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Abstract Let V be a smooth, equidimensional, quasi-affine variety of dimension r
over C, and let F be a (p×s) matrix of coordinate functions of C[V ], where s ≥ p+r .
The pair (V, F) determines a vector bundle E of rank s − p over W := {x ∈ V |
rk F(x) = p}. We associate with (V, F) a descending chain of degeneracy loci of
E (the generic polar varieties of V represent a typical example of this situation).
The maximal degree of these degeneracy loci constitutes the essential ingredient for
the uniform, bounded-error probabilistic pseudo-polynomial-time algorithm that we
will design and that solves a series of computational elimination problems that can be
formulated in this framework. We describe applications to polynomial equation solving
over the reals and to the computation of a generic fiber of a dominant endomorphism
of an affine space.
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1 Introduction

Let V be a smooth, equidimensional, quasi-affine variety over C of dimension r , and let
F be a (p×s) matrix of coordinate functions of C[V ], where s ≥ p+r . Then F deter-
mines a vector bundle E of rank s − p over W := {x ∈ V | rk F(x) = p}. With E and
a given generic matrix a ∈ C

(s−p)×s we associate a descending chain of degeneracy
loci of E . The generic polar varieties constitute a typical example of this situation.

We prove that these degeneracy loci are empty or equidimensional, normal, and
Cohen–Macaulay. Moreover, if b is another generic matrix, the degeneracy loci asso-
ciated with a and b are rationally equivalent, and their equivalence classes can be
expressed in terms of the Chern classes of E . Not the rational equivalence classes,
but the degeneracy loci themselves constitute a useful tool for solving efficiently cer-
tain computational elimination tasks associated with suitable quasi-affine varieties and
matrices F . Such elimination tasks are, for example, real root finding in reduced com-
plete intersection varieties with a smooth and compact real trace or the problem of effi-
ciently describing a generic fiber of a given birational endomorphism of an affine space.

In a somewhat different context of effective elimination theory, rational equivalence
classes of degeneracy loci were considered in [8].
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1.1 Contributions

The main contribution of this paper is a new algorithm that solves the aforemen-
tioned and other elimination tasks in uniform, bounded-error probabilistic pseudo-
polynomial time. In this sense it belongs to the pattern of elimination procedures
introduced in symbolic seminumeric computation by the already classical Kronecker
algorithm [9,11,17–19,21]. Here we refer to procedures whose inputs are measured
in the usual way by syntactic, extrinsic parameters; in addition to these, there is a
semantic, intrinsic parameter that depends on the geometrical meaning of the input
and may become exponential in terms of the syntactic parameters. A procedure is
called pseudo-polynomial if its time complexity is polynomial in both the syntactic
and semantic parameters. In this sense, the semantic parameter that controls the com-
plexity of our main algorithm is the maximal degree of the degeneracy loci that we
associate with the given elimination task.

The particular feature of this algorithm is that the input polynomials of the elimina-
tion task under consideration may be given by an essentially division-free arithmetic
circuit (which means that only divisions by scalars are allowed) of size L . The com-
plexity of the algorithm then becomes of order L(snd)O(1)δ2, where n is the number
of indeterminates of the input polynomials, d their maximal degree, s the number of
columns of the given matrix, and δ essentially the maximal degree of the degeneracy
loci involved. In the worst case, this complexity is of order (s(nd)n)O(1). General
degeneracy loci constitute an important instance of where we are able to achieve, as
a generalization of [19], a complexity bound of order square δ. At present no other
elimination procedure reaches such a sharp bound. In particular, we do not rely on
equidimensional decomposition whose best known complexity is of order cube δ (see
[28, Theorem 8] for an application to polar varieties). For comparisons with the com-
plexity of Gröbner basis algorithms we refer the interested reader to [32]. Without
going into the technical details we indicate also how our algorithm may be realized in
the nonuniform deterministic complexity model by algebraic computation trees. We
implemented our main algorithm within the C++ library geomsolvex of Math-
emagix [33].

In Sect. 2 we present some of the basic mathematical facts concerning the geometry
of our degeneracy loci that will be used in Sect. 4 to develop our main algorithm. The
proofs, all of which except one are self-contained, require only some knowledge of
classical algebraic geometry and commutative algebra, which can be found, for exam-
ple, in [24,25,30], elementary properties of vector bundles over algebraic varieties
[31], the Thom–Porteous formula [16, Chap. 14], and the notion of linear equivalence
of cycles [16, Chap. 1]. The main algorithm requires some familiarity with the classical
version of the Kronecker algorithm [11,19] and with algebraic complexity [7].

1.2 Notions and Notations

We shall freely use standard notions, notations, and results of classic algebraic geom-
etry, commutative algebra, and algebraic complexity theory, which can be found, for
example, in [7,24,25,30].

123



162 Found Comput Math (2015) 15:159–184

Let Q and C be the fields of rational and complex numbers, let X1, . . . , Xn be
indeterminates over C, and let the following polynomials be given: G1, . . . , Gq , and
H in C[X1, . . . , Xn]. By A

n we denote the n-dimensional affine space over C. We
shall use the following notations:

{G1 = 0, . . . , Gq = 0} := {x ∈ A
n | G1(x) = 0, . . . , Gq(x) = 0}

and

{G1 = 0, . . . , Gq = 0}H := {x ∈ A
n | G1(x) = 0, . . . , Gq(x) = 0, H(x) �= 0}.

Suppose 1 ≤ q ≤ n and that G1, . . . , Gq form a regular sequence in the localized ring
C[X1, . . . , Xn]H . We call it reduced outside of {H = 0} if for any index 1 ≤ k ≤ q
the ideal (G1, . . . , Gk)H is radical in C[X1, . . . , Xn]H . Let V be the quasi-affine
subvariety of the ambient space A

n defined by G1 = 0, . . . , Gq = 0 and H �= 0, i.e.,

V := {G1 = 0, . . . , Gq = 0}H .

By C[V ] we denote the coordinate ring of V whose elements we call the coordinate
functions of V . We adopt the same notations of V as we did for V := A

n .
Suppose for the moment that V is a closed subvariety of A

n , i.e., V is of the
form V = {G1 = 0, . . . , Gq = 0}. For V irreducible we define its degree deg V as
the maximal number of points we can obtain by cutting V with finitely many affine
hyperplanes of C

n such that the intersection is finite. Observe that this maximum is
reached when we intersect V with dimension of V many generic affine hyperplanes
of C

n . If V is not irreducible, then let V = C1 ∪ · · · ∪ Cs be the decomposition of V
into irreducible components. We define the degree of V as deg V := ∑

1≤ j≤s deg C j .
With this definition we can state the so-called Bézout inequality: if V and W are closed
subvarieties of C

n , then we have

deg(V ∩ W ) ≤ deg V · deg W.

If V is a hypersurface of C
n , then its degree equals the degree of its minimal equation.

The degree of a point of C
n is just one. For more details we refer the interested reader

to [16,20,34].

2 Degeneracy Loci

We present the mathematical tools we need for the design of our main algorithm
in Sect. 4. Proposition 3 and Theorem 5 below are not new. They can be extracted
from existing results of modern algebraic geometry. Since we use the ingredients of
our argumentation for these statements otherwise, we give new elementary proofs of
them. This makes our exposition self-contained.

Let V be a quasi-affine variety, and suppose that V is smooth and equidimensional
of dimension r . The following constructions, statements, and proofs generalize the
basic arguments of [3–5]. Let p and s be natural numbers with s ≥ p +r . We suppose
that there is given a (p × s) matrix of coordinate functions of V , namely,
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F :=
⎡

⎢
⎣

f1,1 · · · f1,s
...

...

f p,1 · · · f p,s

⎤

⎥
⎦ ∈ C[V ]p×s .

For x ∈ V we denote by rk F(x) the rank of the complex (p × s) matrix F(x). Let
W := {x ∈ V | rk F(x) = p}, and observe that W is an open, not necessarily affine,
subvariety of V that is covered by canonical affine charts given by the p minors of F .

