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Abstract The nearest point map of a real algebraic variety with respect to Euclidean
distance is an algebraic function. For instance, for varieties of low-rank matrices, the
Eckart–Young Theorem states that this map is given by the singular value decompo-
sition. This article develops a theory of such nearest point maps from the perspective
of computational algebraic geometry. The Euclidean distance degree of a variety is
the number of critical points of the squared distance to a general point outside the
variety. Focusing on varieties seen in applications, we present numerous tools for
exact computations.
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1 Introduction

Many models in the sciences and engineering are expressed as sets of real solutions
to systems of polynomial equations in n unknowns. For such a real algebraic variety
X ⊂ R

n , we consider the following problem: given u ∈ R
n , compute u∗ ∈ X that

minimizes the squared Euclidean distance du(x) = ∑n
i=1(ui − xi )

2 from the given
point u. This optimization problem arises in a wide range of applications. For instance,
if u is a noisy sample from X , where the error model is a standard Gaussian in R

n ,
then u∗ is the maximum likelihood estimate for u.

In order to find u∗ algebraically, we consider the set of solutions in C
n to the

equations defining X . In this manner, we regard X as a complex variety in C
n , and

we examine all complex critical points of the squared distance function du(x) =∑n
i=1(ui − xi )

2 on X . Here, we only allow those critical points x that are non-singular
on X . The number of such critical points is constant on a dense open subset of data
u ∈ R

n . That number is called the Euclidean distance degree (or ED degree) of the
variety X and denoted as EDdegree(X).

The ED degree of a variety X measures the algebraic complexity of writing the
optimal solution u∗ of du(x) over X . It is a function of the input data and an important
invariant of the optimization problem. This paper describes the basic properties of the
ED degree using tools from computational and classical algebraic geometry. In many
situations, our techniques offer formulas for this invariant. Our goal is to establish the
foundations of ED degree so that it can be specialized in specific instances to solve
the optimization problem.

Using Lagrange multipliers, and the observation that∇du = 2(u− x), our problem
amounts to computing all regular points x ∈ X such that u− x = (u1− x1, . . . , un −
xn) is perpendicular to the tangent space Tx X of X at x . Thus, we seek to solve
the constraints

x ∈ X, x /∈ Xsing and u − x ⊥ Tx X, (1.1)

where Xsing denotes the singular locus of X . TheEDdegree of X counts the solutions x .

Example 1.1 We illustrate our problem for a plane curve. Figure 1 shows the cardioid

X = {
(x, y) ∈ R

2 : (x2 + y2 + x)2 = x2 + y2
}
.

For general data (u, v) in R
2, the cardioid X contains precisely three points (x, y)

whose tangent line is perpendicular to (u − x, v − y). Thus, EDdegree(X) = 3. All
three critical points (x, y) are real, provided (u, v) lies outside the evolute, which is
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Fig. 1 The cardioid has ED
degree three. The inner cardioid
is the ED discriminant

the small inner cardioid

{
(u, v) ∈ R

2 : 27u4+54u2v2+27v4+54u3+54uv2+36u2+9v2+8u = 0
}
. (1.2)

The evolute is called the ED discriminant in this paper. If (u, v) lies inside the
evolute then two of the critical points are complex, and the unique real solution
maximizes du . ♦

Readers familiar with algebraic statistics [12] may note that the ED degree of
a variety X is an additive analog of its ML degree (maximum likelihood degree).
Indeed, if X represents a statistical model for discrete data then maximum likelihood
estimation leads to polynomial equations which we can write in a form that looks like
(1.1), with u/x = (u1/x1, . . . , un/xn):

x ∈ X, x /∈ Xsing and u/x ⊥ Tx (X). (1.3)

See Example 2.4 and [26,27] for details. Here, the optimal solution û minimizes the
Kullback–Leibler distance from the distribution u to the model X . Thus, ED degree
and ML degree are close cousins.

For most varieties X and most data u, the number of real critical points is much
smaller than EDdegree(X). To quantify that difference, we also study the expected
number of real critical points of du on X . This number, denoted aEDdegree(X) and
called the average ED degree, depends on the underlying probability distribution on
R

n . For instance, for the cardioid X in Example 1.1, the invariant aEDdegree(X) can
be any real number between 1 and 3. The specific value depends on how we sample
the data points (u, v) from R

2.
This paper is organized as follows. In Sect. 2, we rigorously define ED degree for

affine and projective varieties and show how the ED degree of X and all critical points
of du can be computed in practice. The projective case is important because many
varieties in applications are defined by homogenous equations. For the most part, our
exposition assumes no prerequisites beyond undergraduate mathematics. We follow
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the book by Cox, Little and O’Shea [9], and we illustrate the main concepts with code
in Macaulay2 [20].

Section 3 is devoted to case studies in control theory, geometricmodeling, computer
vision, and low-rank matrix completion. New results include formulas for the ED
degree for the Hurwitz stability problem and for the number of critical formations on
the line, as in [2].

In Sect. 4, we introduce the ED correspondence EX , which is the variety of pairs
(x, u)where x ∈ X is critical for du . The ED correspondence is of vital importance for
the computation of average ED degrees, in that same section. We show how to derive
parametric representations of EX , and how these translate into integral representations
for aEDdegree(X).

Duality plays a key role in both algebraic geometry and optimization theory [38].
Every projective variety X ⊂ P

n has a dual variety X∗ ⊂ P
n , whose points are the

hyperplanes tangent to X . In Sect. 5, we prove that EDdegree(X) = EDdegree(X∗),
we express this number as the sum of the classical polar classes [25], and we lift the
ED correspondence to the conormal variety of (X, X∗). When X is smooth and toric,
we obtain a combinatorial formula for EDdegree(X) in terms of the volumes of faces
of the corresponding polytope.

In Sect. 6, we study the behavior of the EDdegree under linear projections and under
intersections with linear subspaces. We also examine the fact that the ED degree can
go up or can go down when passing from an affine variety in C

n to its projective
closure in P

n .
In Sect. 7, we express EDdegree(X) in terms of Chern classes when X is smooth

and projective, and we apply this to classical Segre and Veronese varieties. We also
study the ED discriminant which is the locus of all data points u where two critical
points of du coincide. For instance, in Example 1.1, the ED discriminant is the inner
cardioid. Work of Catanese, Trifogli and others [7,29] offers degree formulas for ED
discriminants in various situations.

As we will see in Example 2.3, the ED degree of the variety of bounded-rank matri-
ces can be derived from theEckart–Young Theorem. The singular value decomposition
furnishes the critical points. The case of multidimensional tensors, while of equally
fundamental importance, is much more involved. In Sect. 8, following [10,14,15], we
give an account of recent results on the ordinary and average ED degree of the variety
of rank one tensors.

Even though the problem of minimizing Euclidean distance to a variety arises in
a number of applications, there seems to be no systematic study of this problem in
the generality that we address here. This paper aims to lay down the foundations for
solving this problem using tools from algebraic geometry and computational algebra.
In Sect. 3, we will see many formulas for the ED degree in specific instances, some
of which are new while others reprove existing results in the literature using our tools
and uniform framework. The remaining sections explore several different aspects of
the ED degree and offer many possible directions in which the general theory can be
further developed or tailored to particular applications. Our ED degree umbrella brings
under it a variety of applications and theoretical tools, and draws on previous work
that relates to subjects such as the Catanese–Trifogli formula for the ED discriminant
(Sect. 7) and the work of Piene and Holme on duality (Sect. 5).
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2 Equations Defining Critical Points

An algebraic variety X in R
n can be described either implicitly, by a system of poly-

nomial equations in n variables, or parametrically, as the closure of the image of a
polynomial map ψ : Rm → R

n . The second representation arises frequently in appli-
cations, but it is restricted to varieties X that are unirational. The first representation
exists for any variety X . In what follows we start with the implicit representation, and
we derive the polynomial equations that characterize the critical points of the squared
distance function du = ∑n

i=1(xi − ui )
2 on X . The function du extends to a polyno-

mial function on C
n . So, if x is a complex point in X then du(x) is usually a complex

number, and that number can be zero even if x 	= u. The Hermitian inner product and
its induced metric on C

n will not appear in this paper.
Fix a radical ideal IX = 〈 f1, . . . , fs〉 ⊂ R[x1, . . . , xn] and X = V (IX ) its variety

inC
n . Since ED degree is additive over the components of X , wemay assume that X is

irreducible and that IX is a prime ideal. The formulation (1.1) translates into a system
of polynomial equations as follows. We write J ( f ) for the s × n Jacobian matrix,
whose entry in row i and column j is the partial derivative ∂ fi/∂x j . The singular
locus Xsing of X is defined by

IXsing = IX +
〈
c × c-minors of J ( f )

〉
,

where c is the codimension of X . The ideal IXsing can in fact be non-radical, but that
does not matter for our purposes. We now augment the Jacobian matrix J ( f ) with
the row vector u − x to get an (s + 1) × n-matrix. That matrix has rank ≤ c on the
critical points of du on X . From the subvariety of X defined by these rank constraints,
we must remove contributions from the singular locus Xsing. Thus, the critical ideal
for u ∈ C

n is the following saturation:

(

IX +
〈

(c + 1)× (c + 1) -minors of

(
u − x
J ( f )

)〉)

: (IXsing

)∞
. (2.1)

Note that if IX were not radical, then the above ideal could have an empty variety.

Lemma 2.1 For general u ∈ C
n, the variety of the critical ideal in C

n is finite. It
consists precisely of the critical points of the squared distance function du on the
manifold X\Xsing.

Proof For fixed x ∈ X\Xsing, the Jacobian J ( f ) has rank c, so the data points u where

the (c+1) × (c+1)-minors of

(
u − x
J ( f )

)

vanish form an affine-linear subspace in C
n

of dimension c. Hence, the variety of pairs (x, u) ∈ X × C
n that are zeros of (2.1)

is irreducible of dimension n. The fiber of its projection into the second factor over a
general point u ∈ C

n must hence be finite. ��
The ED degree of X is defined to be the number of critical points in Lemma 2.1.

It is the same as the normal class of X defined in [30], where it is studied in detail
for curves and surfaces. We start with two examples that are familiar to all students of
applied mathematics.
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Example 2.2 (Linear regression) Every linear space X has ED degree 1. Here, the
critical equations (1.1) take the form x ∈ X and u − x ⊥ X . These linear equations
have a unique solution u∗. If u and X are real then u∗ is the unique point in X that is
closest to u. ♦
Example 2.3 (The Eckart–Young Theorem) Fix positive integers r ≤ s ≤ t and set
n = st . Let Xr be the variety of s × t-matrices of rank ≤ r . This determinantal
variety has

EDdegree(Xr ) =
(

s

r

)

. (2.2)

To see this, we consider a general real s × t-matrix U and its singular value
decomposition

U = T1 · diag(σ1, σ2, . . . , σs) · T2. (2.3)

Here, σ1 > σ2 > · · · > σs are the singular values of U , and T1 and T2 are orthogonal
matrices of format s × s and t × t , respectively. According to the Eckart–Young
Theorem,

U∗ = T1 · diag(σ1, . . . , σr , 0, . . . , 0) · T2

is the closest rank r matrix to U . More generally, the critical points of dU are

T1 · diag(0, . . . , 0, σi1 , 0, . . . , 0, σir , 0, . . . , 0) · T2

where I = {i1 < · · · < ir } runs over all r -element subsets of {1, . . . , s}. This yields
the formula (2.2). The case r = 1, s = t = 2 was featured in Example 2.4. ♦
Example 2.4 To compare theEDdegreewith theMLdegree,we consider the algebraic
function that takes a 2×2-matrix u to its closest rank one matrix. By Example 2.3, we
have EDdegree(X) = 2, while MLdegree(X) = 1. To see what this means, consider
the instance

u =
(
3 5
7 11

)

.

The closest rank 1 matrix in the maximum likelihood sense of [12,27] has rational
entries:

û = 1

3+5+7+11
(

(3+5)(3+7) (3+5)(5+11)
(7+11)(3+7) (7+11)(5+11)

)

;

it is the unique rank one matrix with the same row sums and the same column sums
as u. By contrast, when minimizing the Euclidean distance, we must solve a quadratic
equation:

u∗ =
(

v11 v12
v21 v22

)

where v211−3v11−
437

1300
= 0, v12 = 62

41
v11+19

82
,

v21 = 88

41
v11+23

82
, v22 = 141

41
v11+14

41
.
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This rank 1 matrix arises from the singular value decomposition, as seen in
Example 2.3. ♦
Example 2.5 The following Macaulay2 code computes the ED degree of a variety
in R

3:

R = QQ[x1,x2,x3]; I = ideal(x1ˆ5+x2ˆ5+x3ˆ5);
u = {5,7,13};

sing = I + minors(codim I,jacobian(I));
M = (matrix{apply(# gens R,i->(gens R)_i-u_i)})||

(transpose(jacobian I));
J = saturate(I + minors((codim I)+1,M), sing);
dim J, degree J

We chose a random vector u as input for the above computation. The output reveals
that the Fermat quintic cone {(x1, x2, x3) ∈ R

3 : x51 + x52 + x53 = 0} has ED
degree 23. ♦

Here, is a general upper bound on the ED degree in terms of the given
polynomials fi .

Proposition 2.6 Let X be a variety of codimension c in C
n that is cut out by polyno-

mials f1, f2, . . . , fc, . . . , fs of degrees d1 ≥ d2 ≥ · · · ≥ dc ≥ · · · ≥ ds. Then

EDdegree(X) ≤ d1d2 · · · dc ·
∑

i1+i2+···+ic≤n−c

(d1 − 1)i1(d2 − 1)i2 · · · (dc − 1)ic .

Equality holds when X is a general complete intersection of codimension c (hence
c = s).

In Sect. 7, this result will be derived from our Chern class formula given in Theorem
7.8 and from Theorem 6.11. The latter relates the ED degree of an affine variety and of
its projective closure. A similar bound for the ML degree appears in [26, Theorem 5].

Many varieties arising in applications are rational and they are presented by a
parametrization ψ : R

m → R
n whose coordinates ψi are rational functions in m

unknowns t = (t1, . . . , tm). Instead of first computing the ideal of X by implicitization
and then following the approach above, we can use the parametrization directly to
compute the ED degree of X .

The squared distance function in terms of the parameters equals

Du(t) =
n∑

i=1
(ψi (t)− ui )

2.

The equations we need to solve are given by m rational functions in m unknowns:

∂ Du

∂t1
= · · · = ∂ Du

∂tm
= 0. (2.4)
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The critical locus in C
m is the set of all solutions to (2.4) at which the Jacobian of

ψ has maximal rank. The closure of the image of this set under ψ coincides with the
variety of (2.1). Hence, if the parametrization ψ is generically finite-to-one of degree
k, then the critical locus in C

m is finite, by Lemma 2.1, and its cardinality equals
k · EDdegree(X).

In analogy to Proposition 2.6, we can ask for the EDdegreewhen general polynomi-
als are used in the parametrization of X . Suppose that n−m of the n polynomialsψi (t)
have degree≤ d, while the remaining m polynomials are general of degree d. Since u
is general, (2.4) has no solutions at infinity, and all its solutions have multiplicity one.
Hence, Bézout’s Theorem implies

EDdegree(X) = (2d − 1)m . (2.5)

For specific, rather than general, parametrizations, the right-hand side is just an upper
bound on the ED degree of X . As the following example shows, the true value can be
smaller for several different reasons.

Example 2.7 Let m = 2, n = 4 and consider the map ψ(t1, t2) = (t31 , t21 t2, t1t22 , t32 ),
which has degree k = 3. Its image X ⊂ C

4 is the cone over the twisted cubic curve. The
system (2.4) consists of two quintics in t1, t2, so Bézout’s Theorem predicts 25 = 5×5
solutions. The origin is a solution of multiplicity 4 and maps to a singular point of X ,
hence does not contribute to the ED degree. The critical locus in C

2 consists of 21 =
25− 4 points. We conclude that the toric surface X has EDdegree(X) = 21/k = 7.

