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Abstract We develop in this paper a theoretical framework for the topological study
of time series data. Broadly speaking, we describe geometrical and topological prop-
erties of sliding window embeddings, as seen through the lens of persistent homology.
In particular, we show that maximum persistence at the point-cloud level can be used
to quantify periodicity at the signal level, prove structural and convergence theo-
rems for the resulting persistence diagrams, and derive estimates for their dependency
on window size and embedding dimension. We apply this methodology to quanti-
fying periodicity in synthetic data sets and compare the results with those obtained
using state-of-the-art methods in gene expression analysis. We call this new method
SW1PerS, which stands for SlidingWindows and 1-Dimensional Persistence Scoring.

Keywords Persistent homology · Time-delay embeddings · Periodicity
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1 Introduction

Signal analysis is an enormous field. There are many methods to study signals and
many applications of that study. Given its importance, one might conclude that there
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is little opportunity left for the development of totally new approaches to signals. Yet
in this paper we provide a new way to find periodicity and quasiperiodicity in signals.
The method is based on sliding windows (also known as time-delay reconstruction),
which have been used extensively in both engineering applications and in dynamical
systems. But the approach presented here adds a new element not applied before,
which comes from the new field of computational topology [12].

Persistent homology is a topological method for measuring the shapes of spaces
and the features of functions. One of the most important applications of persistent
homology is to point clouds [3], where shape is usually interpreted as the geometry of
some implicit underlying object near which the point cloud is sampled. The simplest
nontrivial example of this idea is a point cloud that has the shape of a circle, and this
shape is captured with one-dimensional (1D) persistence. The challenge in applying
the method is that noise can reduce the persistence, and not enough points can prevent
the circular shape fromappearing. It is also a challenge to dealwith the fact that features
come on all scale levels and can be nested or in more complicated relationships. But
this is what persistent homology is all about.

The idea of applying 1D persistence to study time series arose in our study of gene
expression data [11,23]. The first of these papers studied a variety of existing methods
for finding periodicity in gene expression patterns. The motivation of that work was
the search for gene regulatory networks (more precisely, possible nodes of gene regu-
latory networks) that control periodic processes in cells such as the cell division cycle,
circadian rhythms, metabolic cycles, and periodic patterning in biological develop-
ment (lateral roots and somites). The methods studied in [11] were derived from a
number of fields, including astronomy, geometry, biology, and statistics, and all were
based on a direct study of the underlying signal in either physical or frequency space.
Themost successful methods are based on finding cosinelike behavior, a rather limited
definition of periodicity.

In this paper and in [23] we look instead at the shape of the sliding window point
cloud, a totally different approach. Of course, the geometry of point clouds derived
fromother kinds of data like images has been studied [4,16], but the current approach is
quite different. Our method understands periodicity as the repetition of patterns, what-
ever these may be, and quantifies this recurrence as the degree of circularity/roundness
in the generated point-cloud. Thus, it is fundamentally agnostic.

1.1 Previous Work

The sliding window, or time-delay embedding, has been used mostly in the study
of dynamical systems to understand the nature of their attractors. Takens’ theorem
[28] gives conditions under which a smooth attractor can be reconstructed from the
observations of a function, with bounds related to those of the Whitney embedding
theorem. This methodology has in turn been employed to test for nonlinearity and
chaotic behavior in the dynamics of Electroencephalogram, Electrocardiogram, and
Electromyogram [25,26].

It was recently demonstrated by [10] that combining time-delay embeddings with
topological methods provides a framework for parameterizing periodic systems.
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[16] provide in their Chap. 1 a good source of examples of time-delay embeddings
used in real-world data sets.

1.2 Our Contribution

In the aforementioned applications, little of the topology and none of the geometry
of the resulting sliding window embedding have ever been used. The novelty of our
approach lies in our use of this geometry and topology through persistent homology.
We make this possible by showing that maximum persistence, as a measure of the
roundness of the point cloud, occurs when the window size corresponds to the natural
frequency of the signal. This means that 1D persistence is an effective quantifier of
periodicity and quasiperiodicity and can be used to infer properties of the signal.

1.3 Outline

In Sect. 2 we show a motivating example to illustrate our perspective. In Sect. 3 we
give a general introduction to persistent homology. More on this topic can be found
in [12]. In Sect. 4 we show that sliding windows behave well under approximations,
and we give explicit estimates at the point-cloud level. Section 5 is devoted to study-
ing the geometric structure of sliding-window embeddings from truncated Fourier
series and their dependency on embedding dimension and window size. In Sect. 6
we prove results describing the structure of persistent diagrams from sliding-window
embeddings. Some examples of how our method applies in the problem of quantifying
periodicity in time series data are given in Sect. 7.

2 Definitions and Motivation

Suppose that f is a function defined on an interval of the real numbers. Choose an
integer M and a real number τ , both greater than 0. The sliding-window embedding
of f based at t ∈ R into R

M+1 is the point

SWM,τ f (t) =

⎡
⎢⎢⎢⎣

f (t)
f (t + τ)

...

f (t + Mτ)

⎤
⎥⎥⎥⎦.

Choosing different values of t gives a collection of points called a sliding-window
point cloud for f . A critical parameter for this embedding is the window size Mτ .

2.1 Motivation

Tomotivate the approachwe take in the paper, let us begin with the following example.

Example. Let L ∈ N and f (t) = cos(Lt). Then
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SWM,τ f (t) =

⎡
⎢⎢⎢⎣

cos(Lt)
cos(Lt + Lτ)

...

cos(Lt + LMτ)

⎤
⎥⎥⎥⎦

= cos(Lt)

⎡
⎢⎢⎢⎣

1
cos(Lτ)

...

cos(LMτ)

⎤
⎥⎥⎥⎦− sin(Lt)

⎡
⎢⎢⎢⎣

0
sin(Lτ)

...

sin(LMτ)

⎤
⎥⎥⎥⎦

= cos(Lt)u − sin(Lt)v,

and therefore t �→ SWM,τ f (t) describes a planar curve in R
M+1, with winding

number L , whenever u and v are linearly independent. One can in fact see how the
shape of this curve changes as a function of L , M , and τ . Indeed, let

A =
[ ‖u‖2 −〈u, v〉
−〈u, v〉 ‖v‖2

]
,

which can be computed using Lagrange’s trigonometric formulae

〈u, v〉 = 1

2

M∑
m=0

sin(2Lmτ) = sin(L(M + 1)τ ) sin(LMτ)

2 sin(Lτ)

‖u‖2 − ‖v‖2 =
M∑

m=0

cos(2Lmτ) = sin(L(M + 1)τ ) cos(LMτ)

sin(Lτ)

‖u‖2 + ‖v‖2 = M + 1.

It follows that A is positive semidefinite (both its determinant and trace are nonneg-
ative). This means the eigenvalues of A are nonnegative and real, λ1 ≥ λ2 ≥ 0, and
there is a 2 × 2 orthogonal matrix B such that

A = BT�2B, where � =
[√

λ1 0
0

√
λ2

]
.

Therefore, if x(t) = [cos(Lt) sin(Lt)]′ (here ′ denotes transpose), then

‖SWM,τ f (t)‖2 =
∥∥∥∥∥∥

⎡
⎣

| |
u −v
| |

⎤
⎦x(t)

∥∥∥∥∥∥

2

= 〈x(t), A x(t)
〉

= 〈�B x(t),�B x(t)
〉
.
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Since B is a rotation matrix, say by an angle α, then the map

SWM,τ f (t) �→
[√

λ1 cos(Lt + α)√
λ2 sin(Lt + α)

]

is an isometry.
In summary, for f (t) = cos(Lt), the embedding t �→ SWM,τ f (t) describes an

ellipse on the plane Span{u, v} whose shape (minor and major axes) is determined by
the square roots of the eigenvalues of A. These eigenvalues can be computed explicitly
as

λ1 =
(M + 1) +

∣∣∣ sin(L(M+1)τ )
sin(Lτ)

∣∣∣
2

,

λ2 =
(M + 1) −

∣∣∣ sin(L(M+1)τ )
sin(Lτ)

∣∣∣
2

.

It follows that the ellipse is roundest when λ2 attains its maximum, which occurs if
and only if L(M + 1)τ ≡ 0 mod π . One such instance is

Mτ =
(

M

M + 1

)
2π

L
,

which is when the window-size approximates the length of the period of f (t). In
other words, the roundness of the sliding-window point cloud for f (t) = cos(Lt) is
maximized when the window size is close to resonating with its natural frequency.

The previous example provides the following intuition: for a generic function f ,
the degree to which the image of SWM,τ f traces a closed curve in R

M+1 reflects how
periodic f is. Moreover, if f is periodic, then the roundness of SWM,τ f defined as
the largest radius of a ball in R

M+1 so that the curve

t �→ SWM,τ f (t)

is tangent to at least two points of its equator is maximized when the window size Mτ

approaches the period length. The goal of this paper is to understand these relations.
The geometry of the curve t �→ SWM,τ f (t) can be quite complicated, as shown in

Fig. 1. The 1D persistence diagram for the Vietoris–Rips filtration on a finite sample
{SWM,τ f (t1), . . . , SWM,τ f (tS)}, on the other hand, is readily computable [29,30],
and its maximum persistence is a measure of roundness as defined in the previous
paragraph. We will review in Sect. 3 the basic concepts behind persistent homology
and devote the rest of the paper to understanding how the geometry of SWM,τ f reflects
properties of f such as periodicity and period.
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Fig. 1 From a periodic function to its sliding-window point cloud. Left: periodic function f . Right: mul-
tidimensional scaling into R

3 for SW20,τ f . For each t we use the same color for f (t) and SW20,τ f (t).
Please refer to the electronic colored version

2.2 Approach

With this motivation in mind, we now describe our approach: as we have seen, under-
standing the algebraic properties of trigonometric functions allows one to characterize
the geometry of SWM,τ f when f is a trigonometric polynomial. This understanding,
in turn, can be bootstrapped using Fourier analysis and the stability of persistence dia-
grams in an approximation step toward SWM,τ of a generic periodic function. In what
follows, we will establish the appropriate continuity results for approximation and
the necessary structural results for persistence diagrams from sliding-window point
clouds.

