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1 Introduction

The object of this paper is to study two closely related topics: counting the number
of singular vector tuples of complex tensor and the uniqueness of a best rank-one
approximation of real tensors. To state our results, we introduce notation that will be
used in the paper. Let [F be either the field of real or complex numbers, denoted by
R and C respectively, unless stated otherwise. For each x € F” \ {0} we denote by
[x] := span(x) the line through the origin spanned by x in F”*. Then P(F"™) is the space
of all lines through the origin in F"". We say that x € F""*, [y] € P(F™) are generic if
there exist subvarietes U C ", V C P(F") such thatx € F" \ U, [y] € P(F") \ V.
Aset S C ™ is called closed if it is a closed set in the Euclidean topology. We say that
a property P holds almost everywhere (a.e.) in R” if P does not hold on a measurable
set S C R” of a zero Lebesgue measure. Equivalently, we say that almost all (a.a.)
x € R” satisfy P.

For d € Ndenote [d] := {1, ...,d}. Let m; > 2 be an integer for i € [d]. Denote
m = (my,...,my). Let [Tp(m) := PEF"™) x ... x P(F"4). We call ITgp(m) the
Segre product. Set [T(m) := [1¢(m). Denote by F™ = Fm1X.->Md .— ®?:11Fmi the
vector space of d-mode tensors 7 = [t;,, ;. 1,i; = 1,...,mj,j =1,...,d over
F. (We assume that d > 3 unless stated otherwise.) For an integer p € [d] and for

xj € F"ir,r € [p], we use the notation ®j, re[p1Xj, = X;; ® ... ® X;,. For a
subset P = {ji1,..., jp} € [d] of cardinality p = |P]|, consider a p-mode tensor
X = [)cij1 ,,,,, ij,,] € ®j, re(p)F™ir, where ji < ... < jp. Define

T x X = E lit,oigXij ... ijp

ijr G[mjr],VG[p]

as a (d — p)-mode tensor obtained by contraction on the indices i}, .. ., ijp.

To motivate our results, let us consider the classical case of matrices, i.e., d = 2
and A € R™1>™2_ We call a pair (x1, Xp) € (R™!'\ {0}) x (R™2\ {0}) a singular vector
pair if

AXp) = A X1, ATX1 = A2Xp (1.1)
for some A1, A, € R. For x € R" let ||x| := +/x'x be the Euclidean norm on R".
Choosing x1, X2 to be of Euclidean length one we deduce that A = X,, where |Aq]

is equal to some singular value of A. It is natural to identify all singular vector pairs
of the form (a1X1, a;x), where ajay # 0, as the class of singular vector pairs. Thus
([x1], [x2]) € P(R™") x P(R™2) is called a singular vector pair of A.

For a generic A, i.e., A of the maximal rank » = min(m, m>) and r distinct positive
singular values, A has exactly r distinct singular vector pairs. Furthermore, under these
conditions A has a unique best rank-one approximation in the Frobenius norm given
by the singular vector pair corresponding to the maximal singular value [10].

Assume now thatm = m| = my and A is areal symmetric matrix. Then the singular
values of A are the absolute values of the eigenvalues of A. Furthermore, if all the
absolute values of the eigenvalues of A are pairwise distinct, then A has a unique best
rank-one approximation, which is symmetric. Hence, for any real symmetric matrix
A there exists a best rank-one approximation which is symmetric.
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In this paper we derive similar results for tensors. Let 7 € F™. We first define the
notion of a singular vector tuple (xq, ...,Xg) € (F"\ {0}) x ... x (F™ \ {0}) [16]:

Tx®je[d]\{i}xj =NX;, 1 =1,...,d. (1.2)
As for matrices we identify all singular vector tuples of the form (a;xi, ..., azx4),
aj ...aq # 0asone class of singular vector tuple in ([x1], . .., [X4]) € IIr(m). (Note

that for d = 2 and F = C our notion of singular vector pair differs from the classical
notion of singular vectors for complex-valued matrices; see § 3.)

Let ([x1], ..., [X4]) € T1(m) be a singular vector tuple of 7 € C™. This tuple
corresponds to a zero (nonzero) singular value if Hi cld] Ai = 0 (# 0). This tuple
is called a simple singular vector tuple (or just simple) if the corresponding global
section corresponding to 7 has a simple zero at ([x1], ..., [Xgz]); see Lemma 11 in
§ 3.

Our first major result is the following theorem.

Theorem 1 Let T € C™ be generic. Then T has exactly c(m) simple singular vector
tuples that correspond to nonzero singular values. Furthermore, T does not have a
zero singular value. In particular, a generic real-valued tensor T € R™ has at most
c(m) real singular vector tuples corresponding to nonzero singular values, and all of

them are simple. The integer c(m) is the coefficient of the monomial Hfl: 1 tim i~Lin
the polynomial
i _ g
[ 5— &= > . ieldl (1.3)
. i —t; . ,
ield] Jjeld\{i}

At the end of §3 we list the first values of c(m) for d = 3. We generalize the
preceding results to the class of tensors with given partial symmetry.

We now consider the cubic case where m| = - -- = my = m. For an integer m > 2
xd . .
let m*94 = (m,...,m). Then 7 € F™ " is called d-cube, or simply a cube tensor.
——
d

For a vector x € C™ let @*x := x® ... ® x. Assume that 7, S € (C"’Xd. Then the
—_————

homogeneous pencil eigenvalue problen]; is to find all vectors x and scalars X satisfying
T x @4 1x = A5 x®?~'x. The contraction here is with respect to the last  — 1 indices
of 7, S. We assume without loss of generality that 7 = [#;, . ;,]. S = [s;,,....i,] are
symmetric with respect to the indices iy, .. ., ig. S is called nonsingular if the system
Sx®9~'x = 0implies thatx = 0. Assume that S is nonsingular and fixed. Then 7 has
exactly m(d —1)"~! eigenvalues counted with their multiplicities. 7 has m(d —1)" !
distinct eigenvectors in P(C™) for a generic 7. See [21] for the case where S is the
identity tensor.

View R™1*-"d ag an inner product space, where for two d-mode tensors 7, S €
RM1>--Xmd e let (7,S) := 7 x S. Then the Hilbert-Schmidt norm is defined
as | T := /{7, T). [Recall that for d = 2 (matrices) the Hilbert-Schmidt norm is
called the Frobenius norm.] A best rank-one approximation is a solution to the minimal

EOE';W
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problem

min |7 - QicaXill = 17 — Qieaquill- (1.4)
x; eR™i jie[d]

®iclaW; is called a best rank-one approximation of 7. Our second major result is as
follows.

Theorem 2 [. Fora.a. T € R™ a best rank-one approximation is unique.

2. Let SY(R™) C R™ pe the space of d-mode symmetric tensors. For a.a. S €
S (R™) a best rank-one approximation of S is unique and symmetric. In particular,
foreach S € SY(R™) there exists a best rank-one approximation that is symmetric.

The last statement of part 2 of this theorem was demonstrated by the first named
author in [7]. Actually, this result is equivalent to Banach’s theorem [1]. See [23] for
another proof of Banach’s theorem. In Theorem 12 we generalize part 2 of Theorem 2
to the class of tensors with given partial symmetry.

Letr = (rq,...,rq), where r; € [m;] fori € [d]. In the last section of this paper
we study a best rank-r approximation for a real d-mode tensor [6]. We show that for
a.a. tensors a best rank-r approximation is unique.

We now describe briefly the contents of our paper. In § 2 we give a layman’s intro-
duction to some basic notions of vector bundles over compact complex manifolds
and Chern classes of certain bundles over the Segre product needed for this paper.
We hope that this introduction will make our paper accessible to a wider audience.
§ 3 discusses the first main contribution of this paper, namely, the number of singular
vector tuples of a generic complex tensor is finite and is equal to ¢(m). We give a
closed formula for c(m), as in (1.3). § 4 generalizes these results to partially sym-
metric tensors. In particular, we reproduce the result of Cartwright and Sturmfels for
symmetric tensors [3]. In § 5 we discuss a homogeneous pencil eigenvalue problem. In
§ 6 we give certain conditions on a general best approximation problem in R”, which
are probably well known to the experts. In § 7 we give uniqueness results on the best
rank-one approximation of partially symmetric tensors. In § 8 we discuss a best rank-r
approximation.

We thank J. Draisma, who pointed out the importance of distinguishing between
isotropic and nonisotropic vectors, as we do in § 3.

2 Vector Bundles over Compact Complex Manifolds

In this section we recall some basic results on complex manifolds and holomorphic
tangent bundles that we use in this paper. Our object is to give the simplest possi-
ble intuitive description of basic results in algebraic geometry needed in this paper,
sometimes compromising the rigor. An interested reader can consult with [11] for
general facts about complex manifolds and complex vector bundles, and for a simple
axiomatic exposition on complex vector bundles with [15]. For a Bertini-type theorem
we refer the reader to Fulton [8] and Hartshorne [12].

Elol:;ﬂ
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2.1 Complex Compact Manifolds

Let M be a compact complex manifold of dimension n. Thus, there exists a finite
open cover {U;},i € [N] with coordinate homeomorphism ¢; : U; — C" such that
¢; o qu_l is holomorphic on ¢;(U; N U;) for all i, j.

As an example, consider the m — 1-dimensional complex projective space P(C™),
which is the set of all complex lines in C” through the origin. Any point in P(C™) is rep-
resented by a one-dimensional subspace spanned by the vector x = (x1,...,x,) ' €
C™ \ {0}. The standard open cover of P(C™) consists of m open covers Uy, ..., Uy,
where U; corresponds to the lines spanned by x with x; # 0. The homeomorphism ¢;
is given by ¢; (x) = (%v e x;—jl, x;—fl, e %T’)T. Thus, each U; is homeomorphic
to C"—1.

Let M be an n-dimensional compact complex manifold, as previously. For ¢ €
Ui, the coordinates of the vector ¢;(¢) = z = (z1, ..., z,) " are called the local
coordinates of ¢. Since C" = R?", M is a real manifold of real dimension 2n. Let
zj =xj+iy;,z; = xj —iyj;, j € [n], wherei = /—1. For simplicity of notation we
letu = (uy,...,u) = (x1, y1, ..., Xn, yp) be the real local coordinates on U;. Any
function f : U; — Cinthelocal coordinates is viewed as f (u) = g(u)-+ik(u), where
h,g:U; — R.Thus,df = Zje[2n] ;TJ;duj. For a positive integer p, a (differential)
p-form w on U; is given in the local coordinates as follows:

w = z Jirvoni, @duiy Ao ANdu,.