Next, we change the parametrization by scaling the middle two monomials
as follows:

ψ̃(t1, t2) =
(

t31 ,
√
3t21 t2,

√
3t1t22 , t32

)
. (2.6)

We still have k = 3. This scaling is special in that ||ψ̃(t1, t2)||2 = (t21 + t22 )3, and this
causes the ED degree to drop. The function whose critical points we are counting has
the form

D̃(t1, t2) = (t31 − a)2 + 3(t21 t2 − b)2 + 3(t1t22 − c)2 + (t32 − d)2,

where a, b, c, d are random scalars. A computation shows that the number of
complex critical points of D̃ equals 9. So, the corresponding toric surface X̃ has
EDdegree(X̃) = 9/k = 3. This is a special case of Corollary 8.7 on Veronese varieties
that are scaled such that the norm on the ambient space is a power of the norm on the
parametrizing space. ♦

The variety X ⊂ C
n is an affine cone if x ∈ X implies λx ∈ X for all λ ∈ C. This

means that IX is a homogeneous ideal in R[x1, . . . , xn]. By slight abuse of notation,
we identify X with the projective variety given by IX in P

n−1. The former is the affine
cone over the latter.

We define the ED degree of a projective variety in P
n−1 to be the ED degree of

the corresponding affine cone in C
n . For instance, in Example 2.6, we considered two

twisted cubic curves X and X̃ that lie in P
3. These curves have ED degrees 3 and 7,

respectively.
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To take advantage of the homogeneity of the generators of IX , and of the geometry
of projective space P

n−1, we replace (2.1) with the following homogeneous ideal in
R[x1, . . . , xn]:
(

IX+
〈

(c+2)× (c+2) -minors of

⎛

⎝
u
x

J ( f )

⎞

⎠
〉)

:
(

IXsing · 〈x21+· · ·+x2n 〉
)∞

. (2.7)

The singular locus of an affine cone is the cone over the singular locus of the projective
variety. They are defined by the same ideal IXsing . The isotropic quadric Q = {x ∈
P

n−1 : x21+· · ·+ x2n = 0} plays a special role, seen clearly in the proof of Lemma 2.8.
In particular, the role of Q exhibits that the computation of ED degree is a metric
problem. Note that Q has no real points. The Macaulay2 code in Example 2.5 can
be adapted to verify EDdegree(Q) = 0.

The following lemma concerns the transition between affine cones and projective
varieties.

Lemma 2.8 Fix an affine cone X ⊂ C
n and a data point u ∈ C

n\X. Let x ∈ X\{0}
be such that the corresponding point [x] in P

n−1 does not lie in the isotropic quadric
Q. Then [x] lies in the projective variety of (2.7) if and only if some scalar multiple
λx of x lies in the affine variety of (2.1). In that case, the scalar λ is unique.

Proof Since both ideals are saturated with respect to IXsing , it suffices to prove this
under the assumption that x ∈ X\Xsing, so that the Jacobian J ( f ) at x has rank c. If
u − λx lies in the row space of J ( f ), then the span of u, x, and the rows of J ( f ) has
dimension at most c + 1. This proves the only-if direction. Conversely, suppose that
[x] lies in the variety of (2.7). First assume that x lies in the row span of J ( f ). Then
x =∑

λi∇ fi (x) for some λi ∈ C. Now recall that if f is a homogeneous polynomial
in R[x1, . . . , xn] of degree d, then x · ∇ f (x) = d f (x). Since fi (x) = 0 for all i , we
find that x · ∇ fi (x) = 0 for all i , which implies that x · x = 0, i.e., [x] ∈ Q. This

contradicts the hypothesis, so the matrix

(
x

J ( f )

)

has rank c+ 1. But then u−λx lies

in the row span of J ( f ) for a unique λ ∈ C. ��
The condition on X in the following corollary is fulfilled by any projective variety

that contains at least one real point.

Corollary 2.9 Let X be a variety in P
n−1 that is not contained in the isotropic quadric

Q, and let u be general. Then EDdegree(X) is equal to the number of zeros of (2.7)
in P

n−1.

Proof Since X � Q and u is general, none of the critical points of du in X\Xsing
will lie in Q. The claim follows from Lemma 2.8. For further details, see Theorems
4.1 and 4.4. ��

Corollary 2.9 implies that Proposition 2.6 holds almost verbatim for projective
varieties.
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Corollary 2.10 Let X be a variety of codimension c in P
n−1 that is cut out by homoge-

neous polynomials F1, F2, . . . , Fc, . . . , Fs of degrees d1 ≥ d2 ≥ · · · ≥ dc ≥ · · · ≥ ds.
Then

EDdegree(X) ≤ d1d2 · · · dc ·
∑

i1+i2+···+ic≤n−c−1
(d1 − 1)i1(d2 − 1)i2 · · · (dc − 1)ic . (2.8)

Equality holds when X is a general complete intersection of codimension c in P
n−1.

Fixing the codimension c of X is essential in Proposition 2.6 and Corollary 2.10.
Without this hypothesis, the bounds do not hold. In Example 5.10, we display homo-
geneous polynomials F1, . . . , Fc of degrees d1, . . . , dc whose variety has ED degree
larger than (2.8).

Example 2.11 The following Macaulay2 code computes the ED degree of a
curve in P

2:

R = QQ[x1,x2,x3]; I = ideal(x1ˆ5+x2ˆ5+x3ˆ5);
u = {5,7,13};

sing = minors(codim I,jacobian(I));
M = matrix {u}||matrix {gens R}||(transpose(jacobian I));
J = saturate(I+minors((codim I)+2,M), sing*ideal

(x1ˆ2+x2ˆ2+x3ˆ2));
dim J, degree J

The output confirms that the Fermat quintic curve given by x51 + x52 + x53 = 0 has ED
degree 23. By contrast, as seen from Corollary 2.10, a general curve of degree five in
P
2 has ED degree 25. Saturating with IXsing alone in the fourth line of the code would

yield 25. ♦
It should be stressed that the ideals (2.1) and (2.7), and our two Macaulay2

code fragments, are blueprints for first computations. In order to succeed with larger
examples, it is essential that these formulations be refined. For instance, to express
rank conditions on a polynomial matrix M , the determinantal constraints are often too
large, and it is better to add a matrix equation of the form � · M = 0, where � is
a matrix filled with new unknowns. This leads to a system of bilinear equations, so
the methods of Faugère et al. [16] can be used. We also recommend trying tools from
numerical algebraic geometry, such as Bertini [3].

3 First Applications

The problem of computing the closest point on a variety arises in numerous appli-
cations. In this section, we discuss some concrete instances, and we explore the ED
degree in each case.

Example 3.1 (Geometric modeling) Thomassen et al. [44] study the nearest point
problem for a parametrized surface X in R

3. The three coordinates of their birational
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map ψ : R
2 → X ⊆ R

3 are polynomials in the parameters (t1, t2) that have degree
d1 in t1 and degree d2 in t2. The image X = ψ(R2) is a Bézier surface of bidegree
(d1, d2). It is shown in [44, §3] that

EDdegree(X) = 4d1d2 + (2d1 − 1)(2d2 − 1).

This refinement of the Bézout bound in (2.5) is the intersection number in P
1 × P

1 of
a curve of bidegree (2d1 − 1, d2) with a curve of bidegree (d1, 2d2 − 1). The authors
of [44] demonstrate how to solve the critical equations ∂ Du/∂t1 = ∂ Du/∂t2 = 0 with
resultants based on moving surfaces. ♦

Example 3.2 (The closest symmetric matrix) Let X denote the variety of symmetric
s×s-matrices of rank≤ r . The nearest point problem for X asks the followingquestion:
given a symmetric s × s-matrix U = (Ui j ), find the symmetric rank r matrix U∗ that
is closest to U . There are two natural interpretations of this question in the Euclidean
distance context. The difference lies in which of the following two functions we are
minimizing:

DU =
s∑

i=1

s∑

j=1

(

Ui j−
r∑

k=1
tik tk j

)2

or DU =
∑

1≤i≤ j≤s

(

Ui j−
r∑

k=1
tik tk j

)2

. (3.1)

These unconstrained optimization problems use the parametrization of symmetric
s×s-matrices of rank r that comes frommultiplying an s×r matrix T = (ti j )with its
transpose. The two formulations are dramatically different as far as the ED degree is
concerned. On the left side, the Eckart–Young Theorem applies, and EDdegree(X) =(s

r

)
as in Example 2.3. On the right side, EDdegree(X) is much larger than

(s
r

)
. For

instance, for s = 3 and r = 1 or 2,

EDdegree(X) = 3 and EDdegree(X) = 13. (3.2)

The two ideals that represent the constrained optimization problems equivalent to
(3.1) are

〈

2×2-minors of

⎛

⎜
⎝

√
2x11 x12 x13
x12

√
2x22 x23

x13 x23
√
2x33

⎞

⎟
⎠

〉

and
〈

2×2-minors of

⎛

⎜
⎝

x11 x12 x13
x12 x22 x23
x13 x23 x33

⎞

⎟
⎠

〉

. (3.3)

These equivalences can be seen via a change of variables. For example, for the left
ideal in (3.3), the constrained optimization problem is to minimize

∑
1≤i≤ j≤3(ui j −

xi j )
2 subject to the nine quadratic equations 2x11x22 = x212,

√
2x11x23 =

x12x13, . . . , 2x22x33 = x223. Now making the change of variables xii = Xii for
i = 1, 2, 3 and xi j =

√
2Xi j for 1 ≤ i < j ≤ 3, and similarly, uii = Uii for

i = 1, 2, 3 and ui j =
√
2Ui j for 1 ≤ i < j ≤ 3, we get the problem
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minimize
∑3

i=1(Uii − Xii )
2 +∑

1≤i< j≤3 2(Ui j − Xi j )
2

subject to Xik X jl = Xil X jk for 1 ≤ i < j ≤ 3, 1 ≤ k < l ≤ 3.

This is equivalent to the left problem in (3.1) for r = 1 via the parametrization
Xi j = ti t j . The appearance of

√
2 in the left matrix M(x) in (3.3) is analogous to

the appearance of
√
3 in Example 2.7: it is the special scaling that relates the natural

squared matrix norm trM(x)T M(x) on the ambient space to (two times) the squared
norm ||x ||2, and this puts the variety defined by the 2× 2-minors of M(x) into special
position relative to the isotropic quadric Q. In Example 5.6, we discuss a general ED
degree formula for symmetric s × s-matrices of rank ≤ r that works for the version
on the right. The same issue for ML degrees is the difference between “scaled” and
“unscaled” in the table at the end of [26, §5]. ♦
Example 3.3 (Computer vision) This article got started with the following problem
from [1,22,41]. A general projective camera is a 3× 4 real matrix of rank three, that
defines a linear map from P

3 to P
2 sending a “world point” y ∈ P

3 to its image
Ay ∈ P

2. This map is well-defined everywhere except at the kernel of A, which is
called the center of the camera.

The multiview variety associated to n cameras A1, A2, . . . , An is the closure of the
image of the map P

3 ��� (P2)n, y �→ (A1y, A2y, . . . , An y). This is an irreducible
threefold in (P2)n and its defining prime ideal In is multi-homogeneous and lives in
the polynomial ring R[xi j : i = 1, . . . , n, j = 0, 1, 2], where (xi0 : xi1 : xi2) are
homogeneous coordinates of the i-th plane P

2. Explicit determinantal generators and
Gröbner bases for In are derived in [1]. If we dehomogenize In by setting xi0 = 1 for
i = 1, 2, . . . , n, then we get a three-dimensional affine variety Xn in R

2n = (R2)n

that is the space of dehomogenized images under the n cameras. Note that In and Xn

depend on the choice of the matrices A1, A2, . . . , An . This dependence is governed
by the Hilbert scheme in [1].

The Euclidean distance problem for Xn is known in computer vision as n-view
triangulation. Following [22] and [41], the data u ∈ R

2n are n noisy images of a
point in R

3 taken by the n cameras. The maximum likelihood solution of the recov-
ery problem with Gaussian noise is the configuration u∗ ∈ Xn of minimum distance
to u. For n = 2, the variety X2 is a hypersurface cut out by a bilinear polynomial
(1, x11, x12)M(1, x21, x22)T , where M is a 3× 3-matrix of rank 2. Hartley and Sturm
[22] studied the critical equations and found that EDdegree(X2) = 6. Their computa-
tions were extended by Stewénius et al. [41] up to n = 7:

n 2 3 4 5 6 7
EDdegree(Xn) 6 47 148 336 638 1081

This table suggests the conjecture that theseEDdegrees growas a cubic polynomial:

Conjecture 3.4 The Euclidean distance degree of the affine multiview variety
Xn equals

EDdegree(Xn) = 9

2
n3 − 21

2
n2 + 8n − 4.
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Table 1 ED degrees and average and ED degrees of small Hurwitz determinants

n EDdegree(Γn) EDdegree(Γ̄n) aEDdegree(Γn) aEDdegree(Γ̄n)

3 5 2 1.16... 2

4 5 10 1.88... 2.07...

5 13 6 2.14... 3.05...

6 9 18 2.42... 3.48...

7 21 10 2.66... 3.74...

At present, we do not know how to prove this. Our first idea was to replace the affine
threefold Xn by a projective variety. For instance, consider the closure Xn of Xn in
P
2n . Alternatively, we can regard In as a homogeneous ideal in the usual Z-grading,

thus defining a projective variety Yn in P
3n−1. However, for n ≥ 3, the ED degrees of

both Xn and Yn are larger than the ED degree of Xn . For instance, in the case of three
cameras, we have

EDdegree(X3) = 47 < EDdegree(X3) = 112 < EDdegree(Y3) = 148.

Can one find a natural reformulation of Conjecture 3.4 in terms of projective
geometry? ♦

Many problems in engineering lead to minimizing the distance from a given point u
to an algebraic variety. One such problem is detecting voltage collapse and blackouts
in electrical power systems [36, p. 94]. It is typical to model a power system as a
differential equation ẋ = f (x, λ) where x is the state and λ is the parameter vector of
load powers. As λ varies, the state moves around. At critical load powers, the system
can lose equilibrium and this results in a blackout due to voltage collapse. The set
of critical λ’s form an algebraic variety X that one wants to stay away from. This is
done by calculating the closest point on X to the current set of parameters λ0 used by
the power system. A similar, and very well-known, problem from control theory is to
ensure the stability of a univariate polynomial.

Example 3.5 (Hurwitz stability) Consider a univariate polynomial with real
coefficients,

u(z) = u0zn + u1zn−1 + u2zn−2 + · · · + un−1z + un .

We say that u(z) is stable if each of its n complex zeros has negative real part. It is
an important problem in control theory to check whether a given polynomial u(z) is
stable, and, if not, to find a polynomial x(z) in the closure of the stable locus that is
closest to u(z).

The stability of x(z) = ∑n
i=0 xi zi is characterized by the following Hurwitz test.

The nth Hurwitz matrix is an n×n matrix with x1, . . . , xn on the diagonal. Above the
diagonal entry xi in column i , we stack as much of xi+1, xi+2, . . . , xn consecutively,
followed by zeros if there is extra room. Similarly, below xi , we stack as much of
xi−1, xi−2, . . . , x1, x0 consecutively, followed by zeros if there is extra room. The
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Hurwitz test says that x(z) is stable if and only if every leading principal minor of Hn

is positive. For instance, for n = 5 we have

H5 =

⎛

⎜
⎜
⎜
⎜
⎝

x1 x3 x5 0 0
x0 x2 x4 0 0
0 x1 x3 x5 0
0 x0 x2 x4 0
0 0 x1 x3 x5

⎞

⎟
⎟
⎟
⎟
⎠

.

The ratio Γ̄n = det(Hn)/xn , which is the (n− 1)st leading principal minor of Hn , is a
homogeneous polynomial in the variables x0, . . . , xn−1 of degree n−1. Let Γn denote
the non-homogeneous polynomial obtained by setting x0 = 1 in Γ̄n . We refer to Γn

and Γ̄n as the non-homogeneous and homogeneousHurwitz determinant, respectively.
Table 1 shows the ED degrees and the average ED degrees of both Γn and Γ̄n for some
small values of n. The average ED degree was computed with respect to the standard
multivariate Gaussian distribution in R

n or R
n+1 centered at the origin. For the formal

definition of aEDdegree(·) see Sect. 4. The first two columns in Table 1 seem to be
oscillating by parity. Theorem 3.6 explains this. Interestingly, the oscillating behavior
does not occur for average ED degree. ♦
Theorem 3.6 The ED degrees of the Hurwitz determinants are given by the
following table:

EDdegree(Γn) EDdegree(Γ̄n)

n = 2m + 1 8m − 3 4m − 2
n = 2m 4m − 3 8m − 6

Proof The hypersurface X = V (Γ̄n) defines the boundary of the stability region. If a
polynomial x(z) lies on X , then it has a complex root on the imaginary axis, so it admits
a factorization x(z) = (cz2 + d)(b0zn−2 + · · · + bn−2). This representation yields a
parametrization of the hypersurface X ⊂ P

n with parameters b0, . . . , bn−2, c, d. We
can rewrite this as

x :=

⎡

⎢
⎢
⎢
⎣

x0
x1
...

xn

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c
0 c
d 0 c

. . .
. . .