3 Background: Persistent Homology

In this section we define the key concepts that underlie the theory of persistent homol-
ogy for filtered simplicial complexes.We give a terse introduction to simplicial homol-
ogy, but more information can be found in [14] and [21].

3.1 Homology of Simplicial Complexes

Let K be a simplicial complex and p a prime number. Recall that this means that K
is a finite set of simplices that is closed under the face relation and that two simplices
of K are either disjoint or intersect in a common face. Let Fp be the finite field
with p elements; the Fp vector space generated by the k-dimensional simplices of
K is denoted by Ck(K ). It consists of all k-chains, which are finite formal sums
c = ∑

j γ j x j , with γ j ∈ Fp and each x j a k-simplex in K . The boundary ∂(x j ) is
the alternating formal sum of the (k − 1)-dimensional faces of x j , and the boundary
of the chain c is obtained by extending ∂ linearly:

∂(c) =
∑
j

γ j∂(x j ).
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It is not difficult to check that ∂ ◦ ∂ = ∂2 = 0. The k-chains that have boundary 0
are called k-cycles; they form a subspace Zk ofCk . The k-chains that are the boundary
of (k + 1)-chains are called k-boundaries and form a subspace Bk of Ck . The fact
that ∂2 = 0 tells us that Bk ⊂ Zk . The quotient group Hk(K ) = Zk/Bk is the kth
simplicial homology group of K with Fp-coefficients. The rank of Hk(K ) is the kth
mod p Betti number of K and is denoted by βk(K ). Since the prime p will be clear
from the context, we do not include it in the notation.

When we have two simplicial complexes K and K ′, a simplicial map f : K →
K ′ is a continuous map that takes simplices to simplices and is linear on each. A
simplicial map induces a homomorphism on homology, f∗ : Hk(K ) → Hk(K ′), and
homotopic maps induce the same homomorphism. Homotopy equivalences of spaces
induce isomorphisms on homology. The simplicial approximation theorem tells us
that a continuous map of simplicial complexes can be approximated by a simplicial
map, so that it makes sense to talk about continuous maps inducing homomorphisms
on homology.

3.1.1 Persistence

We next define persistence, persistent homology, and the persistence diagram for a
simplicial complex K . A subcomplex of K is a subset of its simplices that is closed
under the face relation. A filtration of K is a nested sequence of subcomplexes that
starts with an empty complex and ends with a complete complex,

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K .

A homology class α is born at Ki if it is not in the image of the map induced by the
inclusion Ki−1 ⊂ Ki . If α is born at Ki , then we say that it dies entering K j if the
image of the map induced by Ki−1 ⊂ K j−1 does not contain the image of α but the
image of the map induced by Ki−1 ⊂ K j does. The persistence of α is j − i .

We code birth and death information in persistence diagrams, one for each dimen-
sion. The diagram dgm(k) has a point (i, j) for every k-homology class that is born
at Ki and dies entering K j . For most of the paper the homological dimension k will
be clear from the context or unimportant for the discussion. To ease notation, we will
simplywrite dgm instead of dgm(k) and let dgm1 and dgm2 denote two k-persistence
diagrams to be compared. Sometimes we have a function h that assigns a height or
distance to each subcomplex Ki , and in that case we use the pair (h(i), h( j)). Each
diagram is now a multiset since classes can be born simultaneously and die simulta-
neously. We adjoin the diagonal 
 = {(x, x) : x ≥ 0} to each diagram and endow
each point (x, x) ∈ 
 with countable multiplicity.

The bottleneck distance between two persistence diagrams dgm1 and dgm2 is
defined by

dB(dgm1, dgm2) = inf
φ

sup
x∈dgm1

||x − φ(x)||∞,
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where the infimum is taken over all bijections φ : dgm1 → dgm2. Note that such
φ exist even if the number of points of dgm1 and dgm2 are different since we have
included the diagonal.

3.1.2 Rips Complex

Let X ⊂ R
n be a compact set, for example, a finite point cloud. We define dX (y) as

the distance from the point y ∈ R
n to X . We are interested in how the homology of the

sublevel sets Xr = d−1
X ([0, r ]) changes aswe increase r . Tomake this computationally

feasible, we replace the continuous family of spaces Xr with a discrete family of
approximations called the Rips complexes defined as follows. Fix r ≥ 0; Rr (X) is
the simplicial complex whose vertices are the points of X and whose k-simplices are
the k + 1 tuples [x0, . . . , xk] such that the pairwise distances ||xi − x j || are less than
or equal to r for all 0 ≤ i < j ≤ k. Note that the edges determine the simplices of
Rr (X), that a higher-dimensional simplex is added if and only if all its edges have
been added, and that the Rips construction makes sense for any metric space.

Since Rr (X) ⊂ Rs(X) whenever r < s, the Rips complexes form a filtration of
R∞, which denotes the largest simplicial complex having X as its vertex set. Changes
occur at the finite set of r values that are pairwise distances between points, so we can
work with just these r j to get the filtration

X = R0 ⊂ R1 ⊂ · · · ⊂ Rm,

where R j = Rr j (X) and Rm = R∞. We will use this filtered complex to study the
persistence and the persistence diagrams of the point cloud X . We thus denote by
dgm(X) the persistence diagram of the homology filtration induced from the Rips
filtration on X , where we use homology with coefficients in Fp.

A key property of persistence is that it is stable [6]. In our context this means that
if X,Y are two point clouds and dH, dGH are the Hausdorff and Gromov–Hausdorff
distances, then

dB(dgm(X), dgm(Y )) ≤ 2dGH (X,Y ) ≤ 2dH(X,Y ). (1)

4 Approximation Theorem

In this section we show that one can study SWM,τ f and the persistence of the point
cloud it generates for a generic function f ∈ L2(T = R/2πZ) by using its Fourier
series approximation. While it seems quite difficult to study SWM,τ f directly, it is
not hard to understand SWM,τ cos(nt) and SWM,τ sin(nt), so we will build our under-
standing of the geometry of a general SWM,τ f from these special cases using the
Fourier series of f . To do this, we will need to show that SWM,τ behaves well under
approximations and that these approximations work in the context of stability for
persistence diagrams.
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Let C(X,Y ) denote the set of continuous functions from X to Y equipped with the
sup norm. The sliding-window embedding induces a mapping

SWM,τ : C(T, R) −→ C(T, R
M+1).

The first fact about this map that we need is the following proposition.

Proposition 4.1 Let T = R/2πZ. Then for all M ∈ N and τ > 0, the map-
ping SWM,τ : C(T, R) −→ C(T, R

M+1) is a bounded linear operator with norm
‖SWM,τ‖ ≤ √

M + 1.

Proof The linearity of SWM,τ follows directly from its definition. To see that it is
bounded, notice that for every f ∈ C(T, R) and t ∈ T we have

‖SWM,τ f (t)‖2
RM+1 = | f (t)|2 + | f (t + τ)|2 + · · · + | f (t + Mτ)|2

≤ (M + 1)‖ f ‖2∞.

��
We now consider approximating a function f by its Fourier polynomials and study

how the sliding windows behave in this context. In particular, let

f (t) = SN f (t) + RN f (t),

where

SN f (t) =
N∑

n=0

an cos(nt) + bn sin(nt) =
N∑

n=−N

f̂ (n)eint

is the N -truncated Fourier series expansion of f , RN f is the remainder, and

f̂ (n) =
⎧⎨
⎩

1
2an − i

2bn if n > 0,
1
2a−n + i

2b−n if n < 0,
a0 if n = 0.

(2)

We can easily compute that

SWM,τ f (t)=
N∑

n=0

cos(nt)
(
anun+bnvn

)+sin(nt)
(
bnun − anvn

)+ SWM,τ RN f (t),

where

un = SWM,τ cos(nt)
∣∣
t=0 and vn = SWM,τ sin(nt)

∣∣
t=0.
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The vectors un and vn form a fundamental basis out of which we can build our
understanding of the structure of the point clouds that sliding windows create. We
introduce the notation

φτ (t) =
N∑

n=0

cos(nt)
(
anun + bnvn

)+ sin(nt)
(
bnun − anvn

)

for the sliding-window embedding for SN f (t). Also, when f , M , and N are clear
from the context, we will simply write φτ = SWM,τ SN f .

The next step is to find a bound on the term SWM,τ RN f (t). We will actually find a

series of bounds, one for each of the derivatives f (k) = dk f
dtk

, whenever they exist and
are continuous.

Proposition 4.2 Let k ∈ N. If f ∈ Ck(T, R), then for all t ∈ T

‖SWM,τ f (t) − φτ (t)‖RM+1 ≤ √
4k − 2

∥∥∥RN f (k)
∥∥∥
2
·

√
M + 1

(N + 1)k− 1
2

.

