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Abstract This paper studies sparse spikes deconvolution over the space of measures.
We focus on the recovery properties of the support of the measure (i.e., the loca-
tion of the Dirac masses) using total variation of measures (TV) regularization. This
regularization is the natural extension of the �1 norm of vectors to the setting of mea-
sures. We show that support identification is governed by a specific solution of the
dual problem (a so-called dual certificate) having minimum L2 norm. Our main result
shows that if this certificate is non-degenerate (see the definition below), when the
signal-to-noise ratio is large enough TV regularization recovers the exact same num-
ber of Diracs. We show that both the locations and the amplitudes of these Diracs
converge toward those of the input measure when the noise drops to zero. Moreover,
the non-degeneracy of this certificate can be checked by computing a so-called vanish-
ing derivative pre-certificate. This proxy can be computed in closed form by solving
a linear system. Lastly, we draw connections between the support of the recovered
measure on a continuous domain and on a discretized grid. We show that when the
signal-to-noise level is large enough, and provided the aforementioned dual certificate
is non-degenerate, the solution of the discretized problem is supported on pairs of
Diracs which are neighbors of the Diracs of the input measure. This gives a precise
description of the convergence of the solution of the discretized problem toward the
solution of the continuous grid-free problem, as the grid size tends to zero.
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1 Introduction

1.1 Sparse Spikes Deconvolution

Super-resolution is a central problem in imaging science and loosely speaking corre-
sponds to recoveringfine-scale details fromapossibly noisy input signal or image. This
thus encompasses the problems of data interpolation (recoveringmissing sampling val-
ues on a regular grid) and deconvolution (removing acquisition blur). We refer to the
review articles [24,27] and the references therein for an overview of these problems.

We consider in our article an idealized super-resolution problem, known as sparse
spikes deconvolution. It corresponds to recovering 1D spikes (i.e., both their posi-
tions and amplitudes) from blurry and noisy measurements. These measurements are
obtained by a convolution of the spikes train against a known kernel. This setup can be
seen as an approximation of several imaging devices. A method of choice to perform
this recovery is to introduce a sparsity-enforcing prior, among which the most popular
is a �1-type norm, which favors the emergence of spikes in the solution.

1.2 Previous Works

Discrete �1 regularization �1-type techniques were initially proposed in geo-
physics [10,23,28] to recover the location of density changes in the underground
for seismic exploration. They were later studied in depth by David Donoho and co-
workers, see for instance [14]. Their popularity in signal processing and statistics can
be traced back to the development of the basis pursuit method [9] for approximation
in redundant dictionaries and the Lasso method [31] for statistical estimation.

The theoretical analysis of the �1-regularized deconvolution was initiated by
Donoho [14]. Assessing the performance of discrete �1 regularization methods is
challenging and requires to take into account both the specific properties of the oper-
ator to invert and of the signal that is aimed at being recovered. A popular approach
is to assess the recovery of the positions of the nonzero coefficients. This requires
to impose a well-conditioning constraint that depends on the signal of interest, as
initially introduced by Fuchs [20], and studied in the statistics community under the
name of “irrepresentability condition,” see [34]. A similar approach is used by Dossal
and Mallat in [15] to study the problem of support stability over a discrete grid.

Imposing the exact recovery of the support of the signal to recover might be a
too strong assumption. The inverse problem community rather focuses on the L2

recovery error, which typically leads to a linear convergence rate with respect to the
noise amplitude. The seminal paper of Grasmair et al. [21] gives a necessary and
sufficient condition for such a convergence, which corresponds to the existence of
a non-saturating dual certificate (see Sect. 2 for a precise definition of certificates).
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This can be understood as an abstract condition, which is often difficult to check on
practical problems such as deconvolution.

Note that the continuous setting adopted in the present paper might be seen as a
limit of such discrete problems, and in Sect. 5, we relate our results to well-known
results on discrete grids.

Let us also note that, although we focus here on �1-based methods, there is a vast
literature on various nonlinear super-resolution schemes. This includes for instance
greedy [25,26], root finding [3,11], matrix pencils [13] and compressed sensing [16,
18] approaches.

Inverse problems regularizationwithmeasures Working over a discrete gridmakes the
mathematical analysis difficult. Following recent proposals [2,4,8,12], we consider
here this sparse deconvolution over a continuous domain, i.e., in a grid-free setting.
This shift from the traditional discrete domain to a continuous one offers considerable
advantages in term of mathematical analysis, allowing for the first time the emergence
of almost sharp signal-dependent criteria for stable spikes recovery (see references
below). Note that while the corresponding continuous recovery problem is infinite
dimensional in nature, it is possible to find its solution using either provably convergent
algorithms [4] or root finding methods for ideal low-pass filters [8].

Inverse problem regularization over the space of measures is now well understood
(see for instance [4,29]) and requires to perform variational analysis over a non-
reflexive Banach space (as in [22]), which leads to some mathematical technicalities.
We capitalize on these earlier works to build our analysis of the recovery performance.

Theoretical analysis of deconvolution over the space of measures For deconvolution
from ideal low-pass measurements, the groundbreaking paper [8] shows that it is
indeed possible to construct a dual certificate by solving a linear systemwhen the input
Diracs are well separated. This work is further refined in [7] that studies the robustness
to noise. In a series of paper [2,30], the authors study the prediction (i.e., denoising)
error using the same dual certificate, but they do not consider the reconstruction error
(recovery of the spikes). In our work, we use a different certificate to assess the exact
recovery of the spikes when the noise is small enough.

In view of the applications of super-resolution, it is crucial to understand the precise
location of the recovered Diracs locations when the measurements are noisy. Partial
answers to this questions are given in [19] and [1], where it is shown (under different
conditions on the signal-to-noise level) that the recovered spikes are clustered tightly
around the initial measure’s Diracs. In this article, we fully answer the question of the
position of the recovered Diracs in the setting where the signal-to-noise ratio is large
enough.

1.3 Formulation of the Problem and Contributions

Let m0 = ∑N
i=1 a0,iδx0,i be a discrete measure defined on the torus T = R/Z, where

a0 ∈ R
N and x0 ∈ T

N . We assume we are given some low-pass filtered observation
y0 = Φm0 ∈ L2(T). Here, Φ denotes a convolution operator with some kernel ϕ ∈
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C2(T). The observationmight be noisy, inwhich casewe are given y0+w = Φm0+w,
with w ∈ L2(T), instead of y0.

Following [8,12], we hope to recover m0 by solving the problem

min
Φm=y0

||m||TV. (P0(y0))

among all Radon measures, where ||m||TV refers to the total variation (defined below)
ofm. Note that in our setting, the total variation is the natural extension of the �1 norm
of finite-dimensional vectors to the setting of Radon measures, and it should not be
mistaken for the total variation of functions, which is routinely used to recover signals
or images.

Wemayalso consider reconstructingm0 by solving the followingpenalizedproblem
for λ > 0, also known as the Beurling LASSO (see for instance [1]):

min
m

1

2
||Φm − y0||22 + λ||m||TV. (Pλ(y0))

This is especially useful if the observation is noisy, in which case y0 should be replaced
with y0 + w.

Four questions immediately arise:

1. Does the resolution of (P0(y0)) for y0 = Φm0 actually recover interesting mea-
sures m0?

2. How close is the solution of (Pλ(y0)) to the solution of (P0(y0)) when λ is small
enough?

3. How close is the solution of (Pλ(y0 + w)) to the solution of (Pλ(y0)) when both
λ and w/λ are small enough?

4. What can be said about the above questions when solving (Pλ(y0))with measures
supported on a fixed finite grid?

The first question is addressed in the landmark paper [8] in the case of ideal low-
pass filtering: Measuresm0 whose spikes are separated enough are the unique solution
of (P0(y0)) (for data y0 = Φm0). Several other cases (using observations different
from convolutions) are also tackled in [12], particularly in the case of non-negative
measures.

The second and third questions receive partial answers in [1,4,7,19]. In [4], it is
shown that if the solution of (P0(y0)) is unique, the measures recovered by (Pλ(y0 +
w)) converge to the solution of (P0(y0)) in the sense of the weak-* convergence when

λ → 0 and
||w||22

λ
→ 0. In [7], the authors measure the reconstruction error using the

L2 norm of a low-pass filtered version of recovered measures. In [1], error bounds are
derived from the amplitudes of the reconstructed measure. In [19], bounds are given in
terms of the original measure. However, those works provide little information about
the structure of the measures recovered by (Pλ(y0 +w)): Are they made of less spikes
than m0 or, in the contrary, do they present lots of parasitic spikes? What happens if
one compels the spikes to belong to a finite grid?

The fourth question is of primary importance since most numerical schemes for
sparse regularization solve a finite-dimensional optimization problem over a fixed

123



Found Comput Math (2015) 15:1315–1355 1319

discretization grid. Following [8], one can remark that in the noiseless setting, if m0
is recovered over the continuous domain and if its support is included in the grid,
m0 is also guaranteed to be recovered by the discretized problem. But this is of little
interest in practice because the noise is likely to impact in a different manner the
discrete problem and the input measure might fall outside the grid locations. Dossal
and Mallat in [15] study the stability of the position of the Diracs on the grid, which
leads to overly pessimistic conclusions because noise typically forces the spikes to
translate over the domain. Studying the convergence of the discretized problem toward
the continuous one is thus important to obtain a precise description of the discretized
solution. To the best of our knowledge, the work of [2] is the only one to provide
some conclusion about this convergence in term of denoising error. No previous work
has studied the capability of the discretized problem to estimate in a precise manner
the location of the spikes of the input measure.

Contributions The present paper studies in detail the structure of the recovered mea-
sure. For this purpose, we define theminimal L2-norm certificate. This certificate fully
governs the behavior of the regularization when both λ and ||w||2/λ are small.

Our first contribution is a set of results indicating that the regions of saturation of the
certificate (when it reaches +1 or −1) are approximately stable when λ and ||w||2/λ
are small enough. This means that the recovered measures are supported closely to
the support of the input measure if the latter is identifiable (solution of the noiseless
problem (P0(y0))).

Our second contribution introduces the non-degenerate source condition, which
imposes that the second derivative of the minimal norm certificate does not vanish
on the saturation points. Under this condition, we show that for λ and ||w||2/λ small
enough, the reconstructed measure has exactly the same number of spikes as the
original measure and that their locations and amplitudes converge to those of the
original one.

Our third contribution shows that under the non-degenerate source condition, the
minimal norm certificate can actually be computed in closed form by simply solving a
linear system. This in turn also implies that the errors in the amplitudes and locations
decay linearly with respect to the noise level.

Our fourth and last contribution focuses on the regularization over a discrete finite
grid, which corresponds to the so-called Lasso or basis pursuit denoising problem.We
show that when λ and ||w||2/λ are small enough, and provided that the non-degenerate
source condition holds, the discretized solution is located on pairs of Diracs adjacent
to the input Diracs location. This gives a precise description of how the solution to the
discretized problem converges to the one of the continuous problem when the stepsize
of the grid vanishes.

Throughout the paper, the proposed definitions and results are illustrated in the case
of the ideal low-pass filter, showing that the assumptions are actually relevant. Note
that the code to reproduce the figures of this article is available online.1

1 https://github.com/gpeyre/2013-FOCM-SparseSpikes/.
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Outline of the paper Section 2 defines the framework for the recovery of Radon
measures using total variationminimization.We also expose basic results that are used
throughout the paper. Section 3 is devoted to the main result of the paper: We define
the non-degenerate source condition, and we show that it implies the robustness of the
reconstruction using (Pλ(y0+w)). In Sect. 4, we show how the specific dual certificate
involved in the non-degenerate source condition can be computed numerically by
solving a linear system. Lastly, Sect. 5 focuses on the recovery of measures on a
discrete grid.