. . .

d 0 c
d 0

d

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

b0
b1
...

bn−2

⎤

⎥
⎥
⎥
⎦
=: C · b.

where this parametrization is regular and x is a smooth point of X , the tangent space
Tx X is spanned by the columns of C and the vectors b′, b′′ obtained by appending or
prepending two zeros to b, respectively. Thus, for u ∈ C

n+1, the condition u −Cb ⊥
Tx X translates into
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CT (u − Cb) = 0 and (b′)T (u − Cb) = 0 and (b′′)T (u − Cb) = 0.

The first equation expresses b as a rational homogenous function in c, d, namely,
b = b(c, d) = (CT C)−1CT u. By Cramer’s rule, the entries of the inverse of a matrix
are homogeneous rational functions of degree−1. Hence, the degree of b(c, d) equals
−2+1 = −1. Let γ = γ (c, d) be the denominator of (CT C)−1, i.e., the lowest-degree
polynomial in c, d for which γ · (CT C)−1 is polynomial; and let N be the degree of
γ . Then, γ b′ has entries that are homogeneous polynomials in c, d of degree N − 1.
Similarly, γ u − γ Cb has degree N . Hence,

p(c, d) := (γ b′) · (γ u − γ Cb) and q(c, d) := (γ b′′) · (γ u − γ Cb)

are homogeneous polynomials of degree 2N − 1 that vanish on the desired points
(c : d) ∈ P

1. Indeed, if p and q vanish on (c : d) and γ (c, d) is nonzero, then there
is a unique b that makes (b, c, d) critical for the data u. It turns out that p is divisible
by d, that q is divisible by c, and that p/d = q/c. Thus, 2N − 2 is an upper bound
for EDdegree(X).

To compute γ , note that CT C decomposes into two blocks, corresponding to even
and odd indices. When n = 2m + 1 is odd, these two blocks are identical, and γ

equals their determinant, which is c2m + c2m−2d2 + · · · + d2m . Hence N = 2m.
When n = 2m is even, the two blocks are distinct, and γ equals the product of their
determinants, which is (c2m + c2m−2d2 + · · · + d2m)(c2m−2 + · · · + d2m−2). Hence
N = 4m − 2. In both cases, one can check that p/d is irreducible, and this implies
that EDdegree(X) = 2N − 2. This establishes the stated formula for EDdegree(Γ̄n).
A similar computation can be performed in the non-homogeneous case, by setting
x0 = b0 = c = 1, leading to the formula for EDdegree(Γn). ��
Example 3.7 (Interacting agents) This concerns a problem we learned from work
of Anderson and Helmke [2]. Let X denote the variety in R(p

2) with parametric
representation

di j = (zi − z j )
2 for 1 ≤ i < j ≤ p. (3.4)

Thus, the points in X record the squared distances among p interacting agents with
coordinates z1, z2, . . . , z p on the line R

1. Note that X is the cone over a projective

variety in P(p
2)−1. The prime ideal of X is given by the 2 × 2-minors of the Cayley–

Menger matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2d1p d1p+d2p−d12 d1p+d3p−d13 · · · d1p+dp−1,p−d1,p−1
d1p+d2p−d12 2d2p d2p+d3p−d23 · · · d2p+dp−1,p−d2,p−1
d1p+d3p−d13 d2p+d3p−d23 2d3p · · · d3p+dp−1,p−d3,p−1

.

.

.
.
.
.

.

.

.
. . .

.

.

.

d1p+dp−1,p−d1,p−1 d2p+dp−1,p−d2,p−1 d3p+dp−1,p−d3,p−1 · · · 2dp−1,p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.5)

Indeed, under the parametrization (3.4), the (p − 1) × (p − 1) matrix (3.5) factors
as 2Z T Z , where Z is the row vector (z1−z p, z2−z p, z3−z p, . . . , z p−1−z p). We can
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form the Cayley–Menger matrix (3.5) for any finite metric space on p points. The
metric space can be embedded in a Euclidean space if and only if (3.5) is positive
semidefinite [31, (8)]. That Euclidean embedding is possible in dimension r if and
only if the rank of (3.5) is at most r .

The following theorem is inspired by [2] andprovides a refinement of results therein.
In particular, it explains the findings in [2, §4] for p ≤ 4. There is an extra factor of
1/2 because of the involution z �→ −z on the fibers of the map (3.4). For instance,
for p = 4, our formula gives EDdegree(X) = 13 while [2, Theorem 13] reports 26
nonzero critical points. The most interesting case occurs when p is divisible by 3, and
this will be explained in the proof.

Theorem 3.8 The ED degree of the Cayley–Menger variety X ⊂ P(p
2)−1 equals

EDdegree(X) =
{

3p−1−1
2 if p ≡ 1, 2 mod 3

3p−1−1
2 − p!

3((p/3)!)3 if p ≡ 0 mod 3
(3.6)

Proof After the linear change of coordinates given by xii = 2dip and xi j = dip +
d jp−di j , the Cayley–Menger variety X agrees with the variety of symmetric (p−1)×
(p − 1)-matrices of rank 1. This is the Veronese variety of order d = 2. The number
(3p−1 − 1)/2 is a special instance of the formula in Proposition 7.10. To show that it
is valid here, we need to prove that X intersects the isotropic quadric Q transversally,
i.e., the intersection X ∩ Q is non-singular. If there are isolated nodal singular points,
then their number gets subtracted.

The parametrization (3.4) defines the second Veronese embedding P
p−2 → X ⊂

P(p
2)−1, whereP

p−2 is the projective space of the quotientCp/C·(1, . . . , 1). So X∩Q
is isomorphic to its inverse image in P

p−2 under this map. That inverse image is the
hypersurface in P

p−2 defined by the homogeneous quartic f =∑
1≤i< j≤p(zi − z j )

4.

We need to analyze the singular locus of the hypersurface V ( f ) in P
p−2, which is the

variety defined by all partial derivatives of f . Arguingmodulo 3 onefinds that if p is not
divisible by 3 then V ( f ) is smooth, and then we have EDdegree(X) = (3p−1− 1)/2.
If p is divisible by 3 then V ( f ) is not smooth, but V ( f )sing consists of isolated nodes
that form one orbit under permuting coordinates. One representative is the point in
P

p−2 represented by the vector

(0, 0, . . . , 0, 1, 1, . . . , 1, ξ, ξ, . . . , ξ ) ∈ C
p where ξ2 − ξ + 1 = 0.

The number of singular points of the quartic hypersurface V ( f ) is equal to

p!
3 · ((p/3)!)3 .

For p > 0, this is the number of words that start with the first letter of the ternary
alphabet {0, 1, ξ} and that contain each letter exactly p times; see [34, A208881]. ��
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4 ED Correspondence and Average ED Degree

The ED correspondence arises when the variety X is fixed but the data point u varies.
After studying this, we restrict to the real numbers, and we introduce the average ED
degree, making precise a notion that was hinted at in Example 3.5. The ED correspon-
dence yields an integral formula for aEDdegree(X). This integral can sometimes be
evaluated in closed form. In other cases, experiments show that evaluating the inte-
gral numerically is more efficient than estimating aEDdegree(X) by sampling u and
counting real critical points.

We start with an irreducible affine variety X ⊂ C
n of codimension c that is defined

overR, with prime ideal IX = 〈 f1, . . . , fs〉 inR[x1, . . . , xn]. The ED correspondence
EX is the subvariety of C

n × C
n defined by the ideal (2.1) in the polynomial ring

R[x1, . . . , xn, u1, . . . , un]. Now, the ui are unknowns that serve as coordinates on the
second factor in C

n × C
n . Geometrically, EX is the topological closure in C

n × C
n

of the set of pairs (x, u) such that x ∈ X\Xsing is a critical point of du . The following
theorem implies and enriches Lemma 2.1.

Theorem 4.1 The ED correspondence EX of an irreducible subvariety X ⊆ C
n of

codimension c is an irreducible variety of dimension n inside C
n ×C

n. The first pro-
jection π1 : EX → X ⊂ C

n is an affine vector bundle of rank c over X\Xsing. Over
general data points u ∈ C

n, the second projection π2 : EX → C
n has finite fibers

π−12 (u) of cardinality equal to EDdegree(X). If, moreover, we have Tx X ∩ (Tx X)⊥ =
{0} at some point x ∈ X\Xsing, then π2 is a dominant map and EDdegree(X)

is positive.

In our applications, the variety X always has real points that are smooth, i.e., in
X\Xsing. If this holds, then the last condition in Theorem 4.1 is automatically satisfied:
the tangent space at such a point is real and intersects its orthogonal complement
trivially. But, for instance, the hypersurface Q = V (x21 + · · · + x2n ) does not satisfy
this condition: at anypoint x ∈ Q the tangent spaceTx Q = x⊥ intersects its orthogonal
complement Cx in all of Cx .

Proof The affinevector bundle property followsdirectly from the system (1.1) or, alter-
natively, from the matrix representation (2.1): fixing x ∈ X\Xsing, the fiber π−11 (x)

equals {x} × (x + (Tx X)⊥), where the second factor is an affine space of dimension
c varying smoothly with x . Since X is irreducible, so is EX , and its dimension equals
(n − c) + c = n. For dimension reasons, the projection π2 cannot have positive-
dimensional fibers over general data points u, so those fibers are generically finite
sets, of cardinality equal to EDdegree(X).

For the last statement, note that the diagonal �(X) := {(x, x) ∈ C
n×C

n | x ∈ X}
is contained in EX . Fix a point x ∈ X\Xsing for which Tx X ∩ (Tx X)⊥ = {0}. Being
an affine bundle over X\Xsing, EX is smooth at the point (x, x). The tangent space
T(x,x)EX contains both the tangent space T(x,x)�(X) = �(Tx X) and {0} × (Tx X)⊥.
Thus, the image of the derivative at x of π2 : EX → C

n contains both Tx X and
(Tx X)⊥. Since these spaces have complementary dimensions and intersect trivially
by assumption, they span all of C

n . Thus, the derivative of π2 at (x, x) is surjective
onto C

n , and this implies that π2 is dominant. ��
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Corollary 4.2 If X is (uni-)rational then so is the ED correspondence EX .

Proof Letψ : Cm → C
n be a rational map that parametrizes X , where m = dim X =

n − c. Its Jacobian J (ψ) is an n × m-matrix of rational functions in the standard
coordinates t1, . . . , tm on C

m . The columns of J (ψ) span the tangent space of X
at the point ψ(t) for general t ∈ C

m . The left kernel of J (ψ) is a linear space of
dimension c. We can write down a basis {β1(t), . . . , βc(t)} of that kernel by applying
Cramer’s rule to the matrix J (ψ). In particular, the β j will also be rational functions
in the ti . Now the map

C
m × C

c → EX , (t, s) �→
(

ψ(t), ψ(t)+
c∑

i=1
siβi (t)

)

is a parametrization of EX , which is birational if and only if ψ is birational. ��
Example 4.3 The twisted cubic cone X from Example 2.7 has the parametrization
ψ : C2 → C

4, (t1, t2) �→ (t31 , t21 t2, t1t22 , t32 ). We saw that EDdegree(X) = 7. Here is
a parametrization of the ED correspondence EX that is induced by the construction in
the proof above:

C
2 × C

2 → C
4 × C

4, ((t1, t2), (s1, s2)) �→
(
(t31 , t21 t2, t1t22 , t32 ),

(t31 + s1t22 , t21 t2 − 2s1t1t2 + s2t22 , t1t22 + s1t21 − 2s2t1t2, t32 + s2t21 )
)
.

The prime ideal of EX in R[x1, x2, x3, x4, u1, u2, u3, u4] can be computed from (2.1).
It is minimally generated by seven quadrics and one quartic. It is important to note
that these generators are homogeneous with respect to the usual Z-grading but not
bi-homogeneous.

The formulation (2.7) leads to the subideal generated by all bi-homogeneous poly-
nomials that vanish on EX . It has six minimal generators, three of degree (2, 0) and
three of degree (3, 1). Geometrically, this corresponds to the variety PEX ⊂ P

3×C
4

we introduce next. ♦
If X is an affine cone inC

n , we consider the closure of the image of EX∩((Cn\{0})×
C

n) under the map (Cn\{0}) × C
n → P

n−1 × C
n, (x, u) �→ ([x], u). This closure

is called the projective ED correspondence of X , and it is denoted PEX . It has the
following properties.

Theorem 4.4 Let X ⊆ C
n be an irreducible affine cone not contained in the isotropic

quadric Q. Then, the projective ED correspondence PEX of X is an n-dimensional
irreducible variety in P

n−1×C
n. It is the zero set of the ideal (2.7). Its projection onto

the projective variety in P
n−1 given by X is a vector bundle over X\(Xsing ∪ Q) of

rank c+ 1. The fibers over general data points u of its projection onto C
n are finite of

cardinality equal to EDdegree(X).

Proof The first statement follows from Lemma 2.8: let x ∈ X\(Xsing ∪ Q) and
u ∈ C

n . First, if (x, u) ∈ EX , then certainly ([x], u) lies in the variety of the ideal
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(2.1). Conversely, if ([x], u) lies in the variety of that ideal, then there exists a (unique)
λ such that (λx, u) ∈ EX . If λ is nonzero, then this means that ([x], u) lies in the
projection of EX . If λ is zero, then u ⊥ Tx X and hence (εx, εx + u) ∈ EX for all
ε ∈ C. The limit of ([εx], εx + u) for ε → 0 equals ([x], u), so the latter point still
lies in the closure of the image of EX , i.e., in the projective ED correspondence. The
remaining statements are proved as in the proof of Theorem 4.1. ��

We now turn our attention to the average ED degree of a real affine variety X
in R

n . In applications, the data point u also lies in R
n , and u∗ is the unique clos-

est point to u in X . The quantity EDdegree(X) measures the algebraic complexity
of writing the optimal solution u∗ as a function of the data u. But when applying
other, non-algebraic methods for finding u∗, the number of real-valued critical points
of du for randomly sampled data u is of equal interest. In contrast with the num-
ber of complex-valued critical points, this number is typically not constant for all
general u, but rather constant on the connected components of the complement of
an algebraic hypersurface �X ⊂ R

n , which we call the ED discriminant. To get,
nevertheless, a meaningful count of the critical points, we propose to average over
all u with respect to a measure on R

n . In the remainder of this section, we describe
how to compute that average using the ED correspondence. Our method is particu-
larly useful in the setting of Corollary 4.2, i.e., when X and hence EX have rational
parametrizations.

We equip data space R
n with a volume form ω whose associated density |ω| sat-

isfies
∫
Rn |ω| = 1. A common choice for ω is the standard multivariate Gaussian

1
(2π)n/2 e−||x ||2/2 dx1 ∧ · · · ∧ dxn . This choice is natural when X is an affine cone: in
that case, the origin 0 is a distinguished point in R

n , and the number of real critical
points will be invariant under scaling u. Nowwe ask for the expected number of critical
points of du when u is drawn from the probability distribution on R

n with density |ω|.
This average ED degree of the pair (X, ω) is

aEDdegree(X, ω) :=
∫

Rn
#{real critical points of du on X} · |ω|. (4.1)

In the formulas below, we write EX for the set of real points of the ED correspondence.
Using the substitution rule from multivariate calculus, we rewrite the integral in (4.1)
as follows:

aEDdegree(X, ω) =
∫

Rn
#π−12 (u) · |ω| =

∫

EX

|π∗2 (ω)|, (4.2)

where π∗2 (ω) is the pullback of the volume form ω along the derivative of the
map π2.

See Fig. 2 for a cartoon illustrating the computation in (4.2). Note that π∗2 (ω) need
not be a volume form since it may vanish at some points—namely, at the ramification
locus ofπ2, i.e., at pointswhere the derivative ofπ2 is not of full rank. This ramification
locus is typically an algebraic hypersurface in EX and equal to the inverse image of
the ED discriminant �X . The usefulness of the formula (4.2), and a more explicit
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Fig. 2 The map from the ED correspondence EX to data space has four branch points. The weighted
average of the fiber sizes 1, 3, 5, 3, 1 can be expressed as an integral over EX

version of it to be derived below, will depend on whether the strata in the complement
of the branch locus of π2 are easy to describe. We need such a description because the
integrand will be a function “without absolute values in it” only on such open strata
that lie over the complement of �X .