I<ij<..<ip=<2n

(fir,. iy (u) are differentiable functions in local coordinates u for 1 < i| < ... <

ip < 2n.) Recall that the wedge product of two differential is anticommutative, i.e.,
dui Ndu; = —du; N duy. Then

do= > (dfy..i,) Adui A Aduj,.

I<ij<..<ip=<2n

(Recall that a differential O-form is a function.) Note that for p > 2n any differential
p-form is a zero form. A straightforward calculation shows that d(dw) = 0. w is a
p-form on M if its restriction to each Uj is a p-form, and the restrictions of these two
forms on U; N U; are obtained from another by the change of coordinates ¢; o qu_ .
w is called closed if dw = 0, and dw is called an exact form. The space of closed
p-forms modulo exact p-forms is a finite-dimensional vector space over C, which is
denoted by H” (M). Each element of H” (M) is represented by a closed p-form, and
the difference between two representatives is an exact form. Since the product of two
forms is also a form, it follows that the space of all closed forms modulo exact forms is
a finite-dimensional algebra, where the identity 1 corresponds to the constant function
with value 1 on M.
EOE';W
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2.2 Holomorphic Vector Bundles

A holomorphic vector bundle £ on M of rank k, where k is a nonnegative integer, is a
complex manifold of dimension n+k, which can be simply described as follows. There
exists a finite open cover {U;}, i € [N] of M with the aforementioned properties satis-
fying the following additional conditions. At each ¢ € U; we are given k-dimensional
vector space E¢, called a fiber of E over ¢, all of which can be identified with a fixed

vector space V;, having a basis [y ;, ..., e ;]. For ¢ € U; NU;,i # j the transition
matrix from [e;, ..., e ;] to [elj,..., € ;] is given by a k x k invertible matrix
gu,;u;(¢). Thus, [e1;, ... el =[e1;, ..., e jlgu,u;(¢). Eachentry of gy, (¢) is

a holomorphic function in the local coordinates of U ;. We have the following relations:

guu; (O)guui (§) = guu; (), guu, M gu,u; (1)
=Lfors eUNUj,nelU;NU;NUp.

(I is an identity matrix of order k.)

For k = 0, E is called a zero bundle. E is called a line bundle if k = 1. E is called
a trivial bundle if there exists a finite open cover such that each gy, of (¢) is an identity
matrix. A vector bundle F on M is called a subbundle of E if F is a submanifold of E
such that F is a subspace of E, for each { € M. Assume that F' is a subbundle of E.
Then G := E/F is the quotient bundle of £ and F', where G is the quotient vector
space E;/F;. Let Ey, E> be two vector bundles on M. We can create the following
new bundles on M: E := E| & E», F := E| ® E>, H:=Hom(E|, E»). Here,
Er =E1 ® Ey, Fr = E1 ¢ ® E2 ¢, and H; consists of all linear transformations
from E;; to E . In particular, the vector bundle Hom(E;, E;), where E; is the
one-dimensional trivial bundle, is called a dual bundle of E; and is denoted by E lv
Recall that Hom(E, E») is isomorphic to £, ® E lv For a given vector bundle E on M
we can define the bundle F := ®@?E. Here Fr = ®4 E; is a fiber of d-mode tensors.

Let M, M’ be compact complex manifolds, and assume that f : M' — M is
holomorphic. Assume that 7 : E — M is a holomorphic vector bundle. Then one can
pull back E to obtain a bundle ©" : E' — M’, where E' = f*E.

Given a manifold M; with a vector bundle E; fori = 1, 2, we can define the bundle
F:=FE\®E>,G:=E|® EyonM := M; x M, by the equality

Fiie = Erqy @ E2.00, Go1,00) = Evgy ® Engy-

A special case for F occurs when one of the factors E; is a zero bundle, say E> = 0.
Then E; & 0 is the pullback of the bundle E1 on M obtained by using the projection
71 1 My x M and is denoted as the bundle 7z E1 on My x M>. Thus, E| @ E» is the
bundle 7 E @ 7w} E> on My x M>. Similarly, E1 ® E3 is the bundle n{E; ® 75 E>.
We now discuss a basic example used in this paper. Consider the trivial bundle
F(m) on P(C™) of rank m. Thus, F(m); = C™. The tautological line bundle T ()
on P(C™), customarily denoted by O(—1), is given by T (m)[x) = span(x) C C™.
Thus, T (m) is a subbundle of F(m). Denote by Q (m) the quotientbundle F (m)/ T (m).
Hence, rank Q(m) = m — 1. We have an exact sequence of the following bundles on
P(C™):
Elol:;ﬂ
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0— T(m)— F(m) — Q@m) — 0. 2.1

The dual of the bundle of T (m), also called the hyperplane line bundle, is denoted here
by H(m).[H (m) is customarily denoted by O(1) in the algebraic geometry literature. ]

2.3 Chern Polynomials

We now return to a holomorphic vector bundle £ on a compact complex manifold
M. The seminal work of Chern [5] associates with each & : E — M the Chern class
cj(E) for each j € [dim M]. One can view c;(E) as an element in H2/(M). The
Chern classes needed in this paper can be determined by the following well-known
rules [15].

One associate with E the Chern polynomial C(¢, E) = 1+ Z;aff Ec 7 (E)t/. Note
thatc;(E) = Ofor j > dim M. The total Chernclass c(E)is C(1, E) = Z;’io cj(E).

Consider the formal factorization C (¢, E) = HTE} Eq+¢ j(E)t). Then the Chern
character ch(E) of E is defined as z;ailf E g5i(E),
C(t, E) = 1 if E is a trivial bundle. The Chern polynomial of the dual bundle is

given by C(t, EV) = C(—t, E). Given an exact sequence of bundles
0—-E—F—G-—0,

we have the identity
C(t, F)=C@, E)C(1, G), (2.2)

which is equivalent to ¢(F) = c(E)c(G).

The product formula is the identity ch(E; ® E;) = ch(E1)ch(E3). Let f : M/ —
M .Thenc;(f*E),viewed as a differential form in H2/ (M), is obtained by pullback of
the differential form ¢ ; (E). In particular, for the pullback bundle 7;" | described pre-
viously, we have the equality c; (7 E1) = ¢;(E1) when we use the local coordinates
¢ = (&1, 82) on My x M>.

Assume that rank E = dim M = n. Then ¢, (E) = v(E)w, where o € H*(M)
is the volume form on M such that w is a generator of H**(M, Z). Then v(E) is an
integer, which is called the top Chern number of E.

Denote by s, the first Chern class of H (m), which belongs to HZ(P(C™)). Then s,]jl
represents the differential form AKs,, € HZ(P(C™)). Observe that syt = 0. Moreover
the algebra of all closed forms modulo the exact forms on P(C™) is Cls,, ]/ (s} ), i.e. all
polynomials in the variable s, modulo the relation 5]} = 0.So C(t, H(m)) = 1+ st
and C(¢, T (m)) = 1 — s,,t. The exact sequence (2.1) and the formula (2.2) imply that

1 =C@, F(m)) = C(t, T(m)C(t, Q(m)) = (1 = spt)C (1, Q(m)).

Therefore

1 m—1 o
Ct.Qum) = ;—— =1+ > st (2.3)

FoC'T
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2.4 Certain Bundles on Segre Product

Let my,...,my > 2 be given integers with d > 1. Use the notation m; =
(my,...,mi_y,mjy1,...,mg) for i € [d]. Consider the Segre product [T(m) :=
P(C") x ... x P(C™). Let w; : TI(m) — P(C™) be the projections on the
ith component. Then 7" H (m;), 7} Q(m;), ;" F (m;) are the pullback of the bundles
H(m;), Q(m;), F(m;) on P(C™) to I1(m), respectively.

Consider the map ¢y : IT(m) — P(C™) given by tm([X1], .. ., [Xq]) = [®ie[a1Xi]-
It is straightforward to show that ¢ is 1 — 1. Then X(m) := (n(IT(m)) C P(C™)
is the Segre variety. Let 7' (m) be a tautological line bundle on P(C™). The identity
span(® je(a1X;) = ®je[q)span(x;) implies that the line bundle «*7 (m) is isomor-
phic to ®je[d]n]’-‘T(mj). Hence the dual bundles (* H (m) and ®je[d]n;‘H(mj) are

isomorphic. Consider next the bundle f‘(mi) on I1(m), which is
T(m) == ®jecian iy} T (m;). (24)
Hence the dual bundle f(mi)v is isomorphic to ® je[d]\{i}n;‘H (m ;). In particular,

et (Tmi)Y) = c1(® jefan iy} H(m))). (2.5)
Define the following vector bundles on IT(m):

R(i,m) = Hom(T (m;), 7" Q(m;)), R(i,m)" =Hom(T (m), 7} F (m,)),
R(m) = @ic(q}RG, m), R;(m) := (BjcpapiyR(j, m)) & R(i, m)". (2.6)

Observe that

rank R(i,m) =rank R(i,m) — 1 =m; — 1, 2.7
rank R(m) = rank R;(m) — 1 = dim IT(m).

Since Hom(E1, E2) ~ E> ® EY', we obtain the following relations:

C(t, R m) = C (1, 7} Qmy) ® (T (m)") = C (¢, wf Q(my) & (® jeran iy} H(m))).
(2.8)
The formula (2.2) yields

C(t, R(m)) = H C(t, R(i, m)). (2.9)

ield]

Use the notation #; = c(7;"H(m;)). The cohomology ring H*(I1(m)) is
generated by 71,...,1;, with the relations tl.mi = 0, that is, H*(IT(m)) =~
Cltr, ..., 11/@", ..., £;*), and in what follows we interpret #; just as variables.
Correspondingly, the kth Chern class ¢ (E) is equal to pi (1, . . ., t4) for some homo-
geneous polynomial p; of degree k fork = 1, ..., dim I[T(m). [Recall that co(E) = 1
and ¢x(E) = 0 for k > dim IT(m).]