Proof If k ∈ N and f ∈ Ck(T, R), then integration by parts yields the well-known
identity

∣∣∣̂f (k)(n)

∣∣∣ = |n|k ∣∣ f̂ (n)
∣∣

for the length of̂f (k)(n), the nth complex Fourier coefficient of f (k), n ∈ Z. Thus, for
all t ∈ T the Cauchy–Schwartz inequality, Young’s inequality and Parseval’s theorem
together imply that

|RN f (t)| ≤
∞∑

n=N+1

∣∣∣̂f (k)(n)

∣∣∣+
∣∣∣̂f (k)(−n)

∣∣∣
nk

≤
( ∞∑
n=N+1

(∣∣∣̂f (k)(n)

∣∣∣+
∣∣∣̂f (k)(−n)

∣∣∣
)2)1/2

·
( ∞∑
n=N+1

1

n2k

)1/2

≤
⎛
⎝2

∑
|n|≥N+1

∣∣∣̂f (k)(n)

∣∣∣
2

⎞
⎠

1/2

·
⎛
⎝

∞∫

N+1

1

x2k
dx

⎞
⎠

1/2

= √
2
∥∥∥RN f (k)

∥∥∥
2
·

√
2k − 1

(N + 1)k− 1
2

,

and hence, by Proposition 4.1,
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‖SWM,τ f (t) − φτ (t)‖RM+1 ≤ √
M + 1‖RN f ‖∞

≤ √
4k − 2

∥∥∥RN f (k)
∥∥∥
2
·

√
M + 1

(N + 1)k− 1
2

.

��
These bounds readily imply estimates for the Hausdorff distance between the

sliding-window point clouds of f and SN f . Indeed, let X and Y be the images of
T ⊂ T through SWM,τ f and φτ , respectively. It follows that if f ∈ Ck(T, R) and

ε >
√
4k − 2

∥∥∥RN f (k)
∥∥∥
2

√
M + 1

(N + 1)k− 1
2

,

then X ⊂ Y ε , Y ⊂ X ε , and, therefore, dH(X,Y ) ≤ ε. Letting ε approach its lower
bound and using the stability of dB with respect to dH (Eq. 1), we obtain the relation

dB
(
dgm(X), dgm(Y )

) ≤ 2
√
4k − 2

∥∥∥RN f (k)
∥∥∥
2

√
M + 1

(N + 1)k− 1
2

.

As described in the introduction, the maximum persistence of dgm(X) will serve to
quantify the periodicity of f when measured with sliding windows of length Mτ . By
the maximum persistence of a diagram dgm, we mean the following.

Definition 4.3 Let (x, y) ∈ dgm, and define pers(x, y) = y − x for (x, y) ∈ R
2,

and as ∞ otherwise. We let

mp(dgm) = max
x∈dgm

pers(x)

denote the maximum persistence of dgm.

Remark 4.4 If dgm
 denotes the diagram with the diagonal as underlying set, each
point endowed with countable multiplicity, then

mp(dgm) = 2dB(dgm, dgm
).

Indeed, for any bijection φ : dgm −→ dgm
 and every x ∈ dgm

‖x − φ(x)‖∞ ≥ 1

2
pers(x)

with equality if and only if φ(x, y) = ( x+y
2 ,

x+y
2

)
. Thus,

max
x∈dgm

‖x − φ(x)‖ ≥ 1

2
mp(dgm),
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and therefore dB(dgm, dgm
) = min
φ

max
x∈dgm

‖x − φ(x)‖ ≥ 1
2mp(dgm). For the

reverse inequality, notice that the map

(x, y) �→
(
x + y

2
,
x + y

2

)

extends to a bijection φ0 : dgm −→ dgm
 of multisets such that for all x ∈ dgm
one has ‖x − φ0(x)‖∞ = 1

2pers(x).

We summarize the results of this section in the following theorem.

Theorem 4.5 (Approximation) Let T ⊂ T, f ∈ Ck(T, R), X = SWM,τ f (T ), and
Y = SWM,τ SN f (T ). Then

(1)

dH(X,Y ) ≤ √
4k − 2

∥∥∥RN f (k)
∥∥∥
2

√
M + 1

(N + 1)k− 1
2

,

(2)

∣∣mp
(
dgm(X)

)− mp
(
dgm(Y )

)∣∣ ≤ 2dB
(
dgm(X), dgm(Y )

)
,

(3)

dB
(
dgm(X), dgm(Y )

)
≤ 2

√
4k − 2

∥∥∥RN f (k)
∥∥∥
2

√
M + 1

(N + 1)k− 1
2

.

It follows that the persistent homology of the sliding-window point cloud of a
function f ∈ Ck(T, R) can, in the limit, be understood in terms of that of its truncated
Fourier series.

Remark 4.6 Regarding the hypothesis of f being at least C1, Proposition 4.2 (which
is the basis of the approximation theorem, Theorem 4.5) only uses that f ′ ∈ L2(T);
thus, everything up to this point (and, in fact, for the rest of the paper) holds true for
functions in the Sobolev space W 1,2(T). The reason why we have phrased the results
in terms of the spaces Ck(T) is because it provides the following interpretation: if the
function f has a certain degree of niceness, then one should expect the approximation
of the persistence diagrams from SWM,τ f by those of SWM,τ SN f to improve at an
explicit rate. Moreover, the nicer the function, the better the rate.

Another function space for which our arguments apply is the set of Hölder-
continuous functions with exponent α ∈ ( 12 , 1

)
. Indeed, if for such an f one considers

the Fejér approximation

σN f (t) =
∑

|n|≤N

(
1 − |n|

N + 1

)
, f̂ (n)eint

then [see Theorem 1.5.3 in [22]]
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‖σN f − f ‖∞ ≤ CαKα

Nα
,

where Kα is the Hölder constant of f and Cα is a constant depending solely on α.
Hence, one obtains the following version of Proposition 4.2: for every t ∈ T

∥∥SWM,τ f (t) − SWM,τ σN f (t)
∥∥
RM+1 ≤ CαKα

√
M + 1

Nα

and the corresponding version of the approximation theorem follows. Later on (e.g., in
Theorem 6.8) we will use some bounds in terms of ‖ f ′‖2 and ‖SN f ′‖2. Adapting the
results involving such bounds to the Hölder-continuous setting requires some work:
one can use the fact that every Hölder function has a Lipschitz approximation and then
invoke Rademacher’s theorem. We leave the details to the interested reader.

5 Geometric Structure of SWM,τ SN f

We now turn our attention to the sliding-window construction applied to the trun-
cated Fourier series of a periodic function. More specifically, we study the geometric
structure of the sliding-window point cloud and its dependency on τ , N , and M .

Our focus on geometry contrasts with the methods used by others to determine τ

and M . Traditionally, Mτ , the window size, is estimated using the autocorrelation
function [17], while M is sometimes estimated directly using the method of false
nearest neighbors [16].

5.1 Dimension of Embedding

One way of interpreting the embedding dimension, M + 1, is as the level of detail
(from the function) one hopes to capture with the sliding-window representation.
Given the advantages of a description that is as detailed as possible, it can be argued
that large dimensions are desirable. From a computational perspective, however, this
is a delicate point as our ultimate goal is to compute the persistent homology of the
associated sliding-window point cloud. Indeed, as the dimension of the embedding
grows, it follows that the point cloud needs to be (potentially) more densely populated.
This causes the size of the Rips complex to outweigh the computational resources,
making the persistent homology calculation unfeasible.

While there has been considerable progress on dealing with the size problem of the
Rips complex [20], it is important to have a sense of the amount of retained information
given the computational constraints on the embedding dimension. Fortunately, when
dealing with trigonometric polynomials, the answer is clear: one loses no information
if and only if the embedding dimension is greater than twice the maximum frequency.
Indeed, recall the linear decomposition

SWM,τ SN f (t) =
N∑

n=0

cos(nt)
(
anun + bnvn

)+ sin(nt)
(
bnun − anvn

)
,
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where

un = SWM,τ cos(nt)
∣∣
t=0, vn = SWM,τ sin(nt)

∣∣
t=0

and an, bn are as defined in Eq. 2. Since the angles between the un and the vm , as well
as their norms, can be determined from M and τ (see example in Sect. 2.1), SN f can
be recovered from SWM,τ SN f if the un and the vm are linearly independent. This is
the sense in which we say that there is no loss of information.

Proposition 5.1 Let Mτ < 2π . Thenu0,u1, v1, . . . ,uN , vN are linearly independent
if and only if M ≥ 2N.

Proof If 2N + 1 vectors in R
M+1 are linearly independent, it readily follows that

2N ≤ M . Let us assume now that u0,u1, v1, . . . ,uN , vN are linearly dependent,
and let us show that 2N > M or, equivalently, that 2N ≥ M + 1. Indeed, let
γ0, β0, . . . , γN , βN ∈ R be scalars not all zero (set β0 = 0), so that

γ0u0 + β0v0 + · · · + γNuN + βNvN = 0.

That is, for all m = 0, . . . , M we have

0 =
N∑

n=0

γn cos(nmτ) + βn sin(nmτ) = Re
( N∑
n=0

(γn − iβn)e
inmτ

)
.

Let ξm = eimτ , p(z) =
N∑

n=0
(γn + iβn)zn , p̄(z) =

N∑
n=0

(γn − iβn)zn , and

q(z) = zN ·
(
p̄(z) + p

(
1

z

))

.

It follows that q(z) is a nonconstant complex polynomial of degree at most 2N and
that for m = 0, . . . , M we have 0 = Re( p̄(ξm)). This implies that

q(ξm) = (ξm)N
(
p̄(ξm) + p

(
1

ξm

))

= (ξm)N
(
p̄(ξm) + p

( ¯ξm
))

= 2(ξm)N Re
(
p̄(ξm)

)

= 0,

and therefore ξ0, . . . , ξM are roots of q(z). Since Mτ < 2π , then ξ0, ξ1, . . . , ξM are
distinct, and we have that

M + 1 ≤ degree
(
q(z)

) ≤ 2N .