Suppose that we have a parametrization φ : R
n → EX of the ED correspondence

that is generically one-to-one. For instance, if X itself is given by a birational parame-
trization ψ , then φ can be derived from ψ using the method in the proof of Corollary
4.2. We can then write the integral over EX in (4.2) more concretely as

∫

EX

|π∗2 (ω)|=
∫

Rn
|φ∗π∗2 (ω)|=

∫

Rn
| det Jt (π2 ◦ φ)| · f (π2(φ(t))) · dt1 ∧ · · · ∧ dtn . (4.3)

Here, f is the smooth (density) function onR
n such thatωu = f (u)·du1∧· · ·∧dun . In

the standard Gaussian case, this would be f (u) = e−||u||2/2/(2π)n/2. The determinant
in (4.3) is taken of the differential of π2 ◦φ. To be fully explicit, the composition π2 ◦φ
is a map from R

n to R
n , and Jt (π2 ◦ φ) denotes its n × n Jacobian matrix at a point t

in the domain of φ.

Example 4.5 (ED and average ED degree of an ellipse) Let X denote the ellipse in
R
2 with equation x2 + 4y2 = 4. We first compute EDdegree(X). Let (u, v) ∈ R

2

be a data point. The tangent line to the ellipse X at (x, y) has direction (−4y, x).
Hence, the condition that (x, y) ∈ X is critical for d(u,v) translates into the equation
(u − x, v − y) · (−4y, x) = 0, i.e., into 3xy + vx − 4uy = 0. For general (u, v),
the curve defined by the latter equation and the ellipse intersect in 4 points in C

2, so
EDdegree(X) = 4.

Now we consider aEDdegree(X, ω) where ω = 1
2π e−(u2+v2)/2du ∧ dv is the stan-

dard Gaussians centered at the midpoint (0, 0) of the ellipse. Given (x, y) ∈ X , the
(u, v) for which (x, y) is critical are precisely those on the normal line. This is the line
through (x, y)with direction (x, 4y). In Fig. 3, we plotted some of these normal lines.
A colorful dynamic version of the same picture can be seen at http://en.wikipedia.org/
wiki/Evolute. The evolute of the ellipse X is what we named the ED discriminant. It
is the sextic Lamé curve
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Fig. 3 Computing the average ED of an ellipse: the evolute divides the plane into an inside region, where
fibers or π2 have cardinality 4, and an outside region, where fibers of π2 have cardinality 2. The average
ED of the ellipse is a weighted average of these numbers

�X = V (64u6 + 48u4v2 + 12u2v4 + v6 − 432u4

+756u2v2 − 27v4 + 972u2 + 243v2 − 729).

Consider the rational parametrization of X given by ψ(t) =
(

8t
1+4t2

, 4t2−1
1+4t2

)
, t ∈ R.

From ψ we construct a parametrization φ of the surface EX as in Corollary 4.2,
so that

π2 ◦ φ : R× R → R
2, (t, s) �→

(

(s + 1)
8t

1+ 4t2
, (4s + 1)

4t2 − 1

1+ 4t2

)

.

The Jacobian determinant of π2 ◦ φ equals −32(1+s+4(2s−1)t2+16(1+s)t4)
(1+4t2)3

, so
aEDdegree(X) is

1

2π

∫ ∞

−∞

(∫ ∞

−∞

∣
∣
∣
∣
−32(1+ s + 4(2s−1)t2 + 16(1+s)t4)

(1+ 4t2)3

∣
∣
∣
∣

e
−(1+4s)2−8(7−8(−1+s)s)t2−16(1+4s)2 t4

2(1+4t2)2 dt

)

ds.

Numerical integration (using Mathematica 9) finds the value 3.04658... in 0.2 s.
The following experiment independently validates this average ED degree calcu-

lation. We sample data points (u, v) randomly from Gaussian distribution. For each
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(u, v) we compute the number of real critical points, which is either 2 or 4, and we
average these numbers. The average value approaches 3.05..., but it requires 105 sam-
ples to get two digits of accuracy. The total running time is 38.7s, so much longer
than the numerical integration. ♦
Example 4.6 The cardioid X from Example 1.1 can be parametrized by

ψ : R → R
2, t �→

(
2t2 − 2

(1+ t2)2
,

−4t

(1+ t2)2

)

.

From this, we derive the following parametrization of the ED correspondence EX :

φ : R× R → R
2 × R

2, (t, s) �→
(

ψ(t),
2(t4 − 1+ 4s(3t2 − 1)

(1+ t2)3
,

4t (−1− 6s + (2s − 1)t2)

(1+ t2)3

)

.

Fixing the standard Gaussian centered at (0, 0), the integral (4.3) now evaluates as
follows:

aEDdegree(X, ω) = 1

2π

∫

R2
| det Jt,s(π2 ◦ φ)|e− ||π2◦φ(t,s)||2

2 dtds ≈ 2.8375.

Thus, our measure gives little mass to the region inside the smaller cardioid
in Fig. 1. ♦
Example 4.7 Some varieties X have the property that, for all real data u, all the
complex critical points have real coordinates. If this holds then aEDdegree(X, ω) =
EDdegree(X), for any measure |ω| on data space. One instance is the variety Xr of
real s× t matrices of rank≤ r , by Example 2.3. We shall discuss the ED discriminant
of Xr in Example 7.6. ♦
Wenext present a family of examples where the integral (4.3) can be computed exactly.

Example 4.8 We take X as the cone over the rational normal curve, in a special
coordinate system, as in Example 2.7 and Corollary 8.7. Fix R

2 with the standard
orthonormal basis e1, e2. Let Sn

R
2 be the space of homogeneous polynomials of

degree n in the variables e1, e2. We identify this space with R
n+1 by fixing the basis

fi :=
√(n

i

) ·ei
1en−i

2 for i = 0, . . . , n. This ensures that the natural action of the orthog-
onal group O2(R) on polynomials in e1, e2 is by transformations that are orthogonal
with respect to the standard inner product on R

n+1.
Define v,w : R

2 → R
2 by v(t1, t2) := t1e1 + t2e2 and w(t1, t2) := t2e1 − t1e2.

These two vectors form an orthogonal basis of R
2 for (t1, t2) 	= (0, 0). Our surface X

is parametrized by

ψ : R2 → Sn
R
2 = R

n+1, (t1, t2) �→ v(t1, t2)
n =

n∑

i=0
t i
1tn−i
2

√(
n

i

)

fi .
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For n = 3, this parametrization specializes to the second parametrization in Example
2.7. Fix the standard Gaussian centered at the origin in R

n+1. In what follows, we
shall prove

aEDdegree(X) = √3n − 2. (4.4)

We begin by parametrizing the ED correspondence, as suggested in the proof of
Corollary 4.2. For (t1, t2) 	= (0, 0), the tangent space Tψ(t1,t2) X is spanned by
v(t1, t2)n and v(t1, t2)n−1 · w(t1, t2). Since, by the choice of scaling, the vectors
vn, vn−1w, . . . , wn form an orthogonal basis of R

n+1, we find that the orthogonal
complement (Tψ(t1,t2) X)⊥ has the orthogonal basis

w(t1, t2)
n, v(t1, t2) · w(t1, t2)

n−1, . . . , v(t1, t2)
n−2 · w(t1, t2)

2.

The resulting parametrization φ : R2×R
n−1 → EX of the ED correspondence equals

(t1, t2, s0, . . . , sn−2) �→
(
ψ(t1, t2), v(t1, t2)

n + s0w(t1, t2)
n

+ · · · + sn−2v(t1, t2)
n−2 · w(t1, t2)

2
)

.

Next, we determine the Jacobian J = J (π2◦φ) at the pointψ(t1, t2). It is most con-
venient to do so relative to the orthogonal basis v(t1, t2), w(t1, t2), (1, 0, . . . , 0), . . . ,
(0, . . . , 0, 1) ofR

2×R
n−1 and the orthogonal basisw(t1, t2)n, . . . , v(t1, t2)n ofR

n+1.
Relative to these bases,

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∗ ∗ 1 0 · · · 0
∗ ∗ 0 1 · · · 0
...

...
...

...
. . .

...

∗ ∗ 0 0 · · · 1
0 n − 2sn−2 0 0 · · · 0
n ∗ 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the stars are irrelevant for det(J ). For instance, an infinitesimal change
v(t1, t2) �→ v(t1, t2)+ εw(t1, t2) leads to a change w(t1, t2) �→ w(t1, t2)− εv(t1, t2)
and to a change of π2 ◦ φ in which the coefficient of εv(t1, t2)n−1 · w(t1, t2) equals
n − 2sn−2. When computing the determinant of J , we must consider that the chosen
bases are orthogonal but not orthonormal: the norm of v(t1, t2)i · w(t1, t2)n−i , cor-

responding to the i-th row, equals
√

(t21 + t22 )n
(n

i

)−1/2; and the norm of v(t1, t2) and

w(t1, t2), corresponding to the first and second column, equals
√

t21 + t22 . Multiplying
the determinant of the matrix above with the product of these scalars and dividing by

the square of
√

t21 + t22 for the first two columns, we obtain the formula

| det J (π2 ◦ φ)| = n · |n − 2sn−2| · (t21 + t22 )n(n+1)/2−1 ·
n∏

i=0

(
n

i

)−1/2
.
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Next, the squared norm of u = π2 ◦ ψ(t1, t2, s0, . . . , sn−2) equals

||u||2 = (t21 + t22 )n ·
(

1+
n−2∑

i=0
s2i

(
n

i

)−1)
.

The average ED degree of X relative to the standard Gaussian equals

aEDdegree(X) = 1

(2π)(n+1)/2

∫

| det J (π2 ◦ ψ)|e−||u||2/2dv1dv2ds0 · · · dsn−2.

parametrizing the regions where det J (π2 ◦ ψ) is positive or negative by sn−2 ∈
(−∞, n/2) or sn−2 ∈ (n/2,∞), this integral can be computed in closed form. Its
value equals

√
3n − 2. Interestingly, this value is the square root of the general ED

degree in Example 5.12. For more information see Sect. 8 and the article [10] where
tensors of rank 1 are treated. ♦

We close this section with the remark that different applications require different
choices of the measure |ω| on data space. For instance, one might want to draw u from
a product of intervals equipped with the uniform distribution, or to concentrate the
measure near X .

5 Duality

This section deals exclusively with irreducible affine cones X ⊂ C
n , or, equivalently,

with their corresponding projective varieties X ⊂ P
n−1. Such a variety has a dual

variety Y := X∗ ⊂ C
n , which is defined as follows, where the line indicates the

topological closure:

Y := {
y ∈ Cn | ∃x ∈ X\Xsing : y ⊥ Tx X

}
.

See [38, Section 5.2.4] for an introduction to this duality in the context of optimization.
Algorithm 5.1 in [38] explains how to compute the ideal of Y from that of X .

The variety Y is an irreducible affine cone, so we can regard it as an irreducible
projective variety in P

n−1. That projective variety parametrizes hyperplanes tangent
to X at non-singular points, if one uses the standard bilinear form on C

n to iden-
tify hyperplanes with points in P

n−1. We will prove EDdegree(X) = EDdegree(Y ).
Moreover, for general data u ∈ C

n , there is a natural bijection between the critical
points of du on the cone X and the critical points of du on the cone Y . We then link
this result to the literature on the conormal variety (cf. [25]) which gives powerful
techniques for computing ED degrees of smooth varieties that intersect the isotropic
quadric Q = V (x21 + · · · + x2n ) transversally. Before dealing with the general case,
we revisit the example of the Eckart–Young Theorem.

Example 5.1 For the variety Xr of s × t matrices (s ≤ t) of rank ≤ r , we have
X∗r = Xs−r [19, Chap. 1, Prop. 4.11]. FromExample 2.3,we see that EDdegree(Xr ) =
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Fig. 4 The bijection between critical points on X and critical points on X∗

EDdegree(Xs−r ). There is a bijection between the critical points of dU on Xr and
on Xs−r . To see this, consider the singular value decomposition (2.3). For a subset
I = {i1, . . . , ir } of {1, . . . , s}, we set

UI = T1 · diag(. . . , σi1 , . . . , σi2 , . . . , σir , . . .) · T2,

where the places of σ j for j /∈ I have been filled with zeros in the diagonal matrix.
Writing I c for the complementary subset of size s − r , we have U = UI +UI c . This
decomposition is orthogonal in the sense that 〈UI , UI c 〉 = tr(U t

I UI c ) = 0. It follows
that, if U is real, then |U |2 = |UI |2 + |UI c |2, where |U |2 = tr(U tU ). As I ranges
over all r -subsets, UI runs through the critical points of dU on the variety Xr , and
UI c runs through the critical points of dU on the dual variety Xs−r . Since the formula
above reads as |U |2 = |U − UI c |2 + |U − UI |2, we conclude that the proximity of
the real critical points reverses under this bijection. For instance, if UI is the real point
on Xr closest to U , then UI c is the real point on Xs−r farthest from U . For a similar
result in the multiplicative context of maximum likelihood see [11]. ♦

The following theorem shows that the duality seen in Example 5.1 holds in general.

Theorem 5.2 Let X ⊂ C
n be an irreducible affine cone, Y ⊂ C

n its dual variety, and
u ∈ C

n a general data point. The map x �→ u − x gives a bijection from the critical
points of du on X to the critical points of du on Y . Consequently, EDdegree(X) =
EDdegree(Y ). Moreover, if u is real, then the map sends real critical points to real
critical points, and hence aEDdegree(X, ω) = aEDdegree(Y, ω) for any volume form
ω. The map is proximity-reversing: the closer a real critical point x is to the data point
u, the further u − x is from u.

The statement of Theorem 5.2 is illustrated in Fig. 4. On the left, the variety X is
a one-dimensional affine cone in R

2. This X is not irreducible but it visualizes our
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duality in the simplest possible case. The right picture shows the same scenario in one
dimension higher. Here, X and X∗ are quadratic cones in R

3, corresponding to a dual
pair of conics in P

2.
The proof of Theorem 5.2 uses properties of the conormal variety, which is

defined as

NX :=
{
(x, y) ∈ Cn × Cn | x ∈ X\Xsing and y ⊥ Tx X

}
.

The conormal variety is the zero set of the following ideal in R[x, y]:

NX :=
(

IX +
〈

(c + 1)× (c + 1)-minors of

(
y

J ( f )

)〉)

: ( IXsing

)∞
, (5.1)

where f = ( f1, . . . , fs) is a system of homogeneous generators of IX . It is known
thatNX is irreducible of dimension n−1. The projection ofNX into the second factor
C

n is the dual variety Y = X∗. Its ideal IY is computed by elimination, namely, by
intersecting (5.1) with R[y]. An important property of the conormal variety is the
Biduality Theorem [19, Chapter 1], which states that NX equals NY up to swapping
the two factors. In symbols, we have

NX = NY =
{
(x, y) ∈ Cn × Cn | y ∈ Y\Ysing and x ⊥ TyY

}
.

This implies (X∗)∗ = Y ∗ = X . Thus, the biduality relation in [38, Theorem 5.13]
holds. To keep the symmetry in our notation, we will henceforth write NX,Y for NX

and NX,Y for NX .

Proof of Theorem 5.2. The following is illustrated in Fig. 4. If x is a critical point of
du on X , then y := u − x is orthogonal to Tx X , and hence (x, y) ∈ NX,Y . Since u is
general, all y thus obtained from critical points x of du are non-singular points on Y .
By the Biduality Theorem, we have u − y = x ⊥ TyY , i.e., y is a critical point of du

on Y . This shows that x �→ u − x maps critical points of du on X into critical points
of du on Y . Applying the same argument to Y , and using that Y ∗ = X , we find that,
conversely, y �→ u − y maps critical points of du on Y to critical points of du on X .
This establishes the bijection.

The consequences for EDdegree(X) and aEDdegree(X, ω) are straightforward. For
the last statement we observe that u− x ⊥ x ∈ Tx X for critical x . For y = u− x , this
implies

||u − x ||2 + ||u − y||2 = ||u − x ||2 + ||x ||2 = ||u||2.

