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1 Introduction

The object of this paper is to study two closely related topics: counting the number
of singular vector tuples of complex tensor and the uniqueness of a best rank-one
approximation of real tensors. To state our results, we introduce notation that will be
used in the paper. Let F be either the field of real or complex numbers, denoted by
R and C respectively, unless stated otherwise. For each x ∈ F

m \ {0} we denote by
[x] := span(x) the line through the origin spanned by x in F

m . Then P(Fm) is the space
of all lines through the origin in F

m . We say that x ∈ F
m, [y] ∈ P(Fm) are generic if

there exist subvarietes U � F
m, V � P(Fm) such that x ∈ F

m \U, [y] ∈ P(Fm) \ V .
A set S ⊂ F

m is called closed if it is a closed set in the Euclidean topology. We say that
a property P holds almost everywhere (a.e.) in R

n if P does not hold on a measurable
set S ⊂ R

n of a zero Lebesgue measure. Equivalently, we say that almost all (a.a.)
x ∈ R

n satisfy P .
For d ∈ N denote [d] := {1, . . . , d}. Let mi ≥ 2 be an integer for i ∈ [d]. Denote

m := (m1, . . . , md). Let �F(m) := P(Fm1) × . . . × P(Fmd ). We call �F(m) the
Segre product. Set �(m) := �C(m). Denote by F

m = F
m1×...×md := ⊗d

i=1F
mi the

vector space of d-mode tensors T = [ti1,...,id ], i j = 1, . . . , m j , j = 1, . . . , d over
F. (We assume that d ≥ 3 unless stated otherwise.) For an integer p ∈ [d] and for
x jr ∈ F

m jr , r ∈ [p], we use the notation ⊗ jr ,r∈[p]x jr := x j1 ⊗ . . . ⊗ x jp . For a
subset P = { j1, . . . , jp} ⊆ [d] of cardinality p = |P|, consider a p-mode tensor
X = [xi j1 ,...,i jp

] ∈ ⊗ jr ,r∈[p]Fm jr , where j1 < . . . < jp. Define

T × X :=
∑

i jr ∈[m jr ],r∈[p]
ti1,...,id xi j1 ,...,i jp

as a (d − p)-mode tensor obtained by contraction on the indices i j1 , . . . , i jp .
To motivate our results, let us consider the classical case of matrices, i.e., d = 2

and A ∈ R
m1×m2 . We call a pair (x1, x2) ∈ (Rm1 \{0})× (Rm2 \{0}) a singular vector

pair if
Ax2 = λ1x1, A�x1 = λ2x2 (1.1)

for some λ1, λ2 ∈ R. For x ∈ R
m let ‖x‖ := √x�x be the Euclidean norm on R

m .
Choosing x1, x2 to be of Euclidean length one we deduce that λ1 = λ2, where |λ1|
is equal to some singular value of A. It is natural to identify all singular vector pairs
of the form (a1x1, a2x2), where a1a2 
= 0, as the class of singular vector pairs. Thus
([x1], [x2]) ∈ P(Rm1)× P(Rm2) is called a singular vector pair of A.

For a generic A, i.e., A of the maximal rank r = min(m1, m2) and r distinct positive
singular values, A has exactly r distinct singular vector pairs. Furthermore, under these
conditions A has a unique best rank-one approximation in the Frobenius norm given
by the singular vector pair corresponding to the maximal singular value [10].

Assume now that m = m1 = m2 and A is a real symmetric matrix. Then the singular
values of A are the absolute values of the eigenvalues of A. Furthermore, if all the
absolute values of the eigenvalues of A are pairwise distinct, then A has a unique best
rank-one approximation, which is symmetric. Hence, for any real symmetric matrix
A there exists a best rank-one approximation which is symmetric.
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In this paper we derive similar results for tensors. Let T ∈ F
m. We first define the

notion of a singular vector tuple (x1, . . . , xd) ∈ (Fm1 \ {0})× . . .× (Fmd \ {0}) [16]:

T ×⊗ j∈[d]\{i}x j = λi xi , i = 1, . . . , d. (1.2)

As for matrices we identify all singular vector tuples of the form (a1x1, . . . , adxd),
a1 . . . ad 
= 0 as one class of singular vector tuple in ([x1], . . . , [xd ]) ∈ �F(m). (Note
that for d = 2 and F = C our notion of singular vector pair differs from the classical
notion of singular vectors for complex-valued matrices; see § 3.)