��
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It is useful to contrast Proposition 5.1 with two important results in signal analysis:
Takens’ theorem from dynamical systems [28] and the Nyquist–Shannon sampling
theorem from information theory [27]. Takens’ theorem gives sufficient conditions on
the length of a sequence of observation, so that the resulting embedding recovers the
topology of a smooth attractor in a chaotic dynamical system. The aforementioned
condition is that the dimension of the embedding should be greater than twice (an
appropriate notion of) that of the attractor. The Nyquist–Shannon sampling theorem,
on the other hand, contends that a band-limited signal can be recovered (exactly) from
a sequence of observations whenever the sampling frequency is greater than twice
the position, in the frequency domain, of the limiting band. The conclusion: in the
case of trigonometric polynomials and the sliding-window construction, the usual
sufficient condition on the dimension of the embedding and maximum frequency is
also necessary.
Important assumption unless otherwise stated, given N ∈ N, we will always set
M = 2N and require τ > 0 to be such that Mτ < 2π .

5.2 Window Size and Underlying Frequency

As we saw in Sect. 2 on definitions and motivation, the sliding window point cloud
for cos(Lt) describes a planar ellipse that is roundest when ‖u‖ − ‖v‖ = 〈u, v〉 = 0
or, equivalently, when

L(M + 1)τ ≡ 0 (mod π ).

This uncovers a fundamental relation betweenwindow size, 1Dpersistence, and under-
lying frequency: the maximum persistence of the sliding-window point cloud from
cos(Lt) is largest when the window size Mτ is proportional to the underlying fre-
quency 2π

L , with proportionality constant M
M+1 .

For the case of the truncated Fourier series SN f from a periodic function f , we
will see shortly that if the same proportionality relation between window size and
underlying frequency holds, then

SWM,τ SN f (t) =
N∑

n=0

cos(nt)
(
anun + bnvn

)+ sin(nt)
(
bnun − anvn

)
(3)

is a linear decomposition into mutually orthogonal vectors. We begin with the now
familiar case of the restriction to Span{un, vn}.

Proposition 5.2 For n ≥ 1, 〈un, vn〉 = ‖un‖2 − ‖vn‖2 = 0 if and only if

n(M + 1)τ ≡ 0 (mod π).
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Proof

〈un, vn〉 =
M∑

m=1

cos(nmτ) sin(nmτ) = 1

2

M∑
m=1

sin(2nmτ)

= 1

2
Im

(
M∑

m=1

zm2nτ

)
, where zθ = eiθ

= 1

2
Im

(
1 − z2n(M+1)τ

1 − z2nτ

− 1

)

= 1

2
Im

(
1 − z2n(M+1)τ

1 − z2nτ

)

‖un‖2 − ‖vn‖2 =
M∑

m=0

cos2(nmτ) − sin2(nmτ)

= Re

(
1 − z2n(M+1)τ

1 − z2nτ

)
,

and therefore

4〈un, vn〉2 + (‖un‖2 − ‖vn‖2)2 =
∥∥∥∥
1 − z2n(M+1)τ

1 − z2nτ

∥∥∥∥
2

.

It follows that 〈un, vn〉 = ‖un‖2 − ‖vn‖2 = 0 if and only if z2n(M+1)τ = 1, which
holds if and only if n(M + 1)τ ≡ 0 (mod π ). ��

It can be checked that nMτ ≡ 0 (mod π ) also yields 〈un, vn〉 = 0, but letting
n(M + 1)τ ≡ 0 (mod π ) implies that anun + bnvn is perpendicular to bnun − anvn
for all an, bn ∈ R. Now, to extend the perpendicularity results to components from
different harmonics, we will use the following definition.

Definition 5.3 We say that a function f is L-periodic on [0, 2π ], L ∈ N, if

f

(
t + 2π

L

)
= f (t)

for all t .

Remark 5.4 If f is an L-periodic function,an andbn are itsnth real Fourier coefficients
(see Eq. 2), and we let an + ibn = rneiαn , with αn = 0 whenever rn = 0, then rn �= 0
implies n ≡ 0 (mod L). Indeed, g(t) = f (t/L) is a 1-periodic function and therefore
has a Fourier series expansion

g(t) =
∞∑
r=0

a′
r cos(r t) + b′

r sin(r t)

with equality almost everywhere. Thus,
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f (t) = g(t L) =
∞∑
r=0

a′
r cos(r Lt) + b′

r sin(r Lt) =
∞∑
n=0

an cos(nt) + bn sin(nt)

for almost every t , and the result follows from the uniqueness of the Fourier expansion
in L2(T).

We are now ready to see that the potentially nonzero terms in the linear decomposi-
tion of SWM,τ SN f (Eq. 3) can be made mutually orthogonal by choosing the window
size proportional to the underlying frequency, with proportionality constant M

M+1 .

Proposition 5.5 Let f be L-periodic, and let τ = 2π
L(M+1) . Then the vectors in

{un, vn | 0 ≤ n ≤ N , n ≡ 0 (mod L)}

are mutually orthogonal, and we have ‖un‖ = ‖vn‖ =
√

M+1
2 for n ≡ 0 (mod L).

Proof Let k = pL and n = qL . If k = n, then it follows from Proposition 5.2 that
〈un, vn〉 = 0 and

‖un‖2 = ‖vn‖2 = ‖un‖2 + ‖vn‖2
2

= 1

2

M∑
m=0

cos(nmτ)2 + sin(nmτ)2

= M + 1

2
.

Let us assume now that p �= q. If we let zθ = eiθ , θ ∈ R, then

〈un,uk〉 =
M∑

m=0

cos(nmτ) cos(kmτ)

= 1

2

M∑
m=0

cos((n − k)mτ) + cos((n + k)mτ)

= 1

2
Re

(
1 − z(n−k)(M+1)τ

1 − z(n−k)τ
+ 1 − z(n+k)(M+1)τ

1 − z(n+k)τ

)

= 1

2
Re

(
1 − z(q−p)2π

1 − z(n−k)τ
+ 1 − z(q+p)2π

1 − z(n+k)τ

)
= 0.

Notice that

0 < min{|n − k|, |n + k|} ≤ max{|n − k|, |n + k|} ≤ 2N ≤ M <
2π

τ

implies that the denominators are never zero. Similarly,

〈un, vk〉 =
M∑

m=1

cos(nmτ) sin(kmτ)
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= 1

2

M∑
m=1

sin((n + k)mτ) − sin((n − k)mτ)

= 1

2
Im

(
1 − z(q+p)2π

1 − z(n+k)τ
− 1 − z(q−p)2π

1 − z(n−k)τ

)
= 0

〈vn,uk〉 = 1

2
Im

(
1 − z(p+q)2π

1 − z(k+n)τ

− 1 − z(p−q)2π

1 − z(k−n)τ

)
= 0

〈vn, vk〉 = 1

2
Re

(
1 − z(q−p)2π

1 − z(n−k)τ
− 1 − z(q+p)2π

1 − z(n+k)τ

)
= 0.

��

When computing persistent homology it is sometimes advantageous to pointwise
center and normalize the set of interest. The next theorem describes the result of such
operations on the sliding-window point cloud for SWM,τ SN f when f is L-periodic
and L(M + 1)τ = 2π .

Theorem 5.6 (Structure) Let C : R
M+1 −→ R

M+1 be the centering map

C(x) = x − 〈x, 1〉
‖1‖2 1 where 1 =

⎡
⎢⎣
1
...

1

⎤
⎥⎦ ∈ R

M+1.

If f is L-periodic, L(M + 1)τ = 2π and φτ = SWM,τ SN f , then

(1)

φτ (t) = f̂ (0) · 1 + C(φτ (t));

(2)

∥∥C(φτ (t)
)∥∥ = √

M + 1
(
‖SN f ‖22 − f̂ (0)2

)1/2 ;

(3) There exists an orthonormal set

{
x̃n, ỹn ∈ R

M+1
∣∣∣ 1 ≤ n ≤ N , n ≡ 0 (mod L)

}

such that

ϕτ (t) = C (φτ (t))

‖C (φτ (t)) ‖ =
N∑

n=1
n≡0(modL)

r̃n
(
cos(nt )̃xn + sin(nt )̃yn

)
, (4)
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where

r̃n = 2
∣∣ f̂ (n)

∣∣
√

‖SN f ‖22 − f̂ (0)2
.

Proof If f is an L-periodic function on [0, 2π ] and L(M+1)τ = 2π , thenRemark 5.4
and Proposition 5.5 imply that for all t ∈ R

φτ (t) =
N∑

n=0
n≡0(modL)

cos(nt)
(
anun + bnvn

)+ sin(nt)
(
bnun − anvn

)

=
N∑

n=0
n≡0(modL)

rn
(
cos(nt)xn + sin(nt)yn

)

is a linear combination of themutually orthogonal vectors xn = cos(αn)un+sin(αn)vn
and yn = sin(αn)un − cos(αn)vn .

Moreover, from Proposition 5.5 we have that if n ≥ 1 is such that n ≡ 0 (mod L),

then ‖xn‖ = ‖yn‖ =
√

M+1
2 . It follows that if

x̃n = xn
‖xn‖ , ỹn = yn

‖yn‖ ,

then

φτ (t) = (a0
√
M + 1

) 1
‖1‖ +

N∑
n=1

n≡0 (modL)

√
M + 1

2
rn
(
cos(nt )̃xn + sin(nt )̃yn

)

is a linear decomposition of φτ (t) in terms of the orthonormal set

{
1

‖1‖ , x̃n, ỹn
∣∣∣ 1 ≤ n ≤ N , n ≡ 0 (mod L)

}
.

Hence, C
(
φτ (t)

) =
N∑

n=1
n≡0 (modL)

√
M+1
2 rn

(
cos(nt )̃xn + sin(nt )̃yn

)
, and therefore

ϕτ (t) = C
(
φτ (t)

)
∥∥C(φτ (t)

)∥∥

=
N∑

n=1
n≡0 (modL)

rn√
r21 + · · · + r2N

(
cos(nt )̃xn + sin(nt )̃yn

)
,
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Fig. 2 The curve ϕτ (t), in colors, with respect to its flat coordinates (t, 2t, 3t) ∈ (R/̃r1Z) × (R/̃r2Z) ×
(R/̃r3Z). Please refer to the electronic version for colors. Bottom right ϕτ (t) in fundamental domain
[0, r̃1) × [0, r̃2) × [0, r̃3). Top left Projection onto xy-plane. Top right Projection onto xz-plane. Bottom
left Projection onto yz-plane

which we write as

ϕτ (t) =
N∑

n=1
n≡0(modL)

r̃n
(
cos(nt )̃xn + sin(nt )̃yn

)
,

N∑
n=1

r̃2n = 1.