Hence, the assignments that take real data points u to X and X∗ are proximity-
reversing. ��

Duality leads us to define the joint ED correspondence of the cone X and its dual
Y as
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EX,Y : =
{
(x, u − x, u) ∈ Cn

x × Cn
y × Cn

u | x ∈ X\Xsing and u − x ⊥ Tx X
}

= {
(u − y, y, u) ∈ Cn

x × Cn
y × Cn

u | y ∈ Y\Ysing and u − y ⊥ TyY
}
.

The projection of EX,Y into C
n
x ×C

n
u is the ED correspondence EX of X , its projection

into C
n
y × C

n
u is EY , and its projection into C

n
x × C

n
y is the conormal variety NX,Y .

The affine variety EX,Y is irreducible of dimension n, since EX has these properties
(by Theorem 4.1), and the projection EX,Y → EX is birational with inverse (x, u) �→
(x, u − x, u).

Following Theorem 4.4, we also introduce the projective joint ED correspondence
PEX,Y . By definition, PEX,Y is the closure of the image of EX,Y ∩

(
(Cn\{0})2 × C

n
)

in P
n−1
x × P

n−1
y × C

n
u .

Proposition 5.3 Let X ⊂ C
n be an irreducible affine cone, let Y ⊂ C

n be the dual
variety of X, and assume that neither X nor Y is contained in Q = V (q), where q =
x21+· · ·+x2n . ThenPEX,Y is an irreducible n-dimensional variety in P

n−1
x ×P

n−1
y ×C

n
u.

It is the zero set of the tri-homogeneous ideal

(

NX,Y+
〈

3×3-minors of the 3× n -matrix

⎛

⎝
u
x
y

⎞

⎠
〉)

: 〈q(x) · q(y)
〉∞⊂R[x, y, u]. (5.2)

Proof The irreducibility of PEX,Y follows from that of EX,Y which has the same
dimension.

To see thatPEX,Y is defined by the ideal (5.2), note first that any point (x, y, u)with
x ∈ X\Xsing and y ⊥ Tx X and x + y = u has (x, y) ∈ NX,Y and dim〈x, y, u〉 ≤ 2,
so that ([x], [y], u) is a zero of (5.2). This shows thatPEX,Y is contained in the variety
of (5.2).

Conversely, let ([x], [y], u) be in the variety of (5.2). The points with q(x)q(y) 	= 0
are dense in the variety of (5.2), so we may assume x, y /∈ Q. Moreover, since
(x, y) ∈ NX,Y , we may assume that x, y are non-singular points of X and Y , and
that x ⊥ TyY and y ⊥ Tx X . This implies x ⊥ y. Since x, y are not isotropic,
they are linearly independent. Then, u = cx + dy for unique constants c, d ∈ C.
If c, d 	= 0, then we find that (cx, dy, u) ∈ EX,Y ∩ ((Cn\{0})2 × C

n
u) and hence

([x], [y], u) ∈ PEX,Y . If c 	= 0 but d = 0, then (cx, εy, u+ εy) ∈ EX,Y for all ε 	= 0,
so that the limit of ([cx], [εy], u+εy) for ε → 0, which is ([x], [y], u), lies inPEX,Y .
Similar arguments apply when d 	= 0 but c = 0 or when c = d = 0. ��

Our next result gives a formula for EDdegree(X) in terms of the polar classes of
classical algebraic geometry [37]. These non-negative integers δi (X) are the coeffi-
cients of the class

[NX,Y ] = δ0(X)sn−1t + δ1(X)sn−2t2 + · · · + δn−2(X)stn−1 (5.3)

of the conormal variety, when regarded as a subvariety of P
n−1 × P

n−1. For topol-
ogists, the polynomial (5.3) is the class representing NX,Y in the cohomology ring
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H∗(Pn−1×P
n−1) = Z[s, t]/〈sn, tn〉. For commutative algebraists, it is the multide-

gree of the Z
2-graded ring R[x, y]/NX,Y . This is explained in [33, Section 8.5] and is

implemented in Macaulay2with the command multidegree. For geometers, the
polar classes δi (X) have the following definition: intersecting the (n−2)-dimensional
subvariety NX,Y ⊂ P

n−1 × P
n−1 with an n-dimensional subvariety L × M where

L , M are general linear subspaces of P
n−1 of dimensions n − j and j , respectively,

one gets a finite number of simple points. The number δ j−1(X) counts these points.
The shift by one is to ensure compatibility with Holme’s paper [25].

So, for example, δ0(X) counts the number of intersections ofNX,Y with P
n−1×M

where M is a general projective line. These are the intersections of the dual variety
Y with M . Thus, if Y is a hypersurface, then δ0(X) is the degree of Y , and otherwise
δ0(X) is zero. In general, the first nonzero coefficient of (5.3) is the degree of Y and
the last nonzero coefficient is the degree of X . For all i , we have δi (Y ) = δn−2−i (X);
see [25, Theorem 2.3].

Theorem 5.4 If NX,Y does not intersect the diagonal �(Pn−1) ⊂ P
n−1×P

n−1, then

EDdegree(X) = δ0(X)+ · · · + δn−2(X) = δn−2(Y )+ · · · + δ0(Y ) = EDdegree(Y ).

Asufficient condition forNX,Y not to intersect�(Pn−1) is that X∩Q is a transversal
intersection everywhere (i.e., X∩Q is smooth) anddisjoint from Xsing. Indeed, suppose
that (x, x) ∈ NX,Y for some x ∈ X . There exists a sequence of points (xi , yi ) ∈ NX,Y

with xi ∈ X\Xsing, yi ⊥ Txi X , such that limi→∞(xi , yi )→ (x, x). Then yi ⊥ xi , so
taking the limit we find x ∈ Q. If, moreover, X is smooth at x , then Txi X converges
to the tangent space Tx X . We conclude that x ⊥ Tx X , which means that X is tangent
to Q at x .

Proof of Theorem 5.4. Denote by Z the variety of linearly dependent triples (x, y, u) ∈
P

n−1
x × P

n−1
y × C

n
u . By Proposition 5.3, the intersection (NX,Y × C

n) ∩ Z contains
the projective ED correspondence PEX,Y as a component. The two are equal because
(NX,Y ×C

n)∩ Z is swept out by the two-dimensional vector spaces {(x, y)}×〈x, y〉,
as (x, y) runs through the irreducible varietyNX,Y , and hence, it is irreducible. Here,
we are using that NX,Y ∩�(Pn−1) = ∅.

Hence, EDdegree(X) is the length of a general fiber of the map π3 : (NX,Y ×C
n)∩

Z → C
n . Next, a tangent space computation shows that the intersection (NX,Y ×

C
n) ∩ Z is transversal, so an open dense subset of it is a smooth scheme. By generic

smoothness [23, Corollary III.10.7], the fiber π−13 (u) over a general data point u
consists of simple points only. This fiber is scheme-theoretically the sameasNX,Y∩Zu ,
where Zu is the fiber in Z over u. The cardinality of this intersection is the coefficient
of sn−1tn−1 in the product [NX,Y ] · [Zu] in H∗(Pn−1×P

n−1) = Z[s, t]/〈sn, tn〉. The
determinantal variety Zu has codimension n − 2, and

[Zu] = sn−2 + sn−3t + sn−4t2 + · · · + stn−3 + tn−2.

This is a very special case of [33, Corollary 16.27]. By computing modulo 〈sn, tn〉,
we find
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[NX,Y ] · [Zu] = (δ0(X)sn−1t + · · · + δn−2(X)stn−1) ·
[Zu] = (δ0(X)+ · · · + δn−2(X))sn−1tn−1.

This establishes the desired identity. ��

Remark 5.5 If X and Y are smooth then X ∩ Q is smooth if and only if �(Pn−1) ∩
NX,Y = ∅ if and only if Y ∩Q is smooth. We do not know whether this holds when X
or Y is singular. Unfortunately, it happens very rarely that X and Y are both smooth
(see [13]).

Example 5.6 Let X be the variety of symmetric s×s-matrices x of rank≤ r and Y the
variety of symmetric s×s-matrices y of rank≤ s−r . These twodeterminantal varieties
form a dual pair [38, Example 5.15]. Their conormal ideal NX,Y is generated by the
relevant minors of x and y and the entries of the matrix product xy. The class [NX,Y ]
records the algebraic degree of semidefinite programming. A formula was found by
von Bothmer and Ranestad in [4]. Using the package Schubert2 in Macaulay2
[20,21], and summing over the indexm in [4, Proposition 4.1], we obtain the following
table of values for EDdegree(X):

s = 2 3 4 5 6 7
r = 1 4 13 40 121 364 1093
r = 2 13 122 1042 8683 72271
r = 3 40 1042 23544 510835
r = 4 121 8683 510835
r = 5 364 72271
r = 6 1093

In order for X to satisfy the hypothesis in Theorem 5.4, it is essential that the coordi-

nates are sufficiently general, so that X ∩Q is smooth. The usual coordinates inC(s+1
2 )

enjoy this property, and the table above records the ED degree for the second interpre-
tation in Example 3.2. Specifically, our number 13 for s = 3 and r = 2 appeared on
the right in (3.2). The symmetry in the columns of our table reflects the duality result
in Theorem 5.2. ♦

Example 5.7 Following [38, Ex. 5.44], Cayley’s cubic surface X = V ( f ) ⊂ P
3
x is

given by

f (x) = det

⎛

⎝
x0 x1 x2
x1 x0 x3
x2 x3 x0

⎞

⎠ .

Its dual inP
3
y is the quartic Steiner surface Y = V (g), with g = y21 y22+y21 y23+y22 y23−

2y0y1y2y3. The conormal ideal NX,Y is minimally generated by 18 bihomogeneous
polynomials in R[x, y]:
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f of degree (3, 0); g of degree (0, 4); q(x, y) = x0y0 + x1y1 + x2y2
+ x3y3 of degree (1, 1);

six generators of degree (1, 2), such as x2y1y2 + x3y1y3 + x0y2y3; and
nine generators of degree (2, 1), such as x0x1y2 − x2x3y2 + x20 y3 − x23 y3.

The conormal variety NX,Y is a surface in P
3
x × P

3
y with class 4s3t + 6s2t2 + 3st3,

and hence

EDdegree(X) = EDdegree(Y ) = 4+ 6+ 3 = 13.

Corollary 6.4 relates this to the number 13 in (3.2). The projective joint ED correspon-
dence PEX,Y is defined by the above equations together with the four 3 × 3-minors
of the matrix

⎛

⎝
u
x
y

⎞

⎠ =
⎛

⎝
u0 u1 u2 u3
x0 x1 x2 x3
y0 y1 y2 y3

⎞

⎠ .

For fixed scalars u0, u1, u2, u3 ∈ R, this imposes a codimension 2 condition. This
cuts out 13 points in NX,Y ⊂ X × Y ⊂ P

3
x × P

3
y . These represent the critical points

of du on X or Y . ♦
Armed with Theorem 5.4, we can now use the results described in Holme’s article
[25] to express the ED degree of a smooth projective variety X in terms of its Chern
classes.

Theorem 5.8 Let X be a smooth irreducible subvariety of dimension m in P
n−1, and

suppose that X is transversal to the isotropic quadric Q. Then

EDdegree(X) =
m∑

i=0
(−1)i · (2m+1−i − 1) · deg(ci (X)). (5.4)

Here, ci (X) is the i th Chern class of the tangent bundle of X . For more information
on Chern classes, and alternative formulations of Theorem 5.8, we refer the reader to
Sect. 7.

Proof By Theorem 5.4, we have EDdegree(X) = ∑n−2
i=0 δi (X). We also saw that

δi (X) = 0 for i > m, so we may let i run from 0 to m instead. Substituting the
expression

δi (X) =
m∑

j=i

(−1)m− j
(

j + 1

i + 1

)

deg(cm− j (X))

from [25, p. 150], and summing over all values of the index i , yields the theorem. ��
Corollary 5.9 Let X be a smooth irreducible curve of degree d and genus g in P

n−1,
and suppose that X is transversal to Q. Then
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EDdegree(X) = 3d + 2g − 2. (5.5)

Proof We have from [23, App. A §3] that deg(c0(X)) = d and deg(c1(X)) =
2− 2g. ��

Example 5.10 Consider a 2 × 3 matrix with entries in R[x1, x2, x3, x4] where the
first row contains general linear forms, and the second row contains general quadratic
forms. The ideal I generated by its three maximal minors defines a smooth irreducible
curve in P

3 of degree 7 and genus 5, so Corollary 5.9 gives EDdegree(V (I )) = 3 ·7+
2·5−2 = 29. This exceeds the bound of 27wewould get by taking n = 4, c = 3, d1 =
d2 = d3 = 3 in (2.8). However, while ideal I has s = 3 generators, the codimension
of its variety V (I ) is c = 2. Applying Corollary 2.10 to c = 2, d1 = d2 = 3, we get
the correct bound of 45. This is the ED degree for the complete intersection of two
cubics in P

3, and it exceeds 29 as desired. ♦

The formula (5.4) is particularly nice for a (projectively normal) smooth toricvariety
X in P

n−1. According to [17], this can be represented by a simple lattice polytope
P ⊂ R

m with |P ∩ Z
m | = n, and cm− j (X) is the sum of classes corresponding to all

j-dimensional faces of P . The degree of this class is its normalized volume. Therefore,
Theorem 5.8 implies

Corollary 5.11 Let X ⊂ P
n−1 be an m-dimensional smooth projective toric variety,

with coordinates such that X is transversal to Q. If Vj denotes the sum of the normal-
ized volumes of all j -dimensional faces of the simple lattice polytope P associated
with X, then

EDdegree(X) =
m∑

j=0
(−1)m− j · (2 j+1 − 1) · Vj .

Example 5.12 Consider a rational normal curve X in P
n in general coordinates (we

denote the ambient space as P
n instead of P

n−1, to compare with Example 4.8). The
associated polytope P is a segment of integer length n. The formula above yields

EDdegree(X) = (22 − 1) · V1 − (21 − 1) · V0 = 3n − 2.

In special coordinates, the ED degree can drop to n; see Corollary 8.7. Interestingly,
in those special coordinates, the square root of 3n − 2 is the average ED degree, by
Example 4.8.

All Segre varieties and Veronese varieties are smooth toric varieties, so we can
compute their ED degrees (in general coordinates) using Corollary 5.11. For Veronese
varieties, this can be used to verify the r = 1 row in the table of Example 5.6.
For instance, for s = 3, the toric variety X is the Veronese surface in P

5, and the
polytope is a regular triangle with sides of lattice length 2. Here, EDdegree(X) =
7 · V2 − 3 · V1 + V0 = 7 · 4− 3 · 6+ 3 = 13. ♦
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6 Geometric Operations

Following up on our discussion of duality, this section studies the behavior of the ED
degree of a variety under other natural operations. We begin with the dual operations
of projecting from a point and intersecting with a hyperplane. Thereafter, we discuss
homogenizing and dehomogenizing. Geometrically, these correspond to passing from
an affine variety to its projective closure and vice versa. We saw in the examples of
Sect. 3 that the ED degree can go up or go down under homogenization. We aim to
explain that phenomenon.

Our next two results are corollaries to Theorem 5.4 and results of Piene in [37]. We
work in the setting of Sect. 5, so X is an irreducible projective variety in P

n−1 and
X∗ is its dual, embedded into the same P

n−1 by way of the quadratic form q(x, y) =
x1y1 + · · · + xn yn . The polar classes satisfy δi (X) = δn−2−i (X∗). These integers are
zero for i ≥ dim(X) and i ≤ codim(X∗) − 2, and they are strictly positive for all
other values of the index i . The first positive δi (X) is the degree of X∗, and the last
positive δi (X) is the degree of X . The sum of all δi (X) is the common ED degree of
X and X∗. See [25] and our discussion above.