1.4 Notations

For any Radonmeasurem defined onT, we denote its support by Supp(m). If Supp(m)

is a finite set (in which case we say that m is a discrete measure) and m �= 0, then m
is of the form m = ∑N

i=1 aiδxi , where N ∈ N
∗, a ∈ R

N , x ∈ T
N and ai �= 0 and

xi �= x j for all 1 � i, j � N . In the rest of the paper, we shall write m = ma,x to
hint that m has the above decomposition (implying that ai �= 0 and xi �= x j for all
1 � i, j � N ).

We also define the signed support:

Supp± m = (Suppm+) × {1} ∪ (Suppm−) × {−1} ⊂ T × {+1,−1}

where m+ (respectively m−) denotes the positive (respectively negative) part of m.
For a discrete measure m = ma,x ,

Supp± m = {(t, v) ∈ T × {+1,−1}, m({t}) �= 0 and signm({t}) = v}
= {(xi , sign ai ), 1 � i � N }.

We shall consider restrictions of measures and functions to subsets of T. For m ∈
M(T) a discrete measure and J = {x1, . . . , xk} ⊂ T a finite set, we define

m|J = a ∈ T
k where ∀ i = 1, . . . , k, ai = m({xi }).

For η ∈ C(T) a continuous function defined on T, we define

η|J = (η(x j ))
k
j=1 ∈ T

k .

Given a convolution operator Φ with kernel t 	→ ϕ(−t), we define Φx : R
N →

L2(T) (respectively Φ ′
x , Φ

′′
x ) by

∀a ∈ R
N , Φx (a) = Φ(ma,x ) =

N∑

i=1

aiϕ(xi − ·), (1)

Φ ′
x (a) = (Φx (a))′ =

N∑

i=1

aiϕ
′(xi − ·), (2)
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Φ ′′
x (a) = (Φx (a))′′ =

N∑

i=1

aiϕ
′′(xi − ·). (3)

We define

Γx = (Φx , Φ
′
x ) : (u, v) ∈ R

N × R
N 	→ Φxu + Φ ′

xv ∈ L2(T), (4)

Γ ′
x = (Φ ′

x , Φ
′′
x ) : (u, v) ∈ R

N × R
N 	→ Φ ′

xu + Φ ′′
x v ∈ L2(T). (5)

Eventually, in order to study small noise regimes, we shall consider domains Dα,λ0 ,
for α > 0, λ0 > 0, where:

Dα,λ0 =
{
(λ,w) ∈ R+ × L2(T) ; 0 � λ � λ0 and ||w||2 � αλ

}
. (6)

2 Preliminaries

In this section, we precise the framework and we state the basic results needed in the
next sections. We refer to [5] for aspects regarding functional analysis and to [17] as
far as duality in optimization is concerned.

2.1 Topology of Radon Measures

Since T is compact, the space of Radon measuresM(T) can be defined as the dual of
the space C(T) of continuous functions on T, endowed with the uniform norm. It is
naturally a Banach space when endowed with the dual norm (also known as the total
variation), defined as

∀m ∈ M(T), ||m||TV = sup

{∫

ψdm ; ψ ∈ C(T), ||ψ ||∞ � 1

}

. (7)

In that case, the dual of M(T) is a complicated space, and it is strictly larger than
C(T) as C(T) is not reflexive.

However, if we endowM(T) with its weak-* topology (i.e., the coarsest topology
such that the elements of C(T) define continuous linear forms onM(T)), thenM(T)

is a locally convex space whose dual is C(T).
In the following, we endow C(T) (respectivelyM(T)) with its weak (respectively

its weak-*) topology so that both have symmetrical roles: One is the dual of the other
and conversely. Moreover, sinceC(T) is separable, the set {m ∈ M(T) ; ||m||TV � 1}
endowed with the weak-* topology is metrizable.

Given a function ϕ ∈ C2(T, R), we define an operator Φ : M(T) → L2(T) as

∀m ∈ M(T), Φ(m) : t 	→
∫

T

ϕ(x − t)dm(x).
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It canbe shownusingFubini’s theorem thatΦ isweak-* toweak continuous.Moreover,
its adjoint operator Φ∗ : L2(T) → C(T) is defined as

∀ y ∈ L2(T), Φ∗(y) : t 	→
∫

T

ϕ(t − x)y(x)dx .

2.2 Subdifferential of the Total Variation

It is clear from the definition of the total variation in (7) that it is convex lower semi-
continuous with respect to the weak-* topology. Its subdifferential is defined as

∂||m||TV =
{

η ∈ C(T) ; ∀m̃ ∈ M(T), ||m̃||TV � ||m||TV +
∫

η d(m̃ − m)

}

, (8)

for any m ∈ M(T) such that ||m||TV < +∞.
Since the total variation is a sublinear function, its subgradient has a special struc-

ture. One may show (see Proposition 12 in “Appendix 1”) that

∂||m||TV =
{

η ∈ C(T) ; ||η||∞ � 1 and
∫

η dm = ||m||TV
}

. (9)

In particular, when m is a measure with finite support, i.e., m = ∑N
i=1 aiδxi for

some N ∈ N, with (ai )1�i�N ∈ (R∗)N and distinct (xi )1�i�N ∈ T
N

∂||m||TV = {η ∈ C(T) ; ||η||∞ � 1 and ∀ i = 1, . . . , N , η(xi ) = sign(ai )} . (10)

2.3 Primal and Dual Problems

Given an observation y0 = Φm0 ∈ L2(T) for some m0 ∈ M(T), we consider
reconstructing m0 by solving either the relaxed problem for λ > 0

min
m∈M(T)

1

2
||Φ(m) − y0||22 + λ||m||TV, (Pλ(y0))

or the constrained problem

min
Φ(m)=y0

||m||TV. (P0(y0))

If m0 is the unique solution of (P0(y0)), we say that m0 is identifiable.
In the case where the observation is noisy (i.e., the observation y0 is replaced with

y0 + w for w ∈ L2(T)), we attempt to reconstruct m0 by solving Pλ(y0 + w) for a
well-chosen value of λ > 0.

Existence of solutions for (Pλ(y0)) is shown in [4], and existence of solutions
for (P0(y0)) can be checked using the direct method of the calculus of variations
(recall that for (P0(y0)), we assume that the observation is y0 = Φm0).
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A straightforward approach to studying the solutions of Problem (Pλ(y0)) is then
to apply Fermat’s rule: A discrete measure m = ma,x = ∑N

i=1 aiδxi is a solution of
(Pλ(y0)) if and only if there exists η ∈ C(T) such that

Φ∗(Φm − y0) + λη = 0,

with ||η||∞ � 1 and η(xi ) = sign(ai ) for 1 � i � N .
Another source of information for the study of Problems (Pλ(y0)) and (P0(y0)) is

given by their associated dual problems. In the case of the ideal low-pass filter, this
approach is also the key to the numerical algorithms used in [1,2,8]: The dual problem
can be recast into a finite-dimensional problem.

The Fenchel dual problem to (Pλ(y0)) is given by

max
||Φ∗ p||∞�1

〈y0, p〉 − λ

2
||p||22, (Dλ(y0))

which may be reformulated as a projection on a closed convex set (see [1,4])

min
||Φ∗ p||∞�1

|| y0
λ

− p||22. (D′
λ(y))

This formulation immediately yields existence anduniqueness of a solution to (Dλ(y0)).
The dual problem to (P0(y0)) is given by

sup
||Φ∗ p||∞�1

〈y0, p〉. (D0(y0))

Contrary to (Dλ(y0)), the existence of a solution to (D0(y0)) is not always guaranteed,
so that in the following (see Definition 5) we make this assumption.

Existence is guaranteed when for instance ImΦ∗ is finite dimensional (as is the
case in the framework of [8]). If a solution to (D0(y0)) exists, the unique solution
of (Dλ(y0)) converges to a certain solution of (D0(y0)) for λ → 0+ as shown in
Proposition 1 below.

2.4 Dual Certificates

The strong duality between (Pλ(y0)) and (Dλ(y0)) is proved in [4, Prop. 2] by see-
ing (D′

λ(y)) as a predual problem for (Pλ(y0)). As a consequence, both problems have
the same value and any solution mλ of (Pλ(y0)) is linked with the unique solution pλ

of (Dλ(y0)) by the extremality condition

{
Φ∗ pλ ∈ ∂||mλ||TV,

−pλ = 1
λ
(Φmλ − y0).

(11)

Moreover, given a pair (mλ, pλ) ∈ M(T) × L2(T), if relations (11) hold, then mλ is
a solution to Problem (Pλ(y0)) and pλ is the unique solution to Problem (Dλ(y0)).
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As for (P0(y0)), a proof of strong duality is given in “Appendix 1” (see Propo-
sition 13). If a solution p� to (D0(y0)) exists, then it is linked to any solution m�

of (P0(y0)) by

Φ∗ p� ∈ ∂||m�||TV, (12)

and similarly, given a pair (m�, p�) ∈ M(T) × L2(T), if relation (12) hold, then m�

is a solution to Problem (P0(y0)) and p� is a solution to Problem (D0(y0))).
Since finding η = Φ∗ p� which satisfies (12) gives a quick proof thatm� is a solution

of (P0(y0)), we call η a dual certificate form�. We may also use a similar terminology
for ηλ = Φ∗ pλ and Problem (Pλ(y0)).

In general, dual certificates for (P0(y0)) are not unique, but we consider in the
following definition a specific one, which is crucial for our analysis.

Definition 1 (Minimal norm certificate) When it exists, the minimal norm dual cer-
tificate associated with (P0(y0)) is defined as η0 = Φ∗ p0 where p0 ∈ L2(T) is the
solution of (D0(y0)) with minimal norm, i.e.,

η0 = Φ∗ p0, where p0 = argmin
p

{||p||2 ; p is a solution of (D0(y0))} . (13)

Observe that in the above definition, p0 is well defined provided there exists a
solution to Problem (D0(y0)), since p0 is then the projection of 0 onto the non-empty
closed convex set of solutions. Moreover, in view of the extremality conditions (12),
given any solution m� to (P0(y0)), it may be expressed as

p0 = argmin
p

{||p||2 ; Φ∗ p ∈ ∂||m�||TV
}
. (14)

Proposition 1 (Convergence of dual certificates) Let pλ be the unique solution of
Problem (Dλ(y0)), and p0 be the solution of Problem (D0(y0)) with minimal norm
defined in (13). Then,

lim
λ→0+ pλ = p0 for the L2 strong topology.

Moreover, the dual certificates ηλ = Φ∗ pλ for Problem (Pλ(y0)) converge to the
minimal norm certificate η0 = Φ∗ p0. More precisely,

∀k ∈ {0, 1, 2}, lim
λ→0+ η

(k)
λ = η

(k)
0 , (15)

in the sense of the uniform convergence.

Proof Let pλ be the unique solution of (Dλ(y0)). By optimality of pλ (respectively
p0) for (Dλ(y0)) (respectively (D0(y0)))

〈y0, pλ〉 − λ||pλ||22 � 〈y0, p0〉 − λ||p0||22, (16)

〈y0, p0〉 � 〈y0, pλ〉. (17)
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As a consequence ||p0||22 � ||pλ||22 for all λ > 0.
Now, let (λn)n∈N be any sequence of positive parameters converging to 0. The

sequence pλn being bounded in L2(T), we may extract a subsequence (denoted λn′)
such that pλn′ weakly converges to some p� ∈ L2(T). Passing to the limit in (16), we
get 〈y0, p�〉 � 〈y0, p0〉. Moreover, Φ∗ pλn weakly converges to Φ∗ p� in C(T), so
that ||Φ∗ p�||∞ � lim infn′ ||Φ∗ pλn′ ||∞ � 1, and p� is therefore a solution of (D0(y0)).