Let ([x1], . . . , [xd ]) ∈ �(m) be a singular vector tuple of T ∈ C
m. This tuple

corresponds to a zero (nonzero) singular value if
∏

i∈[d] λi = 0 ( 
= 0). This tuple
is called a simple singular vector tuple (or just simple) if the corresponding global
section corresponding to T has a simple zero at ([x1], . . . , [xd ]); see Lemma 11 in
§ 3.

Our first major result is the following theorem.

Theorem 1 Let T ∈ C
m be generic. Then T has exactly c(m) simple singular vector

tuples that correspond to nonzero singular values. Furthermore, T does not have a
zero singular value. In particular, a generic real-valued tensor T ∈ R

m has at most
c(m) real singular vector tuples corresponding to nonzero singular values, and all of
them are simple. The integer c(m) is the coefficient of the monomial

∏d
i=1 tmi−1

i in
the polynomial

∏

i∈[d]

t̂mi
i − tmi

i

t̂i − ti
, t̂i =

∑

j∈[d]\{i}
t j , i ∈ [d]. (1.3)

At the end of §3 we list the first values of c(m) for d = 3. We generalize the
preceding results to the class of tensors with given partial symmetry.

We now consider the cubic case where m1 = · · · = md = m. For an integer m ≥ 2
let m×d := (m, . . . , m︸ ︷︷ ︸

d

). Then T ∈ F
m×d

is called d-cube, or simply a cube tensor.

For a vector x ∈ C
m let ⊗kx := x⊗ . . .⊗ x︸ ︷︷ ︸

k

. Assume that T ,S ∈ C
m×d

. Then the

homogeneous pencil eigenvalue problem is to find all vectors x and scalars λ satisfying
T ×⊗d−1x = λS×⊗d−1x. The contraction here is with respect to the last d−1 indices
of T ,S. We assume without loss of generality that T = [ti1,...,id ],S = [si1,...,id ] are
symmetric with respect to the indices i2, . . . , id . S is called nonsingular if the system
S×⊗d−1x = 0 implies that x = 0. Assume that S is nonsingular and fixed. Then T has
exactly m(d−1)m−1 eigenvalues counted with their multiplicities. T has m(d−1)m−1

distinct eigenvectors in P(Cm) for a generic T . See [21] for the case where S is the
identity tensor.

View R
m1×...md as an inner product space, where for two d-mode tensors T ,S ∈

R
m1×...×md we let 〈T ,S〉 := T × S. Then the Hilbert–Schmidt norm is defined

as ‖T ‖ := √〈T , T 〉. [Recall that for d = 2 (matrices) the Hilbert–Schmidt norm is
called the Frobenius norm.] A best rank-one approximation is a solution to the minimal
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problem
min

xi∈Rmi ,i∈[d]
‖T −⊗i∈[d]xi‖ = ‖T −⊗i∈[d]ui‖. (1.4)

⊗i∈[d]ui is called a best rank-one approximation of T . Our second major result is as
follows.

Theorem 2 1. For a.a. T ∈ R
m a best rank-one approximation is unique.

2. Let Sd(Rm) ⊂ R
m×d

be the space of d-mode symmetric tensors. For a.a. S ∈
Sd(Rm) a best rank-one approximation of S is unique and symmetric. In particular,
for each S ∈ Sd(Rm) there exists a best rank-one approximation that is symmetric.

The last statement of part 2 of this theorem was demonstrated by the first named
author in [7]. Actually, this result is equivalent to Banach’s theorem [1]. See [23] for
another proof of Banach’s theorem. In Theorem 12 we generalize part 2 of Theorem 2
to the class of tensors with given partial symmetry.