Fix a general linearmapπ : Cn → C
n−1. This induces a rationalmapπ : Pn−1 ���

P
n−2, whose base point lies outside X . The image π(X) is an irreducible closed

subvariety in P
n−2. Since the projective space P

n−2 comes with a coordinate system
(x1 : x2 : · · · : xn−1), the ED degree of π(X) is well-defined. If codim(X) = 1 then
π(X) = P

n−2 has ED degree 1 for trivial reasons. Otherwise, X maps birationally
onto π(X), and the ED degree is preserved:

Corollary 6.1 Let X satisfy the assumptions of Theorem 5.4. If codim(X) ≥ 2 then

EDdegree(π(X)) = EDdegree(X). (6.1)

Proof Piene [37] showed that δi (π(X)) = δi (X) for all i . Now use Theorem 5.4. ��
Example 6.2 Let I be the prime ideal generated by the 2×2-minors of the symmetric
3 × 3-matrix whose six entries are general linear forms in R[x1, x2, x3, x4, x5, x6].
The elimination ideal J = I ∩ R[x1, x2, x3, x4, x5] is minimally generated by seven
cubics. Its variety π(X) = V (J ) is a random projection of the Veronese surface
X = V (I ) fromP

5 intoP
4. Example 5.6 tells us that EDdegree(X) = 13. By plugging

J = Iπ(X) into the formula (2.7), and running Macaulay2 as in Example 2.11, we
verify EDdegree(π(X)) = 13. ♦

If X is a variety of high codimension, then Corollary 6.1 can be applied repeatedly
until the image π(X) is a hypersurface. In other words, we can take π to be a general
linear projection P

n−1 ��� P
d provided d > dim(X). Then, π(X) also satisfies the

assumptions of Theorem 5.4, and the formula (6.1) remains valid. This technique is
particularly useful when X is a smooth toric variety as in Corollary 5.11. Here, X
is parametrized by certain monomials, and π(X) is parametrized by general linear
combinations of those monomials.

Example 6.3 Consider a surface in P
3 that is parametrized by four homogeneous

polynomials of degree d in three variables. That surface can be represented as π(X)
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where X is the d-fold Veronese embedding of P
2 into P(d+2

2 )−1, and π is a ran-
dom projection into P

3. By applying Corollary 5.11 to the associated lattice triangle
P = conv{(0, 0), (0, d), (d, 0)}, and usingCorollary 6.1,we find EDdegree(π(X)) =
EDdegree(X) = 7d2 − 9d + 3. This is to be compared to the number 4d2 − 4d + 1,
which is the ED degree in (2.5) for the affine surface in C

3 parametrized by three
inhomogeneous polynomials of degree d in two variables.

A similar distinction arises for Bézier surfaces in 3-space. The ED degree of the
affine surface in Example 3.1 is 8d1d2 − 2d1 − 2d2 + 1, while EDdegree(π(X)) =
14d1d2− 6d1− 6d1+ 4 for the projective surface π(X) that is given by four bihomo-
geneous polynomialsψi of degree (d1, d2) in 2+2 parameters. Here, the toric surface
is X = P

1 × P
1, embedded in P

(d1+1)(d2+1)−1 by the line bundle O(d1, d2), and the
lattice polygon is the square P = [0, d1] × [0, d2]. ♦

In the previous example, we computed the ED degree of a variety by expressing
it as a linear projection from a high-dimensional space with desirable combinatorial
properties. This is reminiscent of the technique of lifting in optimization theory, where
one simplifies a problem instance by optimizing over a higher-dimensional constraint
set that projects onto the given constraint set. It would be desirable to develop this
connection further, and to find a more direct proof of Corollary 6.1 that works for both
projective and affine varieties.

The operation dual to projection is taking linear sections. Let H be a general hyper-
plane in P

n−1. Then, X ∩ H is a subvariety of codimension 1 in X . In particular, it
lives in the same ambient space P

n−1, with the same coordinates (x1 : · · · : xn), and
this defines the ED degree of X ∩ H . By Bertini’s Theorem, the variety X ∩ H is
irreducible provided dim(X) ≥ 2.

Corollary 6.4 Let X ⊂ P
n−1 satisfy the assumptions of Theorem 5.4. Then

EDdegree(X ∩ H) =
{
EDdegree(X)− degree(X∗) if codim(X∗) = 1,

EDdegree(X) if codim(X∗) ≥ 2.

Proof Piene [37] showed that δi (X ∩ H) = δi+1(X) for all i ≥ 0. By Theorem 5.4,
the desired ED degree is the sum of these numbers, so it equals EDdegree(X)−δ0(X).
However, we know that δ0(X) equals the degree of X∗ if X∗ is a hypersurface and it
is zero otherwise. ��
Example 6.5 Let Xr be the projective variety of symmetric 3 × 3-matrices of rank
≤ r . We know that X∗r = X3−r and EDdegree(X2) = EDdegree(X1) = 13. If H is
a general hyperplane in P

5 then EDdegree(X2 ∩ H) = 13 but EDdegree(X1 ∩ H) =
13− 3 = 10. ♦

If X is a variety of high dimension in P
n−1, then Corollary 6.4 can be applied

repeatedly until a general linear section is a curve. This motivates the following def-
inition which parallels its analog in the multiplicative setting of likelihood geometry
[27, §3]. The sectional ED degree of the variety X is the following binary form of
degree n − 1 in (x, u):

123



132 Found Comput Math (2016) 16:99–149

dim(X)−1∑

i=0
EDdegree(X ∩ Li ) · xi · un−1−i (6.2)

where Li is a general linear section of codimension i . Corollary 6.4 implies that, for
varieties in general coordinates as in Theorem 5.4, this equals

∑

0≤i≤ j<dim(X)

δ j (X) · xi · un−1−i .

It is desirable to get a better understanding of the sectional ED degree also for varieties
in special coordinates. For instance, in light of [27, Conjecture 3.19], we may ask how
(6.2) is related to the bidegree of the projective ED correspondence, or to the tridegree
of the joint projective ED correspondence. For a concrete application, suppose that X
is a determinantal variety, in the special coordinates of the Eckart–Young Theorem
(Example 2.3). Minimizing the squared distance function du over a linear section
X ∩ Li is known as structured low-rank matrix approximation. This problem has
numerous applications in engineering; see [8]. After this paper had been written, a
study, including computation of EDdegree for low-rank matrices constrained in linear
or affine subspaces, was published in [35].

We now change the topic to homogenization. Geometrically, this is the passage
from an affine variety X ⊂ C

n to its projective closure X ⊂ P
n . This is a stan-

dard operation in algebraic geometry [9, §8.4]. Homogenization often preserves
the solution set to a given geometric problem, but the analysis is simpler in P

n

since projective space is compact. Algebraically, we proceed as follows. Given the
ideal IX = 〈 f1, . . . , fs〉 ⊂ R[x1, . . . , xn], we introduce a new variable x0, repre-
senting the hyperplane at infinity, H∞ = P

n\Cn = V (x0). Given a polynomial
f ∈ R[x1, . . . , xn] of degree d, its homogenization f ∈ R[x0, x1, . . . , xn] is defined
by f (x0, . . . , xn) = xd

0 · f (x1/x0, . . . , xn/x0). The ideal IX of the projective variety
X is generated by { f : f ∈ IX }. It can be computed (e.g., in Macaulay2) by
saturation:

IX = 〈 f 1, . . . , f s〉 : 〈x0〉∞ ⊆ R[x0, x1, . . . , xn].

One might naively hope that EDdegree(X) = EDdegree(X). But this is false in
general:

Example 6.6 Let X be the cardioid in Example 1.1. Written in the notation above, its
projective closure is the quartic curve X ⊂ P

2 whose defining homogeneous ideal
equals

IX = 〈 x20 x22 − 2x0x31 − 2x0x1x22 − x41 − 2x21 x22 − x42 〉.

For this curve we have

EDdegree(X) = 3 < 7 = EDdegree(X).
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By contrast, consider the affine surface Y = V (x1x2−x3) ⊂ C
3. Its projective closure

is the 2×2-determinant Y = V (x1x2 − x0x3) ⊂ P
3. Here, the inequality goes in the

other direction:
EDdegree(Y ) = 5 > 2 = EDdegree(Y ). (6.3)

The same phenomenon was seen in our study of Hurwitz determinants in
Theorem 3.6. ♦

To explain what is going on here, we recall that EDdegree(X) is defined as the ED
degree of the affine cone over the projective variety X ⊂ P

n , which we also denote
by X . Explicitly,

X = { (t, t x) | x ∈ X, t ∈ C } ⊂ C
n+1.

The ED degree of X is for the fixed quadratic form x20 + x21 + · · · + x2n that cuts out
the isotropic quadric Q ⊂ P

n . This is just one of the infinitely many quadratic forms
on C

n+1 that restrict to the given form x · x = x21 + · · · + x2n on C
n . That is one

reason why the ED degrees of X and of X are not as closely related as one might
hope. Nevertheless, we will now make the relation more explicit. The affine variety X
is identified with the intersection of the cone X with the hyperplane {x0 = 1}. Its part
at infinity is denoted X∞ := X ∩ H∞.

Thedata point (1, 0) ∈ C
n+1 plays a special role, since it is the orthogonal projection

of the vertex (0, 0) of the cone X onto the affine hyperplane {x0 = 1}. The following
lemma relates the critical points for u = 0 on X to the critical points for u = (1, 0)
on X .

Lemma 6.7 Assume that all critical points of d0 on X satisfy x · x 	= −1. Then,
the map

x �→
(

1

1+ (x · x)
,

1

1+ (x · x)
x

)

is a bijection from the critical points of d0 on X to the critical points of d(1,0) on
X\X∞.

Proof Let t ∈ C\{0} and x ∈ X\Xsing. The point (t, t x) ∈ X is critical for d(1,0) if and
only if (1− t,−t x) is perpendicular to T(t,t x) X . That space is spanned by {0} × Tx X
and (1, x). Hence, (1 − t,−t x) is perpendicular to T(t,t x) X if and only if x ⊥ Tx X
and (1 − t) − t (x · x) = 0. The first condition says that x is critical for d0, and the
second gives t = 1/(1+ (x · x)). ��

If under the assumptions in Lemma6.7, the number of critical points of d0 equals the
ED degree of X , then we can conclude EDdegree(X) ≤ EDdegree(X), with equality
if none of the critical points of d(1,0) on X lies at infinity. To formulate a condition
that guarantees equality, we fix the isotropic quadric Q∞ = {x21 + · · · + x2n = 0} in
H∞. Our condition is:

The intersections X∞ = X ∩ H∞ and X∞ ∩ Q∞ are both transversal. (6.4)
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Lemma 6.8 If (6.4) holds then none of the critical points of d(1,0) on X lies in X∞.

Proof Arguing by contradiction, suppose that (0, x∞) ∈ X∞ is a critical point of d(1,0)
on X . Then (1,−x∞) is perpendicular to T(0,x∞) X , and hence (0, x∞) is perpendicular
to H∞ ∩ T(0,x∞) X . By transversality of X and H∞, the latter is the tangent space to
X∞ at (0, x∞). Hence, T(0,x∞) X∞ is contained in (0, x∞)⊥, and X∞ is tangent to
Q∞ at (0, x∞). ��

Fix v ∈ C
n and consider the affine translate Xv := X − v = {x − v | x ∈ X}.

Its projective closure Xv is isomorphic to X as a projective variety in P
n . However,

the metric properties of the corresponding cones in C
n+1 are rather different. While

EDdegree(Xv) = EDdegree(X) holds trivially, it is possible that EDdegree(Xv) 	=
EDdegree(X). Here is a simple example:

Example 6.9 Consider the unit circle X = {x21 + x22 = 1} in the plane. Then,
EDdegree(X) = EDdegree(X) = 2. For general v ∈ R

2, the translated circle Xv

has EDdegree(Xv) = 4. ♦
Affine translation sheds light on the behavior of the ED degree under

homogenization.

Proposition 6.10 Let X be an irreducible variety in C
n, and let v ∈ C

n be a general
vector. Then EDdegree(X) ≤ EDdegree(Xv), and equality holds if the hypothesis
(6.4) is satisfied.

The hypothesis (6.4) simply says that X∞ and X∞ ∩ Q∞ are smooth. Note that
this does not depend on the extension of the quadric Q∞ to C

n+1.

Proof Since translation of affine varieties preserves ED degree, the inequality follows
from Lemma 6.7 provided x ′ · x ′ 	= −1 for all critical points x ′ for d0 on Xv . These
are the points x ′ = x − v with x critical for dv , i.e., with (x, v) ∈ EX . The expression
(x − v) · (x − v) is not constant −1 on the irreducible variety EX , because it is zero
on the diagonal �(X) ⊂ EX . As a consequence, the variety of pairs (x, v) ∈ EX with
(x − v) · (x − v) = −1 has dimension ≤ n − 1. In particular, it does not project
dominantly onto the second factor C

n . Taking v outside that projection, and such that
the number of critical points of dv on X is equal to EDdegree(X), ensures that we can
apply Lemma 6.7. The second statement follows from Lemma 6.8 applied to Xv and
the fact that X and Xv have the same behavior at infinity. ��

Our main result on homogenization links the discussion above to the polar classes
of X .

Theorem 6.11 For any irreducible affine variety X in C
n we have the two inequalities

EDdegree(X) ≤
n−1∑

i=0
δi (X) and EDdegree(X) ≤

n−1∑

i=0
δi (X),

with equality on the left if (6.4) holds, and equality on the right if the conormal variety
NX is disjoint from the diagonal �(Pn) in P

n
x × P

n
y. The equality on the right holds
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in particular if X ∩ Q is smooth and disjoint from Xsing (see the statement after
Theorem 5.4).

Proof We claim that for general v ∈ C
n the conormal variety NXv

does not intersect
�(Pn). For this, we need to understand howNXv

changes with v. The (1+n)×(1+n)

matrix

Av :=
(

1 0
−v In

)

defines an automorphism P
n
x → P

n
x that maps X isomorphically onto Xv . The second

factor P
n
y is the dual of P

n
x and hence transforms contragradiently, i.e., by the matrix

A−T
v . Hence, the pair of matrices (Av, A−T

v ) maps NX isomorphically onto NXv
.

Consider the variety

Z := {
(x, y, v) ∈ NX × C

n | Avx = A−T
v y

}
.

For fixed (x, y) = ((x0 : x∞), (y0 : y∞)) ∈ NX with x0 	= 0, the equations defining
Z read

x0 = c(y0 + vT y∞) and − x0v + x∞ = cy∞,

for v ∈ C
n and a scalar c reflecting that we work in projective space. The second

equation expresses v in c, x, y. Substituting that expression into the first equation
gives a system for c with at most two solutions. This shows that dim Z is at most
dimNX = n − 1, so the image of Z in C

n is contained in a proper subvariety of C
n .

For any v outside that subvariety,NXv
∩�(Pn) = ∅. For those v, Theorem 5.4 implies

that EDdegree(Xv) is the sumof the polar classes of Xv , which are also those of X since
they are projective invariants. Since EDdegree(Xv) can only go down as v approaches
a limit point, this yields the second inequality, as well as the sufficient condition for
equality there. By applying Proposition 6.10, we establish the first inequality, as well
as the sufficient condition (6.4) for equality. ��
Example 6.12 Consider the quadric surface Y = V (x0x3−x1x2) ⊂ P

3 fromExample
6.6. This is the toric variety whose polytope P is the unit square. By Corollary 5.11,
the sum of the polar classes equals 7V2 − 3V1 + V0 = 14− 12+ 4 = 6. Comparing
this with (6.3), we find that neither of the two inequalities in Theorem 6.11 is an
equality. This is consistent with the fact that Y∞ := Y ∩H∞ = V (x1x2) is not smooth
at the point (0 : 0 : 0 : 1) and the fact that Y and Q are tangent at the four points
(1 : a1 : a2 : a1a2) with a1, a2 = ±i . ♦
Example 6.13 Consider the threefold Z = V (x1x4− x2x3− x20 − x0x1) in P

4. Then,
Z∞ is isomorphic to Y from the previous example and smooth in P

3, but Z∞∩ Q∞ is
isomorphic to the Y ∩ Q from the previous example and hence has four non-reduced
points. Here, we have EDdegree(Z) = 4 < 8 = EDdegree(Z) =∑3

i=0 δi (Z). If we
replace x1x4 by 2x1x4 in the equation defining Z , then the four non-reduced points
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disappear. Now Z∞∩Q∞ is smooth, we have EDdegree(Z) = 8, and both inequalities
in Theorem 6.11 hold with equality. ♦
Example 6.14 Let X be the cardioid from Examples 1.1 and 6.6. This curve violates
both conditions for equality in Theorem 6.11. Here, X∞ = V (x41+2x21 x22+x42 ) agrees
with Q∞ = V (x21 + x22 ) as a subset of H∞ � P

1, but it has multiplicity two at the
two points. ♦

7 ED discriminant and Chern Classes

Catenese and Trifogli [7,45] studied ED discriminants under their classical name focal
loci.We present some of their results, including a formula for the EDdegree in terms of
Chern classes, andwediscuss a range of applications.Wework in the projective setting,
so X is a subvariety of P

n−1, equipped with homogeneous coordinates (x1 : . . . : xn)

and PEX ⊂ P
n−1
x × C

n
u is its projective ED correspondence. By Theorem 4.4, the

ED degree is the size of the general fiber of the map PEX → C
n
u . The branch locus

of this map is the closure of the set of data points u for which there are fewer than
EDdegree(X) complex critical points. Since the variety PEX ⊂ P

n−1
x ×C

n
u is defined

by bihomogeneous equations in x , u, also the branch locus is defined by homogeneous
equations and it is a cone in C

n
u . Hence, the branch locus defines a projective variety

�X ⊂ P
n−1
u , which we call the ED discriminant. The ED discriminant�X is typically

a hypersurface, by the Nagata–Zariski Purity Theorem, and we are interested in its
degree and defining polynomial.