FoCT
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In what follows we need to compute the top Chern class of R(m). Since
rank R(m) = dim [1(m) and I[T(m) is a manifold, it follows that the top Chern class
of R(m) is of the form

m,~—l
cm) [T, (2.10)

ield]
where c(m) is an integer. Thus, c(m) = v(R(m)) is the top Chern number of R(m).
Lemma 3 Let R(i, m) and R(m) be the vector bundles on the Segre product T1(m)

given by (2.6). Then the total Chern classes of these vector bundles are given as
follows:

m;—1
c(RGm) = > (A" d= D 2.11)
j=0 keld1\li)
m;—1 )
c(Rm) = [ | D_a+iym=1d |. (2.12)
ield] \ j=0

m,—l

The top Chern number ofR(m) c(m), is the coefficient of the monomial Hle (d i

amp m;
i i
—I;

in the polynomial []; cld) 7= (In this formula of ¢(m) we do not assume the
identities t; "=0fori € [d])

27i

Proof Let ¢; := e™ be the primitive m;th root of unity. Then

m;—1 m;—1

H(l—{ikx)zl—x Zx
k=0

H (1—¢fx). @13)

ke[m;—1]

The second equality of (2.13) and (2.3) yield that

C,mrom =[] a-cuo.

ke[m;—1]

Hence, ch(} Q(m;)) = Zke[m,-fl] N Clearly, ch(H(mj)) = €'i. The product
formula for Chern characters yields

ch(®jeaniiymjH@mj)) = ez/‘e[d]\(i)fj — efi,
ch( Qmi) ® (® jetan i)™} Hm;)) = ch(r} Qmi)ch(®jetan iy} H(m )
= Z efi_fikti.
kelm;—1]
FoE"ﬂ
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Hence,
m,-—l
C(t,R(i,m)) = 1+ (& — tfpr) = ———— 1+ (7 — cFepyn),
(, R(i, m)) ke[ln:[_n( (G — ¢t 1+(ti_ti)tg( (G — ¢l

m;—1

(R(i,m)) = C(1, R(i, m)) = ;H(IH ti)
c(R(i = i =171 i Cz

k=0
1 mi 1 1
= ( + i)™ (1—¢kx) = A—(l-i—f')m"(l—xm"),
i = ! kl_!) K I+1 -1 l

where x = 1% Since ¢ = 0, we deduce

i

) (L+iym (A +i)m—! A1 z""
c(R 1,m)) = — = — 1+t mi x[’
(R ) 1—t+1 1—x ( ) =0

mi—1 mi—1

=45t Y xr= > a1
p=0 j=0

This establishes (2.11). Equation (2.12) follows from formula (2.2). Note that the
degree of the polynomial in t := (7, ...,?;) appearing on the right-hand side of
(2.11) is m; — 1. The polynomial Zm’ Am‘_l It = % is the homogeneous

1

polynomial of degree m; — 1 appearing on the right-hand side of (2.11). Hence, the
homogeneous polynomial of degree dim H(m) of the right-hand side of (2.12) is

A m;

[Ticia % Assummg the relations ¢/ = 0,i € [d], we obtain that this polyno-
mial is ¢(m) Hie[ d] l. ' This is equivalent to the statement that c(m) is the coeffi-
cient of ) ]_L.E[ d] tim ~!in the polynomial ]_[ —li . where we do not assume the

relations timi =0,i € [d]. O

2.5 Bertini-Type Theorems

Let M be a compact complex manifold and E a holomorphic bundle on M. A holo-
morphic section o of E on an open set U C E is a holomorphic mapo : U — E,
where E is viewed as a complex manifold. Specifically, let U;, i € [N] be the finite
cover of M such that the bundle E restricted t0 Ui is U; x C* with the standard basis
[eri,....exil, as in §2.2. Then 0 (¢) = Zl 10.i(0)e;; for ¢ € U NU;, where
0,i(¢ ) J € [k] are analytic on U N U;. o is called a global section if U = M. Denote
by HO(E) the linear space of global sections on E. A subspace V C HY(E) is said to
generate E if V(¢), the value of all sections in V at each ¢ € M, is equal to E;.

The following proposition is a generalization of the classical Bertini’s theorem
in algebraic geometry, and it is a standard consequence of the generic smoothness
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theorem. For the convenience of the reader we state and give a short proof of this
proposition.

Theorem 4 (“Bertini-type” theorem) Let E be a vector bundle on M. Let V. C H°(E)
be a subspace that generates E. Then the following statements hold:

1. Ifrank E > dim M for the generic o € V, then the zero locus of o is empty.

2. Ifrank E < dim M for the generic o € V, then the zero locus of o is either smooth
of codimension rank E or it is empty.

3. Ifrank E = dim M, then the zero locus of the generic o € V consists of v(E)
simple points, where v(E) is the top Chern number of E.

Proof We identify the vector bundle E with its locally free sheaf of sections; see [8,
B.3]. We have the projection E 5 M, where the fiber 77! (¢) is isomorphic to the
vector space E;. Let [1 C E be the zero section. By assumption we have a natural
projection of maximal rank

M x V-2 E.

Let Z = p~!(IT); then Z is isomorphic to the variety {({, o) € M x V|o (¢) = 0} and
it has dimension equal to dim M + dim V — rank E. Consider the natural projection
Z-15V; now Vo € V the fiber g~ (o) is naturally isomorphic to the zero locus of
o. We have two cases. If ¢ is dominant (namely the image of ¢ is dense), then by the
generic smoothness theorem [12, Corollary I1I 10.7] ¢! (&) is smooth of dimension
dim X — rank E for generic o.

If g is not dominant (and this always happens in the case rank £ > dim M), then
g~ (o) is empty for generic o. This concludes the proof of the first two parts. The
third part follows from [8, Example 3.2.16]. O

For our purposes we need the following refinement of Theorem 4.

Definition 5 Let 7 : E — M be a vector bundle on a smooth projective variety M
such that rank E > dim M. Let V C HY(E) be a subspace. Then V almost generates
E if the following conditions hold. Either V generates E (in this case k = 0) or
there exists k > 1 smooth strict irreducible subvarieties Y, ..., Y; of M satisfying
the following properties. First, on each Y; there is a vector bundle E;. Second, after
assuming Yo = M and E(y = E, the following conditions hold:

1. rank E; > dim Y; for each j > 1.

2. Letn; : Ej — Y;,and forany i, j > 0 assume that Y; is a subvariety of Y;. Then
E; is a subbundle of E; 1

3. V(§) C (Ej); for¢ €Y;.

4. Denote by P; C [k] the set of all i € [k] such that Y; are strict subvarieties of Y;.
Then V(¢) = (Ej){ for¢ e Y; \UierYi~

Theorem 6 Let E be a vector bundle on a smooth projective variety M. Assume that

rank E > dim M. Let V. C HY(E) be a subspace that almost generates E. Then the
following conditions hold:

EOE';W
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1. Ifrank E > dim M, then for a generic o € V the zero locus of o is empty.
2. Ifrank E = dim M, then the zero locus of a generic o € V consists of v(E) simple
points lying outside U jc (i)Y j, where v(E) is the top Chern number of E.

Proof As in the proof of Theorem 4 we consider the variety
Z={(,0) e M xVl]o(¢) =0}
We consider the two projections

zZ

P N\4
M A\

The fiber ¢~ (v) can be identified with the zero locus of v. If ¢ € Y4, then, by
4 of Definition 5, the fibers p~!(¢) can be identified with a subspace of V having
codimension rank Ej. It follows that the dimension of p_l (Yy) is equal to dimV —
rank Ej + dim Y, which, by / of Definition 5, is strictly smaller than dim V if k > 1.
Let Y = Ug>1Yk. Then p~ (X \ Y) C Z is a fibration and it is smooth. Call g the
restriction of ¢ to p~'(X \ Y). If rank E > dim M, then we obtain that g7 is not
dominant and the generic fiber ! (v) is empty. If rank E = dim M, by the generic
smoothness theorem applied to 7: p~!(X \ ¥) — V, we obtain that there exists
Vo C 'V, with V{ open, such that the fiber 6_1_1 (v) is smooth for v € Vj.

Moreover, the dimension count yields that ¢(p~'(Y)) is a closed proper subset of
V (note that ¢ is a proper map). Call V; = V \ ¢(p~!(Y)), again open.

It follows that for v € Vy N V; the fiber q’l (v) coincides with the fiber 6_1_1 (v),
which is smooth by the previous argument, given by finitely many simple points. The
number of points is v(E), again by [8, Example 3.2.16]. O

3 Number of Singular Vector Tuples of a Generic Tensor

In this section we compute the number of singular vector tuples of a generic tensor
7T € C™. In what follows we need the following two lemmas. The first one is well
known, and we leave its proof to the reader. Denote by Q,, := {x € C",x'x = 0}
the quadric of isotropic vectors.

Lemma 7 Let x € C™ \ {0}, and use the notation U := C" /[x]. Fory € C" denote
by [[yl] the element in U induced by y. Then the following statements hold:

1. Any linear functional g : U — C is uniquely represented by w € C™ such that
w'x = 0 and g([[y]]) = W'y. In particular, if x € Q,,, then the functional
g : U — C given by g([[yl]) = Xy is a linear functional.

2. Suppose that x & Qn, and a € C is given. Then for each'y € C™ there exists a
unique z € C™ such that [[z]] = [[y]] and X"z = a.

Lemma 8 Letm = (my,...,mg) € N¢. Assume that x; € F™ \ {0},y; € F" are
given fori € [d].

Elol:;ﬂ
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1. There exists T € F™ satisfying
T X Qjelan\iyXj = Yis 3.1
for any i € [d] if and only if the following compatibility conditions hold:
x;ryl =...= x;—yd. 3.2)

2. Let P C [d] be the set of all p € [d] such that X, is isotropic. Consider the
following system of equations

([T x ®jeanmx;11 = [[y/1] (3.3)

foranyl € [d]. Then there exists T € F™ satisfying (3.3) if and only if one of the
following conditions holds:

a |P| <1, i.e., there exists at most one isotropic vector in {X1, ..., X4}.
b |P| =k > 2. Assume that P = {iy, ..., ix}. Then
T T T
X, Yip =X, ¥i, = ... =X, Vi, 3.4

3. Fixi € [d]). Let P C [d]\{i} be the set of all p € [d]\ {i} such that X, is isotropic.
Then there exists T € F™ satisfying condition (3.1) and conditions (3.3) for all
I € [d]\ {i} if and only if one of the following conditions holds:

a |P|=0.
b |Pl=k—12>1.Assume that P = {iy, ..., ix_1}. Letix = i. Then (3.4) hold.

Proof 1. Assume first that (3.1) holds. Then 7 X Q@ j¢[q1X; = Xl.Ty,- fori € [d]. Hence,
(3.2) holds. Suppose now that (3.2) holds. We now show that there exists 7 € F™
satisfying (3.1).

Let U; = [u,,q,,-];”;qzl € GL(m,,F) for j € [d]. Let U := ®ie[a)U;. Then U
acts on '™ as a matrix acting on the corresponding vector space. Thatis,let7’ = U7,
and assume that 7 = [;,, ;1. 7' = [1" j,,]' Then

.....