But one has
||p�||2 � lim inf

n′ ||pλn′ ||2 � ||p0||2,

hence p� = p0 and in fact limn′→+∞ ||pλn′ ||2 = ||p0||2. As a consequence, pλn′
converges to p0 for the L2(T) strong topology as well. This being true any sequence
λn → 0+, we get the result claimed for pλ: Assume by contradiction that there exists
ε0 > 0 and a sequence λn ↘ 0 such that ‖p0 − pλn‖2 � ε0 for all n ∈ N. By the
above argument, wemay extract a subsequence λn′ which converges toward p0, which
contradicts ‖p0 − pλ′

n
‖2 � ε0. Hence, limλ→0 pλ = p0 strongly in L2.

It remains to prove the convergence of the dual certificates. Observing that η(k)
λ (t) =∫

ϕ(k)(t − x)pλ(x)dx , we get

|η(k)
λ (t) − η

(k)
0 (t)| =

∣
∣
∣

∫

T

ϕ(k)(t − x)(pλ − p0)(x)dx
∣
∣
∣

�
√∫

T

|ϕ(k)(t − x)|2dx
√∫

T

|(pλ − p0)(x)|2dx

� C ||pλ − p0||2,

where C > 0 does not depend on t nor k, hence the uniform convergence. ��

2.5 Application to the Ideal Low-pass Filter

In this paragraph, we apply the above duality results to the particular case of the
Dirichlet kernel, defined as

ϕ(t) =
fc∑

k=− fc

e2iπkt = sin ((2 fc + 1)π t)

sin(π t)
. (18)

It is well known that in this case, the spaces ImΦ and ImΦ∗ are finite dimensional,
being the space of real trigonometric polynomials with degree less than or equal to fc.

We first check that a solution to (D0(y0)) always exists. As a consequence, given
any measure m0, the minimal norm certificate is well defined.

Proposition 2 Existence of p0 Let m0 ∈ M(T) and y0 = Φm0 ∈ L2(T). There
exists a solution of (D0(y0)). As a consequence, p0 ∈ L2(T) is well defined.
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Proof We rewrite (D0(y0)) as

sup
||η||∞�1,η∈ImΦ∗

〈m0, η〉.

Let (ηn)n∈N be any maximizing sequence. Then, (ηn)n∈N is bounded in the finite-
dimensional space of trigonometric polynomialswith degree fc or less.Wemay extract
a subsequence converging to η� ∈ C(T). But ||η�||∞ � 1 and η� ∈ ImΦ∗, so that
η� = Φ∗ p� for some p� solution of (D0(y0)). ��

A striking result of [8] is that discrete measures are identifiable provided that their
support is separated enough, i.e., �(m0) � C

fc
for some C > 0, where �(m0) is the

so-called minimum separation distance.

Definition 2 (Minimum separation) The minimum separation of the support of a dis-
crete measure m is defined as

�(m) = inf
(t,t ′)∈Supp(m)

|t − t ′|,

where |t − t ′| is the distance on the torus between t and t ′ ∈ T, and we assume t �= t ′.

In [8], it is proved that C � 2 for complex measures (i.e., of the form ma,x for
a ∈ C

N and x ∈ T
N ) and C � 1.87 for real measures (i.e., of the form ma,x for

a ∈ R
N and x ∈ T

N ). Extrapolating from numerical simulations on a finite grid, the
authors conjecture that for complex measures, one has C � 1. In this section, we
apply results from Sect. 2.4 to show that for real measures, necessarily C � 1

2 .
We rely on the following theorem, proved by P. Turán [32].

Theorem 1 (Turán) Let P(z) be a non-trivial polynomial of degree n such that
|P(1)| = max|z|=1 |P(z)|. Then for any root z0 of P on the unit circle, | arg(z0)| � π

n .
Moreover, if | arg(z0)| = π

n , then P(z) = c(1 + zn) for some c ∈ C
∗.

From this theorem, we derive necessary conditions for measures that can be recon-
structed by (P0(y0)).

Corollary 1 (Non-identifiable measures) There exists a discrete measure m0 with
�(m0) = 1

2 fc
such that m0 is not a solution of (P0(y0)) for y0 = Φm0.

Proof Let m0 = δ− 1
2 fc

+ δ0 − δ 1
2 fc

, assume by contradiction that m is a solution

of (P0(y0)), and let η ∈ C(T) be an associated dual certificate (which exists since

ImΦ∗ is finite dimensional). Then necessarily η(− 1
2 fc

) = η(0) = 1 and η
(

1
2 fc

)
=−1

and by the intermediate value theorem, there exists t0∈(0, 1
2 fc

) such that η(t0)=0.

Writing η(t) = ∑ fc
k=− fc

dke2iπkt , the polynomial P(z) = ∑2 fc
k=0 dk− fc z

k satisfies

P(1) = 1 = sup|z|=1 |P(z)| = |P(e
2iπ
2 fc )|, and P(e2iπ t0) = 0.

By Theorem 1, we cannot have |2π t0 − 0| < π
2 fc

nor |2π t0 − 2π
2 fc

| < π
2 fc

, hence

t0 = 1
4 fc

and P(z) = c(1 + z2 fc), so that η(t) = cos(2π fct). But this implies

η(− 1
2 fc

) = −1, which contradicts the optimality of η. ��
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In a similar way, we may also deduce the following corollary.

Corollary 2 (Opposite spikes separation) Let m� ∈ M(T) be any discrete measure
solution of ProblemPλ(y0+w) orP0(y0)where y0 = Φm0 for any data m0 ∈ M(T)

and any noise w ∈ L2(T). If there exists x�
0 ∈ T (respectively x�

1 ∈ T) such that
m�({x�

0}) > 0 (respectively m�({x�
1}) < 0), then |x�

0 − x�
1 | � 1

2 fc
.

3 Noise Robustness

This section is devoted to the study of the behavior of solutions to Pλ(y0 + w) for
small values of λ and ||w||. In order to study such regimes, as already defined in (6),
we consider sets of the form

Dα,λ0 =
{
(λ,w) ∈ R+ × L2(T) ; 0 � λ � λ0 and ||w||2 � αλ

}
,

for α > 0 and λ0 > 0.
First, we introduce the notion of extended support of a measure. Then, we show that

this concept governs the structure of solutions at small noise regime. After introducing
the non-degenerate source condition, we state the main result of the paper, i.e., that
under this assumption, the solutions ofPλ(y0 +w) have the same number of spikes as
the original measure, and that these spikes converge smoothly to those of the original
measure.

3.1 Extended Signed Support

Our first step in understanding the behavior of solutions to Pλ(y0 + w) at low noise
regime is to introduce the notion of extended signed support.

Definition 3 (Extended signed support) Let m0 ∈ M(T) such that there exists a
solution to (D0(y0)) (where as usual y0 = Φm0), and let η0 ∈ C(T) be the associated
minimal norm certificate.

The extended support of m0 is defined as:

Ext(m0) = {t ∈ T ; η0(t) = ±1} , (19)

and the extended signed support of m0 as:

Ext±(m0) = {(t, v) ∈ T × {+1,−1} ; η0(t) = v} . (20)

Notice that Extm0 and Ext± m0 actually depend on y0 = Φm0 rather than on m0
itself. For any measure m0 ∈ M(T), the (signed) support and the extended (signed)
support of m0 are in general not related. Yet, from the optimality conditions (12), we
observe:

Proposition 3 Let m0 ∈ M(T) and y0 = Φm0 such that there exists a solution
to (D0(y0)). Then:
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• m0 is a solution to (P0(y0)) if and only if Supp± m0 ⊂ Ext± m0.
• In any case, if ΦExtm0 has full rank, the solution to (P0(y0)) is unique.

Here, following the notation (1), we have denoted by ΦExtm0 the restriction of Φ

to the space of measures with support in Extm0. The link between Proposition 3 and
the source condition [6] is discussed in Sect. 3.3

3.2 Local Behavior of the Support

In this paragraph, we focus on the local properties of the support of solutions to
Pλ(y0+w) at lownoise regime.As usual, we denote y0 = Φm0 for somem0 ∈ M(T).
For now, we make as few assumptions as possible on m0. In particular, we do not
assume thatΦExtm0 has full rank. Any solution toPλ(y0+w) (which is not necessarily
unique) is denoted by m̃λ.

Lemma 1 Assume that there exists a solution to (D0(y0)) and let ε > 0. Then, there
exists α > 0, λ0 > 0 such that for all (λ,w) ∈ Dα,λ0 ,

Supp± m̃λ ⊂ (
Ext± m0

) ⊕ ((−ε,+ε) × {0}) , (21)

where given two sets A and B, A ⊕ B = {a + b ; a ∈ A, b ∈ B} denotes their
Minkowski sum.

In particular, if Extm0 consists in isolated points x0,1, . . . x0,N , Lemma 1 states
that all the mass of m̃λ is concentrated in boxes (xi,0 −ε, xi,0 +ε), where ε → 0 when
λ, ||w|| → 0. Moreover, in each box, m̃λ has the sign of η0(x0,i ).

Also, if Ext± m0 = ∅ (i.e., y = 0), we see that m̃λ = 0 for λ and ||w||2
λ

small enough
[in fact, any λ0 > 0 and α = 1

||Φ∗||2,∞ suffices, as can be seen from (11)].

Proof We split the proof in several parts.

Behavior of the minimal norm certificate Let us consider the sets:

Ext+ = {t ∈ T ; η0(t) = 1} , Ext− = {t ∈ T ; η0(t) = −1} ,

Ext+,ε = Ext+ ⊕(−ε, ε), Ext−,ε = Ext− ⊕(−ε, ε).

From the uniform continuity of η0, for ε small enough, η0 > 1
2 in Ext

+,ε and η0 < − 1
2

in Ext−,ε, so that Ext+,ε ∩Ext−,ε = ∅.
If Ext+,ε ∪Ext−,ε

� T, the set Kε = T \ (
Ext+,ε ∪Ext−,ε

)
being compact,

supKε
|η0| < 1. We define r = 1 − supKε

|η0|.
If Ext+,ε ∪Ext−,ε = T, the connectedness of T implies that Ext+,ε = T and

Ext−,ε = ∅, or conversely. In that case, we define r = 1.
In any case, we see that for all g ∈ C(T), if ||g − η0||∞ < r , then

{t ∈ T ; g(t) = 1} ⊂ Ext+,ε and {t ∈ T ; g(t) = −1} ⊂ Ext−,ε . (22)
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Variations of dual certificates Let pλ be the solution of the noiseless problem (Dλ(y0))
and p̃λ be the solution of the noisy dual problemDλ(y0+w) forw ∈ L2(T). Since the
mapping y0

λ
	→ pλ is a projection onto a convex set (see (D′

λ(y))), it is non-expansive,
i.e.,

||pλ − p̃λ||2 � ||w||2
λ

. (23)

As a consequence, if ηλ = Φ∗ pλ (respectively η̃λ = Φ∗ p̃λ) is the dual certificate
of the noiseless (respectively noisy) problem, we have

||ηλ − η̃λ||∞ � M
||w||2

λ
(24)

for some M > 0 (in fact M =
√∫

T
|ϕ(t)|2dt = ||Φ∗||∞,2).

From now on, we set α = r
2M and we impose ||w||2

λ
� α. Writing

||η0 − η̃λ||∞ � ||η0 − ηλ||∞ + ||ηλ − η̃λ||∞,

� ||η0 − ηλ||∞ + r

2
,

we see using Proposition 1 that for λ small enough η̃λ satisfies (22).

Structure of the reconstructed measure By (22) for g = η̃λ and using the extremality
conditions, we obtain that |m̃λ|(Kε) = 0 and that m̃λ (respectively −m̃λ) is non-
negative in Ext+,ε (respectively Ext−,ε). Indeed, the extremality conditions impose
that η̃λ = sign dm̃λ

d|m̃λ| , m̃λ-almost everywhere, hence the claimed result. ��
Lemma 1 does not make any assumption on the local structure of Ext± m0 and does

not provide any information on the local structure of m̃λ either (it might even not be
discrete). If we assume that η′′

0(x) �= 0 for some x ∈ Extm0, then the reconstructed
measure has at most one spike in the neighborhood of x .