Let E := {(x, y) ∈ W × A
s | F(x) · yT = 0}, and let π : E → W be the first

projection (here yT denotes the transposed vector of y). One sees easily that π is a
vector bundle of rank s − p. We call π (or E) the vector bundle associated with the
pair (V, F). Let us fix for the moment a complex ((s − p) × s) matrix:

a :=
⎡

⎢
⎣

a1,1 · · · a1,s
...

...

as−p,1 · · · as−p,s

⎤

⎥
⎦ ∈ C

(s−p)×s,

with rk a = s − p. For 1 ≤ i ≤ r + 1, let

ai :=
⎡

⎢
⎣

a1,1 · · · a1,s
...

...

as−p−i+1,1 · · · as−p−i+1,s

⎤

⎥
⎦ ∈ C

(s−p−i+1)×s .

We have rk ai = s − p − i + 1. Let

T (ai ) :=
[

F
ai

]

∈ C[V ](s−i+1)×s and W (ai ) := {x ∈ W | rk T (ai )(x) < s − i + 1}.

Applying [13, Theorem 3] or [24, Theorem 13.10] to each canonical affine chart of
W we conclude that any irreducible component of W (ai ) has codimension at most i
in W . For 1 ≤ i ≤ r , the locally closed algebraic varieties W (ai ) form a descending
chain

W ⊇ W (a1) ⊇ · · · ⊇ W (ar ).

We call the algebraic variety W (ai ) the i th degeneracy locus of the pair (V, F) asso-
ciated with a.

The vector bundle E is a subbundle of W × A
s . Fix 1 ≤ i ≤ r . Then the matrix

ai defines a bundle map W × A
s → W × A

s−p−i+1, which associates with each
(x, y) ∈ W × A

s the point (x, ai · yT ) ∈ W × A
s−p−i+1. By restriction we obtain a

bundle map ϕi : E → W × A
s−p−i+1 whose critical locus we are going to identify

with W (ai ). First we observe that (x, y) ∈ E is a critical point of ϕi if and only if any
point of the fiber Ex of E at x is critical for ϕi . Thus the property of being a critical
point of ϕi depends only on the fiber. We say that x ∈ W is critical for ϕi if this map
is critical for Ex . One verifies easily by direct computation that the degeneracy locus
W (ai ) is the set of critical points of W for ϕi . In this sense, W (ai ) is a degeneracy
locus of ϕi [16, Chap. 14].
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Example 1 We will visualize our setup by a simple example. Consider the polynomial
G := X2

1 + X2
2 + X2

3 − 1 ∈ C[X1, X2, X3]. Then V := {G = 0} is an irreducible
subvariety of A

3 that is smooth of dimension r := 2. Let F be the gradient of G
restricted to V , and let p := 1 and s := 3. Thus, s = p + r . For π1, π2, π3 as the
coordinate functions of C[V ] induced by X1, X2, X3 and for

[
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

]

∈ C
2×3

generic, we have

F = [
2π1 2π2 2π3

]
, T (a1) =

⎡

⎣
2π1 2π2 2π3
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

⎤

⎦ ,

T (a2) =
[

2π1 2π2 2π3
a1,1 a1,2 a1,3

]

.

One verifies easily that W = V , W (a1) = {x ∈ V | det(T (a1)) = 0}, and W (a2) =
{x ∈ V | x = (x1, x2, x3), a1,2x1−a1,1x2 = 0, a1,3x1−a1,1x3 = 0, a1,3x2−a1,2x3 =
0} hold. Since the matrix [ai, j ]1≤i≤2,1≤ j≤3 is generic by assumption, we conclude
that W (a1) is equidimensional of dimension one and that W (a2) is the classical polar
variety of the sphere V , which can be parameterized in the following way:

W (a2) =
{(

a2
1,1

a2
1,3

+ a2
1,2

a2
1,3

+ 1

)

X2
3 − 1 = 0, X1 − a1,1

a1,3
X3 = 0, X2 − a1,2

a1,3
X3 = 0

}

.

2.1 Dimension of a Degeneracy Locus

We will now show that for a generic matrix a the degeneracy locus W (ai ) is either
empty or of expected pure codimension i in W (see Proposition 3 in what follows).
Our considerations will only be local. Therefore, it suffices to consider the items to be
introduced now. Let

� := det

⎡

⎢
⎣

f1,1 · · · f1,p
...

...

f p,1 · · · f p,p

⎤

⎥
⎦ .

For 1 ≤ i ≤ r , let

mi := det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1,1 · · · f1,s−i
...

...

f p,1 · · · f p,s−i

a1,1 · · · a1,s−i
...

...

as−p−i,1 · · · as−p−i,s−i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Thus, mi is the upper-left corner (s − i) minor of the ((s − i + 1) × s) matrix T (ai ).
Further, let

Ms−i+1, . . . , Ms

be the (s−i+1)minors of the matrix T (ai )given by the columns numbered 1, . . . , s−i ,
to which we add, one by one, the columns numbered s − i + 1, . . . , s. Observe that

W (ai )� := {x ∈ W (ai ) | �(x) �= 0}

is an affine chart of the degeneracy locus W (ai ). The exchange lemma in [2] implies

W (ai )�·mi
= {Ms−i+1 = 0, . . . , Ms = 0}�·mi .

Let Zs−i+1, . . . , Zs be new indeterminates and M̃s−i+1, . . . , M̃s be the (s − i + 1)

minors of the matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1,1 · · · f1,s−i f1,s−i+1 · · · f1,s
...

...
...

...

f p,1 · · · f p,s−i f p,s−i+1 · · · f p,s

a1,1 · · · a1,s−i a1,s−i+1 · · · a1,s
...

...
...

...

as−p−i,1 · · · as−p−i,s−i as−p−i,s−i+1 · · · as−p−i,s

as−p−i+1,1 · · · as−p−i+1,s−i Zs−i+1 · · · Zs

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

given by the columns numbered 1, . . . , s−i , to which we add, one by one, the columns
numbered s − i + 1, . . . , s. We consider now the morphism �i : Vmi × A

i −→ A
i of

smooth algebraic varieties defined for x ∈ Vmi and z ∈ A
i by (x, z) 
→ �i (x, z) :=

(M̃s−i+1(x, z), . . . , M̃s(x, z)).

Lemma 2 The origin (0, . . . , 0) of A
i is a regular value of �i .

Proof Without loss of generality we may assume that �−1
i (0, . . . , 0) is nonempty. Let

x ∈ Vmi and z ∈ A
i with �i (x, z) = (0, . . . , 0) be arbitrarily chosen. Observe that

the Jacobian of �i at (x, z) is a matrix with i rows of the following form:

⎡

⎢
⎢
⎢
⎢
⎣

∗ · · · ∗ mi (x) 0 · · · 0

∗ · · · ∗ 0 mi (x)
. . .

...
...

...
...

. . .
. . . 0

∗ · · · ∗ 0 · · · 0 mi (x)

⎤

⎥
⎥
⎥
⎥
⎦

.

Since x belongs to Vmi , we conclude that (x, z) is a regular point of �i . The arbitrary
choice of (x, z) in �−1

i (0, . . . , 0) now implies Lemma 2. �
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From the weak transversality theorem of Thom–Sard (e.g., [10, Theorem III.7.4])
we deduce now that there exists a nonempty Zariski open set � of A

i such that
for any point z ∈ � the equations M̃s−i+1(x, z) = 0, . . . , M̃s(x, z) = 0 intersect
transversally at any common zero belonging to Vmi . Henceforth we shall choose the
complex ((s − p)×s) matrix a generically proceeding step by step from row one until
row s − p. With this choice in mind we may suppose without loss of generality that the
equations Ms−i+1 = 0, . . . , Ms = 0 intersect transversally at any of their common
zeros belonging to Vmi . In particular, W (ai )�·mi

= {Ms−i+1 = 0, . . . , Ms = 0}�·mi

is either empty or of pure codimension i in W�·mi .

Proposition 3 ([26, Transversality Lemma 1.3 (i)]) For 1 ≤ i ≤ r and a generic
matrix a ∈ C

(s−p)×s , the i th degeneracy locus W (ai ) is empty or of pure codimension
i in W .