Let r = (r1, . . . , rd), where ri ∈ [mi ] for i ∈ [d]. In the last section of this paper
we study a best rank-r approximation for a real d-mode tensor [6]. We show that for
a.a. tensors a best rank-r approximation is unique.

We now describe briefly the contents of our paper. In § 2 we give a layman’s intro-
duction to some basic notions of vector bundles over compact complex manifolds
and Chern classes of certain bundles over the Segre product needed for this paper.
We hope that this introduction will make our paper accessible to a wider audience.
§ 3 discusses the first main contribution of this paper, namely, the number of singular
vector tuples of a generic complex tensor is finite and is equal to c(m). We give a
closed formula for c(m), as in (1.3). § 4 generalizes these results to partially sym-
metric tensors. In particular, we reproduce the result of Cartwright and Sturmfels for
symmetric tensors [3]. In § 5 we discuss a homogeneous pencil eigenvalue problem. In
§ 6 we give certain conditions on a general best approximation problem in R

n , which
are probably well known to the experts. In § 7 we give uniqueness results on the best
rank-one approximation of partially symmetric tensors. In § 8 we discuss a best rank-r
approximation.

We thank J. Draisma, who pointed out the importance of distinguishing between
isotropic and nonisotropic vectors, as we do in § 3.

2 Vector Bundles over Compact Complex Manifolds

In this section we recall some basic results on complex manifolds and holomorphic
tangent bundles that we use in this paper. Our object is to give the simplest possi-
ble intuitive description of basic results in algebraic geometry needed in this paper,
sometimes compromising the rigor. An interested reader can consult with [11] for
general facts about complex manifolds and complex vector bundles, and for a simple
axiomatic exposition on complex vector bundles with [15]. For a Bertini-type theorem
we refer the reader to Fulton [8] and Hartshorne [12].
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2.1 Complex Compact Manifolds

Let M be a compact complex manifold of dimension n. Thus, there exists a finite
open cover {Ui }, i ∈ [N ] with coordinate homeomorphism φi : Ui → C

n such that
φi ◦ φ−1

j is holomorphic on φ j (Ui ∩U j ) for all i, j .
As an example, consider the m − 1-dimensional complex projective space P(Cm),

which is the set of all complex lines in C
m through the origin. Any point in P(Cm) is rep-

resented by a one-dimensional subspace spanned by the vector x = (x1, . . . , xm)� ∈
C

m \ {0}. The standard open cover of P(Cm) consists of m open covers U1, . . . , Um ,
where Ui corresponds to the lines spanned by x with xi 
= 0. The homeomorphism φi

is given by φi (x) = ( x1
xi

, . . . ,
xi−1

xi
,

xi+1
xi

, . . . , xm
xi

)�. Thus, each Ui is homeomorphic

to C
m−1.

Let M be an n-dimensional compact complex manifold, as previously. For ζ ∈
Ui , the coordinates of the vector φi (ζ ) = z = (z1, . . . , zn)� are called the local
coordinates of ζ . Since C

n ≡ R
2n , M is a real manifold of real dimension 2n. Let

z j = x j + iy j , z̄ j = x j − iy j , j ∈ [n], where i = √−1. For simplicity of notation we
let u = (u1, . . . , u2n) = (x1, y1, . . . , xn, yn) be the real local coordinates on Ui . Any
function f : Ui → C in the local coordinates is viewed as f (u) = g(u)+ih(u), where
h, g : Ui → R. Thus, d f =∑

j∈[2n]
∂ f
∂u j

du j . For a positive integer p, a (differential)
p-form ω on Ui is given in the local coordinates as follows:

ω =
∑

1≤i1<...<i p≤2n

fi1,...,i p (u)dui1 ∧ . . . ∧ dui p .