Lemma 2 Assume that there exists a solution to (D0(y0)) and that η′′
0(x) �= 0 for

some x ∈ Extm0. Then for ε > 0 small enough, there exists α > 0, λ0 > 0 such that
for all (λ,w) ∈ Dα,λ0 , the restriction of m̃λ to (x − ε, x + ε) is

• either the null measure,
• or of the form ãλ,wδx̃λ,w

where sign ãλ,w = η0(x) and x̃λ,w ∈ (x − ε, x + ε).

If, in addition, m0 is identifiable and |m0|((x − ε, x + ε)) �= 0, only the second case
may happen.

Proof The proof follows the same steps as those of Lemma 1.

Behavior of the minimal norm certificate First, observe that if η′′
0(x) �= 0 and

η0(x) = 1 (respectively −1) for x ∈ Extm0, then η′′
0(x) < 0 (respectively > 0).

As a consequence, x is an isolated point of Extm0. For ε > 0 small enough,

Extm0 ∩ (x − ε, x + ε) = {x} and |η′′
0(t)| � |η′′

0 (x)|
2 > 0 for all t ∈ (x − ε, x + ε).
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Variations of dual certificates From (23), we infer that

||η′′
λ − η̃′′

λ||∞ � M
||w||2

λ
(25)

with M > 0 (here, M =
√∫

T
|ϕ′′(t)|2dt = ||(Φ ′′)∗||∞,2).

We set α = r
2M with r = |η′′

0 (x)|
2 and we impose ||w||2

λ
� α, so that

||η′′
0 − η̃′′

λ||∞ � ||η′′
0 − η′′

λ||∞ + ||η′′
λ − η̃′′

λ||∞,

� ||η′′
0 − η′′

λ||∞ + r

2
,

thus ||η′′
0 − η̃′′

λ||∞ <
|η′′

0 (x)|
2 for λ small enough.

Structure of the reconstructed measure From the above inequality, we know that η̃λ

is strictly concave (respectively strictly convex) in (x − ε, x + ε). As a result, there is
at most one point x̃λ,w in (x − ε, x + ε) such that η̃λ(x̃λ,w) = 1 (respectively −1).

Ifm0 is identifiable, it remains to prove that there is indeed one spike in (x−ε, x+ε).
This is obtained by relying on a result by Bredies and Pikkarainen [4] which is an
application of [22, Th. 3.5]. It guarantees that m̃λ converges to m for the weak-*
topology when λ, ||w||2 → 0. We recall the result below (see Proposition 4) for the
convenience of the reader.

By weak-* convergence of m̃λ to m for λ → 0+ and ||w||2 → 0, m̃λ((x − ε, x +
ε)) must converge to m0((x − ε, x + ε)). By the optimality conditions, we see that
|m0((x − ε, x + ε))| = |m0({x})|, so that m0({x}) �= 0 and signm0({x}) = η0(x),
hence the result. ��

In the Proof of Lemma 2, we have relied on the following result.

Proposition 4 ([22, Th. 3.5],[4, Prop. 5]) Let m0 be an identifiable measure, if λ → 0

and ||w|| → 0 with
||w||22

λ
→ 0, then m̃λ converges to m0 with respect to the weak-*

topology.

3.3 Non-Degenerate Source Condition

Thenotionof extended signed support has strong connectionswith the source condition
introduced in [6] to derive convergence rates for the Bregman distance.

Definition 4 (Source condition) A measure m0 satisfies the source condition if there
exists p ∈ L2(T) such that

Φ∗ p ∈ ∂||m0||TV.

In a finite-dimensional framework, the source condition is simply equivalent to the
optimality ofm0 for (P0(y0)) given y0 = Φm0. In the framework of Radon measures,
the source condition amounts to assuming that m0 is a solution of (P0(y0)) and that
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there exists a solution to (D0(y0)). In fact, the source condition simply means that the
conditions of Proposition 3 hold.

If one is interested in m0 being the unique solution of (P0(y0)) for y0 = Φm0 (in
which case we say that m0 is identifiable), the source condition may be strengthened
to give a sufficient condition.

Proposition 5 ([12, Lemma 1.1]) Let m0 = mx0,a0 be a discrete measure. If Φx0 has
full rank, and if

• there exists η ∈ ImΦ∗ such that η ∈ ∂||m0||TV,
• ∀ s /∈ Supp(m0), |η(s)| < 1,

then m0 is the unique solution of (P0(y0)).

In this paper, in view of Lemma 2, we strengthen a bit more the source condition
so as to derive a global stability result concerning the support of the solutions of
P(y0 + w) (see Theorem 2).

Definition 5 (Non-degenerate source condition) Let m0 = mx0,a0 be a discrete mea-
sure, and {x0,1, . . . x0,N } = Suppm0. We say that m0 satisfies the non-degenerate
source condition (NDSC) if

• there exists η ∈ ImΦ∗ such that η ∈ ∂||m0||TV.
• the minimal norm certificate η0 satisfies

∀ s ∈ T \ {x0,1, . . . x0,N }, |η0(s)| < 1,
∀ i ∈ {1, . . . N }, η′′

0(x0,i ) �= 0.

In that case, we say that η0 is not degenerate.

The first assumption in the above definition is the standard source condition. The
last two assumptions impose conditions on the extended signed support, namely that
Supp± m0 = Ext±(m0) and η′′

0(t) �= 0 for all t ∈ Suppm0.
When Φ is an ideal low-pass filter with cutoff frequency fc, there are numerical

evidences that measures having a large enough separation distance (proportional to
fc) satisfy the non-degenerate source condition, see Sect. 4.

3.4 Main Result

The following theorem, which is the main result of this paper, gives a global result on
the precise structure of the solution when the signal-to-noise ratio is large enough and
λ is small enough.

Theorem 2 (Noise robustness) Let m0 = ma0,x0 = ∑N
i=1 a0,iδx0,i be a discrete mea-

sure. Assume that Γx0 (defined in (4)) has full rank and that m0 satisfies the non-
degenerate source condition.

Then, there exists α > 0, λ0 > 0, such that for (λ,w) ∈ Dα,λ0 , the solution m̃λ of
Pλ(y + w) is unique and is composed of exactly N spikes.
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Moreover, up to a permutation of indices, we may write m̃λ = ∑N
i=1 ãλ,iδx̃λ,i with

ãλ,i �= 0 and sign(ãλ,i ) = sign(a0,i ) (for 1 � i � N), andwriting (ã0, x̃0) = (a0, x0),
the mapping

(λ,w) ∈ Dα,λ0 	→ (ãλ, x̃λ) ∈ R
N × T

N ,

is Ck−1 whenever ϕ ∈ Ck(T) (k � 2).
In particular, for λ = 1

α
||w||2, we have

∀i ∈ {1, . . . N }, |x̃λ,i − x0,i | = O(||w||2) and |ãλ,i − a0,i | = O(||w||2). (26)

Proof Applying Lemma 2 at each point x0,i for 1 � i � N and Lemma 1, we see
that for ε > 0 small enough, there exists α > 0, λ0 > 0 such that m̃λ has at most one
spike in each interval (xi,0 − ε, xi,0 + ε), and

|m̃λ|
(

T \
N⋃

i=1

(xi,0 − ε, xi,0 + ε)

)

= 0.

In fact, since Γx0 has full rank, ΦExtm0 has full rank as well and m0 is identifiable
(by Proposition 3). Therefore, Lemma 2 ensures that there is indeed one spike in each
interval, with sign equal to η0(x0,i ).

It remains to prove the uniqueness of the amplitudes and locations (ãλ, x̃λ) and
their smoothness as function of (λ,w). To this end, we observe that they satisfy the
following implicit equation

Es0(ãλ, x̃λ, λ,w) = 0

where s0 = sign(a0) = (η0(xi,0))1�i�N , and

Es0(a, x, λ,w) =
(

Φ∗
x (Φxa − y0 − w) + λs0
Φ ′

x
∗
(Φxa − y0 − w)

)

= Γ ∗
x (Φxa − y0 − w) + λ

(
s0
0

)

.

Indeed, this implicit equation simply states that η̃λ(x̃λ,i ) = sign(a0,i ) = sign(ãλ,i )

and that η̃′
λ(x̃λ,i ) = 0.

Since ((a, x), (λ,w)) 	→ Es0(a, x, λ,w) is aC1 function defined on (RN ×T
N )×

(R × L2(TN )), we may apply the implicit functions theorem.
The derivative of Es0 with respect to x and a reads

∂E

∂a
(a, x, λ,w) = Γ ∗

x Φx

∂E

∂x
(a, x, λ,w) =

(
diag(Φ∗

x
′(Φxa − y0 − w))

diag(Φ∗
x
′′(Φxa − y0 − w))

)

+ Γ ∗
x Φ ′

x diag(a).
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so that for λ = 0, w = 0 and using y0 = Φx0a0, one obtains

∂Es

∂(a, x)
(a0, x0, 0, 0) = Γ ∗

x0

(
Φx0 , Φ ′

x0 diag(a0)
)

= (Γ ∗
x0Γx0)

(
Id 0
0 diag(a0)

)

.

Sincewe assumeΓx0 has full rank, then
∂Es0
∂(a,x) (a0, x0, 0, 0) is invertible and the implicit

functions theorem applies: There is a neighborhood V × W of (a0, x0) × {(0, 0)} in
(RN × T

N ) × (R × L2(T)) and a function f : W → V such that

((a, x), λ,w) ∈ V × W and Es0(a, x, λ,w) = 0

⇐⇒ (λ,w) ∈ W and (a, x) = f (λ,w).

Moreover, writing (âλ,w, x̂λ,w) = f (λ,w) ∈ R
N × T

N , we have

• (â0,0, x̂0,0) = (a0, x0),
• for any (λ,w) ∈ W , sign(âλ,w) = s0,
• if ϕ ∈ Ck(T) (for k � 2), then f ∈ Ck−1(W ).

The constructed amplitudes and locations (âλ,w, x̂λ,w) coincide with those of the
solutions of Pλ(y0 + w) for all (λ,w) ∈ W such that ||w||2 � αλ. Possibly changing
the value of λ0 so that Dα,λ0 ⊂ W , we obtain the desired result. ��
Remark 1 Although this paper focuses on identifiable measures, Theorem 2 describes
the evolution of the solutions of Pλ(y0 + w) for any input measure m1 such that there
existsm0 which satisfies the non-degenerate source condition and y0 = Φm1 = Φm0.
Instead of converging toward m1, the solutions will converge toward m0.

3.5 Extensions

Theorem2extends in a straightforwardmanner to higher dimensions, i.e.,when replac-
ing T by T

d for d � 1. In the NDSC introduced in Definition 5, one should replace,
for i = 1, . . . , N , the constraint η′′

0(x0,i ) �= 0 by the constraint that the Hessian
D2η0(x0,i ) ∈ R

d×d is invertible.
The proof also extends to non-stationary filtering operators, i.e., which can be

written as

∀ t ∈ T
d , Φm(t) =

∫

Td
ϕ(x, t)dm(x)

where ϕ ∈ C2(Td × T
d).

3.6 Application to the ideal Low-pass filter

We first observe that the injectivity condition on Γx assumed in Theorem 2 always
holds.
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Fig. 1 a Inputmeasurem0, and correspondingminimal norm certificate.b–dRegularization pathsλ 	→ m̃λ

that are solutions ofPλ(Φm0+w) for three different noise levels ||w||. Each “strip” represents the evolution
of a spike as λ varies. The color refers to the sign of the spike (blue for negative and red for positive) and
the (vertical) width is proportional to its amplitude. The exact location is given by the middle of each band
(Color figure online)

Proposition 6 (Injectivity of Γx Let x = (x1, . . . xN ) ∈ T
N with xi �= x j for i �= j

and N � fc. Then, Γx = (Φx , Φ
′
x ) has full rank.