/ . )
Ui = Z Wit 1 Ujgig.dliy,...igs  J1 €M1l ..., ja € [mg].
i1€lmil,....ig€lmq]l

The conditions (3.1) for 7’ become
T X @jepaniX; =vj, i €ldl, xj=U")"'x, yj=Uyi. i €[d]. (3.5)

Clearly, X;'—yi = (X;)Tyg fori € [d]. Since x; # 0, there exists U; € GL(m;, F) such

that (Ul-T)_lx,- =e; =(1,0,..., 0)T fori € [d]. Hence, it is enough to show that
(3.1) is satisfied for some 7 if x; = e; 1 fori € [d] if eLyl =...= e;—’lyd. Let
Yi = s .- ymi,i)Tfori € [d]. Thenconditions (3.2) imply thaty; 1 = ... = y1.4.
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Choose a suitable T = [t ;,] as follows. f;,
tiy,....iy = 0 otherwise. Then (3.1) holds.

.....

2. We now consider system (3.3). This system is solvable if and only if we can find
t1,...,tg € IF such that

.....

= yij,j ifik = 0 for k ;ﬁ j,

X{ (y1 +61%1) = ... =X, (Ya + taXa). (3.6)

—xTv;

Suppose first that x; & Oy, fori € [d]. Fixa € F. Choose t; = % fori € [d].

Hence system (3.3) is solvable. Suppose next that X; € Qy,;. Then x;r (yj +tjx;) =

XTyj. Assume that P = {j}. Leta = X;ryj. Choose #;,i # j as above to deduce that
(3.6) holds. Hence, (3.3) is solvable.

Assume finally that k > 2 and P = {i1, ..., ix}. Equation (3.6) yields that if (3.3)

is solvable, then (3 4) holds. Suppose that (3.4) holds. Leta = x-Ty,-1 =...= xly,-k.

Fori ¢ Plett; = X7 ’X L to deduce that condition (3.6) holds. Hence, (3.3) is solvable.

3. Consider Eq. (3 1) and Egs. (3.3) for [ € [d] \ {i}. Then this system is solvable
if and only if system (3.6) is solvable for #;, = 0 and some #; € F for [/ € [d] \ {i}.

-
Leta = xiTy,-. Assume that |P| = 0. Choose #; = ag—;[y' for [ € [d]\ {i} as
1
above to deduce that this system is solvable. Assume that P = {iy,...,ix—1} for
k > 2. Suppose this system is solvable for some 7 € F™. Then a = x.Tyj for each
j € P.Leti; :=i.Hence (3.6) holds. Conversely, assume that (3.6) holds. Choose

e
= % forl ¢ P U{i}. Then (3.6) holds. Hence, our system is solvable. O
1 X1

Lemma 9 Ler R(i, m) and R(m) be the vector bundles over the Segre product T1(m)
defined in (2.6). Denote by HO(R(, m)) and HY(R(m)) the linear space of global
sections of R(i, m) and R(m), respectively. Then the following conditions hold:

1. Foreachi € [d] there exists a monomorphism L; : C™ — HO(R(i, m)) such that
L;(C™) generates R(i, m) (see §2.5).
2. L= (Ly,...,Ly)isamonomorphism of the direct sum of d copies of C™ (denoted
by @4C™) to HO(R(m)), which generates R(m).
3. Let § : C™ — @9C™ bpe the diagonal map §(T) = (T,...,T). Consider
([x1], ..., [xg]) € TI(m).
(a) If at most one of Xy, . . ., X4 is isotropic, then L o §(C™) [as a space of sections of
R(m)] generates R(m) at ([x1], ..., [Xq4])-
(b) Let P C [d] be the set of all i € [d] such that X; is isotropic. Assume that P =

{i1, ..., i}, wherek > 2. Let gx, be the linear functional on theﬁberofnf; Q(mip)
at ([x1], ..., [x4]) as defined in Lemma 7 for p = 1,...,k. Let U(P) be the
subspace of all linear transformations t = (tq, .. rd) € R(m)( [xi1,.[xg])> Ti €

R(, m)([x,] ..... [x41)» i € [d] satisfying
gx;, (i) (®jeani)X))) = - - = 8x;, (T (O jefan\(i)X)))- (3.7

Then L o 8(T)([x1],...,[x4]) € U(P) for each T € C™. Furthermore, L o
S(CM(Ix1l, ..., [xq]) = U(P).
Fol:'ﬂ
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Proof ForT € C™ wedefinethe section L; (7)(([x1], ..., [Xz])) € R(, m)(x,],....[xs])
as follows:

Li(D)((x1], ..., Xa D) (®jeraniiyX;) == [T % QjeraniyX;1]- (3.3)

It is straightforward to check that L; (7) is a global section of R(i, m).

Assume 7 # 0. Then there exist v; € C"/, j € [d] such that 7 x ®je[q1v; # 0.
Hence, w; := 7 X ®jepap\(i}v; € C™ \ {0}. Let x; = v; for j # i. Choose x; €
C™ \ {[w;]}. Then L;(T)(([x1], - .., [X4])) # O. Hence, L; is injective.

We now show that L; (C™) generates R(i, m). Let y; € C" . Choose g; € C™
such that g;!—Xj = 1for j € [d]. SetT = (®j€[i_1]gj) Ry ® (®j€[d]\[i]gj). Then
Li(T)((Ix1], - .., [x4])) = [ly:]]. This proves .

Define L((7y, ..., 7a))(([X1], . . ., [Xa])) = @ic(a)Li (7)) (([x1], ..., [X4])). Then
L((Ty,...,75)) € H°(R(m)). Clearly L is a monomorphism. Furthermore,
L(®4Ccm) generates R(m). This shows 2.

Cases 3a and 3b of our lemma follow from parts 2a and 2b of Lemma 8, respectively.

O
Kiinneth’s formula [14] yields the equalities
L;(C™) =H"(R(i,m)), i € [d], L(®'C™) = H(R(m)). 3.9)
The following result is a corollary to Lemma 8.
Corollary 10 Assume that ([x1], ..., [Xq]) € I1(m) is a singular vector tuple of a

tensor T corresponding to a nonzero singular value. Then one of the following holds:

1. All x; are isotropic.
2. All x; are nonisotropic.

For 7 € R™ with a real singular vector tuple ([x1],...,[Xs]) € Ir(m) the
condition []; .4y i = 0 implies that ; = O for each i. Indeed, since x; € R™ \ {0},
it follows from (1.2) that A; = % for each i € [d]. Thus Ay = 0 for some

i A

k € [d] yields that 7 x ® je[41X; = 0. Hence, each A; = 0.

However, this observation is not valid for complex tensors, already in the case of
complex-valued matrices (d = 2); see subsequent example. It is straightforward to
see that a singular vector pair ([x1], [x2]) of A € C™1*2 is given by the following
conditions:

Ax) = AiX), ATx; =Axp, x; € C™\ {0}, 1, €C, i=1,2. (3.10)

Consider the following simple example:

o[t e[l

Then ATx; = x5, Axp = 0,ie, A = 1,2, = 0.
EOE';W
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Lemma 11 Let 7 € C™, and consider the section T:=Lo 8(T) € HY(R(m)). We
have that ([x1], ..., [Xq]) € TI(m) is a zero of T if and only if ([x1], ..., [X4]) is a
singular vector tuple corresponding to T .

Proof Suppose first that ’f’(([xl], ..., [x4])) = 0. Then L;(7)(([x1],...,[xq])

is a zero vector in the fiber R(i,m) at ([x1],...,[Xgz]). Suppose first that 7 x
(®jeaniiyxj) # 0. Then T x (®jeanii}Xj) = A;x; for some A; # 0. Other-
wise, the previous equality holds with A; = 0. Hence, ([x1], ..., [X4]) is a singu-
lar vector tuple corresponding to 7. Conversely, it is straightforward to see that if
([x1], - - -, [x4]) is a singular vector tuple corresponding to 7, then the section T
vanishes at ([x1], ..., [Xg]) € [T(m). O

We now present the proof of Theorem 1, which was stated in § 1.

Proof of Theorem 1. Let V = L o8 (C™) be the subspace of sections of R(m) given
by tensors (embedded diagonally). We now show that V almost generates R(m) as
defined in Definition 5. First, rank R(m) = dim IT(m). Second, let 29} be the set of all
subsets of [d] of cardinality k foreach k € [d]. Leta € 2k Define ¥y = X x... Xy,
where X; = P(Qy,;) ifi € o and X; = P(C™) otherwise. Clearly, Y, is a strict smooth
subvariety of IT(m) of codimension k. Note that Yg C Y, if and only if @ C B. We
now define the subbundle E, of 71 (¥,). If « € 21411 then E, = 7~ (¥,). Assume
now thatk > 1. Leto = {iy, ..., ix}. Let ([x1], ..., [Xq]) € Y. Thus, x;, € Qmil for
I =1,...,k. Then the fiber E, at ([x1], ..., [Xg]) is the set of all vectors satisfying
(3.7). Note that rank E, = dim Y, + 1. Assume that @ C B. Clearly, Eg is a strict
subbundle of 7, Ly, ). Hence conditions / and 2 of Definition 5 hold. Lemma 9
implies that conditions 3 and 4 of Definition 5 hold. Theorem 6 implies that for a
generic 7 € C™ the section L o §(7) has a finite number of simple zeros. Moreover,
this number is equal to the top Chern number of R(m). Lemma 3 yields that the top
Chern number of R(m) is ¢(m).

It remains to show that a generic 7 € C™ does not have a zero singular value.
Fix i € [d], and consider the set of all 7 € C™ that have a singular vector tuple
(x1], ..., [xg]) € TI(m) with A; = 0.

Let R(i,m) and R;(m)’ be defined in (2.6). Similar to definition (3.8), we can
define a monomorphism L} : C™ — HO(R(i, m)’) by the equality

LAT)(([X1], ... [Xa D) ®jeraniiyXj) =T X Qjefanii}X;-

LetLi = (Ly....,Li—1. L}, Lis1..... La) : ®jeq)C™ — HO(R;(m)").
We claim that L; o §(C™) almost generates R;(m)’. Clearly, rank R;(m)" =

dim IT(m)+ 1. Recall that a vector (7, ..., T4) € R; (m)z[xl] xaD) is of the form

tj i Tmj) — 77 Q(m) for j € [d]\ (i}, = :T@m) — xfF(m;). (3.11)

Let @ C [d]\ {i} be a nonempty set. Then ¥y = X x ... x Xy, where X; =
P(Qw;)if j € @ and X; = P(C™i) if j ¢ «. [Note that X; = P(C™).] We now
define the vector bundles 7, : Ey — Y. Let 7 : R;(m)’ — I1(m). Assume that
o ={i1,...,ig—1} C [d]\ {i}, where k — 1 > 1. Then E, is the subbundle 7N (Yy)
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defined as follows. For ([x1], ..., [Xg]) € Y, it consists of all sections of the form
(3.11) satisfying a variation of the condition (3.7):

gx, (T (®jeraninX)) = - - = &, T (@ jeran i 1)X))) = X T (® jerani)X))-

Note that rank E, = dim Y, + 1. Clearly, the conditions of /-2 of Definition 5
hold. Part 3 of Lemma 8 implies conditions 3 and 4 of Definition 5. Theorem 6 yields
that a generic section of L; 08(7") does not have zero. Thus, 7”does not have a singular
vector tuple satisfying (1.2) with A; = 0. Hence, a generic tensor 7 € C™ does not
have a zero singular value.