Remark 7.1 In applications, the uniqueness of the closest real-valued point u∗ ∈ X to
a given data point u is relevant. In many cases, e.g., for symmetric tensors of rank one
[14], this closest point is unique for u outside an algebraic hypersurface that strictly
contains �X .

Example 7.2 Let n = 4 and consider the quadric surface X = V (x1x4−2x2x3) ⊂ P
3
x .

This is the 2 × 2-determinant in general coordinates, so EDdegree(X) = 6. The ED
discriminant is a irreducible surface of degree 12 in P

3
u . Its defining polynomial has

119 terms:

�X = 65536u12
1 + 835584u10

1 u2
2 + 835584u10

1 u2
3 − 835584u10

1 u2
4 + 9707520u9

1u2u3u4

+3747840u8
1u4

2 − 7294464u8
1u2

2u2
3 + · · · + 835584u2

3u10
4 + 65536u12

4 .

This ED discriminant can be computed using the following Macaulay2 code:

R = QQ[x1,x2,x3,x4,u1,u2,u3,u4]; f = x1*x4-2*x2*x3;
EX = ideal(f) + minors(3,matrix {{u1,u2,u3,u4},

{x1,x2,x3,x4},
{diff(x1,f),diff(x2,f),diff(x3,f),diff(x4,f)} });
g = first first entries gens eliminate({x3,x4},EX);
toString factor discriminant(g,x2)

Here,EX is the ideal of theEDcorrespondence inP
3
x×P

3
u . The commandeliminate

maps that threefold into P
1
(x1:x2) × P

3
u . We print the discriminant of that hypersurface

over P
3. ♦
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If X is a general hypersurface of degree d in P
n−1 then, by Corollary 2.10,

EDdegree(X) = d · (d − 1)n−1 − 1

d − 2
. (7.1)

Trifogli [45] determined the degree of the ED discriminant �X for such a hypersur-
face X :

Theorem 7.3 (Trifogli) If X is a general hypersurface of degree d in P
n−1 then

degree(�X ) = d(n − 2)(d − 1)n−2 + 2d(d − 1)
(d − 1)n−2 − 1

d − 2
. (7.2)

Example 7.4 A general plane curve X has EDdegree(X) = d2 and degree(�X ) =
3d(d − 1). These are the numbers seen for the ellipse (d = 2) in Example 4.5. For
a plane quartic X , we expect EDdegree(X) = 16 and degree(�X ) = 36, in contrast
to the numbers 3 and 4 for the cardioid in Example 1.1. A general surface in P

3 has
EDdegree(X) = d(d2 − d + 1) and degree(�X ) = 2d(d − 1)(2d − 1). For quadrics
(d = 2) we get 6 and 12, as in Example 7.2. ♦
Example 7.5 The ED discriminant �X of a plane curve X was already studied in the
nineteenth century under the name evolute.

Salmon [39, p. 96, art. 112] showed that a curve X ⊂ P
2 of degree d with δ ordinary

nodes and k ordinary cusps has degree(�X ) = 3d2−3d−6δ−8k. For affine X ⊂ C
2,

the same holds provided that X ⊆ P
2 is not tangent to the line H∞ and neither of

the two isotropic points on H∞ is on X . Curves with more general singularities are
considered in [6,29] in the context of caustics, which are closely related to evolutes.♦
Example 7.6 Let Xr be the determinantal variety of Examples 2.3, 5.1 and 4.7. TheED
discriminant�Xr does not depend on r and equals the discriminant of the characteristic
polynomial of the symmetric matrix UU t . This polynomial has been expressed as
a sum of squares in [28]. The set of real points in the hypersurface V (�Xr ) has
codimension two in the space of real s× t matrices; see [42, §7.5]. This explains why
the complement of this ED discriminant in the space of real matrices is connected. In
particular, if U is real then all critical points are real, hence aEDdegree(Xr ) =

(s
r

)
. A

computation reveals that �Xr is reducible for s = 2. It has two components if t ≥ 3,
and it has four components if t = 2. ♦

We comment on the relation between duality and the ED discriminant �X . Recall
that �X is the projectivization of the branch locus of the covering PEX → C

n
u . By

the results in Sect. 5, this is also the branch locus of PEX,Y → C
n
u , and hence also of

PEY → C
n
u . This implies that the ED discriminant of a variety X agrees with that of

its dual variety Y = X∗.

Example 7.7 Let X ⊂ P
2
x denote the cubic Fermat curve given by x30+x31+x32 = 0. Its

dualY is the sextic curve inP
2
y that is defined by y60+y61+y62−2y30 y31−2y30 y32−2y31 y32 .

This pair of curves satisfies EDdegree(X) = EDdegree(Y ) = 9. The ED discriminant
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�X = �Y is an irreducible curve of degree 18 in P
2
u . Its defining polynomial has

184 terms:

�X = 4u18
0 − 204u16

0 u2
1 + 588u15

0 u3
1 − 495u14

0 u4
1 + 2040u13

0 u5
1

−2254u12
0 u6

1 + 2622u11
0 u7

1 + · · · + 4u18
2 .

The computation of the ED discriminant for larger examples in Macaulay2
is difficult. ♦

The formulas (7.1) and (7.2) are best understood and derived usingmodern intersec-
tion theory; see [18] or [23, Appendix A]. That theory goes far beyond the techniques
from [9] used in the earlier sections but is indispensable for more general formulas,
especially for varieties X of codimension≥ 2. We briefly sketch some of the required
vector bundle techniques.

A vector bundle E → X on a smooth, m-dimensional projective variety X has
a total Chern class c(E) = c0(E) + . . . + cm(E), which resides in the cohomology
ring H∗(X) = ⊕m

i=0 H2i (X). In particular, the top Chern class cm(E) is an integer
scalar multiple of the class of a point, and that integer is commonly denoted

∫
c(E).

If E has rank equal to dim X = m, and if s : X → E is a global section for which
V (s) := {x ∈ X | s(x) = 0} consists of finitely many simple points, then the
cardinality of V (s) equals

∫
c(E). To apply this to the computation of ED degrees,

we shall find E and s such that the variety V (s) is the set of critical points of du , and
then compute

∫
c(E) using vector bundle tools. Among these tools are Whitney’s sum

formula c(E) = c(E ′) · c(E ′′) for any exact sequence 0 → E ′ → E → E ′′ → 0
of vector bundles on X , and the fact that the total Chern class of the pullback of
E under a morphism X ′ → X is the image of c(E) under the ring homomorphism
H∗(X)→ H∗(X ′).

Here is our repertoire of vector bundles on X : the trivial bundle X × C
n of rank

n; the tautological line bundle pulled back from P
n−1, which is RX := {(x, v) ∈

X × C
n | v ∈ x} (also often denoted by OX (−1), while the dual R∗X is denoted by

OX (1)); the tangent bundle T X whose fibers are the tangent spaces Tx X ; the cotangent
bundle T ∗X whose fibers are their duals (Tx X)∗; and the normal bundle NX whose
fibers are the quotient TxP

n/Tx X . From these building blocks, we can construct new
vector bundles using direct sums, tensor products, quotients, duals, and orthogonal
complements inside the trivial bundle X × C

n .

Theorem 7.8 (Catanese–Trifogli) Let X be an irreducible smooth subvariety of P
n−1

and assume that X intersects the isotropic quadric Q = V (x21+· · ·+x2n ) transversally,
i.e., X ∩ Q is smooth. Then, the EDdegree of X can be computed in H∗(X) by either
of the expressions

EDdegree(X)=
∫

c(R∗X ) · c(T ∗X ⊗R∗X )

c(RX )
=

∫
1

c(RX ) · c(N∗X ⊗R∗X )
. (7.3)

Proof The first expression is stated after Remark 3 on page 6026 in [7], as a formula
for the inverse of the total Chern class of what they call Euclidean normal bundle (for

123



Found Comput Math (2016) 16:99–149 139

simplicity we tensor it by R∗X , differently from [7]). The total space of that bundle,
called normal variety in [7,45], is precisely our projective ED correspondence PEX

from Theorem 4.4.
A general data point u ∈ C

n gives rise to a section x �→ [(x, u)] of the quotient
bundle (X × C

n)/PEX , whose zero set is exactly the set of critical points of du .
By Whitney’s sum formula, the total Chern class of this quotient is 1/c(PEX ). This
explains the inverse and the first formula. The second formula is seen using the identity

1

c(N∗X ⊗R∗X )
= c(T ∗X ⊗R∗X )

c(T ∗Pn−1 ⊗R∗X )
= c(R∗X ) · c(T ∗X ⊗R∗X ), (7.4)

where the second equality follows from the Euler sequence [23, Example II.8.20.1].
��

Remark 7.9 The ED degree of a smooth projective variety X can also be interpreted
as the top Segre class [18] of the Euclidean normal bundle of X .

We shall now relate this discussion to the earlier formula in Sect. 5, by offering a
second proof of Theorem 7.8. This proof is based on a Chern class computation and
Theorem 5.8, and hence independent of the proof by Catanese and Trifogli.

Second proof of Theorem 7.8. If E is a vector bundle of rank m and L is a line
bundle, then

ck(E ⊗ L)=
k∑

i=0

(
r − i

k − i

)

ci (E)c1(L)k−i . (7.5)

This formula is [18, Example 3.2.2]. By definition, we have ci (X) = (−1)i ci (T ∗X).
Setting c1(R∗X ) = h, the formula (7.5) implies

c(T ∗X ⊗R∗X ) =
m∑

k=0

k∑

i=0

(
m − i

k − i

)

(−1)i ci (X)hk−i =
m∑

i=0
(−1)i ci (X)

m−i∑

t=0

(
m − i

t

)

ht .

We have c(R∗X ) = 1 + h and 1/c(RX ) = 1/(1 − h) = ∑m
i=0 hi . The equation

above implies

c(R∗X ) · c(T ∗X ⊗R∗X )

c(RX )
=

m∑

i=0
(−1)i ci (X)

(
m−i∑

t=0

(
m − i

t

)

ht

)⎛

⎝1+ 2
m∑

j=1
h j

⎞

⎠ .

The integral on the left-hand side in (7.3) is the coefficient of hm−i in the polynomial in
h that is obtained by multiplying the two parenthesized sums. That coefficient equals

1+ 2
m−i−1∑

j=0

(
m − i

j

)

= 2m−i+1 − 1.
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We conclude that Theorem 5.8 is in fact equivalent to the first formula in Theorem
7.8. The second formula follows from (7.4), as argued above. ��

The Catanese–Trifogli formula in (7.3) is most useful when X has low codimen-
sion. In that case, we compute the relevant class in the cohomology ring of the ambient
projective space P

n , and pull back to X . This yields the following proof of Proposi-
tion 2.6.

Proof of Proposition 2.6. First consider the case where X is a general hypersurface of
degree d in P

n−1. We compute in H∗(Pn−1) = Z[h]/〈hn〉. The line bundleRX is the
pullback ofRPn−1 , whose total Chern class is 1− h. Since codim(X) = 1, the vector
bundle NX is a line bundle. By [23, Example II.8.20.3], we have NX = (R∗X )⊗d , so
that N∗X ⊗R∗X = (RX )⊗(d−1). In H∗(Pn−1) we have

1

c(RPn−1) · c(R⊗d−1
Pn−1 )

= 1

(1− h)(1− (d − 1)h)
.

The coefficient of hn−2 in this expression equals
∑n−2

i=0 (d − 1)i , and since the image
of hn−2 in H∗(X) under pullback equals d = degree(X) times the class of a point,
we find

EDdegree(X) =
∫

1

c(RX ) · c(N ∗
X )
= d ·

n−2∑

i=0
(d − 1)i .

A similar reasoning applies when X is a general complete intersection of c hyper-
surfaces of degrees d1, . . . , dc. Again, by working in H∗(Pn−1) = Z[h]/〈hn〉,
we evaluate

EDdegree(X) =
∫

1

(1− h)
c∏

i=1
(1− (di − 1)h)

,

where
∫
refers to the coefficient of the point class in the pullback to X . To compute

this, we expand the integrand as a series in h. The coefficient of hn−c−1 in that series,
multiplied by degree(X) = d1 · · · dc, is the formula in (2.8). Proposition 2.6 then
follows fromTheorem6.11.Here is the argument. After a transformation (if necessary)
of the given equations f1, . . . , fs , the variety X ′ cut out by the first c of them is
a complete intersection. Then, X is an irreducible component of X ′. This implies
EDdegree(X) ≤ EDdegree(X ′). Now, by semicontinuity, EDdegree(X ′) is at most
the value for a general complete intersection. ��

If X is a low-dimensional variety then Theorem 5.8 may be more useful, especially
if X is a varietywhose cohomology ringwe understandwell.We illustrate this scenario
with a computation that generalizes Example 5.12 from X � P

1 to higher dimensions.
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Proposition 7.10 After a change of coordinates that creates a transverse intersection

with the isotropic quadric Q in P(m+d
d )−1, the d-th Veronese embedding of P

m has
ED degree

(2d − 1)m+1 − (d − 1)m+1

d
. (7.6)

Proof We write id : P
m−1 → X for the dth-Veronese embedding in question. So, X

denotes the image of P
m−1 in P(m+d−1

d )−1 under the map given by a sufficiently general
basis for the space of homogeneous polynomials of degree d in m variables. We have
ci (X) = (m+1

i

)
hi , so that deg ci (X) = ∫

(dh)m−i ci (X) = (m
i

)
dm−i . From Theorem

5.8, we now get

EDdegree(X) =
m∑

i=0
(−1)i (2m+1−i − 1)

(
m + 1

i

)

dm−i .

Using the Binomial Theorem, we see that this alternating sum is equal to (7.6). ��

Theorem 7.8 requires X to be smooth. Varieties with favorable desingularizations
are also amenable to Chern class computations, but the computations become more
technical.

Example 7.11 Let Xr denote the variety of s × t matrices of rank ≤ r , in general
coordinates so that Xr intersects Q transversally. Its ED degree can be computed by
the desingularization in [46, Proposition 6.1.1.a]. The Chern class formula amounts
to a nontrivial computation in the ring of symmetric functions. We implemented this
in Macaulay2 as follows:

loadPackage ‘‘Schubert2’’
ED=(s,t,r)->
(G = flagBundle({r,s-r}); (S,Q) = G.Bundles;
X=projectiveBundle (Sˆt); (sx,qx)=X.Bundles;
d=dim X; T=tangentBundle X;
sum(d+1,i->(-1)ˆi*(2ˆ(d+1-i)-1)*integral(chern(i,T)

*(chern(1,dual(sx)))ˆ(d-i))))

The first values of EDdegree(Xr ) are summarized in the following table

(s, t) = (2, 2) (2, 3) (2, 4) (2, 5) (3, 3) (3, 4) (3, 5) (4, 4) (4, 5) (5, 5)
r = 1 6 10 14 18 39 83 143 284 676 2205
r = 2 39 83 143 1350 4806 55010
r = 3 284 676 55010
r = 4 2205

The r = 1 row can also be computed with P a product of two simplices in
Corollary 5.11. ♦
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Using the formalism of Chern classes, Catanese and Trifogli [7, p. 6030] derive a
general formula for the degree of the ED discriminant �X . Their formula is a compli-
cated expression in terms of the Chow ring of the ED correspondence PEX . Here are
two easier special cases.

Example 7.12 If X is a general smooth curve in P
n of degree d and genus g then

degree(�X ) = 6(d + g − 1).