The proof is given in “Appendix 2.”
As to whether or not the non-degenerate source condition holds for discrete mea-

sures, we will discuss this matter in Sect. 4 more in depth. For now, let us mention
that we have observed empirically that this condition holds under the hypotheses of
Theorem 1.2 in [8], namely that�(m) > 1.87

fc
, but also with measures with far smaller

values of �(m).
Figure 1 shows the whole solution path λ 	→ m̃λ of the solutions of Pλ(Φm0 + w)

when fc = 10 and the input measure is identifiable and has three spikes separated
by �(m0) = 0.7/ fc. Such a measure satisfies the non-degenerate source condition
as shown in plot (a). The plots (b,c,d) illustrate the conclusion of Theorem 2. For
values of λ which are too small with respect to ||w||, the solution m̃λ is perturbed with
spurious spikes, but as soon as λ is large enough, m̃λ has a support that closely (but not
exactly) matches the one ofm0. For large value of λ, spikes starts disappearing, and the
support is not correctly estimated. Figure 2 shows the solutions of Pλ(Φm0 + λw0),
i.e., the noisew = λw0 is scaled by the regularization parameter λ. In accordance with
Theorem 2, this shows that for ‖w‖2/λ = ‖w0‖2 � 0.07, the support of the spikes is
precisely estimated.
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Fig. 2 Same plots as Fig. 1 except that the solutions of P(Φm0 + λw0) are displayed instead of those of
Pλ(Φm0 + w)

4 Vanishing Derivatives Pre-certificate

We show in this section that, if the non-degenerate source condition holds, theminimal
norm certificate η0 is characterized by its values on the support of m0 and the fact that
its derivative must vanish on the support of m0. Thus, one may compute the minimal
norm certificate simply by solving a linear system, without handling the cumbersome
constraint ||η0||∞ � 1.

4.1 Dual Pre-certificates

Loosely speaking, we call pre-certificate any “good candidate” for a solution of (12).
Typically, a pre-certificate is built by solving a linear system (with possibly a condition
on its norm). The following pre-certificate appears naturally in our analysis.

Definition 6 (Vanishing derivative pre-certificate) The vanishing derivative pre-
certificate associated with a measure m0 = ma0,x0 is ηV = Φ∗ pV where

pV = argmin
p∈L2(T)

||p||2 subj. to ∀ 1 � i � N ,

{
(Φ∗ p)(x0,i ) = sign(a0,i ),
(Φ∗ p)′(x0,i ) = 0.

(27)

It is clear that if the source condition (see Definition 4) holds, then pV exists (since
Problem (27) is feasible). Observe that, in general, ηV is not a certificate form0 since it
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does not satisfy the constraint ‖ηV‖∞ � 1. The following proposition gathers several
facts about the vanishing derivative pre-certificate which show that it is indeed a good
candidate for the minimal norm certificate.

Proposition 7 Let m0 = ma0,x0 = ∑N
i=1 a0,iδx0,i be a discrete measure. The follow-

ing assertions hold.

• Problem (27) is feasible and ‖ηV‖∞ � 1 if and only if the source condition holds
and ηV = η0.

• If Problem (27) is feasible and Γx0 has full rank, i.e., Γ
∗
x0Γx0 ∈ R

2N×2N is invert-
ible, then

ηV = Φ∗Γ +,∗
x0

(
sign(a0)

0

)

where Γ +,∗
x0 = Γx0(Γ

∗
x0Γx0)

−1.

• If Γx0 has full rank, then m0 satisfies the non-degenerate source condition if and
only if Problem (27) is feasible and

∀ s ∈ T \ {x0,1, . . . x0,N }, |ηV(s)| < 1,
∀ i ∈ {1, . . . N }, η′′

V (x0,i ) �= 0.

The third assertion of Proposition 7 states that it is equivalent to check the non-
degenerate source condition on η0 (Definition 5) or to check the same conditions on
ηV. In case those conditions hold, one even has ηV = η0 (first assertion). The main
point of this equivalence is that the second assertion yields a practical expression to
compute ηV which may be used in numerical experiments (see Sect. 4.3).

Proof For the first assertion, we observe that if Problem (27) is feasible (and thus pV

exists) and ‖ηV‖∞ � 1, then ηV ∈ ∂||m0||TV and the source condition holds. Hence,
‖pV‖2 � ‖p0‖2. On the other hand, the minimal norm certificate η0 must satisfy all
the constraints of (27); thus, the minimality of the norms of both ηV and η0 implies
that ηV = η0. The converse implication is obvious.

For the second assertion, Problem (27) can be written as

ηV = argmin
η=Φ∗ p

||p||2. subj. to

{
Φ∗

x0 p = sign(a0),
Φ ′∗

x0 p = 0,

which is a quadratic optimization problem in a Hilbert space with a finite number of
affine equality constraints. Moreover, the assumption that Γx0 has full rank implies
that the constraints are qualified. Hence, it can be solved by introducing Lagrange
multipliers u and v for the constraints. One should therefore solve the following linear
system to obtain the value of p = pV

⎛

⎝
Id Φx0 Φ ′

x0
Φ∗

x0 0 0
Φ ′

x0
∗ 0 0

⎞

⎠

⎛

⎝
p
u
v

⎞

⎠ =
⎛

⎝
0
s
0

⎞

⎠ .

Solving for (u, v) in these equations gives the result.
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For the third assertion, if the non-degenerate source condition holds, we apply The-
orem 2 which yields a C1 path λ 	→ (ãλ, x̃λ) of solutions of Pλ(y0) (we consider the
casew = 0). Then from Proposition 8 below, we obtain that ηV is a valid certificate and
ηV = η0; hence, ηV is non-degenerate. The converse implication is a straightforward
consequence of the first assertion. ��

4.2 Necessary Condition for Support Recovery

There is a priori no reason for the vanishing derivative pre-certificate ηV to satisfy
||ηV||∞ � 1. Here, we prove that that is in fact a necessary condition for (noiseless)
exact support recovery to hold on some interval [0, λ0) with λ0 > 0, i.e., the solutions
of Pλ(y0) having exactly N spikes which converge smoothly toward those of the
original measure.

Proposition 8 Let m0 = ma0,x0 = ∑N
i=1 a0,iδx0,i be a discrete measure such that Γx0

has full rank. Assume that there exists λ0 > 0 and a C1 path [0, λ0) → R
N × T

N ,
λ 	→ (aλ, xλ) such that for all λ ∈ [0, λ0) the measure mλ = maλ,xλ is a solution to
Pλ(y0) (the noiseless problem).

Then ηV exists, ‖ηV‖∞ � 1 and ηV = η0.

Proof Let pλ = 1
λ
(y0 − Φmλ) = 1

λ
(Φx0a0 − Φxλaλ) be the certificate defined by the

optimality conditions (11).We show thatΦ∗ pλ converges towardΦ∗Γ +,∗
x0

(
sign(a0)

0

)

= ηV (and that the latter exists).
Writing

a′
λ = daλ

dλ
∈ R

N and x ′
λ = dxλ

dλ
∈ R

N ,

we observe that for any i ∈ {1, . . . N } and any x ∈ T,

aλ,iϕ(xλ,i − x) − a0,iϕ(x0,i − x)

λ
− [

a0,iϕ
′(x0,i − x)x ′

0,i + a′
0,iϕ(x0,i − x)

]

=
∫ 1

0

[
aλt,iϕ

′(xλt,i − x)x ′
λt,i + a′

λt,iϕ(xλt,i − x)
]

− [
a0,iϕ

′(x0,i − x)x ′
0,i + a′

0,iϕ(x0,i − x)
]
dt,

and the latter integral converges (uniformly in x) to zero when λ → 0+ by uniform
continuity of its integrand (since a, x and ϕ are C1). As a consequence, we obtain that
y0−Φxλaλ

λ
converges uniformly to −Γx0

(
Id 0
0 diag(a0)

)(
a′
0
x ′
0

)

.

On the other hand, we observe that for λ small enough, sign(aλ) = sign(a0), and
using the notations of the Proof of Theorem2, the implicit equation Es0(aλ, xλ, λ, 0) =
0 holds. Differentiating that equation at λ = 0, we obtain:

(
∂Es0

∂(a, x)
(a0, x0, 0, 0)

)(
a′
0
x ′
0

)

+ ∂Es0

∂λ
(a0, x0, 0, 0) = 0,
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or equivalently

(Γ ∗
x0Γx0)

(
Id 0
0 diag(a0)

)(
a′
0
x ′
0

)

= −
(
s0
0

)

.

As a consequence, Problem (27) is feasible and we see that
y0−Φxλaλ

λ
converges

uniformly (and thus in the L2 strong topology) to Γx0(Γ
∗
x0Γx0)

−1
(
sign(a0)

0

)

and

Φ∗
(
y0−Φxλ

λ

)
converges uniformly toΦ∗Γ +,∗

x0

(
sign(a0)

0

)

(which is precisely ηV from

the second assertion of Proposition 7).

Since ‖Φ∗
(
y0−Φxλaλ

λ

)
‖∞ = ‖Φ∗ pλ‖∞ � 1 for allλ > 0,we obtain that ‖ηV‖∞ �

1, hence the claimed result. ��

4.3 Application to the Ideal Low-pass Filter

In order to prove their identifiability result for measures, the authors of [8] also intro-
duce a “good candidate” for a dual certificate associated with m = ma,x for a ∈ C

N

and x ∈ R
N . For K being the square of the Fejer kernel, they build a trigonometric

polynomial

ηCF(t) =
N∑

i=1

(
αi K (t − xi ) + βi K

′(t − xi )
)
with K (t) =

⎛

⎝
sin

((
fc
2 + 1

)
π t

)

(
fc
2 + 1

)
sin π t

⎞

⎠

4

and compute (αi , βi )
N
i=1 by imposing that ηCF(xi ) = sign(ai ) and (ηCF)

′(xi ) = 0.
They show that the constructed pre-certificate is indeed a certificate, i.e., that

||ηCF||∞ � 1, provided that the support is separated enough (i.e., when�(m) � C/ fc).
This result is important since it proves that measures that have sufficiently separated
spikes are identifiable. Furthermore, using the fact that ηCF is not degenerate (i.e.,
(ηCF)

′′(xi ) �= 0 for all i = 1, . . . , N ), the same authors derive an L2 robustness to
noise result in [7], and Fernandez-Granda and Azais et al. use the constructed certifi-
cate to analyze finely the local averages of the spikes in [1,19].

From a numerical perspective, we have investigated how this pre-certificate com-
pareswith the vanishing derivative pre-certificate that appears naturally in our analysis,
by generating real-valued measures for different separation distances and observing
when each pre-certificate η satisfies ||η||∞ � 1.

As predicted by the result of [8], we observe numerically that the pre-certificate
ηCF is a certificate (i.e., ||ηCF||∞ � 1) for any measure with �(m0) � 1.87/ fc. We also
observe that this continues to hold up to�(m0) � 1/ fc. Yet, below1/ fc, it may happen
that somemeasures are still identifiable (as asserted using the vanishing derivative pre-
certificate ηV) but ηCF stops being a certificate, i.e., ||ηCF||∞ > 1. A typical example
is shown in Fig. 3, where, for fc = 6 we have used three equally spaced masses as
an input, their separation distance being �(m0) ∈ { 0.8fc , 0.7

fc
, 0.6

fc
, 0.5

fc
}. Here, we have
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Fig. 3 Pre-certificates for three equally spacedmasses. The blue curveswith dots is the Fejer pre-certificate
ηCF, while red continuous line is the vanishing derivative ηV. The black dashed line is the minimal norm
pre-certificate η0 (Color figure online)
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Fig. 4 Example of measure for which ηV �= η0

computed an approximation of the minimal norm certificate η0 by solving (Dλ(y0))
with very small λ.