Clearly, a generic 7 € R™ has exactly c(m) simple complex-valued singular vector
tuples. Only some of those can be realized as points in ITr (m). O

We first observe that Theorem 1 agrees with the standard theory of singular values
for m x n real matrices. That is, a generic A € R™*" has exactly min(m, n) nonzero
singular values all of which are positive and pairwise distinct. The corresponding
singular vector pairs are simple.

We now point out a matrix proof of Theorem 1 for d = 2. Let O(m) c C"™*™
be a variety of m x m orthogonal matrices and Dy, , C C"™*" the linear subspace of
all diagonal matrices. Consider the trilinear polynomial map F : O(m1) X Dy m, X
O(mp) — C™>™2 given by (U1, D, Us) +— U1DU2T. Singular value decomposition
yields that any A € R™!*™2 ig of the form U} DU2T , where Uy, U are real orthogonal
and D is a nonnegative diagonal matrix. Hence, F/(O(m1) X Dy, m, x O(m2)) =
R™1*™M2 Therefore, the image of F is dense in C"™! "2, Hence, a generic A € C™1*"2

is of the form UlTDUz. Furthermore, we can assume that D = diag(Ay, ..., A),[ =
min(my, my), where the diagonal entries are nonzero and pairwise distinct. Assume
that x;, y; are the ith columns of Uj, U; respectively fori = 1, ..., [. Then ([x;], [yi])
is a simple singular vector tuple corresponding to A; fori =1, ...,[.
We list for the convenience of the reader a few values ¢(m). First,
c2,...,2)=d! (3.12)
d
Indeed ﬂ =H+4) =D tj. Therefore, []; ﬂ = )4,
S jeld1t > Ljera1 75, jeldti
Clearly, the coefficient of 71 . . . #; in this polynomial is d!.
Second, we list in Table 1 the first values in the case where d = 3. From

this table one sees that c(mi, my, m3) stabilizes for mz3 > m; + mp — 1, and
the case where equality holds is called the boundary format case in the theory of
hyperdeterminants ([9]). It is the case where a “diagonal” naturally occurs, as in
Fig. 1:

In the d = 2 case, a boundary format means a square.

4 Partially Symmetric Singular Vector Tuples

For an integer m > 2 let m*d .= (m,...,m). Then T € IE"’"Xd is called a d-cube,
———
d
or simply a cube tensor. Denote by S?(F™) C "’ the subspace of symmetric
EOE';W
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Table 1 Values of c(dy, d, d3)

dy,dy, d3 c(dy, da, d3)

2,2,2 6

2,2,n 8 n>3
2,3,3 15

2,3,n 18 n>4
2,4,4 28

2,4,n 32 n>5
2,5,5 45

2,5, n 50 n=>6
2,m,m+1 2m?

3,3,3 37

3,3,4 55

3,3,n 61 n>5
3,4,4 104

3,4,5 138

3,4,n 148 n=>6
3,5,5 225

35,6 280

35.n 295 n>7
3,m,m—+2 %m3—2m2+%m

4,4,4 240

4,4,5 380

44,6 460

44.n 480 n>17
4,5,5 725

4,5,6 1030

4,57 1185

4,5n 1220 n=>8
55,5 1621

5,5,6 2671

5,57 3461

5,58 3811

5,5.n 3881 n>9

Fig. 1 A diagonal in
three-dimensional case
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tensors. For 7 e S?(IF™) it is natural to consider a singular vector tuple (1.2) where
X] =...=Xg = X [16, Formula (7), with p = 2]. This is equivalent to the system

Tx@ Ix=xx, x#0. 4.1

Here ®¢~!x := x ® ... ® x. Furthermore, the contraction in (4.1) is on the last d — 1
d—1
indices. Equation (4.1) makes sense for any cube tensor 7 € cm [16,19,22]. For
d = 2, x is an eigenvector of the square matrix 7. Hence, for a d-cube tensor (d > 3)
x is referred to as a nonlinear eigenvalue of 7. Abusing slightly our notation we
call ([x],...,[x]) € I'I(de) a symmetric singular vector tuple of 7. [Note that if
T e S4(C™), then ([X], ..., [x]) isa proper symmetric singular vector tuple of 7'.]
Let sg_1(7) = [tl.’1 ..... i) be the symmetrization of a d-cube 7 = [t;,, .. ;,] with
respect to the last d — 1 indices

1
tl/l i i Z liy, joseees - 4.2)

iqd = / ]
plin, ... 0iq) U jd =2 i}

.....

Here p(ia, ..., ig) is the number of multisets { j2, . . ., jq} thatareequal to {iz, . .., ig}.
[Note that for d = 2, s1(7) = 7.] It is straightforward to see that

T x @y =s54_1(T) @ 'y forally. 4.3)

Hence, in (4.1) we can assume that 7 is symmetric with respect to the last d — 1
indices.

As for singular vector tuples we view the eigenvectors of 7 as elements of P(C™).
It was shown by Cartwright and Sturmfels [3] that a generic 7 € ™ has exactly
% distinct eigenvectors. (This formula was conjectured in [19].)

The aim of this section is to consider partially symmetric singular vectors and their
numbers for a generic tensor. This number will interpolate our formula ¢(m) for the
number of singular vector tuples for a generic 7 € C™ and the number of eigenvalues
of generic 7 € cm given in [3].

Letd = w1 + ...+ w), be a partition of d. Thus, each w; is a positive integer. Let
wp =m{=0and w = (w1, ..., wp), and denote by m(w) the d-tuple

m(w)=(m’l,...,m’l,...,m’P,...,m;,):(ml,...,md). 4.4)

w] wp

Denote by S®(F) c F™@) the subspace of tensors that are partially symmetric with

respect to the partition . That is, the entries of 7 = [#;, _;,] € S®(F) are invariant

if we permute indices in the kth group of indices [Z];:() ;]\ [Zl;;(l) wjlfork € [p].

Note that S?(F) = S¢(F™)) for p = 1 and S?(F) = F™ for p = d. We call
o= (1,...,1),1i.e., p =d, atrivial partition.

EOE';W
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For simplicity of notation we let S® := S®(C). Assume that 7 € S®. Consider a
singular vector tuple ([x1], ..., [X4]) satisfying (1.2) and w-symmetric conditions

k k=1
x; =z forj € |:Za)lm;:| \ [Zw,m::| , ke [pl. 4.5)
i=0

i=1

We rewrite (1.2) for an w-symmetric singular vector tuple ([x1], ..., [X4]) as follows.
Define
-0 .
Bielp) (®™2) = @ g 1434

iZo @wim;)

x;, fork € [p]. 4.6)

Hence our equations for an @-symmetric singular vector tuple for 7 € S¢ is given by
T X Qierp)(®” " z)) = g k € [pl. 4.7)

In view of the definition of ®;¢| p|(®°’/_8’k z;), we agree that the contraction on the
left-hand side of (4.7) is done on all indices except the index 1 + Zf;l wimg. As for
the d-cube tensor, system (4.7) makes sense for any 7 € C™®@),

Let m' := (m], ...,m/l,). We call ([z1],...,[z,]) € IT(m') satisfying (4.7), a
w-symmetric singular vector tuple of 7 € Cm@®@) We say that ([z1], ..., [zp]) corre-
sponds to a zero (nonzero) singular value if ]_[lp _1 2 =0(0).

The aim of this section is to generalize Theorem 1 to tensors in S.

Theorem 12 Letd > 3 be aninteger, and assume that @ = (w1, . . ., wp) is a partition
of d. Let m(w) be defined by (4.6). Denote by S® C C™@) the subspace of tensors
partially symmetric with respect to @. Let c(m’, @) be the coefficient of the monomial

po il

i1 L in the polynomial

/ /

t"”i _ t’"f
I s = (o= Dt > wjty. i elpl. (4.8)
ie[p] ! jelp\i}

A genericT € S® has exactly c(m’, w) simple w-symmetric singular vector tuples that
correspond to nonzero singularvalues. A generic’T € S® does not have a zero singular
value. In particular, a generic real-valued tensor T € Sp has at most c(m’, ) real
singular vector tuples, and all of them are simple.

Proof The proof of this theorem is analogous to the proof of Theorem 1, so we
point out briefly the needed modifications. Let H(m}), Q(m}), and F(m}) be the
vector bundles defined in §2.4. Let 7; be the projection of IT(m’) on the component
P(C™). Then nH(m}), n}Q(m}), w} F(m}) are the pullbacks of the vector bundles
H(m}), Q(m}), F(m}) to IT(m’), respectively. Clearly, c(zH(m;)) = 1+ t;, and
moreover c(®k7ri*H(m;)) =1 + kt;, where t,.m" =0.

We next observe that we can view IT(m’) as a submanifold of IT(m(w)) using the
embedding

n:Mm) - Mm@)), n((z1l,...,[z,)) = (x1], ..., X)), 4.9)
Elol:;ﬂ
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where we assume relations (4.5). Let R(i, m’) and R(z "Y' be the pullbacks of
R(j,m) and R(j, m)’, respectively, where j = 1 + Zk _o wkmy, [see (2.6)]. Then

R(i,m'):=Hom(n*T (m;), 7 Q(m})), R, m’) :=Hom(y*T (m;), 7} F(m})),
RmM):=®jc(p R, m’), Ri(m) := (@jep)i) R, m)) @ R(i,m’).  (4.10)

Note that

rank R(i,m’) = rank R(i,m’) — 1 =m} — 1,
rank R(m’) = rank R;(m’)’ — 1 = dim I1(m").

As in the proof of Lemma 3 we deduce that the top Chern class of R(i,m’) is given
by the polynomial

Z Z (@ — &) 1", e lpl, @.11)
Jj=0 kelpl

where we assume the relations tl.m "= 0fori € [p]. Use (2.2) to deduce that the top
Chern number of R(m') is c(m’, ®).

From the results of §3, in particular Lemma 9, we deduce that there exists
a monomorphism L; : C™® _— HO(R(i,m’)). Furthermore, L;(C™®) gen-
erates R(i,m). Let L = (L1,...,Lp) : ®ic[pC™@ — H°(R(m’)). Then
L(®i¢[ p](Cm(“’)) generates H(R(m')). Let § : C™® g? C™@) be the diagonal map.
We claim that L o § almost generates HO(R(m’)).