( fi1,...,i p (u) are differentiable functions in local coordinates u for 1 ≤ i1 < . . . <

i p ≤ 2n.) Recall that the wedge product of two differential is anticommutative, i.e.,
duk ∧ dul = −dul ∧ duk . Then

dω =
∑

1≤i1<...<i p≤2n

(d fi1,...,i p ) ∧ dui1 ∧ . . . ∧ dui p .

(Recall that a differential 0-form is a function.) Note that for p > 2n any differential
p-form is a zero form. A straightforward calculation shows that d(dω) = 0. ω is a
p-form on M if its restriction to each Ui is a p-form, and the restrictions of these two
forms on Ui ∩ U j are obtained from another by the change of coordinates φi ◦ φ−1

j .
ω is called closed if dω = 0, and dω is called an exact form. The space of closed
p-forms modulo exact p-forms is a finite-dimensional vector space over C, which is
denoted by Hp(M). Each element of Hp(M) is represented by a closed p-form, and
the difference between two representatives is an exact form. Since the product of two
forms is also a form, it follows that the space of all closed forms modulo exact forms is
a finite-dimensional algebra, where the identity 1 corresponds to the constant function
with value 1 on M .
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2.2 Holomorphic Vector Bundles

A holomorphic vector bundle E on M of rank k, where k is a nonnegative integer, is a
complex manifold of dimension n+k, which can be simply described as follows. There
exists a finite open cover {Ui }, i ∈ [N ] of M with the aforementioned properties satis-
fying the following additional conditions. At each ζ ∈ Ui we are given k-dimensional
vector space Eζ , called a fiber of E over ζ , all of which can be identified with a fixed
vector space Vi , having a basis [e1,i , . . . , ek,i ]. For ζ ∈ Ui ∩U j , i 
= j the transition
matrix from [e1,i , . . . , ek,i ] to [e1, j , . . . , ek, j ] is given by a k × k invertible matrix
gU j Ui (ζ ). Thus, [e1,i , . . . , ek,i ] = [e1, j , . . . , ek, j ]gU j Ui (ζ ). Each entry of gU j Ui (ζ ) is
a holomorphic function in the local coordinates of U j . We have the following relations:

gUi U j (ζ )gU j Ui (ζ ) = gUi U j (η), gU j Up (η)gUpUi (η)

= Ik for ζ ∈ Ui ∩U j , η ∈ Ui ∩U j ∩Up.

(Ik is an identity matrix of order k.)
For k = 0, E is called a zero bundle. E is called a line bundle if k = 1. E is called

a trivial bundle if there exists a finite open cover such that each gUi U j (ζ ) is an identity
matrix. A vector bundle F on M is called a subbundle of E if F is a submanifold of E
such that Fζ is a subspace of Eζ for each ζ ∈ M . Assume that F is a subbundle of E .
Then G := E/F is the quotient bundle of E and F , where Gζ is the quotient vector
space Eζ /Fζ . Let E1, E2 be two vector bundles on M . We can create the following
new bundles on M : E := E1 ⊕ E2, F := E1 ⊗ E2, H := Hom(E1, E2). Here,
Eζ = E1,ζ ⊕ E2,ζ , Fζ = E1,ζ ⊗ E2,ζ , and Hζ consists of all linear transformations
from E1,ζ to E2,ζ . In particular, the vector bundle Hom(E1, E2), where E2 is the
one-dimensional trivial bundle, is called a dual bundle of E1 and is denoted by E∨1 .
Recall that Hom(E1, E2) is isomorphic to E2⊗E∨1 . For a given vector bundle E on M
we can define the bundle F := ⊗d E . Here Fζ = ⊗d Eζ is a fiber of d-mode tensors.

Let M, M ′ be compact complex manifolds, and assume that f : M ′ → M is
holomorphic. Assume that π : E → M is a holomorphic vector bundle. Then one can
pull back E to obtain a bundle π ′ : E ′ → M ′, where E ′ = f ∗E .

Given a manifold Mi with a vector bundle Ei for i = 1, 2, we can define the bundle
F := E1 ⊕ E2, G := E1 ⊗ E2 on M := M1 × M2 by the equality

F(ζ1,ζ2) = E1,ζ1 ⊕ E2,ζ2 , G(ζ1,ζ2) = E1,ζ1 ⊗ E2,ζ2 .