Proof Let C be an irreducible component of W (ai ) not contained in W (ai+1). With-
out loss of generality we may assume that � · mi does not vanish identically on
C . Therefore, C�·mi is an irreducible component of W (ai )�·mi . Hence, C�·mi is of
codimension i in W�·mi . This implies that the codimension of C in W is also i .

Let us consider the case i = r . By induction on 1 ≤ j ≤ s − p − r , we conclude
in the same way as in the proof of Lemma 2 and the observations following it that
for any point x of W� there exists a (p + j) minor corresponding to p + j columns,
including those numbered 1, . . . , p, of the matrix

⎡

⎢
⎢
⎢
⎣

F
a1,1 · · · a1,s
...

...

a j,1 · · · a j,s

⎤

⎥
⎥
⎥
⎦

that does not vanish at x . This implies that W (ar+1)� is empty. Thus, W (ar )� and,
hence, W (ar ) are empty or of pure codimension r in W . This proves Proposition 3 in
the case i = r .

Suppose now that Proposition 3 is wrong, and let 1 ≤ i < r be maximal such that
there exists an irreducible component C of W (ai ) with codimension different from i in
W . Then C must be contained in W (ai+1). There exists an irreducible component D of
W (ai+1) with D ⊇ C . From the maximal choice of i we deduce that the codimension
of D in W is i + 1. This implies that the codimension of C in W is at least i + 1.
On the other hand, we have seen that the codimension of C in W is at most i . This
contradiction implies Proposition 3. �

By the way, we have proven that the variety W (ai )\W (ai+1) is empty or equidimen-
sional and smooth and that it can be defined locally by reduced complete intersections.

Corollary 4 ([16, Theorem 14.4 (c)]) For 1 ≤ i ≤ r and a generic matrix
a ∈ C

(s−p)×s , the degeneracy locus W (ai ) is empty or equidimensional and Cohen–
Macaulay.
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Proof The statement is local. Thus, we may, without loss of generality, restrict our
attention to the affine variety W (ai )�, and we may suppose W (ai )� �= ∅. Observe that
the affine variety W� is equidimensional and smooth and, therefore, Cohen–Macaulay.
Furthermore, W (ai )� is a determinantal subvariety of W� given by maximal minors,
which is by Proposition 3 of pure codimension i in W�.

Applying now [6, Theorem 2.7 and Proposition 16.19] to this situation we conclude
that W (ai )� is Cohen–Macaulay (see also [12,13] and [14, Section 18.5] for the
general context of determinantal varieties). This implies Corollary 4. �

Taking into account Corollary 4 we conclude that the (s − i + 1) minors of T (ai )

induce in the local ring of W at any point of W (ai ) a radical ideal. Therefore, W (ai )

considered as a scheme is reduced.

2.2 Normality and Rational Equivalence of Degeneracy Loci

Theorem 5 For 1 ≤ i ≤ r and a generic matrix a ∈ C
(s−p)×s , the degeneracy locus

W (ai ) is empty or equidimensional, Cohen–Macaulay, and normal.

Proof Again, because the statement of Theorem 5 is local, we may restrict our atten-
tion to the affine variety W (ai )�, which we suppose to be nonempty. By Corollary 4,
the variety W (ai )� is equidimensional and Cohen–Macaulay, and by Serre’s normal-
ity criterion (e.g., [24, Theorem 23.8]), it suffices therefore to prove the following
statement.

Claim 6 The singular points of W (ai )� form a subvariety of codimension at least
two.

Proof of the Claim We follow the general lines of the argumentation in [5, Sect. 3].
In the case where i = r , Proposition 3 implies the claim. Let us therefore suppose that
there exists an index 1 ≤ i < r such that the claim is wrong. Let

υ := det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1,1 · · · f1,s−i−1
...

...

f p,1 · · · f p,s−i−1
a1,1 · · · a1,s−i−1
...

...

as−p−i−1,1 · · · as−p−i−1,s−i−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

be the (s − i − 1) minor of the ((s − i − 1) × s) matrix T (ai+2) =
[

F
ai+2

]

given by

the columns numbered 1, . . . , s − i − 1.
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For s − p − i ≤ k ≤ s − p − i + 1 and s − i ≤ l ≤ s let

mk,l := det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1,1 · · · f1,s−i−1 f1,l
...

...
...

f p,1 · · · f p,s−i−1 f p,l

a1,1 · · · a1,s−i−1 a1,l
...

...
...

as−p−i−1,1 · · · as−p−i−1,s−i−1 as−p−i−1,l

ak,1 · · · ak,s−i−1 ak,l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We consider now an arbitrary point x of W (ai )�·υ . If there exists a pair (k, l) of indices
with s − p − i ≤ k ≤ s − p − i + 1 and s − i ≤ l ≤ s and mk,l(x) �= 0, then, by the
generic choice of the complex (r × s) matrix a, the variety W (ai )�·υ must be smooth
at x (compare to Lemma 2 and the comments following it).

Therefore, the singular locus of W (ai )�·υ is contained in

Z := W�·υ ∩ {mk,l = 0 | s − p − i ≤ k ≤ s − p − i + 1, s − i ≤ l ≤ s}.

Again, the generic choice of a implies that Z is empty or has pure codimension 2(i +1)

in W�·υ . Hence, the singular locus of W (ai )�·υ has at least codimension 2(i + 1) in
W�·υ and therefore at least codimension two in W (ai )�·υ . This argumentation proves
that the singular points of W (ai )�\W (ai+2)� are contained in a subvariety of W (ai )�
of codimension at least two. Since W (ai+2)� is empty or has, by Proposition 3,
codimension two in W (ai )�, the claim follows. �

This ends our proof of Theorem 5. For more details we refer readers to [5]. �
Corollary 7 For 1 ≤ i ≤ r , the irreducible components of W (ai ) are exactly the
Zariski connected components of W (ai ) and are, hence, mutually disjoint.

Proof Corollary 7 follows immediately from Theorem 5 taking into account [24,
Chap. 1, § 9, Remark]. �
Let a ∈ C

(s−p)×s be generic and 1 ≤ i ≤ r . Following the Thom–Porteous formula
we may express the rational equivalence class of W (ai ) in terms of the Chern classes
of E (see [16, Theorem 14.4], and, in the case where W (ai ) is a polar variety, the
proof of [26, Proposition 1.2]). This argumentation yields the following statement.

Theorem 8 Let a, b ∈ C
(s−p)×s be generic matrices, and let 1 ≤ i ≤ r . Then the

subvarieties W (ai ) and W (bi ) of W are rationally equivalent.

In the case of generic polar varieties Theorem 8 corresponds to [26, Proposition 1.2]. It
is not too hard to prove by elementary techniques the algebraic equivalence of W (ai )

and W (bi ). However, the proof of their rational equivalence seems to be beyond the
reach of direct arguments.
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2.3 Geometric Tools

The following two technical statements will be used in Sect. 4, where we describe our
main algorithm.

For 1 ≤ k1 < · · · < kp ≤ s we denote by �k1,...,kp the p minor of F given by the
columns numbered k1, . . . , kp, and for the columns numbered 1 ≤ l1 < · · · < ls−i ≤ s
that contain k1, . . . , kp we denote by ml1,...,ls−i the (s − i) minor of T (ai+1) given by
the columns numbered l1, . . . , ls−i (in the case where s = r + p and i = r we have
ml1,...,l p = �k1,...,kp ). The following lemma is borrowed from [1, Sect. 4.3].

Lemma 9 Let 1 ≤ i ≤ r , and let C be an irreducible component of W (ai )�k1,...,k p
.

Then the polynomial ml1,...,ls−i does not vanish identically on C.

Proof Fix 1 ≤ i ≤ r . Without loss of generality we may assume k1 := 1, . . . , kp := p
and l1 := 1, . . . , ls−i := s − i , and hence, �k1,...,kp := � and ml1,...,ls−i := mi . By
induction on 1 ≤ i ≤ r , one deduces from the genericity of the complex matrix a that
mi does not vanish identically on any irreducible component of W�. Therefore, the
affine variety Y := W� ∩ {mi = 0} is empty or of pure codimension one in W�.