The result follows from the identities rn = 2
∣∣ f̂ (n)

∣∣ = ∣∣ f̂ (n)
∣∣+ ∣∣ f̂ (−n)

∣∣, n ≥ 1. ��
Theorem 5.6 allows us to paint a very clear geometric picture of the centered and

normalized sliding-window point cloud for SN f (see Eq. 4). Indeed, if S1(r) ⊂ C

denotes the circle of radius r centered at zero, then t �→ ϕτ (t) can be regarded as the
curve in the N -torus

T = S1(̃r1) × · · · × S1(̃rN ),

which when projected onto S1(̃rn), r̃n > 0, goes around n times at a constant speed.
Another interpretation, in terms of flat (polar) coordinates, is as the image through the
quotient map

R
N = R × · · · × R −→ (R/̃r1Z) × · · · × (R/̃rNZ)

of the line segment in R
N joining (0, 0, . . . , 0) and (̃r1, 2̃r2, . . . , Nr̃N ). Figure 2

depicts ϕτ (t) inside T for N = 3.
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6 Persistent Homology of ϕτ and SWM,τ f

The structural observations from the previous section, as well as the approximation
results from Sect. 4, set the stage for understanding the persistent homology of the
image of φτ (or rather of ϕτ ) and how it relates to that of SWM,τ f .

6.1 Some Convergence Results

Let T ⊂ T, and let SWM,τ f (T ) and φτ (T ) be the images of T through SWM,τ f and
φτ , respectively. An immediate consequence of Proposition 4.2 is that as N (and thus
M = 2N ) gets larger, φτ (T ) gets closer to SWM,τ f (T ) with respect to the Hausdorff
metric on subspaces of R

∞. Here R
∞ denotes the set of sequences x = (xk)k∈N,

xk ∈ R, such that xn = 0 for all n ≥ N0 and some N0 = N0(x) ∈ N. We endow R
∞

with the L2 metric and regard SWM,τ f (t), t ∈ T , as an element of R
∞ by identifying

it with

(
f (t), f (t + τ), . . . , f (t + Mτ), 0, 0, . . .

) ∈ R
∞.

Notice, however, that while increasing the dimension M + 1 of the sliding-window
embedding yields better approximations

SWM,τ SN f (T ) ≈ SWM,τ f (T ),

the object being approximated, SWM,τ f (T ), is changing. Since (R∞, ‖ · ‖2) is not
complete, there is no reason to believe this process converges or stabilizes, even with a
sensible way of comparing, say, SWM,τ f (t) and SW2M, τ

2
f (t). This is the case since

they are samplings at different rates from the same window. Perhaps considering the
Gromov–Hausdorff distance instead of the Hausdorff distance would yield such a
comparison, but at least at the moment we do not have a natural embedding to make
this case. In addition, even when the metric completion R∞ = �2(R), the space of
square-summable sequences, is well understood, it is also large enough that tracking
global geometric features requires somework. It is in situations like this that a succinct
and informative summary, such as persistence diagrams, is critical.

It is known that the space of persistence diagrams is not complete with respect to
the bottleneck distance but that it can be completed by allowing diagrams with count-
ably many points with at most countable multiplicity, satisfying a natural finiteness
condition. [See Theorem 3.4 in [2] and Theorem 6 in [19]]. Moreover, features such
as maximum persistence can be easily tracked, and there is no ambiguity on how to
compare the diagrams from, say, SWM,τ f (T ) and SW2M, τ

2
f (T ).

Proposition 6.1 Let f be L-periodic, N < N ′, M = 2N, M ′ = 2N ′, and

τ = 2π

L(M + 1)
, τ ′ = 2π

L(M ′ + 1)
.

If T ⊂ T is finite, Y = SWM,τ SN f (T ), and Y ′ = SWM ′,τ ′ SN ′ f (T ), then
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dB

(
dgm(Y )√
M + 1

,
dgm (Y ′)√
M ′ + 1

)
≤ 2
∥∥∥SN f − SN ′ f

∥∥∥
2
,

where λ · dgm(Z) is defined as {(λx, λy) | (x, y) ∈ dgm(Z)} for λ ≥ 0.

Proof Let us fix the notation un = un(M, τ ), vn = vn(M, τ ), u′
n = un(M ′, τ ′), and

v′
n = vn(M ′, τ ′) in order to specify the dependencies of un and vk on M and τ . Then
we have the linear maps

P : R
M ′+1 −→ R

M ′+1

N ′∑
n=0

xnu′
n + ynv′

n �→
N∑

n=0
xnu′

n + ynv′
n,

Q : Img(P) −→ R
M+1

u′
n �→

√
M ′+1
M+1 un

v′
n �→

√
M ′+1
M+1 vn,

which are well defined by Proposition 5.1. Moreover, Proposition 5.5 implies that P
can be interpreted as an orthogonal projection when restricted to Y ′ and that Q is an
isometry on P(Y ′). Notice that for every y′ ∈ Y ′

‖y′ − P(y′)‖ =
√√√√M ′ + 1

2

N ′∑
n=N+1

r2n ,

where rn is as defined in Remark 5.4, and therefore

dH(Y ′, P(Y ′)) ≤
√√√√M ′ + 1

2

N ′∑
n=N+1

r2n .

Finally, since Q ◦ P(Y ′) =
√

M ′+1
M+1 Y and dgm( · ) is invariant under isometries, then

√
M ′ + 1 · dB

(
dgm(Y ′)√
M ′ + 1

,
dgm(Y )√
M + 1

)
= dB

(
dgm(Y ′), dgm(Q ◦ P(Y ′))

)

= dB
(
dgm(Y ′), dgm(P(Y ))

)

≤ 2dH(Y ′, P(Y ′))

≤
√√√√2(M ′ + 1)

N ′∑
n=N+1

r2n ,

and the result follows from the identity rn = 2
∣∣ f̂ (n)

∣∣ = ∣∣ f̂ (n)
∣∣+ ∣∣ f̂ (−n)

∣∣, n ≥ 1. ��
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This result, paired with the fact that ‖ f −SN f ‖2 → 0 as N → ∞ and the Structure
Theorem 5.6 (1), (2), implies the following corollary.

Corollary 6.2 Let f ∈ L2(T) be L-periodic, N ∈ N, τN = 2π
L(2N+1) , T ⊂ T finite,

and let ȲN be the set resulting from pointwise centering and normalizing the point
cloud

SW2N ,τN SN f (T ) ⊂ R
2N+1.

Then for any field of coefficients, the sequence dgm(ȲN ) of persistence diagrams is
Cauchy with respect to dB.

Completeness of the set of (generalized) diagrams [2, Theorem 3.4], allows one to
state the following definition.

Definition 6.3 Letw = 2π
L , and denote by dgm∞( f, T, w) the limit in the bottleneck

distance of the sequence dgm(ȲN ).

We hope the notation dgm∞( f, T, w) is suggestive enough to evoke the idea that
there exists a limiting diagram from the sequence of pointwise-centered and nor-
malized versions of SWM,τ f (T ), as M → ∞, and while keeping the window size
Mτ = M

M+1w ≈ w. The first convergence theorem (Theorem 6.6) below asserts the
validity of this notation. Before presenting the proof, we start with a technical result.

Proposition 6.4 Let f ∈ C(T) be L-periodic, N ∈ N, and τN = 2π
L(2N+1) . Then

lim
N→∞

∥∥C(SW2N ,τN f (t)
)∥∥

√
2N + 1

= ∥∥ f − f̂ (0)
∥∥
2 (5)

uniformly in t ∈ T.

Proof Since the result is trivially true if f is constant, let us assume f �= f̂ (0), and
let

g(t) = f (t) − f̂ (0)∥∥ f − f̂ (0)
∥∥
2

.

It follows that g ∈ C(T) is L-periodic,

ĝ(0) = 1

2π

2π∫

0

g(t)dt = 0 and ‖g‖2 = 1√
2π

⎛
⎝

2π∫

0

|g(t)|2dt
⎞
⎠

1/2

= 1.

Using the identity L(2N + 1)τN = 2π , a Riemann sums argument, and the fact that
g is L-periodic, it follows that if

cN (t) = g(t) + g(t + τN ) + · · · + g(t + 2NτN )

2N + 1
,
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then for all t ∈ T

lim
N→∞ cN (t) = lim

τN→0

L

2π

(
τN g(t) + τN g(t + τN ) + · · · + τN g(t + 2NτN )

)

= L

2π

t+ 2π
L∫

t

g(r)dr

= 1

2π

2π∫

0

g(r)dr

= 0.

We contend that the convergence cN (t) → 0 is uniform in t ∈ T. Indeed, the fact that g
is uniformly continuous implies that the sequence cN (t) is uniformly equicontinuous.
This means that for every ε > 0 there exists δ > 0 independent of N such that for
every t, t ′ ∈ T and all N ∈ N

|t − t ′| < δimplies |cN (t) − cN (t ′)| <
ε

2
.