For �(m0) = 0.8
fc
, both ηV and ηCF are certificates, so that the vanishing derivatives

pre-certificate ηV is equal to the minimal norm certificate η0. For �(m0) = 0.7
fc
, ηCF

violates the constraint ||ηCF||∞ � 1 but the vanishing derivative pre-certificate is still a
certificate (even showing that the measure is identifiable). For �(m0) = 0.6

fc
and 0.5

fc
,

neither ηV nor ηCF satisfy the constraint, hence ηV �= η0. Yet, η0 ensures that m0 is a
solution to (P0(y0)).

From the experiments we have carried out, we have observed that the vanishing
derivative pre-certificate ηV behaves in general at least as well as the square Fejer ηCF.
The only exceptions we have noticed is for a large number of peaks (when N is close
to fc), with �(m0) � 1.5

fc
. This is illustrated in Fig. 4 which shows a measure m0 for
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which ηCF is a non-degenerate certificate (which shows that it is identifiable), but for
which η0 �= ηV since ||ηV||∞ > 1 (thus ηV is not a certificate). Typically, we have in this
case Supp± m0 � Ext±(m0). Such a measure is identifiable but there is no support
recovery for λ > 0 (in the sense of Proposition 8), hence its support is not stable.

Such pathological cases are relatively rare. An intuitive explanation for this is
the fact that having η0(x) = ±1 for x ∈ T \ Supp(m0) or η′′

0(x) = 0 for some
x ∈ Supp(m0) tend to impose a large L2 norm, thus contradicting the minimality of
p0 (recall that when ϕ is an ideal low- pass filter ||η||2 = ||p||2).

5 Discrete Sparse Spikes Deconvolution

5.1 Finite-Dimensional �1 Regularization

A popular way to compute approximate solutions to (Pλ(y0)) with fast algorithms is
to solve this problem on a finite discrete grid G ⊂ T. Denoting by P the cardinal of the
grid G, and by g ∈ T

P the finite sequence of elements of G, the idea is to solvePλ(y0)
(or (P0(y0))) with the additional constraint that m = ∑P

i=1 aiδgi for some a ∈ R
P .

This is nothing but the so-called basis pursuit denoising problem [9], also known
as the Lasso [31] in statistics. Indeed, defining the linear operator � through

�a = Φm =
P∑

i=1

(Φδgi )ai ,

the problem amounts to:

min
a∈RP

1

2
||y0 − �a||2 + λ||a||1 where ||a||1 =

P∑

i=1

|ai |, (P̃G
λ (y0))

where � : R
P → L2(T) is a linear operator (L2(T) may as well be replaced with

R
Q or any Hilbert space), and ai denotes the mass at each point i of the grid. In the

noiseless case, the exact reconstruction problem reads:

min
�a=y0

||a||1. (P̃G
0 (y0))

The aim of the present section is to study the asymptotic of Problems (P̃G
λ (y0))

and (P̃G
0 (y0)) as the stepsize of the grid G vanishes. To this end, we keep the frame-

work of measures and we reformulate the constraint that Supp(m) ⊂ G, i.e., that m
can be written as m = ma,x , where x = (x1, . . . , xN ) ∈ GN . Recall that the notation
ma,x hints that ai �= 0 for all i and that the xi ’s are all distinct, so that in general
N � P . We thus adopt the following penalization term

||m||TV,G = sup

{∫

ψdm ; ψ ∈ C(T),∀t ∈ G |ψ(t)| � 1

}

, (28)
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so that ||m||TV,G = +∞ when Supp(m) �⊂ G, and ∑N
i=1 |ai | otherwise.

Problems (P̃G
λ (y0)) and (P̃G

0 (y0)) are then, respectively, equivalent to:

min
m∈M(T)

1

2
||Φ(m) − y0||2 + λ||m||TV,G (PG

λ (y0))

and

min
Φm=y0

||m||TV,G, (PG
0 (y0))

Let us stress the fact that the results of Sects. 5.2 and 5.3 hold for any finite dimen-
sional matrix � ∈ R

P×Q or linear operator � : R
P → L2(T): The columns of �

need not be the samples of a convolution operator.

5.2 Certificates Over a Discrete Grid

As in Sect. 2, we may compute the subdifferential of the �1 norm. For m = ma,x =
∑N

i=1 aiδxi with support in G:

∂||m||TV,G = {
η ∈ C(T) ; ||η||∞,G � 1,∀ i = 1, . . . , N , η(xi ) = sign(ai )

}
. (29)

where
||η||∞,G = max {|η(t)| ; t ∈ G} .

We also introduce the corresponding dual problems:

min
||Φ∗ p||∞,G�1

∥
∥
∥
y0
λ

− p
∥
∥
∥
2

2
, (DG

λ (y0))

sup
||Φ∗ p||∞,G�1

〈y0, p〉. (DG
0 (y0))

Remark 2 Let us denote byG the image byΦ of all measures with support inG. It may
happen (for instance if the grid is too rough) that y0 /∈ G, in which case (PG

0 (y0)) is not

feasible and (DG
0 (y0)) has infinite value. But (PG

λ (y0)) is then equivalent toPG
λ (y0,G)

where y0 = y0,G + y0,G⊥ is an orthogonal decomposition. Problem (PG
λ (y0)) is thus

an approximation of PG
0 (y0,G), and the relevant dual problems are DG

λ (y0,G) and

DG
0 (y0,G). For the sake of simplicity, we shall assume from now on that y0 ∈ G, but

the reader may keep in mind that this hypothesis can be withdrawn by replacing y
with y0,G .

In view of Remark 2, we observe that problems (DG
λ (y0)) and (DG

0 (y0)) are in fact
finite dimensional. Indeed, their constraints being invariant by addition of elements
of G⊥, we may consider their quotient with the space G⊥. Therefore, the condition
p ∈ L2(T) may be reduced to p ∈ G where G is a finite-dimensional space.
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As a consequence, a solution to (DG
0 (y0)) always exists, so that we may define the

discrete minimal norm certificate:

ηG0 = Φ∗ pG0 , where pG0 = argmin
p

{
||p||2 ; p is a solution of (DG

0 (y0))
}

. (30)

The solutions of (PG
λ (y0)) and (DG

λ (y0)) [respectively (PG
0 (y0)) and (DG

0 (y0))] are
related by the extremality conditions (11) [respectively (12)] where the total variation
is replaced with its discrete counterpart || · ||TV,G .

5.3 Noise Robustness

As in the continuous case (cf. Sect. 3), the support of the solutions of PG
λ (y0 + w) for

λ → 0+ and ||w||2 = O(λ) is governed by the minimal norm certificate. We introduce
here the discrete counterpart of the extended support of a measure.

Definition 7 (Extended support) Let m0 ∈ M(T) such that y0 = Φ(m0) ∈ G, and
let ηG0 be the discrete minimal norm certificate defined in (30). The extended support
of m0 relatively to G is defined as

ExtG(m0) =
{
t ∈ G ; |ηG0 (t)| = 1

}
, (31)

and the extended signed support relatively to G as

Ext±G (m0) =
{
(t, v) ∈ G × {−1,+1} ; ηG0 (t) = v

}
. (32)

It is important to notice that the assumption y0 ∈ G does notmean that the support of
m0 is included in G, but that there exists a measure with support included in G which
produces the same observation y0. Therefore, the support of m0 and its extended
support may even be disjoint.

As in the continuous case, notice that m0 is a solution of (PG
0 (y0)) if and only if

Supp±(m0) ⊂ Ext±G (m0).

Theorem 3 (Noise robustness, discrete case) Let m0 ∈ M(T) such that y0 =
Φ(m0) ∈ G. Then, there exists α > 0, λ0 > 0, such that for (λ,w) ∈ Dα,λ0 (defined
in (6)) any solution m̃λ,w of PG

λ (y0 + w) satisfies:

Supp±(m̃λ,w) ⊂ Ext±G (m0). (33)

If, in addition, ΦExtG(m0) has full rank and m0 is a solution of (PG
0 (y0)), then the

solution m̃λ,w is unique, m0 is identifiable and choosing λ = ||w||2/α ensures ||m̃λ,w −
m||2,G = O(||w||), where

||m̃λ,w − m||22,G =
∑

x∈G
|m({x}) − m̃λ,w({x})|2.
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Proof The proof is essentially the same as in the continuous case; therefore, we only
sketch it. To simplify the notation, wewrite J = ExtG(m0). The solutions of (DG

λ (y0))

converge to pG0 ∈ L2(T) for λ → 0+, where Φ∗ pG0 = ηG0 is the discrete minimal
norm certificate.

By the triangle inequality

||η̃λ − ηG0 ||∞,G � ||η̃λ − ηGλ ||∞,G
︸ ︷︷ ︸

�C
||w||2

λ

+||ηGλ − ηG0 ||∞,G

Thus, there exist two constants α > 0 and λ0 > 0, such that for ||w||2
λ

� α and
0 < λ < λ0, |η̃λ(x)| < 1 for any x ∈ G \ J . Then, the primal-dual extremality
conditions imply that for any solution m̃λ,w ofPG

λ (y0 +w), one has Supp(m̃λ,w) ⊂ J
and equality of the signs.

Now, if ΦJ has full rank, we can invert the extremality condition:

1

λ
Φ∗

J

(
y0 + w − ΦJ (m̃λ,w|J )

) = η̃λ|J ,
so that m̃λ,w|J = m|J + Φ+

J w−λ(ΦJΦ
∗
J )

−1η̃λ|J .

Observing that ||η̃λ|J ||∞,G � 1, we obtain the �2-robustness result. ��
Theorem 3 is analogous to Lemma 1 for the continuous problem. The discrete

nature of the problemmakes its conclusions more precise. Although the �2-robustness
results are similar to those of Theorem 2, the focus here is a bit more general, in the
sense that this theorem does not assert that the support of the recovered measures
matches the support of the input measure m0. In fact, if m0 is a solution to (P̃G

0 (y0)),

Supp±(m0) ⊂ Ext±G (m0), so that the recovered solutions to PG
λ (y0 + w) have in

general more spikes than m0, and the spikes in ExtG(m0) \ Supp(m0) must vanish as
λ → 0, ||w||2 → 0.

In order to get the exact recovery of the signed support for small noise, we may
assume in addition that Supp±(m0) = Ext±G (m0) so as to obtain a result analogous to
Theorem 2. Precisely, we obtain the following theorem which was initially proved by
Fuchs [20]. First, we introduce a pre-certificate.

Definition 8 (Fuchs pre-certificate) Let m0 ∈ M(T) such that Supp(m0) ⊂ G. We
define the Fuchs pre-certificate as

ηF = argmin
η=Φ∗ p,p∈L2

||p|| subject to η|Suppm0
= sign(m0|Suppm0

). (34)

This pre-certificate, introduced in [20], is a certificate form0 if and only if ||ηF||∞,G � 1,
in which case it is equal to the discrete minimal norm pre-certificate ηG0 .

If ΦSuppm0 has full rank, then ηF can be computed by solving a linear system:

ηF = Φ∗Φ+,∗
I sign(m|I ) where I = Suppm0 and Φ

+,∗
I = ΦI (Φ

∗
I ΦI )

−1.
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Corollary 3 (Exact support recovery, discrete case, [20]) Let m0 ∈ M(T) such that
Supp(m0) ⊂ G, and that ΦSuppm0 has full rank. If |ηF(t)| < 1 for all t ∈ G \Suppm0,
then m0 is identifiable for G and there exists α > 0, λ0 > 0, such that for (λ,w) ∈
Dα,λ0 the solution m̃λ,w ofPG

λ (y+w) is unique and satisfiesSupp±(m̃) = Supp±(m0).
Moreover,

m̃λ,w|I = m0|I + Φ+
I w − λ(ΦIΦ

∗
I )

−1 sign(m0|I ), (35)

where I = Suppm0.