Let 1 ≤ l∗1 < · · · < l∗s−i ≤ s be arbitrary, and denote the (s − i) minor ml∗1 ,...,l∗s−i
of

T (ai+1) by m∗
i . Further, let M∗

s−i+1, . . . , M∗
s be the (s − i + 1) minors of T (ai ) given

by the columns numbered l∗1 , . . . , l∗s−i , to which we add, one by one, the columns
numbered by the elements of the index set {1, . . . , s} \ {l∗1 , . . . , l∗s−i }. Again, the
genericity of a implies that the intersection Ym∗

i
∩ {M∗

s−i+1 = 0, . . . , M∗
s = 0} is

empty or of pure codimension i in Ym∗
i

and, hence, of pure codimension i + 1 in
W�·m∗

i
.

Let C be an irreducible component of W (ai )�. From Proposition 3 we deduce that
C is not contained in W (ai+1)�. This implies that there exists an (s − i) minor m∗

i
of T (ai+1), with Cm∗

i
�= ∅. The corresponding (s − i + 1) minors M∗

s−i+1, . . . , M∗
s

of T (ai ) define in W�·m∗
i

a variety that contains Cm∗
i

as an irreducible component.
Hence, Cm∗

i
is a subset of {M∗

s−i+1 = 0, . . . , M∗
s = 0}. Suppose now that mi vanishes

identically on C . Then Ym∗
i

contains Cm∗
i

and is in particular nonempty. Since Cm∗
i

is
contained in Ym∗

i
∩ {M∗

s−i+1 = 0, . . . , M∗
s = 0}, we conclude that the codimension

of Cm∗
i

in W�·m∗
i

is at least i + 1.
On the other hand, Proposition 3 implies that the codimension of Cm∗

i
in W�·m∗

i
is i . This contradiction proves that mi cannot vanish identically on C . �

Suppose that the quasi-affine variety V is embedded in the affine space A
n and that

the Zariski closure of V in A
n can be defined by the polynomials of C[X1, . . . , Xn]

of degree at most d. Furthermore, suppose that for each 1 ≤ i ≤ p and 1 ≤ j ≤ s
there is given a polynomial Fi, j ∈ C[X1, . . . , Xn] of degree at most d such that the
entry fi, j of matrix F is the restriction of Fi, j to V .

Let b1, . . . , br+1 ∈ C
s×s be regular matrices. We call (b1, . . . , br+1) a hit-

ting sequence for V and F if the following property holds: there exist p minors
�1, . . . ,�r+1 of the matrices F ·b1, . . . , F ·br+1 ∈ C[V ]p×s , respectively, such that
for any point x of W at least one of the minors �t (1 ≤ t ≤ r + 1) does not vanish at
x . The following lemma is reminiscent of [22, Theorem 4.4].
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Lemma 10 Let κ := (4pd)2n, and let K := {1, . . . , κ}. Then the set (Ks×s)r+1

contains at least κs2(r+1)(1 − 4−n) hitting sequences for V and F.

Proof For 1 ≤ t ≤ r + 1 and 1 ≤ k, l ≤ s let Bt
k,l be new indeterminates over C, and

let Bt := (Bt
k,l)1≤k,l≤s . Furthermore, let �t ∈ C[V ][Bt ] be the p minor of F · Bt

given by the first p columns of F · Bt .
Consider an arbitrary point x of W . Without loss of generality we may suppose

�(x) �= 0. Fix for the moment 1 ≤ t ≤ r + 1, and consider the matrix C t obtained
from Bt by substituting zero for Bt

k,l for any (k, l), with p+1 ≤ k ≤ s and 1 ≤ l ≤ p,
namely,

C t :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Bt
1,1 · · · Bt

1,p Bt
1,p+1 . . . Bt

1,s
...

...
...

...

Bt
p,1 · · · Bt

p,p Bt
p,p+1 . . . Bt

p,s
0 · · · 0 Bt

p+1,p+1 . . . Bt
p+1,s

...
...

...
...

0 · · · 0 Bt
s,p+1 . . . Bt

s,s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is easy to see that the left p minor �t (x, C t ) of the matrix F · C t is of the form
�(x) times a nonzero polynomial of C[Bt ]. In particular, �t (x, C t ) is a polynomial
of positive degree. We conclude now a fortiori that for any x ∈ W the polynomial
�t (x, Bt ) is of positive degree.

We consider now the incidence variety H ⊂ W × (As×s)r+1 defined by the vanish-
ing of �1, . . . ,�r+1. Let π be the projection of H into (As×s)r+1. It is not difficult to
see that H is equidimensional of dimension s2(r + 1) − 1. To show this, we proceed
recursively. Let W0 be an arbitrary irreducible component of W . Since the polynomial
�1(x, B1) has positive degree in the variables B1 for any point x ∈ W , the variety(
W0×(As×s)r+1

)∩{�1 = 0} must be equidimensional of dimension r +s2(r +1)−1.
Moreover, each irreducible component of this variety has the form W1×(As×s)r , where
W1 is an irreducible component of

(
W0 × A

s×s
) ∩ {�1 = 0}. Applying this argument

recursively for each polynomial �t we conclude that �1, . . . ,�r+1 constitute a secant
family for the variety W × (As×s)r+1 (recall that �1, . . . ,�r+1 are polynomials in
disjoint groups of indeterminates). Hence, the incidence variety H is equidimensional
of dimension r + s2(r + 1) − (r + 1) = s2(r + 1) − 1.

In particular, we infer that the Zariski closure of π(H) in (As×s)r+1 has dimension
at most s2(r + 1) − 1, and therefore it is a proper closed subvariety of (As×s)r+1.
Observe that the zero-dimensional variety π(H) ∩ (Ks×s)r+1 contains all sequences
of (Ks×s)r+1 that are not hitting for V and F .

Claim 11 #
(
π(H) ∩ (Ks×s)r+1

) ≤ (2pd)2nκs2(r+1)−1.

Proof of the Claim Observe π−1
(
π(H) ∩ (Ks×s)r+1

) = H ∩ (
A

n × (Ks×s)r+1
)
.

Let C1, . . . , Cm be the irreducible components of H ∩ (
A

n × (Ks×s)r+1
)
. Because

the image under π of each component C j of H ∩ (
A

n × (Ks×s)r+1
)

is a point of
π(H) ∩ (Ks×s)r+1, we conclude
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#
(
π(H) ∩ (Ks×s)r+1) ≤ m ≤

m∑

i=1

deg Ci = deg
(H ∩ (

A
n × (Ks×s)r+1)) (1)

[here, Ci denotes the Zariski closure of Ci in A
n ×(As×s)r+1]. It is easy to see that the

affine variety A
n × (Ks×s)r+1 can be defined by the vanishing of s2(r + 1) univariate

polynomials of degree κ . Therefore, by [22, Proposition 2.3], it follows that

deg
(H ∩ (

A
n × (Ks×s)r+1)) ≤ deg H · κs2(r+1)−1 (2)

holds. On the other hand, the Bézout inequality implies

deg H ≤ deg V · (p(d + 1))r+1 ≤ (2pd)2n . (3)

Combining (1), (2), and (3) we easily deduce the statement of the claim. �
Following the previous claim the probability of finding a nonhitting sequence for

V and F in (Ks×s)r+1 is at most

(2pd)2nκs2(r+1)−1

κs2(r+1)
= (2pd)2n

κ
= (2pd)2n

(4pd)2n
= 1

4n
.

This implies Lemma 10. �

2.4 Algebraic Characterization of Degeneracy Loci

Let U2, . . . , Us be new indeterminates. For 1 ≤ i ≤ r let U (i) be the (s × (s − i + 1))

matrix

U (i) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0

U2 1
. . .

...

U3 U2
. . . 0

... U3
. . . 1

Ui
...

. . . U2
... Ui U3

Us−1
...

. . .
...

Us Us−1 · · · Ui

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and let U := U (s−p+1). With these notations the following assertion holds.

Lemma 12 Let 1 ≤ i ≤ r . Any point x ∈ V belongs to W (ai ) if and only if the
conditions

det(F(x) · U ) �= 0 and det(T (ai )(x) · U (i)) = 0

are satisfied identically.
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Proof Let x be any point of V that satisfies the condition det(F(x) · U ) �= 0. Then
F(x) must be of maximal rank p, and hence x belongs to W .