First, we consider a special case of Lemma 8 for 7 € S®. Here we assume that
X1, ...,Xg and yq, ..., yg satsify the conditions induced by the equalities (4.5):

X| =... =Xy (Z21), ..., Xd—w,+1 = ... = Xg = (Zp),

y1:...=yw1(=w1),...,yd,wp+1:...:ydz(wp).

Then all parts of the lemma need to be stated in terms of z1, ..., z, and wi, ..., w,.
Second, we restate Lemma 9 for 7 € S and xq, ..., Xy and yy, ..., yq of the pre-
ceding form. Third, let Y, C IT(m’), where « are nonempty subsets of [p], be the
varieties defined in the proof of Theorem 1. The proof of Theorem 1 yields that
L o0 §(S?®) almost generates Ié(m’ ) with respect to the varieties Y. Theorem 6 yields
thata generic 7 € S has exactly c(m’, ) simple w-symmetric singular vector tuples.

The proof that a generic 7 € S does not have a zero singular value is analogous to

the proof given in Theorem 1. O
Remark 13 In the special case where @ = (1, 1, ..., 1), we have c(m’, ®)) = c(m’),
and Theorem 12 reduces to Theorem 1. In the case where @ = (d), we have c(m, @) =
d-n"-

T and Theorem 12 reduces to the results in [3]. This last reduction was already
performed in [20].

FoE'ﬂ
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Lemma 14 In the case where @ = (d — 1, 1), we have

mi—1lmp—1 ,.
cmr,m), =1,y =3 (;)(d—Z)f(d— i,
i—0 j=0

Ifmy < mo, then we have ¢((my, m2), (d — 1, 1)) = 24371

Ifmy = my+1, then we have c((my, mz), (d—1, 1)) = 30 (g —pym=1,

We now compare our formulas for the 3 x 3 x 3 partially symmetric tensors.
Consider first the case where ¢((3), (3)) = % =7, i.e., the Cartwright—Sturmfels
formula. That is, a generic symmetric 3 x 3 x 3 tensor has 7 singular vector triples of
the form ([x], [x], [x]). Second, consider a generic (2, 1) partially symmetric tensor.
The previous lemma gives ¢((3, 3), (2, 1)) = 13, i.e., a generic partially symmetric
tensor has 13 singular vector triples of the form ([x], [x], [y]). Third, consider a generic
3 x 3 x 3 tensor. In this case, our formula gives ¢(3, 3, 3) = ¢((3, 3, 3), (1, 1, 1)) =37
singular vector triples of the form [x], [y], [z].

Let us assume that we have a generic symmetric 3 x 3 x 3 tensor. Let us estimate
the total number of singular vector triples it may have, assuming that it behaves as
a generic partially symmetric tensor and a nonsymmetric one. First it has 7 singular
vector triples of the form [x], [x], [x]. Second, it has 3 - 6 = 18 singular vector triples
of the form [x], [y], [z], where exactly two out of these three classes are the same.
Third, it has 12 singular vector triples of the form [x], [y], [z], where all three classes
are distinct. Note also that the number 37 was computed, in a similar setting, in [18].

The previously discussed situation indeed occurs for the diagonal tensor 7 =
[ail,i28i2i3] € (C3X3X3'

We list in Table 2 the singular vector triples of this tensor 7. The first 7 singular
vector triples have equal entries, and they are the ones counted by the formula in [3].
The first 7+ 6 = 13 singular vector have the form ([x], [x], [y]). Any singular vector
of this form gives 3 singular vector triples ([x], [x], [y]), ([x], [y], [x]), ([y], [x], [x]).
Note that six singular vector triples have zero singular value, but this does not corre-
spond to the generic case; indeed, for a generic tensor all 37 singular vector triples
correspond to a nonzero singular value.

In the case of 4 x 4 x 4 tensors, the diagonal tensor has 156 singular vector triples
corresponding to a nonzero singular value and infinitely many singular vector triples
corresponding to zero singular values. These infinitely many singular vector triples
fill exactly 36 projective lines in the Segre product P(C*) x P(C*) x P(C*), which
“count” in this case for the remaining 240 — 156 = 84 singular vector triples.

5 A Homogeneous Pencil Eigenvalue Problem

By X = (x1,..., %) € C" denote x°@~1 := (x¢~1, . xd 1T Let T ¢ o,
The eigenvalues of 7 satisfying (4.1) are called the E-eigenvalues in [22]. The homo-
geneous eigenvalue problem introduced in [16,17,21], sometimes referred to as N-
eigenvalues, is

T x @ Ix =D x=£0. (5.1

FoCT
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Table 2 List of 37 singular
vector triplesof a3 x 3 x 3

diagonal tensor (1,0,0)(1,0,0)(1,0,0)
(0,1,0)(0,1,0)(0,1,0)
(0,0,1)(0,0,1)(0,0,1)
(1,1,0)(1,1,0)(1,1,0)
(1,0,1)(1,0,1)(1,0,1)
(0,1,1)(0,1,1)(0,1,1)
(1,1,1)(1,1,1)(1,1,1)
(1,1,0)(1,—1,0)(1,—1,0)
(1,0,1)(1,0,—1)(1,0,—1)
(0,1,1)(0,1,—1)(0,1,—1)
(1,1,1)(1,1,—1)(1,1,—1)
(1,1,1)(1,—1,1)(1,—1,1)
(1,1,1)(—1,1,1)(—1,1,1)
(1,0,0)(0,1,0)(0,0,1)
(1,1,—1)(1,—1,1)(—1,1,1)

(x0,x1,x2)(y0,y1,y2)(z0,21,22) Singular value

3 permutations
3 permutations
3 permutations
3 permutations
3 permutations

3 permutations

O = ke

6 permutations

|
—_

6 permutations

LetS € C"*. Thena generalized d — 1 pencil eigenvalue problem is
T x @4 Ix =18 x @7 'x. 5.2)

For d = 2 the preceding homogeneous system is the standard eigenvalue problem for
a pencil of matrices 7 — AS.
A tensor S is called singular if the system

Sx @ x=0 (5.3)

has a nontrivial solution. Otherwise, S is called nonsingular. It is very easy to give an
example of a symmetric nonsingular S [7]. Let wy, . . ., W, be linearly independent in
C™".ThenS =Y., ®?w; is nonsingular. The set of singular tensors in C”" “is given
by the zero set of some multidimensional resultant [9, Chapter 13]. It can be obtained
by elimination of variables. Let us denote by res,, 4 € (C[C’"Xd] the multidimensional
resultant corresponding to system (5.3), which is a homogeneous polynomial in the
entries of S of degree w(m,d) = m(d — )™=, see formula (2.12) of [9, Chapter
9]. Denote by Z(res,, 4) the zero set of the polynomial res,, 4. Then res,, 4 is an
irreducible polynomial such that system (5.3) has a nonzero solution if and only if
resy, 4(S) = 0. Furthermore, for a generic point S € Z(res;; 4) system (5.3) has
exactly one simple solution in P(C™). The eigenvalue problem (5.2) consists of two
steps. First, find all A satisfying res,, 4(AS — 7) = 0. Clearly, res;, 4(AS — T) is a
polynomial in A of degree at most p(m, d). (It is possible that this polynomial in X is a
zero polynomial. This is the case where there exists a nontrivial solution to the system
S lx=Tg! x = 0.) Then one needs to find the nonzero solutions of the

FoC'T
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system (AS — 7) ®%~! x = 0, which are viewed as eigenvectors in P(C™). Assume
that S is nonsingular. Then res,, ;(AS — 7) = resm,d(S))L“(m’d)—l— polynomial in A
of degree at most w(m, d) — 1. We show below a result, known to experts, that for
generic S, 7 each eigenvalue A of the system (AS — 7) ®?~! x = 0 has exactly one
corresponding eigenvector in P(C™). We outline a short proof of the following known
theorem, which basically uses only the existence of the resultant for system (5.3). For
an identity tensor S, i.e., (5.1), see [21].

Theorem 15 Let S, 7T € (Cde, and assume that S is nonsingular. Then res,, 4(AS —
T) is a polynomial in ) of degree m(d — 1)\, For a generic S and T to each
eigenvalue A of the pencil (5.1) corresponds one eigenvector in P(C™).

Proof Consider the space P(C?) x ]P’((C’”Xd X (C’”Xd) x P(C™) with the local coordi-
nates ((u, v), (S, 7), x). Consider the system of m equations that are homogeneous
in (u, v), (S§,7), x given by

@S —vT) x @4 'x = 0. (5.4)

The existence of the multidimensional resultant is equivalent to the assumption that
the preceding variety V (m, d) is an irreducible variety of dimension 2m? — 1 in
P(C?) x IP’((C’"Xd X (Cde) x P(C™). Thus, it is enough to find a good point (Sy, 7p)
such that it has exactly u(m, d) = m(d — 1)"~! smooth points ((u;, v;), (So, 7o), X;)
inV(m,d).

ip # iy for some 1 < p < g < d. An almost diagonal tensor 7 is represented by a
matrix B = [b;;] € C"*™ where t; j . ; = b;j. Assume now that Sp, 7y are almost
diagonal tensors represented by the matrices A, B, respectively. Then

So x @7 Ix = Ax°UD | 7y x @97 Ix = Bx°UD. (5.5)
Assume furthermore that A = [, and B is a cyclic permutation matrix, i.e.,
B(xy, ..., xm)T = (X2, ..., Xm, xl)T. Then B has m distinct eigenvalues, the mth

roots of unity. X is an eigenvector of (5.5) if and only if x°@~1 is an eigenvector of
B. Fix an eigenvalue of B. One can set x; = 1. Then we have exactly (d — 1)~
eigenvectors in P(C™) corresponding to each eigenvalue A of B. Thus, all together
we have m(d — 1)™~! distinct eigenvectors. It remains to show that each point
((u;, vi), (So, 7o), x;) is a simple point of V (m, d). For that we need to show that
the Jacobian of system (5.4) at each point has rank m, the maximal possible rank, at
((uj, vi), (So, 7o), X;). For that we assume that u; = A;, v; = 1, x; = 1. This easily
follows from the fact that each eigenvalue of B is a simple eigenvalue. Hence, the
projection of V (m, d) on ]P’((C’"Xd X C’"Xd) ism(d — 1)"! valued.
Note that in this example each eigenvalue A of (5.5) is of multiplicity (d — 1)1,
It remains to show that when we consider the pair Sy, 7, where 7 varies in the neigh-
borhood of 7, we obtain m(d — 1)"~! different eigenvalues. Since the Jacobian of
system (5.5) has rank m at each eigenvalue A; = I:)_: and the corresponding eigenvector
X;, one has a simple variation formula for each §A; using the implicit function theorem.
Elol:;ﬂ
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Set x; = 1 and denote F(x, A, 7) = (Fi,..., Fp) := A So — 7T) x ®?~x. Thus,

we have the system of m equations F(x, ) = 0 in m variables xa, ..., x;;, A. We let
T = Ty + 7, and we want to find the first term of A; (1) = A; + ot + O(t%). We
also assume that x; (r) = x; + ty; + O(t2), wherey; = (0, y2.i, ..., ym’,')T. Let

Z ®'xi @y @ x.
jeld—1]

The first-order computation yields the equation
Tix @7 x; + To x 2 = 0; Sy x @7 'x; + 1 Sp x . (5.6)
Letw = (wy,..., w,,,)T be the left eigenvector of B corresponding to %;, i.e.,

w' B = 1;w ' normalized by the conditionw (Syx @ 'x;) = (Sox @4~ !x;) xw =
1. Contracting both sides of (5.6) using the vector w we obtain

o =T x (W® (®''x)). (5.7)
It is straightforward to show that «j, ..., Ol (d—1ym—1 are pairwise distinct for a
generic 7. O

The proof of Theorem 15 yields the following corollary.