The condition |ηF(t)| < 1 for all t ∈ G\Suppm0 is often called the irrepresentability
condition in the statistics literature, see [34]. This condition can be shown to be almost
a necessary and sufficient condition to ensure exact recovery of the support ofm0. For
instance, if |ηF(t)| > 1 for some t ∈ G \ Suppm0, one can show that for all λ > 0
Supp(m̃λ) �= Suppm0 where m̃λ is any solution ofPG

λ (y0), see [33]. In our framework,
we see that this irrepresentability condition means that the pre-certificate ηF is indeed
a certificate (so that it is equal to the minimal norm certificate) and that its saturation
set is equal to the support of m0.

For deconvolution problems, an important issue is that Corollary 3 is useless when
studying the stability of the original infinite-dimensional problem (Pλ(y0)). Indeed,
the pre-certificate (34) is not constrained to have vanishing derivatives, so that it
generally takes some values strictly greater than 1 for a generic discrete input measure
m0.When the stepsize of the grid is small enough, such values are sampled and ||ηF||∞,G
necessarily becomes strictly larger than one. As detailed in Sect. 4, when shifting from
the discrete grid setting to the continuous setting, the natural pre-certificate to consider
is the vanishing derivative pre-certificate ηV defined in (27), and not the pre-certificate
ηF.

5.4 Structure of the Extended Support for Thin Grids

In the previous section, we have introduced the notion of extended signed support of a
measure m0 relatively to a grid G, and we have proved that this set, Ext±G m0, contains
the signed supports of all the reconstructed measures for small noise. In this section,
we focus on the structure of the extended support. We show that, if the support of m0
belongs to the grid for a sufficiently small stepsize and if the non-degenerate source
condition holds, the extended signed support consists in the signed support of m0
and possibly one immediate neighbor with the same sign for each spike. Therefore,
when the grid stepsize is small enough, the support of the measure is generally not
stable for the discrete problem, but the support of the reconstructed measure is a close
approximation of the original one.

From now on, for the sake of simplicity, we consider dyadic grids Gn ={
j
2n ; 0 � j � 2n − 1

}
. The constraint sets in DGn

λ (y0) and (Dλ(y0)) are denoted,

respectively, by

Cn =
{

p ∈ L2(T) ;
∣
∣
∣
∣(Φ

∗ p)
(

j

2n

)∣
∣
∣
∣ � 1, 0 � j � 2n

}

, (36)
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and C =
{
p ∈ L2(T) ; ∥

∥Φ∗ p
∥
∥∞ � 1

}
=

⋂

n∈N
Cn . (37)

The structure of Ext±G (m0) for large n is intimately related to the convergence of pGn
0

to p0. First, let us notice the following result, whose proof is given in “Appendix 3.”

Proposition 9 (Convergence for fixed λ) Let m0 ∈ M(T). Then, for any λ > 0,

lim
n→+∞ pGn

λ = pλ for the L2(T)(strong) topology, (38)

and lim
n→+∞ η

Gn
λ = ηλ for the topology of the uniform convergence. (39)

Moreover, if there exists a solution to the continuous dual problem (D0(y0)),

lim
λ→0+ lim

n→+∞ pGn
λ = p0, and lim

λ→0+ lim
n→+∞ η

Gn
λ = η0. (40)

Proposition 9 simply states that the projection onto convex sets Cn which converge
(in the sense of set convergence) to C converges to the projection onto C . However,
the case λ = 0 is not as straightforward, and for instance, one cannot easily swap the
limits in (40). In fact, given any decreasing sequence of polyhedra Cn , it is not true
in general that the minimal norm solution of supp∈Cn

〈y0, p〉 should converge to the
minimal norm solution of supp∈C 〈y0, p〉 where C = ⋂

n∈N Cn . As a consequence, it
is not clear to us whether this convergence always holds for polyhedra of the form

Cn =
{
p ∈ L2 ; ||Φ∗ p||∞,Gn � 1

}
.

However, when the spikes locations belong to the grid for n large enough, the
convergence of the minimal norm certificates holds. In the case of dyadic grids, this
is equivalent to m0 ∈ M(T) being a discrete dyadic measure, i.e., such that for some
n0 ∈ N:

m =
N∑

i=1

aiδxi , with xi = ji
2n0

and 0 � ji � 2n0 − 1. (41)

The proofs given below make use of a remark given in [8]: If a solution of the
continuous problem (P0(y0)) has support in the grid G, then it is also a solution of the
discrete problem (PG

0 (y0)).

Proposition 10 (Convergence for dyadic measures) Let m0 ∈ M(T) be a discrete
dyadic measure [see (41)], and assume that the (possibly degenerate) source condition
holds. Then,

lim
n→+∞ pGn

0 = p0 for the L
2 (strong) topology, (42)
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and lim
n→+∞ η

Gn(i)
0 = η

(i)
0 for 0 � i � 2, in the sense of the uniform convergence,

(43)

where η0 = Φ∗ p0 (respectively η
Gn
0 = Φ∗ pGn

0 ) denotes the corresponding minimal
norm certificate.

Proof First, following [8], we observe that, since (Φ∗ p0)(xi ) = sign(ai ) and

||Φ∗ p0||∞ � 1 (a fortiori |Φ∗ p0
(

j
2n

)
| � 1 for 1 � j � 2n − 1), Φ∗ p0 is also

a dual certificate for (PGn
0 ) provided n � n0. As a consequence ||pGn

0 ||2 � ||p0||2.
The sequence (pGn

0 )n∈N being bounded in L2(T), we may extract a subsequence

(still denoted by pGn
0 ) which weakly converges to some p̃ ∈ L2(T), and

|| p̃||2 � lim inf
n→+∞ ||pGn

0 ||2 � lim sup
n→+∞

||pGn
0 ||2 � ||p0||2. (44)

Moreover, by optimality of pGn
0 for the discrete problem, for each p ∈ C ⊂ Cn ,

〈y0, pGn
0 〉 � 〈y0, p〉 so that in the limit 〈y0, p̃〉 � 〈y0, p〉. Observing that p̃ ∈ C =⋂

n∈N Cn (since each Cn is weakly closed), we conclude that p̃ = p0. Since the limit
does not depend on the extracted subsequence, we conclude that the whole sequence
(pGn

0 )n∈N converges to p0, and equality in (44) implies that the convergence is strong.

The consequence regarding η
Gn
0 is straightforward. ��

We may now describe the structure of the extended support for dyadic measures
which satisfy the non-degenerate source condition.

Proposition 11 (Extended support) Let m0 = ∑N
i=1 aiδxi be a discrete dyadic mea-

sure which satisfies the non-degenerate source condition. Then, for n large enough,
there exists εn ∈ {+1,−1}N such that:

Supp±(m0) ⊂ Ext±Gn (m0) ⊂ Supp±(m0) ∪
(

Supp±(m0) + εn

2n

)

, (45)

where Supp±(m0) + εn

2n =
{
(xi + εni

2n , η
Gn
0 (xi )) ; 1 � i � N

}
.

Corollary 4 Under the hypotheses of Proposition 11, for n large enough, there exist
two constants α(n) > 0 and λ0(n) > 0 such that, for ||w||2

λ
< α(n) and 0 < λ < λ0(n),

any solution m̃Gn
λ of (PGn

λ ) has support in {xi , 1 � i � N } ∪ {xi + εni
2n , 1 � i � N },

with signs η
Gn
0 (xi ), 1 � i � N.

Proof of Proposition 11 We describe the points where the value of η
Gn
0 may be ±1.

By the non-degenerate source condition, there exists ε > 0 small enough such that
the intervals (x0,i − ε, x0,i + ε), 1 � i � N , do not intersect and that for all t ∈
⋃N

i=1(xi −ε, xi +ε), |η0(t)| � C > 0 and |η′′
0(t)| � C > 0.Moreover, supKε

|η0| < 1

with Kε = T \ ⋃N
i=1(xi − ε, xi + ε).
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Therefore, by Proposition 10, for n large enough:

• |ηGn
0 (t)| � C

2 > 0 for t ∈ (xi,0 − ε, xi,0 + ε),

• |(ηGn
0 )′′(t)| � C

2 > 0 for t ∈ (xi − ε, xi + ε),

• supKε
|ηGn

0 | < 1,

and in each interval (xi,0 − ε, xi + ε), η
Gn
0 has the same sign as η0 and it is strictly

concave (respectively strictly convex) if η0(xi ) = 1 (respectively −1).
Assume for instance that η0(xi ) = 1. The extremality conditions between p0 and

m0 for (P0(y)) also imply that m0 is a solution of (PGn
0 (y0)). Then, the extremality

conditions between pGn
0 andm0 imply that ηGn

0 (xi ) = 1 as well. By the strict concavity

of ηGn
0 , there is at most one other point t� ∈ (xi −ε, xi +ε) such that ηGn

0 (t�) = 1, and

since η
Gn
0 (xi ± 1

2n ) � 1, |t� − xi | � 1
2n . Such a point t� contributes to the extended

support of m if and only if it belongs to the grid (i.e., t� = xi ± 1
2n ).

The argument for η0(xi ) = −1 is similar. This concludes the proof. ��
Corollary 4 highlights the difference between the continuous and the discretized

problems. In the first case, any small noise would induce a slight perturbation of the
spikes locations and amplitudes, but their number would stay the same. In the second
case, the spikes cannot “move,” so that new spikes may appear, but only at one of the
immediate neighbors of the original ones.

For non-dyadic measures, we may show using Proposition 9 that for small, fixed
λ > 0, and n large enough, there is at most one pair of spikes (located at consecutive
points of the grid) in the neighborhood of each original spike. From our numerical
experiments described below (in the case of the ideal low-pass filter), we conjecture
that, in the case where there are indeed two spikes, they surround the location of the
original spike.

5.5 Application to the Ideal Low-pass Filter

To conclude this section, we compare the different (pre-)certificates involved in the
above discussion, whether on the discrete grid or in the continuous domain. Then, we
illustrate the convergence of the sets (Cn)n∈N toward C .

Certificates Figure 5 illustrates the results of Sect. 5.4. The numerical values are
fc = 6, n = 7, and the distance between the two opposite spikes is 0.6

fc
. The continuous

minimal norm certificate η0 is shown: It satisfies |η0(t)| � 1 for all t ∈ T and
η0(xi ) = signm0({xi }) for 1 � i � N . The discrete minimal norm certificate η

Gn
0

satisfies |ηGn
0 (t)| � 1 for all t in the grid, and η(u) = signm0({xi }) for all u ∈ ExtGn

in the neighborhood of xi . For a dyadic measure, such points are xi and possibly one
of its immediate neighbors. For non-dyadic measures, we conjecture that such points
are the two immediate neighbors of xi .

The Fuchs pre-certificate ηF is also shown. Some points t of the grid do not satisfy
|ηF(t)| � 1; hence, the Fuchs pre-certificate is not a certificate and the support is not
stable. This was already clear from the fact that Supp(m0) � ExtGn (m0).
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(c) (d)
Fig. 5 Comparison of certificates for a dyadic (left) and a non-dyadic measure (right). The second row is
a zoom of the first one near the left spike. The (continuous) minimum norm certificate η0 (in continuous

red line) is everywhere bounded by 1. The (discrete) minimum norm certificate η
Gn
0 (in dashed blue line)

is bounded by 1 at the grid points. The Fuchs pre-certificate ηF (dash-dot green line) is above 1 at some
points of the grid: The Fuchs criterion is not satisfied (Color figure online)

Figure 6 focuses on the reconstructed amplitudes ãi using Pλ(y0) as λ → 0. Each
curve represents a path λ 	→ ãi . Note that for the problem on a finite grid, such
paths are piecewise affine. In the dyadic case (left part of the figure), the amplitude
at xi (continuous line) and at the next point of the grid (dashed line) are shown.
As λ → 0, the spike at the neighbor vanishes and the result tends to the original
identifiable measure. In the non- dyadic case (right part of the figure), the amplitude
at the two immediate neighbors of xi are shown (continuous and dashed lines). Here,
Suppm0 �⊂ G so thatm0 is not identifiable for the discrete problem. For each spike, the
amplitudes of the two neighbors converge to some nonzero value. The limit measure
as λ → 0 is the solution of P0(y0G).