Suppose now that x belongs to W . Let K run over all subsets of {1, . . . , s} of
cardinality p. Denote by F(x)K and UK the p minors of F(x) and U corresponding
to the columns of F(x) and rows U indexed by the elements of K . The Binet–Cauchy
formula yields

det(F(x) · U ) =
∑

K⊆{1,...,s}
#K=p

F(x)K UK .

From the proof of [23, Theorem 2] we deduce that for K ⊆ {1, . . . , s}, #K = p, all the
minors UK are linearly independent over C. Since x belongs to W , there exists a subset
K of {1, . . . , s} of cardinality p, with F(x)K �= 0. This implies det(F(x) · U ) �= 0.

Using the same kinds of arguments one shows that, for x ∈ V , the condition
det(T (ai )(x) · U (i)) = 0 is equivalent to rk T (ai )(x) < s − i + 1. Lemma 12 follows
now easily. �

We define the point-finding problem associated with the pair (V, F) as the problem
of deciding whether W (ar ) is empty, and if not, to find all the points of the zero-
dimensional degeneracy locus W (ar ).

The degree of this problem is the maximal degree of the Zariski closures of all
degeneracy loci W (ai ), for 1 ≤ i ≤ r , in the ambient space A

n of V . Observe that this
degree does not depend on the particular generic choice of the ((s − p) × s) matrix a
(compare to [5, Section 4]).

3 Examples

3.1 Polar Varieties

Let X1, . . . , Xn be indeterminates over C, 1 ≤ p ≤ n, and let G1, . . . , G p be a
reduced regular sequence of polynomials in C[X1, . . . , Xn]. We denote the Jacobian
of G1, . . . , G p by

J (G1, . . . , G p) :=

⎡

⎢
⎢
⎣

∂G1
∂ X1

· · · ∂G1
∂ Xn

...
...

∂G p
∂ X1

· · · ∂G p
∂ Xn

⎤

⎥
⎥
⎦ .

Fix a p minor � of J (G1, . . . , G p), and let

V := {G1 = 0, . . . , G p = 0}�.

Then V is a smooth, equidimensional, quasi-affine subvariety of A
n of dimension

r := n − p. Let s := r + p = n, and let F ∈ C[V ]p×s be the (p × s) matrix induced
by J (G1, . . . , G p) on V .
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For a given generic complex ((s− p)×s) matrix a and for 1 ≤ i ≤ r the degeneracy
locus W (ai ) is the i th generic (classic) polar variety of V associated with the complex
((s − p − i + 1) × s) matrix ai (see details in [5]).

Proposition 3, Corollary 4, and Theorem 5, given previously, say that the i th generic
(classic) polar variety of V is empty or a normal Cohen–Macaulay subvariety of V of
pure codimension i (compare to [5, Theorem 2]). From [5, Sect. 3.1] we deduce that
such a generic polar variety is not necessarily smooth. Hence, the smoothness of our
degeneracy loci cannot be expected in general. If the coefficients of G1, . . . , G p and the
entries of the ((n− p)×n) matrix a are real, and if the real trace of {G1 = 0, . . . , G p =
0} is smooth and compact, then there exists a p minor � of J (G1, . . . , G p) such that
the polar varieties associated with a contain real points and are therefore nonempty. The
generic polar varieties then form a strictly descending chain ([3] and [4, Proposition 1]).

3.2 Composition of Polynomial Maps

Let 1 ≤ p ≤ n, and let Q1, . . . , Qn and P1, . . . , Pp be polynomials of C[X1, . . . , Xn]
such that P1, . . . , Pp form a reduced regular sequence. Moreover, let

(G1, . . . , G p) := (P1, . . . , Pp) ◦ (Q1, . . . , Qn)

be the composition map defined for 1 ≤ k ≤ p by

Gk(X1, . . . , Xn) := Pk(Q1(X1, . . . , Xn), . . . Qn(X1, . . . , Xn)).

Suppose that G1, . . . , G p constitute a reduced regular sequence in C[X1, . . . , Xn].
Fix a p minor � of the Jacobian J (G1, . . . , G p). Then

V := {G1 = 0, . . . , G p = 0}�

is a smooth, quasi-affine subvariety of A
n of dimension r := n − p. The morphism

defined by (Q1, . . . , Qn) maps V into

V := {P1 = 0, . . . , Pp = 0}.

We suppose that this morphism of affine varieties is dominant, i.e.,

(Q1, . . . , Qn)(V ) = V.

Observe that for any point x ∈ V the variety V is smooth at y = (Q1(x), . . . , Qn(x)).
Let s := r + p = n, and let F be the (p × s) matrix induced by J (P1, . . . , Pp) ◦

(Q1, . . . , Qn) on V . Let a ∈ C
(s−p)×s be a generic complex matrix, and denote by

W̃ (ai ) the i th polar variety of V associated with ai , for 1 ≤ i ≤ r . Then we have
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W = V , and the i th degeneracy locus W (ai ) of W , namely,

W (ai ) =
{

x ∈ V | rk

[
F(x)

ai

]

< s − i + 1

}

=
{

x ∈ V | rk

[
J (P1, . . . , Pp) ◦ (Q1, . . . , Qn)(x)

ai

]

< s − i + 1

}

,

is the (Q1, . . . , Qn) preimage of W̃ (ai ).

3.3 Dominant Endomorphisms of Affine Spaces

Let F1, . . . , Fn ∈ C[X1, . . . , Xn], V := A
n , p := 1, s := p + r = 1 + n, F :=[

F1, . . . , Fn, 1
] ∈ C

1×s , and let a ∈ C
n×s be a generic complex matrix. Observe

W = V = A
n and that, for any 1 ≤ i ≤ n, the degeneracy locus W (ai ) is a closed

affine subvariety of A
n . We will now analyze the nth degeneracy locus W (an).

Lemma 13 The degeneracy locus W (an) is nonempty if and only if the endomorphism
� : A

n −→ A
n defined by �(x) := (F1(x), . . . , Fn(x)) is dominant. In this case, the

cardinality #W (an) of W (an) equals the cardinality of a generic fiber of �.

Proof Suppose that W (an) is nonempty, and let x be a point of W (an). Then there exists
a λ ∈ C such that (F1(x), . . . , Fn(x), 1) = λ(a1,1, . . . , a1,n, a1,n+1). This implies
(F1(x), . . . , Fn(x)) = 1

a1,n+1
(a1,1, . . . , a1,n). The right-hand side of this equation is

therefore a generic point of A
n with a zero-dimensional (F1, . . . , Fn) fiber. Hence,

the endomorphism � of A
n is dominant.

Suppose now that � is dominant. Then we may assume without loss of generality
that there exists a point x ∈ A

n with (F1(x), . . . , Fn(x)) = 1
a1,n+1

(a1,1, . . . , a1,n).
This implies the equation (F1(x), . . . , Fn(x), 1) = λ(a1,1, . . . , a1,n, a1,n+1), with
λ = 1

an+1
. Hence, x belongs to W (an), and thus W (an) is not empty. Moreover,

#W (an) equals the cardinality of the (F1, . . . , Fn) fiber of 1
a1,n+1

(a1,1, . . . , a1,n). �
Suppose now that the morphism � is dominant. Then the degeneracy loci of (An, F)

form a descending chain

A
n

� W (a1) � · · · � W (an) �= ∅,

where, for 1 ≤ i < n, the (i + 1)th degeneracy locus W (ai+1) is a closed affine
subvariety of W (ai ) of pure codimension one in W (ai ).

3.4 Homotopy

Let F1, . . . , Fn and G1, . . . , Gn be reduced regular sequences of C[X1, . . . , Xn]. We
consider the algebraic family

{λF1 + μG1 = 0, . . . , λFn + μGn = 0}, (λ, μ) ∈ C
2 \ {(0, 0)}
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as a homotopy between the zero-dimensional varieties {F1 = 0, . . . , Fn = 0} and
{G1 = 0, . . . , Gn = 0}.

We will analyze this homotopy. For this purpose let V := A
n , p := 2, s := n+ p =

n + 2, and

F :=
[

F1 · · · Fn 1 0
G1 · · · Gn 0 1

]

.