Let Nt ∈ N, for t ∈ T, be such that N ≥ Nt implies |cN (t)| < ε
2 . These two

inequalities together imply that if N ≥ Nt and |t − t ′| < δ, then |cN (t ′)| < ε.
By choosing a finite open cover of [0, 2π ] with intervals of length δ and letting N0

be the maximum of the Nt corresponding to their centers, we get that N ≥ N0 implies
|cN (t)| < ε for all t ∈ T. Thus, the convergence cN (t) → 0 is uniform. A similar
argument shows that

lim
N→∞

∥∥C(SW2N ,τN g(t)
)∥∥2

2N + 1
= lim

τN→0

L

2π

2N∑
n=0

τN
(
g(t + nτN ) − cN (t)

)2

= 1

2π

2π∫

0

g(r)2dr = 1

uniformly in t ∈ T, and replacing g by f − f̂ (0)
‖ f − f̂ (0)‖2

yields the result. ��

Remark 6.5 Notice that an alternative proof of Proposition 6.4 follows from combin-
ing the Structure Theorem 5.6 (2), Parseval’s Theorem, and the fact that

‖SN f ‖22 − f̂ (0)2 = ∥∥SN
(
f − f̂ (0)

)∥∥2
2 .

Theorem 6.6 (Convergence I) Let f ∈ C1(T) be an L-periodic function, N ∈ N,
τN = 2π

L(2N+1) , T ⊂ T finite, and let ȲN be as in Corollary 6.2. Let X̄N be the set
resulting from pointwise centering and normalizing the point cloud
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SW2N ,τN f (T ) ⊂ R
2N+1.

Then for any field of coefficients, the sequence dgm(X̄ N ) of persistence diagrams is
Cauchy with respect to dB, and

lim
N→∞ dgm(X̄ N ) = lim

N→∞ dgm(ȲN ) = dgm∞( f, T, w).

Proof To prove Theorem 6.6, we will use the Approximation Theorem 4.5 to show
that

lim
N→∞ dB

(
dgm(X̄ N ), dgm(ȲN )

)
= 0

and combine this with Corollary 6.2 to obtain the result.
Assume without loss of generality that f satisfies f̂ (0) = 0 and ‖ f ‖2 = 1. Let XN

and YN be the resulting sets from pointwise centering the point clouds SW2N ,τN f (T )

and SW2N ,τN SN f (T ), respectively. Using the uniform convergence in Eq. 5 we get
that

lim
N→∞ dH

(
X̄ N ,

XN√
2N + 1

)
= 0,

and moreover, since lim
N→∞ ‖SN f ‖2 = ‖ f ‖2 = 1, then

lim
N→∞ dH

(
XN√
2N + 1

,
XN√

2N + 1‖SN f ‖2

)
= 0.

Now, from the Structure Theorem 5.6 (2) we have the identity

ȲN = YN√
2N + 1‖SN f ‖2

,

and using the Approximation Theorem 4.5 (1), along with the fact that C is distance
nonincreasing, we conclude that

lim
N→∞ dH

(
XN√

2N + 1‖SN f ‖2
, ȲN

)
≤ lim

N→∞

√
2 · ‖RN f ′‖2

‖SN f ‖2 · √
N + 1

= 0.

The triangular inequality then implies that lim
N→∞ dH(X̄ N , ȲN ) = 0, and the result

follows from combining the stability of dB with respect to dH and Corollary 6.2. ��
The first convergence theorem asserts that for each choice of discretization T ⊂ T

one obtains a limiting diagram dgm∞( f, T, w) by letting N → ∞ in the pointwise
centered and normalized versions of either SW2N ,τN SN f (T ) or SW2N ,τN f (T ). Next
we will show that there is also convergence when T tends to T with respect to the
Hausdorff distance on subspaces of T.
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Theorem 6.7 (Convergence II) Let T, T ′ ⊂ T be finite, and let f ∈ C1(T) be L-
periodic with modulus of continuity ω : [0,∞] −→ [0,∞]. If w = 2π

L , then

dB
(
dgm∞( f, T, w), dgm∞( f, T ′, w)

) ≤ 2
∥∥ f − f̂ (0)

∥∥
2 ω
(
dH
(
T, T ′)) ,

and thus there exists a persistence diagram dgm∞( f, w) so that

lim
T→T

dgm∞( f, T, w) = dgm∞( f, w).

Proof Fix t ∈ T and t ′ ∈ T ′. If we let xN = SW2N ,τN f (t), x′
N = SW2N ,τN f (t ′),

τN = 2π
L(2N+1) , and λ = ∥∥ f − f̂ (0)

∥∥
2, then

∥∥∥∥
C(xN )

‖C(xN )‖ − C(x′
N )

‖C(x′
N )‖

∥∥∥∥ ≤
∥∥∥∥

C(xN )

‖C(xN )‖ − λC(xN )√
2N + 1

∥∥∥∥ + λ
∥∥C(xN ) − C(x′

N )
∥∥

√
2N + 1

+
∥∥∥∥

C(x′
N )

‖C(x′
N )‖ − λC(x′

N )√
2N + 1

∥∥∥∥ .

It follows from Proposition 6.4 that both the summand

∥∥∥∥
C(xN )

‖C(xN )‖ − λC(xN )√
2N + 1

∥∥∥∥ = ‖C(xN )‖√
2N + 1

·
∣∣∣∣∣
√
2N + 1

‖C(xN )‖ − λ

∣∣∣∣∣

and its version with x′
N go to zero as N → ∞. Thus, given ε > 0, there exists N0 ∈ N

such that N ≥ N0 implies

∥∥∥∥
C(xN )

‖C(xN )‖ − C(x′
N )

‖C(x′
N )‖

∥∥∥∥ ≤ ε

2
+ λ

∥∥C(xN ) − C(x′
N )
∥∥

√
2N + 1

≤ ε

2
+ λ‖xN − x′

N‖√
2N + 1

= ε

2
+ λ

(
2N∑
n=0

∣∣ f (t + nτN ) − f (t ′ + nτN )
∣∣2

2N + 1

)1/2

≤ ε

2
+ λω(|t − t ′|).

Let X̄ N and X̄ ′
N be the sets resulting from pointwise centering and normalizing

SW2N ,τN f (T ) and SW2N ,τN f (T ′), respectively. Since the preceding estimates are
uniform in t and t ′ (by Proposition 6.4), it follows that whenever N ≥ N0,

dH
(
X̄ N , X̄ ′

N
) ≤ ε

2
+ λω

(
dH(T, T ′)

)
.
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Notice that the Hausdorff distance on the left-hand side is for subspaces of R
2N+1,

while that on the right-hand side is between subspaces of T.
Applying the stability theorem for persistence diagrams yields

dB
(
dgm(X̄ N ), dgm(X̄ ′

N )
) ≤ ε + 2λω

(
dH(T, T ′)

)
,

which, by letting N → ∞ and applying the first convergence theorem (Theorem 6.6),
implies

dB
(
dgm∞( f, T, w), dgm∞( f, T ′, w)

) ≤ ε + 2λω
(
dH(T, T ′)

)
.

Since this is true for any ε > 0, letting ε ↓ 0 yields the first part of the theorem. The
existence of dgm∞( f, w) follows from the fact that the set of generalized persistence
diagrams is complete with respect to dB. ��

6.2 A Lower Bound for Maximum Persistence

The structure theorem, Theorem 5.6 (3), and the fact that orthogonal projections are
distance nonincreasing allow us to now prove the following theorem.

Theorem 6.8 Let f ∈ C1(T) be an L-periodic function, N ∈ N, M ≥ 2N, L(M +
1)τ = 2π , and let T ⊂ T be finite. Furthermore, assume that dH(T, T) < δ for some
[see Theorem 5.6 (3)]

0 < δ < max
1≤n≤N

√
3̃rn

κN
, where κN = 2

√
2
∥∥SN f ′∥∥

2∥∥SN
(
f − f̂ (0)

)∥∥
2

.

Let Ȳ = ȲN be the set resulting from pointwise centering and normalizing the point
cloud

SWM,τ SN f (T ) ⊂ R
M+1,

and let p > N be a prime. If dgm(Ȳ ) denotes the 1D Fp-persistence diagram for the
Rips filtration on Ȳ , then ϕτ yields an element xϕ ∈ dgm(Ȳ ), with

(1) birth(xϕ) ≤ δκN ,
(2) death(xϕ) ≥ √

3 max
1≤n≤N

r̃n,

and therefore

mp
(
dgm(Ȳ )

)
≥
(√

3 max
1≤n≤N

r̃n

)
− δκN . (6)

Proof Given the linear decomposition

ϕτ (t) =
N∑

n=1
n≡0(modL)

r̃n
(
cos(nt )̃xn + sin(nt )̃yn

)
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of ϕτ (t) with respect to the orthonormal set
{̃
xn, ỹn | 1 ≤ n ≤ N , n ≡ 0 (mod L)

}
described in the proof of Theorem 5.6 (3), it follows that

Pn : Ȳ −→ C

ϕτ (t) �→ r̃neint

can be regarded as the restriction to Ȳ of the orthogonal projection from R
M+1 onto

Span{̃xn, ỹn}. Since orthogonal projections are linear and norm-non-increasing, then
‖Pn(x) − Pn(y)‖ ≤ ‖x − y‖ for every x, y ∈ Ȳ . Thus, if

S1(̃rn) = {̃rneint | t ∈ T },

then it follows that Pn induces simplicial maps

Pn� : Rε

(
Ȳ
) −→ Rε

(
S1(̃rn)

)
[x0, . . . , xk] �→ [Pn(x0), . . . , Pn(xk)]

for every ε > 0, which in turn yield homomorphisms

Pn∗ : Hk
(
Rε

(
Ȳ
) ; Fp

) −→ Hk

(
Rε

(
S1(̃rn)

)
; Fp

)

of Fp-vector spaces at the homology level. What we contend is that, via the homo-
morphisms Pn∗ , the maximum 1D persistence of Ȳ can be bounded below by that of
S1(̃rn). Indeed, let ε1, ε2 > 0 be such that

δκN < ε1 < ε2 <
√
3̃rm,

where m = argmax {̃rn | 1 ≤ n ≤ N }. If we write

T = {t0 < t2 < · · · < tJ },

then it follows from dH(T, T) < δ that |t j − t j−1| < 2δ for all j = 1, . . . , J , and
therefore

‖ϕτ (t j ) − ϕτ (t j−1)‖2 =
N∑

n=1
n≡0(modL)

2̃r2n
(
1 − cos

(
n(t j − t j−1)

))

≤
N∑

n=1
n≡0 (modL)

r̃2n
(
n(t j − t j−1)

)2

= (t j − t j−1)
2

N∑
n=1

4n2
∣∣ f̂ (n)

∣∣2
‖SN f ‖22 − f̂ (0)2
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= (t j − t j−1)
2

∥∥SN
(
f − f̂ (0)

)∥∥2
2

∑
1≤|n|≤N

2
∣∣ f̂ ′(n)

∣∣2

≤ 8δ2
∥∥SN f ′∥∥2

2∥∥SN
(
f − f̂ (0)

)∥∥2
2

= (δκN )2.