Corollary 16 Let T € C" bea generic tensor. Then the homogeneous eigenvalue
problem (5.1) has exactly m(d — 1)~ distinct eigenvectors in P(C™), which corre-
spond to distinct eigenvalues.

We close this section with a heuristic argument that shows that a generic pencil
(S§,7) € ]P’((Cde X (C’"Xd) has pu(m,d) = m(d — 1)"~! distinct eigenvalues in
P(C™). Let S € " be nonsingular. Then § induces a linear map S from the line
bundle ®?~!T (m) to the trivial bundle C™ over P(C™) by R4 Ix > S x @4 1x.
Then we have an exact sequence of line bundles

0— ®d*1T(m) - C" - Qna—0,

where Q.q = (C’”/(S(@d 17 (m))). The Chern polynomial of Om.dis 1+sz ll(d—
1)it'a’. A similar computation for finding the number of eigenvectors of (4.1) shows
that the number of eigenvalues of (5.2) is the coefficient of ¢}~ "in the polynomial

i tl _ (d=1)"—(@d=1)"
T . Here, fj = 7; = (d — 1)t;. Hence, the coefficient oft s @-D—@-1_"

The calculus interpretation of this formula is the derivative of t’” att = d — 1, which
gives the value of the coefficient m(d — 1)1

6 Uniqueness of a Best Approximation

Let (-, -), || - || be the standard inner product and the corresponding Euclidean norm on
IR”. For a subspace U C R" we denote by U~ the subspace of all vectors orthogonal

FoE'ﬂ
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to Uin R”. Let C C R” be a given nonempty closed set (in Euclidean topology, see
§1). For each x € R” we consider the function

dist(x, C) := inf{|x — y|l, y € C} (= 0). 6.1)

We first recall that this infimum is achieved for at least one point y* € C, which is
called a best approximation of x. Observe that || x — y|| > |y|| — |Ix||. Hence, in the
infimum (6.1) it is enough to restrict the values of y to the compact set C(x) := {y €
C, |yl < IIx|| + dist(x, C)}. Since ||x — y|| is a continuous function on C(x), it
achieves its minimum at some point y*, which will sometimes be denoted by y(x).

The following result is probably well known, and we present its short proof for
completeness.

Lemma 17 Let C C R” be a given closed set. Let U C R”" be a subspace with
dim U € [n] and such that U is not contained in C. Let d(x), x € U be the restriction
of dist(-, C) to U.

1. The function dist(-, C) is Lipschitz with constant 1:

|dist(x, C) — dist(z, C)| < ||Ix — z|| for allx, z € R". (6.2)

N

The function d(-) is differentiable a.e. in U.

3. Letx € U\ C, and assume that d(-) is differentiable at x. Denote the differential
by dd(x), which is viewed as a linear functional on U. Let y* € C be a best
approximation to X. Then

ad(x)(u) = (u (x —y")) for eachu € U. (6.3)

1
Ifz* is another best approximation to X, then z* — y* € U™,
Proof Assuming that dist(x, C) = ||x — y*|| we deduce the following inequality:
dist(z, C) < ||z — y*| for each z € R". (6.4)
Suppose next that dist(z, C) = ||z — y||,y € C. Hence,

—lx—zll < lIx = y*"| — llz — y*|| < dist(x, C) — dist(z, C)

Slx=yl=llz—yll < lIx—z.

This proves (6.2) and part /. Clearly, d(-) is also Lipschitz on U. Rademacher’s theorem
yields that d(-) is differentiable a.e., which proves part 2. To prove part 3 we fixu € U.
Then

dist(x 4 ru, C) = dist(x, C) + tad(x)(u) + to(t)
FoCT
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(6.4) yields the inequality

1
dist(x + tu, C) < [|Ix + ru — y*|| = [[x — y*|| + t(u, ———(x —y") + O(t)).
dist(x, C)

Compare this inequality with the previous equality to deduce that

1
tdd(x)(u) < t(u, dstx, C)( -y

for all + € R. This implies (6.3). If z* is another best approximation to x, then (6.3)
yields that z* — y* € U+, O

Corollary 18 Let C C R" be a given closed set.

1. The function dist(x, C) is differentiable a.e. in R".
2. Let x € R"\ C, and assume that dist(-, C) is differentiable at X. Then X has a
unique best approximation y(x) € C. Furthermore,

. 1 n
adist(x, C)(u) = (u, m(x —y(x))) for eachu € R". (6.5)

In particular, a.a. x € R" have a unique best approximation y(x) € C.

Proof Choose U = R", so d(-) = dist(-, C) is differentiable a.e. by part 2 of
Lemma 17. This establishes part 1 of our lemma. Assume that y* and z* are best
approximations of x. Then z* — y* € (R")* by part 3 of Lemma 17. As (R")* = {0},

we obtain that z* = y*. Furthermore, (6.5) holds. O

7 Best Rank-One Approximations of d-Mode Tensors

On C™ define an inner product and its corresponding Hilbert-Schmidt norm (7', S) :=
T x S, | T\ = /{7, T). We first present some known results of the best rank-one
approximations of real tensors. In this section we assume that F = Rand 7 € R™. Let
§™=1 c R™ be the m — 1-dimensional sphere ||x|| = 1. Denote by S(m) the d-product

of the spheres S”1 7! x ... x ™4~ Let (xq,...,X4) € S(m), and associate with
(X1, ..., Xq) the d one-dimensional subspaces U; = span(x;), i € [d]. Note that
I ®ierarxill = [ lIxill = 1.
ield]

The projection Pg,(,u; (7) of 7 onto the one-dimensional subspace U := ®;e[q)U; C
®iecra]R™ is given by

frXi, .. X0) ®iela) Xi, fr(X1, ..., Xg) = (T, ®iela1Xi)> X1, ..., Xg) € S(m).
7.1
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Let P(®ie[ aUHL (7) be the orthogonal projection of 7 onto the orthogonal comple-
ment of ®;¢[4)U;. The Pythagorean identity yields

1T 1% = 1l Peycyars, (DI + 11 Py gyuiyt (DI (72)
With this notation, a best rank-one approximation of 7 from S(m) is given by

min min |7 — a Qjepq) Xi |-
(X1,...,Xg)€S(m) acR

Observing that
min |7 — a @icia) Xl = 17 = Py, (DI = | Pigy s (DI
a

it follows that a best rank-one approximation is obtained by the minimization of
I P(®ie[ 2UHE (7)||. In view of (7.2), we deduce that a best rank-one approximation is
obtained by the maximization of || Pg,, av; (7)|l, and, finally, using (7.1), it follows
that a best rank-one approximation is given by

o1(7T) = max )fT(xl, ey Xg). (7.3)

(X1,.-,Xg) €S (M

As in the matrix case, o1(7) is called in [13] the spectral norm. Furthermore, it is
shown in [13] that the computation of o1 (7) in general is NP-hard for d > 2.

We will make use of the following result of [16], where we present the proof for
completeness.

Lemma 19 For T € R™, the critical points of f|sm), defined in (71.1), are singular
vector tuples satisfying

T x (®jelanii}Xj) = Ax; foralli € [d], (X1,...,Xg) € S(m). (7.4)

Proof Weneedto find the critical points of (T, ® j¢[41X ), Where (X1, ..., X4) € S(m).
Using Lagrange multipliers we consider the auxiliary function

g1, ... %) = (T, ®jelaiX;) — D AjX] Xj.
Jjeld]

The critical points of g then satisfy

T X (Qjefani)X;) = MiXi, i € [d],

and hence (7, ®jeld1Xj) = )L,'x;'—x,- = A; for all i € [d], which implies (7.4). |
Observe next that (xi, ..., Xg) satisfies (7.4) if and only if the vectors (£xi, ...,
+x,) satisfy (7.4). In particular, we could choose the signs in (£xi, ..., £X4) such

that each corresponding A is nonnegative and then these A could be interpreted as
FolCT
LI o
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the singular values of 7. The maximal singular value of 7 is denoted by o(7)
and is given by (7.3). Note that to each nonnegative singular value are associated
at least 29-1 singular vector tuples of the form (£xp, ..., +xy). Thus, it is more
natural to view the singular vector tuples (X, ..., Xg) as points ([x1], ..., [Xg4]) in
the real projective Segre product ITg(m). Furthermore, the projection of 7 on the
one-dimensional subspace spanned by ®;¢[q)(£X;), where (x1,...,X4) € S(m), is
equal to one vector (7 X ®;e[a1Xi) Qie[d] Xi-

Theorem 20 For a.a. 7 € R™ a best rank-one approximation is unique.

Proof Let
Cm) :={7 eR™, T =Qjela1X;, X; € R™, j € [d]}. (7.5)
C(m) is a compact set consisting of rank-one tensors and the zero tensor. Corollary 18
yields that for a.a. 7 a best rank-one approximation is unique. O
Note that Theorem 20 implies part / of Theorem 2. Let @ = (wy, ..., ®p) be a

partition of d. For 7 € S®(RR) it is natural to consider a best rank-one approximation
to 7 of the form =+ Hie[p] ®“ix;, where x; € R’”f’, i € [p]. We call such an approxi-
mation a best @-symmetric rank-one approximation. (The factor + is needed only if
each w; is even.) As in the case 7 € R™, a best @-symmetric rank-one approximation
of T € S®(R) is a solution to the following maximum problem:

max |7 x Rielp] R X;|. (7.6)

(X1 X p)ES()
As before, the critical points of the functions £7° x ®;e[p) ®“ X; on S(m’) satisfy
T X ®jep) ®% 9 x; =ax;, i €lpl, (X1,...,Xp) € Sm). (1.7)

A best w-symmetric rank-one approximation corresponds to all A for which |A| has a
maximal possible value. The arguments of the proof of Theorem 20 imply the following
result.