Furthermore, let a ∈ C
(s−p)×s be generically chosen. Then we have W = V = A

n ,
and for any 1 ≤ i ≤ n the degeneracy locus W (ai ) is a closed affine subvariety of A

n .
From the exchange lemma of [2] we deduce

#W (an) = #{a1,n+1 F1 + a1,n+2G1 = a1,1, . . . , a1,n+1 Fn + a1,n+2Gn = a1,n}.

Thus, W (an) may be interpreted as a deformation of

{a1,n+1 F1 + a1,n+2G1 = 0, . . . , a1,n+1 Fn + a1,n+2Gn = 0}.

4 Algorithms

We will present two procedures, our main algorithm, which computes an algebraic
description of the set W (ar ), and a procedure to check membership in a degeneracy
locus.

4.1 Notations

Let n, d, p, r, q, s, L be integers with r = n − q and s ≥ p + r , and let
G1, . . . , Gq , H, Fk,l , for 1 ≤ k ≤ p and 1 ≤ l ≤ s, be polynomials of Q[X1, . . . , Xn]
given as outputs of an essentially division-free arithmetic circuit β of size L . This
means that β contains divisions only by elements of Q (for details about arithmetic
circuits we refer the reader to [7]).

Let d be an upper bound for the degrees of G1, . . . , Gq and Fk,l , for 1 ≤ k ≤ p and
1 ≤ l ≤ s. We suppose that G1, . . . , Gq and H satisfy the following two conditions:

• G1, . . . , Gq form a reduced regular sequence outside of {H = 0};
• V := {G1 = 0, . . . , Gq = 0}H is a smooth quasi-affine variety.

For 1 ≤ k ≤ p and 1 ≤ l ≤ s, let fk,l ∈ C[V ] be the restriction of Fk,l to V , and let
F := [ fk,l ]1≤k≤p,1≤l≤s . Let δ∗ be the degree of the point-finding problem associated
with the pair (V, F), which was previously introduced as the maximal degree of the
Zariski closures of all degeneracy loci W (ai ), 1 ≤ i ≤ r , in the ambient space A

n of
V . We write

δG := max{deg {G1 = 0, . . . , G j = 0}H | 1 ≤ j ≤ q}
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and δ := max{δG, δ∗}. We call δ the system degree of G1, . . . , Gq = 0, H �= 0, and
[Fk,l ]1≤k≤p,1≤l≤s .

Fix a generic matrix a ∈ Q
(s−p)×s . We will design a uniform, bounded-error proba-

bilistic procedure that takes β as input and decides whether W (ar ) is empty and, if not,
computes a description of W (ar ) in terms of a primitive element. More precisely, for a
new indeterminate T , the procedure outputs the coefficients of univariate polynomials
P, Q1, . . . , Qn ∈ Q[T ] such that P is separable, deg Q1 < deg P, . . . , deg Qn <

deg P , and such that

W (ar ) = {(Q1(t), . . . , Qn(t)) | t ∈ C : P(t) = 0}

holds. Following [19, Section 3.2], such a description is called a geometric resolution
of W (ar ).

In the sequel we refer freely to terminology, mathematical results, and subroutines
of [19], where the first streamlined version of the classical Kronecker algorithm was
described. To simplify the exposition, we shall refrain from the presentation of details
that merely serve to ensure the appropriate genericity properties for the procedure.
The following account requires some familiarity with technical aspects of the classical
Kronecker algorithm. A standalone presentation of the algorithm from a mathematical
point of view is contained in [11].

4.2 Main Algorithm

As our first task, we compute a description of the variety V . For this purpose, we
use the main tools of [19, Algorithm 12] in the following way. As input we take the
representation of G1, . . . , Gq and H by the circuit β. Although the system G1 =
0, . . . , Gq = 0 contains n ≥ q variables, we may execute just the q first steps of the
main loop of [19, Algorithm 12] to obtain a lifting fiber for V [19, Definition 4]. This
lifting fiber consists of the following items:

• The lifting system G1, . . . , Gq ;
• An invertible n × n square matrix M with rational entries such that the new

coordinates Y := M−1 X are in Noether position with respect to V ;
• A rational lifting point z = (z1, . . . , zr ) for V and the lifting system G1, . . . , Gq ;
• Rational coefficients λr+1, . . . , λn defining a primitive element u := λr+1Yr+1 +

· · · + λnYn of V (z) := V ∩ {Y1 − z1 = 0, . . . , Yr − zr = 0};
• A polynomial Q ∈ Q[T ] of minimal degree such that Q(u) vanishes on V (z);
• n−r polynomials vr+1, . . . , vn of Q[T ], of degree strictly smaller than deg Q, such

that the equations Y1 − z1 = 0, . . . , Yr − zr = 0, Yr+1 − vr+1(T ) = 0, . . . , Yn −
vn(T ) = 0, Q(T ) = 0 define a parameterization of V (z) by the zeros of Q.

The computation of these items depends on the choice of at most O(n2) parameters
in Q. If the parameters are chosen correctly, then the algorithm returns these items.
Otherwise, the algorithm fails. The incorrect choices of these parameters are contained
in a hypersurface whose degree is a priori bounded ([19]). Therefore, the whole proce-
dure yields a bounded-error probabilistic algorithm (compare [29,35]). The error can
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be bounded uniformly with respect to the input parameters, whatever they are (e.g.,
dimension of the ambient space n, degree and coefficients of the input equations). We
summarize the outcome in the following statement.

Lemma 14 Let the notations and assumptions be as previously. There exists a uniform,
bounded-error probabilistic algorithm over Q that computes a lifting fiber of V in time
L(nd)O(1)δ2

G.

Proof Apply [19, Theorem 1], taking care to perform products of univariate polyno-
mials in quasilinear time. The Bézout inequality implies δG = O(dn). The complexity
bound of Lemma 14 follows now from δ2

G logO(1)(δG) = (nd)O(1)δ2
G . �

By Lemma 10, we may choose with a high probability of success a hitting sequence
(b1, . . . , br+1) of regular integer (s × s) matrices and p minors �1, . . . ,�r+1 of the
matrices F · b1, . . . , F · br+1 such that W = V�1 ∪ · · · ∪ V�r+1 holds.

Lemma 15 Let the notations and assumptions be as previously, and let a lifting fiber
of V be given. There exists a uniform, bounded-error probabilistic algorithm over Q

that computes lifting fibers for V�1, . . . , V�r+1 in time L(pnd)O(1)δ2
G.

Proof Let us fix 1 ≤ j ≤ r +1. The given lifting point of V may be changed by means
of [19, Algorithm 5] in time L(nd)O(1)δ2

G . We call [19, Algorithm 10] with input the
lifting fiber of V and the polynomial representing � j (observe that this polynomial
can be evaluated using L + O(p4) arithmetic operations). This yields, with a high
probability of success, a lifting fiber of V� j in time L(pnd)O(1)δG (compare [19,
Lemmas 14 and 15]). �

If the varieties V�1 , . . . , V�r+1 are empty, then W (ar ) is empty, and the algorithm
stops. We suppose that this is not the case. We are now going to describe how we decide
whether W (ar )� j is empty and, if not, how we compute a lifting fiber of W (ar )� j . To
simplify the notations, we make, without loss of generality, the following assumptions.
Let j := 1, b1 be the identity matrix, �1 := �, and V� = W� �= ∅.

Lemma 16 Let the notations and assumptions be as previously. For a given lifting
fiber of V� = W� there exists a uniform, bounded-error probabilistic algorithm over
Q that computes a lifting fiber of W (a1)�·m1 in time L(snd)O(1)δ2.

Proof Observe that W (a1) = V� ∩ {det(T (a1)) = 0} holds. By Proposition 3, the
polynomial representing det(T (a1)) does not vanish identically on any irreducible
component of V�. Thus, we may use [19, Algorithms 2, 4, 5, 6, and 11] to compute a
lifting fiber of W (a1)�·m1 . Since the polynomials representing � and m1 have degrees
bounded by pd and can be evaluated in time L + O(s4), Lemma 16 follows from [19,
Lemmas 6, 14, and 16]. �

From Lemma 9 we deduce that the emptiness of W (a1)�·m1 implies that of W (a1)�
and, hence, that of W (ar )�.