For instance, the rational normal curve X in general coordinates in P
n , as discussed

in Example 5.12, has degree(X) = n, EDdegree(X) = 3n − 2, and degree(�X ) =
6n − 6.

If X is a general smooth surface inP
n of degree d, with Chern classes c1(X), c2(X),

then

degree(�X ) = 2 ·
(
15 · d + c1(X)2 + c2(X)− 9 · deg c1(X)

)
.

The formulas in Example 7.4 can be derived from these expressions, as in
[7, p. 6034]. ♦

8 Tensors of Rank One

In this section, we present a brief account of recent work on multidimensional tensors
of rank one [14]. For these, the ED degree is computed in [15], and the average ED
degree is computed in [10]. Our discussion includes partially symmetric tensors, and
it represents a step toward extending the Eckart–Young theorem from matrices to
tensors.

We consider real tensors x = (xi1i2···i p ) of format m1 ×m2 × · · · ×m p. The space
of such tensors is the tensor product R

m1 ⊗ R
m2 ⊗ · · · ⊗ R

m p , which we identify
with R

m1m2···m p . The corresponding projective space P(Rm1 ⊗ · · ·⊗R
m p ) is likewise

identified with P
m1m2···m p−1.

A tensor x has rank one if x = t1 ⊗ t2 ⊗ · · · ⊗ tp for some vectors ti ∈ R
mi . In

coordinates,

xi1i2···i p = t1i1 t2i2 · · · tpi p for 1 ≤ i1 ≤ m1, . . . , 1 ≤ i p ≤ m p. (8.1)

The set X of all tensors of rank one is an algebraic variety in R
m1m2···m p . It is the cone

over the Segre variety P(Rm1)× · · · × P(Rm p ) = P
m1−1 × · · · × P

m p−1 in its natural
embedding in P

m1m2···m p−1. By slight abuse of notation, we use the symbol X also for
that Segre variety.

Theorem 8.1 (Draisma and Horobeţ [15, Theorem 4]) The ED degree of the Segre
variety X of rank 1 tensors of format m1× · · ·×m p equals the coefficient of the mono-

mial zm1−1
1 · · · zm p−1

p in the polynomial
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p∏

i=1

(̂zi )
mi − zmi

i

ẑi − zi
where ẑi = z1+ · · ·+zi−1 + zi+1+ · · ·+z p.

The embedding (8.1) of the Segre variety X into P
m1m2···m p−1 is not transversal to

the isotropic quadric Q, so our earlier formulas do not apply. However, it is natural in
the following sense. The Euclidean distance on each factor R

mi is preserved under the
action by the rotation group SO(mi ). The product group SO(m1) × · · · × SO(m p)

embeds in the group SO(m1 · · ·m p), which acts by rotations on the tensor space
R

m1m2···m p . The Segre map (8.1) from R
m1 × · · · × R

m p to R
m1m2···m p is SO(m1)×

· · · × SO(m p)-equivariant. This group invariance becomes crucial when, in a short
while, we pass to partially symmetric tensors.

For p = 2, when the given tensor u is a matrix, Theorem 8.1 gives the Eckart–
Young formula EDdegree(X) = min(m1, m2). The fact that singular vectors are the
eigenvectors of uT u or uuT , can be interpreted as a characterization of the ED cor-
respondence EX . The following generalization to arbitrary tensors, due to Lim [32],
is the key ingredient used in [15]. Suppose that u = (ui1i2···i p ) is a given tensor, and
we seek to find its best rank one approximation x∗ = (x∗i1i2···i p

) = (t∗1i1
t∗2i2
· · · t∗pi p

).
Then, we have the singular vector equations

u · (t∗1 ⊗ · · · ⊗ t∗i−1 ⊗ t∗i+1 ⊗ · · · ⊗ t∗p) = λt∗i , (8.2)

where the scalars λ’s are the singular values of the tensor u. The dot in (8.2) denotes
tensor contraction. In the special case p = 2, these are the equations, familiar from
linear algebra, that characterize the singular vector pairs of a rectangular matrix [15,
(1.1)]. Theorem 8.1 is proved in [15] by counting the number of solutions to (8.2).
The arguments used are based on Chern class techniques as described in Sect. 6.

Consider the ED correspondence PEX , introduced before Theorem 4.4, but now
regarded as a subvariety of P

m1···m p−1 × P
m1···m p−1. Its equations can be derived as

follows. The proportionality conditions of (8.2) are expressed as quadratic equations
given by 2 × 2 minors. This leads to a system of bilinear equations in (x, u). These
equations, together with the quadratic binomials in x for the Segre variety X , define
the ED correspondence PEX .

Example 8.2 Let p = 3, m1 = m2 = m3 = 2, and abbreviate a = t∗1 , b = t∗2 , c = t∗3 ,
for the Segre embedding of X = P

1×P
1×P

1 into P
7. This toric threefold is defined

by the ideal

〈 x101x110 − x100x111, x011x110 − x010x111, x011x101 − x001x111
x010x100 − x000x110, x001x100 − x000x101, x001x010 − x000x011
x010x101 − x000x111, x011x100 − x000x111, x001x110 − x000x111 〉.

(8.3)

The six singular vector equations (8.2) for the 2×2×2-tensor x reduce to the propor-
tionality between the columns of the following three matrices

(
u000b0c0 + u001b0c1 + u010b1c0 + u011b1c1 a0
u100b0c0 + u101b0c1 + u110b1c0 + u111b1c1 a1

)
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(
u000a0c0 + u001a0c1 + u100a1c0 + u101a1c1 b0
u010a0c0 + u011a0c1 + u110a1c0 + u111a1c1 b1

)

(
u000a0b0 + u010a0b1 + u100a1b0 + u110a1b1 c0
u001a0b0 + u011a0b1 + u101a1b0 + u111a1b1 c1

)

We now take the three determinants, by using ai b j ck = xi jk , this gives the bilinear
equations

u000x100 + u001x101 + u010x110 + u011x111 = u100x000 + u101x001
+u110x010 + u111x011,

u000x010 + u001x011 + u100x110 + u101x111 = u010x000 + u011x001
+u110x100 + u111x101,

u000x001 + u010x011 + u100x101 + u110x111 = u001x000 + u011x010
+u101x100 + u111x110. (8.4)

The ED correspondence PEX ⊂ P
7 × P

7 of X = P
1×P

1×P
1 is defined by (8.3)

and (8.4).
By plugging the binomials (8.3) into (2.7), we verify EDdegree(X) = 6, the number

from Theorem 8.1. By contrast, if we scale the xi jk so that X meets the isotropic
quadric Q transversally, then EDdegree(X) = 15 · 6 − 7 · 12 + 3 · 12 − 1 · 8 = 34,
by Corollary 5.11. ♦

Our duality results in Sect. 5 have nice consequences for rank one tensor approxi-
mation. It is known [19, Chapter XIV] that the dual variety Y = X∗ is a hypersurface
if and only if

2 ·max(m1, m2, . . . , m p) ≤ m1 + m2 + · · · + m p − p + 2. (8.5)

In that case, the polynomial defining Y is the hyperdeterminant of format m1 ×m2 ×
· · · ×m p. For instance, in Example 8.2, where P is the 3-cube, we get the 2× 2× 2-
hyperdeterminant

Y = V
(
x2000x2111 − 2x000x001x110x111 − 2x000x010x101x111 − 2x000x011x100x111

+4x000x011x101x110 + x2001x2110 + 4x001x010x100x111 − 2x001x010x101x110
−2x001x011x100x110 + x2010x2101 − 2x010x011x100x101 + x2011x2100

)
.

The following result was proved for 2× 2× 2-tensors by Stegeman and Comon [40].
However, it holds for arbitrary m1, . . . , m p. The proof is an immediate consequence
of Theorem 5.2.

Corollary 8.3 Let u be a tensor and u∗ its best rank one approximation. Then, u−u∗
is in the dual variety Y . In particular, if (8.5) holds then the hyperdeterminant of u−u∗
is zero.

This result explains the fact, well known in the numerical multilinear algebra com-
munity, that tensor decomposition and best rank one approximation are unrelated for
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p ≥ 3. The same argument gives the following generalization to arbitrary toric vari-
eties X A. Following [19], here A is a point configuration, whose convex hull is the
polytope P in Corollary 5.11. Fix a projective toric variety X A ⊂ P

n whose dual
variety (X A)∗ is a hypersurface. The defining polynomial of that hypersurface is the
A-discriminant �A. See [19] for details.

Corollary 8.4 Given a general point u ∈ R
n+1, let x be a point in the cone over

X A which is critical for the squared distance function du. The A-discriminant �A

vanishes at u − x.

The construction of singular vectors and the EDdegree formula in Theorem8.1 gen-
eralizes to partially symmetric tensors. Corollary 8.4 continues to apply in this setting.
Wedenote by Sa

R
m thea-th symmetric power ofRm . Fix positive integersω1, . . . , ωp.

We consider the embedding of the Segre variety X = P(Rm1)×· · ·×P(Rm p ) into the
space of tensors P(Sω1R

m1⊗· · ·⊗ Sωp R
m p ), sending (v1, . . . , vp) to v

ω1
1 ⊗· · ·⊗v

ωp
p .

The image is called a Segre–Veronese variety. When p = 1 we get the classical
Veronese variety whose points are symmetric decomposable tensors in P(Sω1R

m1). A
symmetric tensor x ∈ Sω1R

m1 corresponds to a homogeneous polynomial of degree
ω1 in m1 indeterminates. Such a polynomial sits in the Veronese variety X if it can be
expressed as the power of a linear form.

At this point, it is extremely important to note the correct choice of coordinates on
the space Sω1R

m1 ⊗ · · · ⊗ Sωp R
m p . We want the group SO(m1)× · · · × SO(m p) to

act by rotations on that space, and our Euclidean distance must be compatible with
that action. In order for this to happen, we must include square roots of appropriate
multinomial coefficients in the parametrization of the Segre–Veronese variety. We
saw this Example 2.7 for the twisted cubic curve (p = 1, m1 = 2, ω1 = 3) and in
Example 3.2 for symmetricmatrices (p = 1, ω2 = 3). In both examples, the Euclidean
distances come from the ambient space of all tensors.

Example 8.5 Let p = 2, m1 = 2, m2 = 3, ω1 = 3, ω2 = 2. The corresponding
space S3

R
2 ⊗ S2

R
3 of partially symmetric tensors has dimension 24. We regard this

as a subspace in the 72-dimensional space of 2×2×2×3×3-tensors. With this, the
coordinates on S3

R
2⊗S2

R
3 are xi jklm where 1 ≤ i ≤ j ≤ k ≤ 2 and 1 ≤ l ≤ m ≤ 3,

and the squared distance function is

du(x) = (u11111 − x11111)2 + 2(u11112 − x11112)2 + · · · + (u11133 − x11133)2

+ 3(u12111 − x12111)2 + 6(u12112 − x12112)2 + · · · + (u22233 − x22233)2.

In the corresponding projective space P
23 = P(S3

R
2 ⊗ S2

R
3), the threefold X =

P
1 × P

2 is embedded by the line bundle O(3, 2). It is cut out by scaled binomial
equations such as 3x11111x22111−x12111x12111. The ED degree of this Segre–Veronese
variety X equals 27. ♦
Theorem 8.6 (Friedland and Ottaviani [15, Theorem 5]) Let X ⊂ P(Sω1C

m1 ⊗· · ·⊗
Sωp C

m p ) be the Segre–Veronese variety of partially symmetric tensors of rank one. In
the invariant coordinates described above, the ED degree of X is the coefficient of the

monomial zm1−1
1 · · · zm p−1

p in the polynomial
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p∏

i=1

(̂zi )
mi − zmi

i

ẑi − zi
where ẑi =

⎛

⎝
p∑

j=1
ω j z j

⎞

⎠− zi .

The critical points of du on X are characterized by the singular vector equations (8.2),
obtained by restricting from ordinary tensors to partially symmetric tensors. Of special
interest is the case p = 1, with m1 = m and ω1 = ω. Here, X is the Veronese variety
of symmetric m × m × · · · × m tensors with ω factors that have rank one.

Corollary 8.7 The Veronese variety X ⊂ P(Sω
C

m), with SO(m) invariant coordi-
nates, has

EDdegree(X) = (ω − 1)m − 1

ω − 2
.

This is the formula in [5] for the number of eigenvalues of a tensor. Indeed, for
symmetric tensors, the eigenvector equations of [5] translate into (8.2). This is well
known in the matrix case (ω = 2): computing eigenvalues and computing singular
values is essentially equivalent. At present, we do not know how to extend our results
to tensors of rank r ≥ 2.

We now shift gears and examine the average ED degrees of rank one tensors.
As above, we write X for the cone over the Segre variety, given by its distinguished
embedding (8.1) intoR

m1m2···m p . We fix the standard Gaussian distributionω centered
at the origin in R

m1m2···m p .
In [10], the average ED degree of X is expressed in terms of the average absolute

value of the determinant on a Gaussian-type matrix ensemble constructed as follows.
Set m :=∑

i (mi − 1) and let A = (ak�) be the symmetric m×m-matrix with p× p-
block division into blocks of sizes m1−1, . . . , m p−1 whose upper triangular entries
ak�, 1 ≤ k ≤ � ≤ m, are

ak� =

⎧
⎪⎨

⎪⎩

Uk� if k, � are from distinct blocks,

U0 if k = �, and

0 otherwise.

Here,U0 and theUk� with k < � in distinct blocks are independent normally distributed
scalar random variables. For instance, if p = 3 and (m1, m2, m3) = (2, 2, 3), then

A =

⎡

⎢
⎢
⎣

U0 U12 U13 U14
U12 U0 U23 U24
U13 U23 U0 0
U14 U24 0 U0

⎤

⎥
⎥
⎦

with U0, U12, U13, U14, U23, U24 ∼ N (0, 1) independent.

Theorem 8.8 (Draisma andHorobeţ [10]) The average ED degree of the Segre variety
X relative to the standard Gaussian distribution on R

m1m2···m p equals
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aEDdegree(X) = π p/2

2m/2 ·∏p
i=1 Γ

(mi
2

) · E(| det(A)|),

where E(| det(A)|) is the expected absolute determinant of the random matrix A.

The proof of this theorem, which can be seen as a first step in random tensor
theory, is a computation similar to that in Example 4.8, though technically more
difficult. Note the dramatic decrease in dimension: instead of sampling tensors u
from an m1 · · ·m p-dimensional space and computing the critical points of du , the
theorem allows us to compute the average ED degree by sampling m × m-matrices
and computing their determinants. Unlike in Example 4.8, we do not expect that
there exists a closed form expression for E(| det(A)|), but existing asymptotic results
on the expected absolute determinant, e.g. from [43], should still help in comparing
aEDdegree(X) with EDdegree(X) for large p. The following table from [10] gives
some values for the average ED degree and compares them with Theorem 8.1:

Tensor format Average ED degree ED degree

n × m min(n, m) min(n, m)

23 = 2× 2× 2 4.287 6
24 11.06 24
25 31.56 120
26 98.82 720
27 333.9 5,040
28 1.206× 103 40,320
29 4.611× 103 362,880
210 1.843× 104 3,628,800
2× 2× 3 5.604 8
2× 2× 4 5.556 8
2× 2× 5 5.536 8
2× 3× 3 8.817 15
2× 3× 4 10.39 18
2× 3× 5 10.28 18
3× 3× 3 16.03 37
3× 3× 4 21.28 55
3× 3× 5 23.13 61

It is known from [15] that EDdegree(X) stabilizes outside the range (8.5), i.e., if
the mi are ordered increasingly, for m p − 1 ≥ ∑p−1

i=1 (mi − 1). This can be derived
from Theorem 8.1. For aEDdegree(X) we observe a similar behavior experimentally,
except that the average seems to slightly decrease with m p − 1 beyond this bound.
At present, we have neither a geometric explanation for this phenomenon nor a proof
using the formula in Theorem 8.8.

Epilogue

We conclude our investigation of the Euclidean distance degree by loosely paraphras-
ingHilbert andCohn-Vossen in their famous bookAnschauliche Geometrie [24, Chap-
ter I, §1]:
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The simplest curves are the planar curves. Among them, the simplest one is the
line (ED degree 1). The next simplest curve is the circle (ED degree 2). After that
come the parabola (ED degree 3), and, finally, general conics (ED degree 4).
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