u) is convex. ��
Proposition 5.1 The d-variate minimization algorithm given below takes as input
any f ∈ F and m ∈ N and produces after (3 + 2m)d function evaluations a point
xm ∈ [0, 1]d such that

f (xm) ≤ min
x∈[0,1] f (x) + 2−m(4m + 2)d . (5.3)

Proof Weconstruct the algorithmby induction. In the cased = 1,weuse the univariate
algorithm from Proposition 4.2. Suppose, we have given the algorithm such that the
proposition holds for d − 1. Then, we write

min
x

f (x) = min
xd

min
xd

f (x)

and observe that byLemma5.1 the function g(xd ) := minxd f (x) is a convex function.
Next, we apply the algorithm from Proposition 4.2 with δ = 2−m(4m + 2)d−1 to the
function g. By our induction assumption, we evaluate g with an error at most δ. Thus,
by Proposition 4.2, we get an error at most

2−m + (4m + 1)δ ≤ 2−m(4m + 2)d .

The total number of evaluations is (3 + 2m)d . This completes the proof. ��
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6 Conclusion

Wecontinue a study,whichwas initiated byZhang [20]. Thebiggest contributionof this
paper is that it gives a dimension independent analysis of unconstrained convex opti-
mization. For that purpose we use algorithms with free relaxation—the WGAFR(δ)

and the EGAFR(δ). An important difference between these algorithms and the one
introduced and studied in [20]—REGA(δ)—is that the REGA(δ) is limited to convex
combinations (1 − λm)Gm−1 + λmϕm and, therefore, it is only applicable for mini-
mization over A1(D). Also, we point out that our analysis is different from that in [20].
In both approaches, the reduction E(Gm−1)− E(Gm) at one iteration is analyzed. We
analyze it using ϕm satisfying the greedy condition:

〈−E ′(Gm−1), ϕm〉 ≥ tm sup
g∈D

〈−E ′(Gm−1), g〉.

In [20] the averaging technique is used. Our technique works for the WRGA, REGA,
WGAFR, and EGAFR.

One more important feature of this paper is that we use function evaluations and do
not utilize the gradient E ′. Clearly, in the setting on an infinite dimensional Banach
space, the proposed algorithms are not algorithms in a strict sense. However, when X
is finite dimensional and D is finite, they are algorithms in a strict sense. In such a
situation we can compare complexities of, say, theWGAFR(δ), which utilizes E ′, and
the EGAFR(δ), which does not. At the greedy step (1) of the WGAFR(δ), generally
speaking, we need to evaluate all 〈−E ′(Gm−1), g〉, g ∈ D, in order to choose ϕm .
At the greedy step of the EGAFR(δ), we need to solve N := |D| two-dimensional
convex optimization problems. Proposition 5.1 shows that this extra work of opti-
mization requires about (log 1/δ)2 function evaluations per dictionary element. There-
fore, roughly, for the WGAFR(δ), we need to evaluate N inner products, and for the
EGAFR(δ), we need to make N (log 1/δ)2 function evaluations. This comparison is
under assumption that in the case of theWGAFR(δ) the gradient E ′(Gm−1) is known.

The most important results of the paper are in Sect. 3, where we allow approximate
evaluations. Theorems 3.1, 3.5, 3.6, and 3.8, proved in that section, demonstrate that
for the number of iterations m ≤ δ−1/q the error δ in approximate evaluations does
not effect the upper bound of the error of the optimization algorithm. We do not know
if the restriction m ≤ δ−1/q is the best possible in these theorems. It is known and
easy to check on examples from approximation (see, for instance, [16, p. 346]) that
the error rate m1−q for optimization over A1(D) is the best possible.
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