Let 1 ≤ i < r , and assume that we have computed a lifting fiber of W (ai )�·mi .

123



178 Found Comput Math (2015) 15:159–184

Lemma 17 Let the notations and assumptions be as previously. There exists a uniform,
bounded-error probabilistic algorithm over Q that decides whether W (ai+1)� is empty
and, if not, computes a lifting fiber of W (ai+1)�·mi+1 in time L(snd)O(1)δ2.

Proof In Sect. 2.1 we saw that the equations Ms−i+1 = 0, . . . , Ms = 0 intersect
transversally at any of their common zeros belonging to Vmi . Therefore, G1, . . . , Gq

and the polynomials representing Ms−i+1, . . . , Ms form a reduced regular sequence
outside of {� ·mi = 0}. From Lemma 9 we deduce that mi does not vanish identically
on any irreducible component of W (ai )�. Hence, the given lifting fiber of W (ai )�·mi

is also a lifting fiber of W (ai )�, and G1, . . . , Gq , Ms−i+1, . . . , Ms can be used as a
lifting system of the lifting fiber of W (ai )�·mi .

Applying successively [19, Algorithms 4, 5, and 6] we produce a Kronecker parame-
terization of a suitable curve C in W (ai )�·mi on which � · mi does not vanish identi-
cally.

Then we apply [19, Algorithm 2] to C , mi , and H ·� ·mi+1 to obtain a lifting fiber
of (C ∩ {mi = 0})�·mi+1 .

Let Ns−i , . . . , Ns be the polynomials representing the (s − i) minors of T (ai+1)

given by the columns numbered 1, . . . , s − i − 1, to which we add, one by one, the
columns s − i, . . . , s. In a way very similar to [19, Algorithm 10] we can remove the
points of the given lifting fiber (C∩{mi = 0})�·mi+1 that are not zeros of Ns−i , . . . , Ns

to obtain a lifting fiber of W (ai+1)�·mi+1 . The time cost of the whole procedure is a
consequence of [19, Lemmas 3, 6, 14, and 16] �

We apply Lemma 16 and then 17 iteratively to obtain a lifting fiber of the zero-
dimensional variety W (ar )�·mr and, hence, of W (ar )� by Lemma 9. Combining all
previously described procedures we obtain the proposed main algorithm.

Theorem 18 Let n, d, p, r, q, s, L , δ ∈ N, with r = n−q and s ≥ p+r , be arbitrary,
and let G1, . . . , Gq , H and Fk,l , for 1 ≤ k ≤ p, 1 ≤ l ≤ s, be polynomials of
Q[X1, . . . , Xn] of degree at most d. Suppose that G1, . . . , Gq form a reduced regular
sequence outside of {H = 0}, the variety V := {G1 = 0, . . . , Gq = 0}H is smooth,
and the system degree of G1 = 0, . . . , Gq = 0, H �= 0, and [Fk,l ]1≤k≤p,1≤l≤s is at
most δ.

Furthermore, suppose that these polynomials are given as outputs of an essentially
division-free arithmetic circuit β in Q[X1, . . . , Xn] of size at most L. Let a ∈ Q

(s−p)×s

be a generic matrix. Then there exists a uniform, bounded-error probabilistic algorithm
over Q that decides from the input β in time L(snd)O(1)δ2 = (s(nd)n)O(1) whether
W (ar ) is empty and, if not, computes a geometric resolution of W (ar ) (here, arithmetic
operations and comparisons in Q are taken into account at unit costs).

Proof This result is essentially a consequence of Lemmas 14, 15, 16, and 17. In fact,
first we obtain for all 1 ≤ j ≤ r + 1 lifting fibers of W (ar )� j . Then we change back
the variables of the lifting fibers and find a primitive element common to all the fibers
by means of [19, Algorithm 6] at a total cost of O((snd)O(1)δ2).

By means of classical greatest-common-divisor computations, we remove the points
of W (ar )�2 that belong already to W (ar )�1 . Then we remove the points of W (ar )�3

that belong already to W (ar )�1 and W (ar )�2 . Recursively we remove the points of
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W (ar )� j that belong already to W (ar )�k for k < j . The total cost of these operations
remains bounded by O((nd)O(1)δ). �
Remark 19 For any n, d, p, r, q, s, L , δ ∈ N, with r = n − q and s ≥ p + r , the
probabilistic algorithm of Theorem 18 may be realized by an algebraic computation
tree of depth L(snd)O(1)δ2 = (s(nd)n)O(1) that depends on parameters that may
be chosen randomly. The proof of this statement requires a suitable refinement of
Lemma 10 given earlier in the spirit of [22, Theorem 4.4], which exceeds the scope
of this paper.

4.3 Checking Membership in a Degeneracy Locus

Finally, we will consider the computational task of deciding for any x ∈ A
n and any

1 ≤ i ≤ r whether x belongs to W (ai ).

Proposition 20 Let the notations and assumptions be as previously, let 1 ≤ i ≤ r , and
let Q[α] be an algebraic extension of Q of degree e, given by the minimal polynomial of
α. Then there exists a bounded-error probabilistic algorithm B that, for any point x ∈
Q[α]n, decides in sequential time O(e(L + sO(1)) logO(1) e) = (esdn)O(1) whether x
belongs to W (ai ).

For any n, d, p, r, q, s, L ∈ N, with r = n − q and s ≥ p + r , the probabilistic
algorithm B may be realized by an essentially division-free arithmetic circuit of size
O(e(L + sO(1) + n)2 logO(1) e) = (esdn)O(1) that depends on parameters that may
be chosen randomly.

Proof Checking the membership of x in V takes O(L) operations in Q[α]. Each field
operation in Q[α] can be performed by e logO(1) e operations in Q. Lemma 12 now
justifies the following probabilistic test whether x ∈ V belongs to W (ai ). With a high
probability of success we can choose values ui for the variables Ui , so that if we write
u(i) (resp. u) for the corresponding specialization of U (i) (resp. of U ), then the test
becomes the verification of the conditions

det(F(x) · u) �= 0 and det(T (ai )(x) · u(i)) = 0. (4)

This leads to an additional cost of e(L + sO(1)) logO(1) e.
The second part of Proposition 20 is a direct consequence of [22, Theorem 4.4]. �

4.4 Example

We will exemplify how our main algorithm runs on the following example. Let n := 3,
q := 1, G1 := X2

1 + X2
2 + X2

3, H := X1 X2 X3, p := 1, s := 3, F1,1 := X1,

F1,2 := X1 X2 + X2
2, F1,3 := X1 X3, and a :=

[
1 2 3
2 1 3

]

. The variety V = {G1 = 0}H

is smooth of dimension r := 2. The algorithm starts representing a lifting fiber for V
in the following way:
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• G1 as lifting system;
• Y1 := X1 − X2, Y2 := X2, Y3 := X3 as new coordinates;
• (−1,−1) as lifting point;
• u := Y3 as primitive element;
• Q := T 2 + 5 as the minimal polynomial of u;
• v3 := T as parameterization.

For the sake of simplicity, all the random choices made by the Kronecker routines
are kept simple throughout this example. We took care to verify that they are generic
enough to ensure the correctness of the computations.

As hitting sequence b1, b2, and b3 we choose the identity matrix and take �1 = X1,
�2 = X1 X2 + X2

2, �3 = X1 X3. Since V�1 = V�3 = V holds, it is sufficient to carry
out the computations for V�, where � := �1. Hence, our lifting fiber is also a lifting
fiber for V�.

The lifting curve V� ∩ {Y1 = −1} is described by the following equations: T 2 +
2Y 2

2 −2Y2 +1 = 0, Y3 = T , Y1 = 1. The intersection of this curve with det(T (a1)) =
3X1 +3X1 X2 +3X2

2 −3X1 X3 = 3(Y1 +Y2)(1+Y2 −Y3)+3Y 2
2 leads to the following

lifting fiber for W (a1):

• G1, det(T (a1)) as lifting system;
• Y1 := X1 − X2, Y2 := X2, Y3 := X3 as new coordinates;
• (−1) as lifting point;
• u := Y2 as primitive element;
• Q := 6T 4 − 6T 3 + 3T 2 − 4T + 2 as the minimal polynomial;
• v2 := T , v3 := −6T 3 − T + 3 as parameterization.