Set convergence Now, we interpret the convergence of the discrete problems through
the convergence of the corresponding constraint set for the dual problem. Writing
Φ∗ p(x) = ∫

p(t)ϕ(x − t)dt = 〈p, ϕx 〉L2 with ϕx : t 	→ ϕ(x − t), we observe that:

Cn =
{

p ∈ ImΦ ;
∣
∣
∣
∣Φ

∗ p
(

j

2n

)∣
∣
∣
∣ � 1, 0 � j � 2n − 1

}

(46)

=
{
p ∈ ImΦ ; |〈p, ϕ j

2n
〉L2 | � 1, 0 � j � 2n − 1

}
. (47)

As a consequence,Cn is the polar set of the convex hull of
{
±ϕ j

2n
; 0 � j � 2n − 1

}
.
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λ
λ

(a) (b)
Fig. 6 Display of the solution path (as a function of λ) for the measure displayed on Fig. 5. LeftAmplitudes
of the coefficients at xi (continuous line) and at the next point of the grid (dashed line) as λ varies. Right:
idem for the two immediate neighbors of xi . Some other spikes (gray continuous line) appear and vanish
before the last segments, as λ → 0

In the case of theDirichlet kernel, the vector space ImΦ is the space of trigonometric
polynomials with degree less than or equal to fc. An orthonormal basis of ImΦ is
given by: (c0, c1, . . . c fc , s1, . . . s fc) where c0 ≡ 1, ck : t 	→ √

2 cos(2πkt) and
sk : t 	→ √

2 sin(2πkt) for 1 � k � fc.
Moreover,

ϕ(x − t) = 1

2 fc + 1

⎛

⎝1 +
fc∑

k=1

2 cos(2πk(x − t))

⎞

⎠

= 1

2 fc + 1

⎛

⎝1 + 2
fc∑

k=1

(cos(2πkx) cos(2πkt) + sin(2πkx) sin(2πkt))

⎞

⎠

so that we may write:

ϕx = 1

2 fc + 1

⎛

⎝c0 + √
2

fc∑

k=1

(cos(2πkx)ck + sin(2πkx)sk)

⎞

⎠ .

For fc = 1, we obtain ϕx = 1
3

(
c0 + √

2 (cos(2πx)c1 + sin(2πx)s1)
)
, and the

vectors ϕx lie on a circle. The convex hull of
{
±ϕ j

2n
; 0 � j � 2n − 1

}
is thus a

cylinder, and its polar set Cn is displayed in Fig. 7 for n = 3, 4, and 7.
Problem (DGn

λ (y0 + w)) corresponds to the projection of y0+w
λ

onto the polytope
Cn . Each face of Cn corresponds to a possible signed support of the solutions m̃λ,w.
The large, flat faces of Cn yield stability to the support of m̃λ,w for small noise w, as
described by Theorem 3. As n → +∞, these faces converge into a piecewise smooth
manifold and the support of m̃λ,w is allowed to vary smoothly in T, according to
Theorem 2.
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Fig. 7 Top The convex set Cn for fc = 1, and n = 3, 4 or 7 (from left to right). Bottom: same convex sets,
the red spheres indicate the (rescaled) vectors ϕ j

2n
(Color figure online)

6 Conclusion

In this paper, we have given a precise statement about the support recovery property of
sparse spikes deconvolution with total variation regularization. This support recovery
is governed by the non-degeneracy of a minimal norm certificate. This hypothesis can
be checked by computing a vanishing derivative pre-certificate, which can be com-
puted in closed form. We have shown that under this non-degeneracy hypothesis, one
recovers the same number of spikes and that these spikes converge to the original
ones when λ and ||w||/λ are small enough. While previous stability results [1,7,19]
hold for an arbitrary noise level and make use of any non-degenerate certificate,
they are formulated in terms of local averages of the recovered measure and do
not describe precisely the support. In contrast, our result which requires a specific
certificate to be non-degenerate and a regime where λ and ||w||/λ are small enough
provides exact support stability. These settings and results are thus not comparable
and provide complementary information about the performance of total variation reg-
ularization.

Developing a similar framework for the discrete �1 setting, we have also improved
upon existing results about stability of the support by introducing the notion of
extended support of a measure. Our study highlights the difference between the con-
tinuous and the discrete case: When the size of the grid is small enough, the stable
recovery of the support is generally not possible in the discrete framework. Yet, in the
non-degenerate case, the reconstructed support at small noise is a slight modification
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of the original one: Each original spike yields at most one pair of consecutive spikes
which surround it.

Finally, let us note that the proposed method extends to non-stationary filtering
operators and to arbitrary dimensions.
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Appendix 1: Auxiliary results

For the convenience of the reader, we give here the proofs of several auxiliary results
which are needed in the discussion.

Proposition 12 (Subdifferential of the total variation) Let us endow M(T) with the
weak-* topology and C(T) with the weak topology. Then, for any m ∈ M(T), we
have:

∂||m||TV =
{

η ∈ C(T) ; ||η||∞ � 1 and
∫

η dm = ||m||TV
}

.

Proof Let A = {η ∈ C(T) ; ∀m ∈ M(T), 〈η, m〉 � ||m||TV}. It is clear that
B∞(0, 1) ⊂ A, where B∞(0, 1) is the L∞(T) closed unit ball. Conversely, we observe
that A ⊂ B∞(0, 1) by considering the Dirac masses (±δt )t∈T.

Let us write J (m) := ||m||TV. The function J : M(T) → R ∪ {+∞} is convex,
proper, lower semi-continuous (for the weak-* topology), positively homogeneous
and:

J ∗(η) = sup
m∈M(T)

sup
t>0

(〈η, tm〉 − J (tm))

= sup
t>0

t

(

sup
m∈M(T)

〈η, m〉 − J (m)

)

=
{
0 if η ∈ A,

+∞ otherwise.

By Proposition I.5.1 in [17], for any η ∈ C(T):

η ∈ ∂ J (m) ⇐⇒ 〈η, m〉 = J (m) + J ∗(η),

which is equivalent to ||η||∞ � 1 and
∫

ηdm = ||m||TV. ��
Proposition 13 There exists a solution to (P0(y0)) and the strong duality holds
between (P0(y0)) and (D0(y0)), i.e.,

min
Φ(m)=y0

||m||TV = sup
||Φ∗ p||∞�1

〈y0, p〉. (48)
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Moreover, if a solution p� to (D0(y0)) exists,

Φ∗ p� ∈ ∂||m�||TV (49)

where m� is any solution to (P0(y0)). Conversely, if (49) holds, then m� and p� are
solutions of, respectively, (P0(y0)) and (D0(y0)).

Proof We apply [17, Theorem II.4.1] to (D0(y0)) (and not to (P0(y0)) as would be
natural) rewritten as

inf
||Φ∗ p||∞�1

〈−y0, p〉,

The infimum is finite since for any admissible p, 〈−y0, p〉 = 〈m0, Φp〉 � −||m0||TV.
Let V = L2(T), Y = C(T) (endowed with the strong topology), Y ∗ = M(T),
F(u) = 〈−y0, u〉 for u ∈ V , G(ψ) = ι||·||∞�1(ψ) for ψ ∈ Y and � = Φ∗. It is clear
that F and G are proper convex lower semi-continuous functions. Eventually, F is
finite at 0, G is finite and continuous at 0 = �0. Hence the result. ��

Appendix 2: Proof of Proposition 6

Assume that for some (u, v) ∈ R
N × R

N , Γx (u, v) = 0. Then,

∀ t ∈ T, 0 =
N∑

j=1

(
u jϕ(t − x j ) + v jϕ

′(t − x j )
)

=
fc∑

k=− fc

⎛

⎝
N∑

j=1

(u j + 2ikπv j )e
−2ikπx j

⎞

⎠ e2ikπ t

We deduce that

∀ k ∈ {− fc, . . . fc},
N∑

j=1

(u j + kṽ j )r
k
j = 0 where

{
r j = e−2iπx j ,

ṽ j = 2iπv j .

It is therefore sufficient to prove that the columns of the following matrix are linearly
independent

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r− fc
1 . . . r− fc

N (− fc)r
− fc
1 . . . (− fc)r

− fc
N

...
...

...
...

rk1 . . . rkN krk1 . . . krkN
...

...
...

...

r fc
1 . . . r fc

N ( fc)r
fc
1 . . . ( fc)r

fc
N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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If N < fc, we complete the family {r1, . . . rN } in a family {r0, r1, . . . r fc } ⊂ S
1

such that the ri ’s are pairwise distinct. We obtain a square matrix M by inserting the
corresponding columns

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r− fc
1 . . . r− fc

fc
r− fc
0 (− fc)r

− fc
1 . . . (− fc)r

− fc
fc

...
...

...
...

...

rk1 . . . rkfc r k0 krk1 . . . krkfc
...

...
...

...
...

r fc
1 . . . r fc

fc
r fc
0 ( fc)r

fc
1 . . . ( fc)r

fc
fc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We claim that M is invertible. Indeed, if there exists α ∈ C
(2 fc+1) such that MTα = 0,

then the rational function F(z) = ∑ fc
k=− fc

αk zk satisfies:

F(r j ) = 0 and F ′(r j ) = 0 for 1 � j � fc,

F(r0) = 0.

Hence, F has at least 2 fc + 1 roots in S
1, counting the multiplicities. This imposes

that F = 0, thus α = 0, and M is invertible. The result is proved.

Appendix 3: Proof of Proposition 9

Let us denote by PCn (x) the projection of x ∈ L2(T) onto Cn . We have:

∥
∥
∥PCn

( y0
λ

)
− PCn (0)

∥
∥
∥
2

�
∥
∥
∥
y0
λ

− 0
∥
∥
∥
2
,

so that the sequence pGn
λ = PCn (

y0
λ

) is bounded in L2(T), and we may extract a

subsequence p
G′
n

λ which weakly converges to some p�
λ ∈ L2(T). SinceCn′ is (weakly)

closed for all n′, p�
λ ∈ ⋂

n′ Cn′ = C .
Moreover, by the characterization of the projection onto convex sets:

∀z ∈ C ⊂ C ′
n,

〈 y0
λ

− p
G′
n

λ , z
〉
−

〈 y0
λ

, p
G′
n

λ

〉
+ ||pG′

n
λ ||22 � 0.

Passing to the limit n′ → +∞,
〈 y0
λ

− p�
λ, z

〉
−

〈 y0
λ

, p�
λ

〉
+ lim inf

n′ ||pG′
n

λ ||22 � 0,
〈 y0
λ

− p�
λ, z

〉
−

〈 y0
λ

, p�
λ

〉
+ ||p�

λ||22 � 0,
〈 y0
λ

− p�
λ, z − p�

λ

〉
� 0.

Thus, p�
λ is the orthogonal projection of y0

λ
on C : p�

λ = PC
( y0

λ

) = pλ. Since this is

true for any subsequence, the whole sequence pGn
λ weakly converges to pλ.
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Moreover, by lower semi-continuity and the inclusion C ⊂ Cn we have:

∥
∥
∥
y0
λ

− pλ

∥
∥
∥
2

� lim inf
n→+∞

∥
∥
∥
y0
λ

− pGn
λ

∥
∥
∥
2

� lim sup
n→+∞

∥
∥
∥
y0
λ

− pGn
λ

∥
∥
∥
2

�
∥
∥
∥
y0
λ

− pλ

∥
∥
∥
2
,

so that y0
λ

− pGn
λ converges strongly to y0

λ
− pλ, hence the strong convergence of p

Gn
λ

to pλ.
The rest of the statement follows from Proposition 1.
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