The first inequality is a consequence of the Taylor expansion for cos(x) around zero,
and f ′ denotes the first derivative of f .

Therefore,

ν = [ϕτ (t0), ϕτ (t1)] + · · · + [ϕτ (tJ−1), ϕτ (tJ )] + [ϕτ (tJ ), ϕτ (t0)]

is a 1D cycle on Rε1(Ȳ ), and we obtain the homology class

Pm∗([ν]) ∈ H1

(
Rε1

(
S1(̃rm)

)
; Fp

)
.

Let {θ0 < θ1 < · · · < θJm } = {t mod 2π
m | t ∈ T

}
and let c j = r̃meimθ j . It follows

from a similar calculation that

‖c j − c j−1‖2 ≤ (θ j − θ j−1)
2 4

∣∣ f̂ ′(m)
∣∣2

∥∥SN
(
f − f̂ (0)

)∥∥2
2

≤ (δκN )2,

and therefore the 1-cycle

μ = [c0, c1] + · · · + [cJm−1, cJm ] + [cJm , c0]

is such that its homology class [μ] ∈ H1
(
Rε1

(
S1(̃rm)

) ; Fp
)
satisfies i∗([μ]) �= 0,

where i∗ is the homomorphism induced by the inclusion

i : Rε1

(
S1(̃rm)

)
↪→ Rε2

(
S1(̃rm)

)
.

Since Pm∗([ν]) = m[μ], and given that 1 ≤ m ≤ N < p implies that m is invertible
in Fp, i∗ ◦ Pm∗([ν]) �= 0. From the commutativity of the diagram

we conclude that i∗([ν]) �= 0, and thus [ν] yields an element xϕ ∈ dgm(Ȳ ) such that

birth(xϕ) ≤ ε1 and death(xϕ) ≥ ε2.
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Given that this is true for every ε1 > δκN and every ε2 <
√
3̃rm , letting ε1 ↓ δκN and

ε2 ↑ √
3̃rm concludes the proof. ��

Remark 6.9 It is worth noting that in the proof of Theorem 6.8 one can replace Fp,
p > N , by the field of rational numbers Q. That is, the estimated bound for maximum
persistence is valid for all N ∈ N and homology with Q coefficients.

Equation 6, together with the Convergence Theorems I (Theorem 6.6) and II (The-
orem 6.7), implies the following corollary.

Corollary 6.10 Let f ∈ C1(T) be an L-periodic function such that f̂ (0) = 0 and
‖ f ‖2 = 1. Let T ⊂ T be finite and such that dH(T, T) < δ for some

0 < δ <

√
3√

2‖ f ′‖2
max
n∈N

∣∣ f̂ (n)
∣∣ .

Then with Q coefficients, the 1D persistence diagram dgm∞( f, T, w) satisfies

1

2
mp
(
dgm∞( f, T, w)

)
≥ √

3max
n∈N

∣∣ f̂ (n)
∣∣− √

2δ‖ f ′‖2,

and therefore

mp
(
dgm∞( f, w)

)
≥ 2

√
3max

n∈N
∣∣ f̂ (n)

∣∣ .

6.3 Field of Coefficients

One question worth asking is whether the lower bound for maximum persistence
presented in Theorem 6.8 is in fact dependent on the field of coefficients. More gen-
erally, one would like to determine whether the full persistence diagram has such a
dependency. To this end, let us consider the functions

g1(t) = 0.6 cos(t) + 0.8 cos(2t),

g2(t) = 0.8 cos(t) + 0.6 cos(2t).

We construct their associated sliding-window point clouds, SWM,τ g1(T ) and
SWM,τ g2(T ), using M = 4, τ = 2π/5, and T = { 2πk

150 | k = 0, 1, . . . , 150
}
. After

pointwise centering and normalizing, we compute their 1D persistent homology with
coefficients in F2 and F3. For this we use a fast implementation of the 1D persis-
tent homology, based on the Union–Find algorithm and the work of Mischaikow and
Nanda [20]. Details of this implementation will appear in [23].

We summarize the results in Fig. 3.
This example shows that, at least in low dimensions, the persistent homology of

sliding-window point clouds is coefficient-dependent. Let us see why this is so. If
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Fig. 3 One-dimensionalFp-persistence diagrams for centered and normalized sliding-windowpoint clouds
on gi . Here the columns correspond to p = 2, 3 and the rows to i = 1, 2

(r1, r2) ∈ R
2 is such that r21 + r22 = 1 and r1r2 �= 0, it follows from the Structure

Theorem 5.6 (3) that if α1, α2 ∈ [0, 2π ] and

g(t) = r1 cos(t − α1) + r2 cos(2t − α2),

then for every t ∈ [0, 2π ] and M ≥ 4, τ = 2π
M+1 , one has that

ϕτ (t) = C
(
SWM,τ g(t)

)

‖C (SWM,τ g(t)
) ‖

can be isometrically identified with

ϕ̃(t) =
(
r1e

it , r2e
2i t
)

∈ C
2.

Let us use ϕ̃ instead of ϕτ for the persistent homology computation. The first thing to
notice is that the image of ϕ̃ can be realized as the boundary of a Möbius strip. Indeed,
consider the map
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M : [0, π ] × [−1, 1] −→ C
2

(t, s) �→ (−sr1eit , r2e2i t
)
.

It follows that M is a continuous injection on [0, π) × [−1, 1), since r1r2 �= 0, and
that it descends to an embedding of the quotient space

M̃ : ([0, π ] × [−1, 1]/ ∼ ) −→ C
2,

where (0, s) ∼ (π,−s) for every s ∈ [−1, 1]. Notice that [0, π ] × [−1, 1]/ ∼ serves

as the usual model for the Möbius strip and that ∂
(
Img(M̃)

)
= Img(ϕ̃).

Let T = {t0 < t2 < · · · < tJ } be a δ-dense subset of [0, 2π ], X = ϕ̃(T ), and let

[ν] ∈ H1
(
Rr (X); F2

)
,

for r > 4δ, be the homology class of the 1-cycle

ν = [ϕ̃(t0), ϕ̃(t1)] + · · · + [ϕ̃(tJ−1), ϕ̃(tJ )] + [ϕ̃(tJ ), ϕ̃(t0)].

It can be readily verified that if we let

V =
{
(t, s)

∣∣∣ (t, s) ∈ (T ∩ [0, π)
)× {−1} or (t + π, s) ∈ (T ∩ (π, 2π ])× {1}

}
,

then there exists a triangulation of Img(M̃) having M̃(V ) as vertex set, and so if we
take coefficients in F2, then the formal sum of its triangles yields a 2-chain � with
∂2(�) = ν. Moreover, since T is δ-dense in [0, 2π ] and for all t ∈ [0, π ]

∥∥M̃(t,−1) − M̃(t ± δ, 1)
∥∥2 = 2

[
r21 (1 + cos(δ)) + r22 (1 − cos(2δ))

]

≤ 2

[
r21

(
2 − δ2

2

)
+ 2r22 δ2

]

= r21 (4 − 5δ2) + 4δ2,

if δ > 0 is small, then we can choose � such that

� ∈ C2
(
Rr ′(X); F2

)
, r ′ = r1

√
4 − 5δ2 + 2δ.

In summary, if

r1
√
4 − 5δ2 + 2δ <

√
3 r2, (7)

then the death time of the class [ν] is less than or equal to r1
√
4 − 5δ2 + 2δ, with

coefficients in F2, but larger than
√
3 r2 (by Theorem 6.8), with coefficients in Fp

for any prime p ≥ 3. Moreover, with coefficients in F2 and provided Eq. 7 holds
(e.g., for g1), the first edge across the Möbius band prompts the birth of a new class
corresponding to the equator

t �→ M̃(t, 0) = (0, r2e
2i t )
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of the embeddedMöbius strip. This class in turn survives up to
√
3r2.With coefficients

in F3, on the other hand, the equatorial and boundary classes will be in the same
persistence class once all the 2-simplices in the Möbius band have been added. This
results in the death of the class that was born later, i.e., the one represented by the
equator.

7 Examples: Quantifying Periodicity of Sampled Signals

We present in this section two experiments to test our ideas: first, the ranking of signals
by periodicity alone, in a way that is invariant to the shape of the periodic pattern, and
second, the accurate classification of a signal as periodic or nonperiodic at different
noise levels. A detailed description of our methods is provided below, but roughly
speaking, we associate to each sampled signal S = [s1, . . . , sJ ] a real-valued function
fS by cubic spline interpolation, construct its centered and normalized sliding-window
point cloud XS , and let

mp
(
dgm(XS)

)
√
3

= Score(S)

be its periodicity score. We then compare it to those obtained with the JTK_CYCLE
[15], Lomb–Scargle [13,18,24], and total persistent homology [7] algorithms.