We verify that none of the points of this fiber annihilates H , �, or m1 := 2X1 −
X1 X2 − X2

2. Hence, this lifting fiber is also a lifting fiber for W (a1)�·m1 .
The lifting curve for W (a1)�·m1 is described by the following equations: P(T ) :=

6T 4+(10Y1+4)T 3+(8Y 2
1 +6Y1+1)T 2+(4Y 3

1 +2Y 2
1 +2Y1)T +Y 4

1 +Y 2
1 = 0, Y2 = T ,

P ′(T )Y3 = (−8Y1 + 4)T 3 + (−14Y 2
1 + 10Y1)T 2 + (−10Y 3

1 + 8Y 2
1 )T − 2Y 4

1 + 2Y 3
1 .

The intersection of this curve with the hypersurface {m1 = 0} yields the following set
of points:

{Y 5
1 + 4Y 4

1 + 31Y 3
1 + 72Y 2

1 + 198Y1 = 0,

Y2 = −1

198
Y 4

1 + 7

198
Y 3

1 − 1

22
Y 2

1 + 3

22
Y1,

Y3 = −1

66
Y 4

1 − 2

33
Y 3

1 − 31

66
Y 2

1 − 12

11
Y1}.

We observe that (0, 0, 0) is the only point of this set that annihilates � or H . Therefore,
the lifting fiber for W (a2)�·m2 we find is represented by the following items:

• G1, det(T (a1)), m1 as lifting system;
• Y1 := X1 − X2, Y2 := X2, Y3 := X3 as new coordinates;
• u := Y1 as primitive element;
• Q := T 4 + 4T 3 + 31T 2 + 72T + 198 as the minimal polynomial;
• v1 := T , v2 := 1

18 T 3 + 1
9 T 2 + 1

2 T + 1, v3 := 3 as parameterization.
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We have implemented our main algorithm within the C++ library geomsolvex
of Mathemagix [33]. In fact, this implementation uses the strategy described in [19,
Sect. 7.3]: we first choose a suitable prime number p that fits a machine word, compute
the degeneracy locus modulo p, and then lift the geometric resolution to recover the
solutions over the rational numbers.

5 Applications

In this section we complete the examples of Sects. 3.1 and 3.4. The other two examples
of Sect. 3 may be adapted in a straightforward way to the context of Theorem 18. We
refrain from presenting the details.

5.1 Polar Varieties

We consider first a somewhat modified version of the example of Sect. 3.1. Let
n ∈ N, 1 ≤ p ≤ n, and r := n − p, and let G1, . . . , G p be a reduced regular
sequence of polynomials of Q[X1, . . . , Xn]. We suppose that these polynomials are
given by an essentially division-free arithmetic circuit in Q[X1, . . . , Xn] of size L .
From Lemma 10 we deduce that we may choose a hitting sequence (b1, . . . , br+1)

of regular matrices of Z
n×n for {G1 = 0, . . . , G p = 0} and the restriction of

the Jacobian J (G1, . . . , G p) to this variety. This yields p minors �1, . . . ,�r+1 of
J (G1, . . . , G p) · b1, . . . , J (G1, . . . , G p) · br+1 such that

⋃

1≤ j≤r+1

{G1 = 0, . . . , G p = 0}� j

is the regular locus of {G1 = 0, . . . , G p = 0}.
Let H := ∑

1≤ j≤r+1 �2
j , and assume that

� := {G1 = 0, . . . , G p = 0} ∩ R
n

is nonempty, smooth, and compact. Let V := {G1 = 0, . . . , G p = 0}H , and let F be
the restriction of J (G1, . . . , G p) to V . Then V is nonempty, smooth, equidimensional
of dimension r, and contains �. From [3, Proposition 1] or [4, Proposition 1] we
conclude that, for a ∈ Q

r×n generic, W (ar ) contains for each connected component
of � a real point. Let δ be the system degree of G1 = 0, . . . , G p = 0, H �= 0, and
J (G1, . . . , G p). Then Theorem 18 implies that we can compute a sample point for
any connected component of � in time L(nd)O(1)δ2 = (nd)O(n). This result improves
the complexity bound of [3, Theorem 11] and [4, Theorem 13] by a factor of

(n
p

)
.

5.2 Dominant Endomorphisms of Affine Spaces

We treat now the example of Sect. 3.3 in the spirit of Theorem 18. Let F1, . . . , Fn be
in Q[X1, . . . , Xn] such that (F1, . . . , Fn) defines a birational endomorphism of A

n .

123



182 Found Comput Math (2015) 15:159–184

Suppose that F1, . . . , Fn are given by an essentially division-free arithmetic circuit in
Q[X1, . . . , Xn] of size L . Let α = (α1, . . . , αn) ∈ Q

n be generic. Then Theorem 18
can be used to compute a geometric solution of the polynomial equation system F1 −
α1 = 0, . . . , Fn−αn = 0 in time L(nd)O(1)δ2 = (nd)O(n), where δ is the degree of the
point-finding problem associated with (An, [F1, . . . , Fn, 1]). The main outcome of this
result is that we may consider this degree as a natural invariant of the endomorphism
of A

n defined by (F1, . . . , Fn).

5.3 Timings

In this final subsection, we report on timings obtained with our softwaregeomsolvex.
For n := 3 we consider the following infinite family of examples, which are parame-
terized by an integer N ≥ 1. For any 1 ≤ j ≤ N , let S j := (X1 −4 j)2 + X2

2 + X2
3 −1,

p := 1, and G1 := S1 · · · SN − ε, where ε := 1/1000000. It is clear that
� := {G1 = 0} ∩ R

n is compact. On the other hand, the gradient of G1 is given by

∂G1

∂ X1
= 2(G1 + ε)

(
X1 − 4

S1
+ X1 − 8

S2
+ · · · + X1 − 4N

SN

)

,

∂G1

∂ X2
= 2X2(G1 + ε)

(
1

S1
+ 1

S2
+ · · · + 1

SN

)

,

∂G1

∂ X3
= 2X3(G1 + ε)

(
1

S1
+ 1

S2
+ · · · + 1

SN

)

.

We observe that 1
S1

+ 1
S2

+· · ·+ 1
SN

does not vanish on �. In fact, the terms of this sum are
necessarily positive on� since the open balls defined by S j < 0, 1 ≤ j ≤ N , are all dis-
joint and S1S2 · · · SN is positive on �. Hence, � is smooth at any point (x1, x2, x3) ∈ �,
with x2 �= 0 or x3 �= 0. Thus, on singular points of �, the discriminant of the univari-
ate polynomial G1(X1, 0, 0) vanishes. Keeping this in mind we verified by a simple
computation that � has no singular point for the values of N considered in our timings.

To make the equation G1 = 0 dependent on generic coordinates, we replaced the
variables X1, X2, and X3 with 3X1+5X2+7X3, X1−X2+X3, and −X1+2X2+5X3,

respectively. Finally, for a we took

(
1 17 7
11 23 13

)

. We used our software geomsolvex

described in Sect. 5.1 and computed at least one point per connected component
of �. Timings are reported in Table 1. We used the SVN revision number 8738 of
Mathemagix and compared it with version 3.21 of the RAGLib library developed in

Table 1 Timings for polar varieties, in seconds

N 3 4 5 6 7 8 9

Mathemagix 30 79 174 383 729 1,380 2,250

RAGLib 1.2 3.1 19 126 748 3,202 13,021
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Maple (TM) by M. Safey El Din [27], which in its turn relies on the FGb version 1.58
of J.-C. Faugère [15]. Our platform uses one core of an Intel Xeon CPU X5650 at
2.67 GHz with 48 GB. We observed that RAGLib was much faster in small input
sizes. Nevertheless, its cost increases faster than that of our probabilistic algorithm.

Acknowledgments The authors wish to thank Antonio Campillo (Valladolid, Spain) for stimulating
conversations on the subject of this paper.
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