Proposition 21 For almost all T € S®(R) a best rank-one o-symmetric approxima-
tion is unique.

Assume that ® jeiq)y; € R™(@) js a best rank-one approximation to a tensor 7 €
S?(RR). It is not obvious a priori that ® j¢[41y j is @-symmetric. However, the following
result is obvious:

®je[d]¥o () is a best rank-one approximation of 7 € S*(R) (7.8)

for each permutation o : [d] — [d], which preserves S®(R).

Lemma 22 For a.a. T € S®(R) there exists a unique rank-one tensor ® je(a1y; €
R™@) sych that all best rank-one approximations of T are of the form (7.8).

EOE';W
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To prove this lemma, we need an auxiliary lemma.

Lemma 23 Let Q@ jcia1Xj, @ je[aly; € R™’ . Assume that

(®jeax;. ®1) = (®jeay;. ®'u) Vu € R". (7.9)
Then there exists a permutation o : [d] — [d] such that @ je[a1Y; = ®je[d] X0 (j)-

Proof Note that condition (7.9) is equivalent to the equality

H u'x; =[] uly;vuer" (7.10)

[d] Jjeld]

If ®jeax; = 0, then [];y u'y; = 0 for all u. Hence, y; = 0 for some j, so
®jeld1yj = ®jea1X; = 0. Thus, we assume that ® j¢[41X; and ® jeq)y; are both
nonzero.

We now prove the lemma by induction. For d = 1 the lemma is trivial. Assume that
the lemma holds ford = k. Letd = k+ 1. Assume thatu € span(XkH)J-. Then (7.10)
yields that Hje[d] uTyj = 0. Hence, span(ka)l C Uje[kH]span(yj)i. Therefore,
there exists j € [k + 1] such that span(xk+1)J- = span(yj)J-. Thus, y; = txp41
for some r € R\ {0}. Hence, there exist z1,...,z4+1 € R" and a permutation
o’ : [k + 1] — [k + 1] such that Qjelk+112Zs'(j) = Qjelk+11¥j> where Zx41 = Xg41-
Thus, ® jep+11X; and ® jek+11z; satisfy (7.10). Therefore, ® jexX; and ®je[xz;
satisfy (7.10). Use the induction hypothesis to deduce the lemma. O

Proof of Lemma 22. We use part 3 of Lemma 17 as follows. Let R” = R™®@) and
assume that C = C(m(w)), as defined in (7.5). We let U := S®(R). Assume that d(-)
is differentiable at 7 € S®(R) \ C. Suppose that ® je[41Yj, ® je[4]Z; are best rank-one
approximations of 7. Thus,

(1) = ®jerar yil = [] Ivjll =l ®jetar zjll = [] Izl >o.
jeld] Jjeld]

Without loss of generality we may assume that
.
ly;jll = llzjll = o1(T)4 Vj € [d]. (7.11)
Lemma 17 yields that
(@icip) & Ui, @jctaly; = ®jetaizy) =0 Yy €KY € [p]

The preceding equality is equivalent to

H H u Yoitji = H H u Zo;+j;, Yu; € R i i €[pl, (7.12)

i€lp] ji€lwil i€lpl ji€lwil
FoE'ﬂ
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where wp = 0 and o; = Z;;}) wy for all i € [p].
Suppose first that p = 1, i.e., S?(R) is the set of all symmetric tensors in R .

(Note that d = w;.) Then Lemma 23 and (7.12) yield that ® jc(q12; = ®je[dYo())
for some permutation o : [d] — [d]. This proves our lemma for p = 1.
Assume now that p > 1. Fixk € [p]andw; €i € [p]\ {k}. Let

. T . T

ie[pI\k}ljelw)] ie[pI\{k}jelw)]

Assume that s # 0. Then the two rank-one tensors s; ®j, ew;] Yor+1; and f @y efoy]
Zoy+1, € RO ™" satisfy the assumptions of Lemma 23. Hence, there exists a permu-
tation oy : [wr] — [wi] such that i ®y e[wy] Zag+1, = Sk Plefwn] Yag+or ()~ In view
of (7.11), we deduce the equality ®j, cw 1 Zar+1 = £ Rl eon] You+oi () - Hence, there
exists @ : [d] — [d], which leaves invariant each set [oj 1] for j € [p — 1] such
that ® je(q)2; = £ X je[d] Yo(j)- Because ®je[q1z; and ® jeq)y; are best rank-one
approximation to 7, we deduce that ® jc(412; = ® je[d1Yo(j)- ]

A recent result of the first author claims that each 7 € S®(R) has a best rank-
one approximation that is @-symmetric [7, Theorem 1]. For symmetric tensors this
theorem is equivalent to the old theorem of Banach [1]. (See [4, Theorem 4.1] for
another proof of Banach’s theorem.) We now give a refined version of [7, Theorem
1], whose proof uses the results in [7].

Theorem 24 Each 7 € S®(R) has a best rank-one approximation that is -
symmetric. Furthermore, for a.a. T € S®(R) a best rank-one approximation is unique
and w-symmetric.

Proof The claim that each 7 € S®(R) has a best rank-one approximation that is @-
symmetric is proved in [7]. It is left to show that for a.a. 7 € S?(R) a best rank-one
approximation is unique and w-symmetric. Lemma 22 claims that for a.a. 7 € S®(R)
there exists a unique rank-one tensor ® je(q1y; € R™®@ such that all best rank-one
approximations of 7 are of the form (7.8). The first part of the theorem yields that one
of these best rank-one approximations ® je[q]y; € R™(@®) i5 @-symmetric . Hence, all
the tensors of the form (7.8) are equal to ® je[a1y; € RM(@®) O

Note that part 2 of Theorem 2 follows from Theorem 24.

8 Best Rank-r Approximation

In the first part of this section we assume that IF is any field. Letm = (m, ..., my) €
N, M = Hjedmj’ M; = mM,»’ and m; = (my,...,mj_1,Miq1,...,Myq) € Né-1
for i € [d]. Assume that T = [t;,, . ;,] € F™. Denote by 7; € F™i*Mi the unfolded
matrix of the tensor 7 in mode i. That is, let 7; ; € F™ be the following d — 1
mode tensor. Its entries are [#;; i, . j.ixs1,...ig] TOT ip € [mpl, p € [d]\ {k}. Thus,
J € [my]. Then row j of T; is a tensor 7;; viewed as a vector in F™ . Then rank; 7
is the rank of the matrix 7;. 7T; can be seen as the matrix of the contraction map
QjetaniyF)™ — F™i fori € [d]. Clearly,
EOE';W
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rank; 7 < min(m;, M;) i € [d]. (8.1)

Carlini and Kleppe characterized the possible r; occurring as in the following the-
orem.

Theorem 25 ([2], Theorem 7) Suppose that r; € [m;] for i € [d]. Then there exists
T € F™ such that rank; T = r; fori € [d] if and only if

r? < rj foreachi € [d]. (8.2)
JEld]

We show a related argument working over any infinite field. For each i let f; be one
minor of 7; of order min(m;, M;). Let f = Hie[ d] fi, which is a nonzero polynomial
in the entries of 7 = [t;,,..;,]- Let V(m) C F™ be the zero set of f.

.....

Theorem 26 Ler m € N, and assume that V(m) C F™ is defined as previously.
Then for each T € F™ \ V (m) the following equality holds:

rank; 7 = min(m;, M;) fori € [d]. (8.3)

In particular, when [ is a infinite field, a generic tensor T € F™ satisfies (8.3).

Proof Suppose first that m; < M;. We claim that the m; tensors 7i ;, ..., T, ; are
linearly independent. Suppose not. Then any m; x m; minor of 7; is zero. This con-
tradicts the assumption that 7 € F™ \ V(m). Hence, rank;7 = m;. Suppose that
m; > M;. Let Ty, i, ..., T, .; be the M; tensors that contribute to the minor f;.
Since f;(7T) # 0, we deduce ‘that Tiyis - -» Txy,. i are linearly independent. Hence,
rank;7; = M, for each i € [d]. Since f is a nonzero polynomial, for an infinite field
F, V(m) is a proper closed subset of F™ in the Zariski topology. Hence, (8.3) holds
for a generic tensor. O

Over infinite fields, Theorem 25 can be proved as a consequence of Theorem 26.
Indeed, let r = (rq,...,rqy) € NY, and assume that (8.2) holds. Choose a generic
7' =1t ;) €F . Thus rank;7" =r;,i € [d]. Extend 7" to T = [t;,...;;] € F™
by adding zero entries, i.e., t;, . j, = t;‘l,...,jd for j; € [ri],i € [d], and all other
entries of 7 are zero. Then rank; 7 = r;, i € [d].

In what follows we assume that F = R. Observe that the set of tensors having
rank (rq, ..., rg) contains in the closure exactly all tensors of rank (ay, ..., ag), with
a; < ri. This closure is an algebraic variety, defined as the zero set of all the minors
of order r; 4+ 1 of T; fori € [d]. We denote it by C;. Note that having rank (1, ..., 1)
is equivalent to having rank 1.

Clearly, Cy is a closed set in R™. The best r-rank approximation of 7 is the closest
tensor in Cy to 7 in the Hilbert—Schmidt norm [6].

Corollary 18 yields the following theorem.

Theorem 27 Letm = (my,...,mg),r = (r1,...,rq), wherer; € [m;] fori € [d],
and they satisfy (8.2). Then almost all T € R™ have a unique best r-rank approxima-
tion.

Elol:;ﬂ
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Let w = (w1, ..., wp) be a partition of d, m" = (m|, ..., m’f?), and assume that
m(w) is defined by (4.4). Assume thatr’ = (r{, ..., rl’]), where r; € [m}] fori € [p].
Let r(w) = (r{,...,r{,...,r;,...,r;,).

—— —_———
w] wp

Let C;, = Cr(e)NS?. Clearly, C;, is a closed set, consisting of w-symmetric tensors
in R™@ having rank r(®) .

Let 7 € S®. Then a best w-symmetric r()-rank approximation of 7 is the closest
tensor in C;, to 7. Corollary 18 yields the following theorem.

Theorem 28 Let w = (w1,...,wp) be a partition of d. Assume that m =
(mh, ..., m;,), v = (r,..., r;,), ri € [m}],i € [p] and that m(w) satisfies (8.2).
Then a.a. T € S® have a unique best w-symmetric r(w)-rank approximation.

We close our paper with the following problem. Let 7 € S®. Does 7 have a best
r(w)-rank approximation that is w-symmetric? If so, is a best r (w)-rank approximation
unique for a.a. 7 € S®? In the previous section we showed that for r(w) = (1, ..., 1)
the answers to these problems are yes.
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