7.1 Shape Independence

For this experiment we construct ten different shapes: a 2-periodic pure cosinelike
curve, a 2-periodic cosinelike function plus three levels of gaussian noise (variances
at 25, 50, and 75% of signal amplitude), a noisy sawtooth (noise level at 25% of signal
amplitude), a function of the form cos(φ(t)) for φ(t) = eat+b, a noisy and damped
cosinelike curve with three periods, a spiky signal with three periods, a noisy square

wave with two periods, and a 1-periodic function of the form Re

(
5∑

n=1
f̂ (n)e2int

)
for

f̂ (n) drawn randomly and uniformly from the unit disk in C. Each function is then
evaluated at 50 evenly spaced time points, yielding the sampled signals [s1, . . . , s50]
that we input into the algorithms. For the construction of the sliding-window point
clouds we use N = 10, coefficients in F11, L = 2, 3, 4, and report the best score. In
all the other algorithms we set the parameters to their suggested or default values. The
results are summarized in Fig. 4.

Two things are worth noting. First, except for the sliding-window method
(SW1PerS), all other algorithms have clear preferences for the type of shape they con-
sider to bemost periodic. These biases are of course part of thewiring of the algorithms
and were to be expected. The second thing to notice has to do with the distribution of
scores and their relative differences. Methods such as JTK or Lomb–Scargle define
their periodicity score in terms of p-values, which are extremely difficult to interpret.
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Fig. 4 Ranking of signals by periodicity. For each algorithm we provide the score and a normalized plot
of the signal. The ranking goes from top (highest score) to bottom (lowest score)

Our scoring method, by way of contrast, has a clear geometric interpretation and a
reasonable distribution.

7.2 Classification Rates

We compare the different algorithms by their ability to separate periodic from nonpe-
riodic signals. The performance of this type of binary classification can be visualized
using a receiver operating characteristic (ROC) plot, which compares the true positive
rate (TPR) to the false positive rate (FPR) as a cutoff on the scores is varied. Here
the TPR is the proportion of correctly identified positive cases out of all positives,
and FPR is the proportion of negative cases incorrectly identified as positives out of
all the negatives. The line TPR = FPR is the performance of random guessing; the
higher the ROC curve is above this line, the better its classification performance. An
algorithm that is able to perfectly separate all positive from negative test cases would
have a ROC curve that passes through the point TPR = 1 and FPR = 0. It follows that a
reasonable measure of classification success for a particular method is the area under
its ROC curves.

The synthetic data are generated as follows: the periodic signals (positive cases)
span two periods and include a cosine, cosine with trending, cosine with damping,
and cosine with increased peak steepness. The nonperiodic signals (negative cases)
include a constant and a linear function. We generate 100 profiles from each shape by
adjusting its phase. For instance, in the case of the cosine shape we let

fi (t) = cos

(
2t − jπ

50

)
, j = 0, . . . , 99
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Fig. 5 Examples of signals in synthetic data. We show one signal from each profile type at noise levels 0,
25, and 50 %

be the profiles. We sample each of the 600 profiles at 50 evenly spaced time points
t ∈ [0, 2π ] and add gaussian noise with standard deviation at 0, 25, and 50 % of signal
amplitude. Please refer to Fig. 5 for examples.

Remark 7.1 There are two reason why we regard constant functions as nonperiodic.
On the one hand, the intended application for SW1PerS (Sliding Windows and 1-
Persistence Scoring) is to identify genes that are both relevant and exhibit a periodic
expression pattern with respect to time. Relevance in this case means that changes in
expression level translate into physiological phenomena. The second reason has to do
with the philosophy of the proposedmethod:we quantify periodicity as the prominence
of 1-homology classes in the sliding-window point cloud. Since this point cloud for a
constant function is only a point, it does not have 1-homology and hence is interpreted
as coming from a nonperiodic function.

For the SlidingWindows + 1D Fp-Persistence computation we let N = 10, L = 2,
and p = 11. To address noise, we include a layer of (simple) moving average at the
sampled signal level and one iteration of mean shift [8] at the sliding-window point
cloud level. For the moving average we fix a window size with seven data points and
use a cubic spline of this denoised signal to populate the point cloud. Mean shift on a
pointwise centered and normalized point cloud XS was implemented as follows: given
a point x ∈ XS , we let x̄ be the mean of the set

{y ∈ XS : 1 − (x · y) < ε} ,
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Fig. 6 ROC curves: true positive rate versus false positive rate. We compare the classification success of
each algorithm on the synthetic data set using the area under its ROC curves. Curves are colored according
to the type of periodic shape, and the area under the curve (AUC) is reported. Please refer to electronic
version for colors

where ε = cos
(

π
16

)
and x · y denotes the Euclidean inner product of x and y. In

other words, x̄ is the mean of the ε-neighbors of x if distance is measured by cosine
similarity. We obtain the mean-shifted point cloud

X̄ S =
{

x̄

‖x̄‖ : x ∈ XS

}
,

which we now use for the persistent-homology computation. We report our results in
Fig. 6.

The Lomb–Scargle periodogram is considered to be one of the best methods for
detecting periodicity, and its ROC curves support this belief. The fact that it is attuned
to favoring cosinelike curves makes it very resilient to dampening, trending, and noise.
It was thus a great surprise to see that our method performs comparably well in all
cases, except for trended cosines and cosines, and that outperforms it for peaked and
damped profiles at high noise levels.
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Fig. 7 ROC curves for SW1PerS analysis on raw synthetic data, that is, we do not apply moving average
or mean shift. For a comparison on the effect of denoising, please refer to the rightmost column in Fig. 6

A final point we would like to make is that denoising really is a crucial element
of the SW1PerS pipeline. We show in Fig. 7 the results of quantifying periodicity on
raw synthetic data, i.e., without applying denoising. As one can see, in the absence of
preprocessing, the results degrade considerably.

8 Final Remarks

In this paper we proved results that describe the structure of persistence diagrams
obtained by sliding-window embeddings of time series. Themain tools for the analysis
were a Fourier series approximation argument and the stability theorem for persistence
diagrams. The results we obtained, provide explicit information about how diagrams
from sliding-window point clouds depend on the embedding dimension, window size,
andfield of coefficients.We then presented examples of the effectiveness of ourmethod
for quantifying periodicity of time series data. The experimental side of this framework
will be explored in more depth in future work.

This paper also presented the first full theoretical analysis of the use of persistent
homology infinding structure in time series data. Time-delay embeddings as ameans to
analyze signals is not new; rather, it is a well-establishedmethod in dynamical systems
and in image analysis. In addition, the use of computational topology methods to find
structure in transformed data has already been considered experimentally, notably in
[4] and [10]. This paper, however, is the first to provide a theoretical analysis of the
dependency of persistence on the embedding dimension and window size.

There are some interesting new aspects of the use of persistence in this method.
It provides one of the first examples where persistent homology with coefficients
other than F2 is required. Other notable examples include [4], where coefficients in F3
were essential to discovering the embedded Klein bottle, and [9] and [10], where the
authors start with a 1D persistent cohomology class mod Fp and lift it to an integer 1D
class to obtain a map to the circle. They do this by choosing p such that the relevant
homomorphism in the Bockstein long exact sequence is surjective. Their approach
to real data is to choose a prime p at random and evaluate whether H2(X, Z) has
p-torsion. If it does, they then choose another prime. By contrast, we have established
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exactly how to determinewhich primes could be problematic, which allows us to avoid
them in advance.

It was highlighted in Remark 4.4 that maximum persistence, the main feature for
periodicity studied in this paper, satisfies mp(dgm) = 2dB(dgm, dgm
). This is in
fact part of a bigger picture. Indeed, the q-Wasserstein distance between two persis-
tence diagrams dgm1 and dgm2 is defined by

Wq(dgm1, dgm2) = min
φ

( ∑
x∈dgm1

||x − φ(x)||q∞
) 1

q
,

where φ : dgm1 → dgm2 is a matching of dgm1 with dgm2. As with the bottleneck
distance (Remark 4.4), one can show that

Wq(dgm, dgm
) = 1

2

( ∑
(x,y)∈dgm

(y − x)q
) 1

q
,

and since Wq → dB as q → ∞, 2Wq(dgm, dgm
) can be regarded as a
smoother version ofmp(dgm). When dgm comes from a sliding-window point cloud,
2Wq(dgm, dgm
) can be interpreted as a sequence of signatures, or features, for peri-
odicity and other phenomena at the signal level.Here the parameterq serves as the level
of smoothing, and as it gets larger, the emphasis in what Wq(dgm, dgm
) measures
shifts from topological noise and fine attributes to large topological events.

The ring of algebraic functions on persistence diagrams, as a source of features
for machine learning purposes, was recently studied by [1]. We believe these and
other signatures, such asWq(dgm, dgm
), should uncover nontrivial signal properties
captured by their sliding-window point clouds. We devoted this paper to exploring the
use of mp(dgm), but we hope that in future work the list of useful features from
persistence diagrams on sliding-window point clouds can be extended.

We alsomention that Sect. 6.3 is the first explicit computation of the persistence dia-
gram of a parameterized space. The method of Fourier approximation presented here
is one of the first in a much-needed toolbox for explicit computations of persistence
diagrams.

Our final comment is to point out that the fact that the size of the sliding window
should match the period searched for was not obvious in advance. Knowing this pro-
vides powerful information on sampling density to scientists planning an experiment
that looks for periodic data and lays the groundwork for the use of SW1PerS as a filter
for time series data.

In future work we plan to establish our conjecture that mp(dgm) is maximized by
our choice of window size, and the main ingredient will be strengthening the lower
bound presented in Theorem 6.8. We also plan to establish the filtering properties of
SW1PerS and apply it to a variety of data, including biological data like those from
gene expression and physiology, astronomical data, and weather. Finally, we plan to
extend these methods using other tools from topological data analysis to find structure
and features in time series.
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