A special case for F occurs when one of the factors Ei is a zero bundle, say E2 = 0.
Then E1⊕ 0 is the pullback of the bundle E1 on M1 obtained by using the projection
π1 : M1 × M2 and is denoted as the bundle π∗1 E1 on M1 × M2. Thus, E1 ⊕ E2 is the
bundle π∗1 E1 ⊕ π∗2 E2 on M1 × M2. Similarly, E1 ⊗ E2 is the bundle π∗1 E1 ⊗ π∗2 E2.

We now discuss a basic example used in this paper. Consider the trivial bundle
F(m) on P(Cm) of rank m. Thus, F(m)ζ = C

m . The tautological line bundle T (m)

on P(Cm), customarily denoted by O(−1), is given by T (m)[x] = span(x) ⊂ C
m .

Thus, T (m) is a subbundle of F(m). Denote by Q(m) the quotient bundle F(m)/T (m).
Hence, rank Q(m) = m − 1. We have an exact sequence of the following bundles on
P(Cm):
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0→ T (m)→ F(m)→ Q(m)→ 0. (2.1)

The dual of the bundle of T (m), also called the hyperplane line bundle, is denoted here
by H(m). [H(m) is customarily denoted by O(1) in the algebraic geometry literature.]

2.3 Chern Polynomials

We now return to a holomorphic vector bundle E on a compact complex manifold
M . The seminal work of Chern [5] associates with each π : E → M the Chern class
c j (E) for each j ∈ [dim M]. One can view c j (E) as an element in H2 j (M). The
Chern classes needed in this paper can be determined by the following well-known
rules [15].

One associate with E the Chern polynomial C(t, E) = 1+∑rank E
j=1 c j (E)t j . Note

that c j (E) = 0 for j > dim M . The total Chern class c(E) is C(1, E) =∑∞
j=0 c j (E).

Consider the formal factorization C(t, E) = ∏rank E
j=1 (1 + ξ j (E)t). Then the Chern

character ch(E) of E is defined as
∑rank E

j=1 eξ j (E).
C(t, E) = 1 if E is a trivial bundle. The Chern polynomial of the dual bundle is

given by C(t, E∨) = C(−t, E). Given an exact sequence of bundles

0→ E → F → G → 0,

we have the identity
C(t, F) = C(t, E)C(t, G), (2.2)

which is equivalent to c(F) = c(E)c(G).
The product formula is the identity ch(E1⊗ E2) = ch(E1)ch(E2). Let f : M ′ →

M . Then c j ( f ∗E), viewed as a differential form in H2 j (M ′), is obtained by pullback of
the differential form c j (E). In particular, for the pullback bundle π∗1 E1 described pre-
viously, we have the equality c j (π

∗
1 E1) = c j (E1) when we use the local coordinates

ζ = (ζ1, ζ2) on M1 × M2.
Assume that rank E = dim M = n. Then cn(E) = ν(E)ω, where ω ∈ H2n(M)

is the volume form on M such that ω is a generator of H2n(M, Z). Then ν(E) is an
integer, which is called the top Chern number of E .

Denote by sm the first Chern class of H(m), which belongs to H2(P(Cm)). Then sk
m

represents the differential form∧ksm ∈ H2k(P(Cm)). Observe that sm
m = 0. Moreover

the algebra of all closed forms modulo the exact forms on P(Cm) is C[sm]/(sm
m ), i.e. all

polynomials in the variable sm modulo the relation sm
m = 0. So C(t, H(m)) = 1+ smt

and C(t, T (m)) = 1− smt . The exact sequence (2.1) and the formula (2.2) imply that

1 = C(t, F(m)) = C(t, T (m))C(t, Q(m)) = (1− smt)C(t, Q(m)).

Therefore

C(t, Q(m)) = 1

1− smt
= 1+

m−1∑

j=1

s j
mt j . (2.3)
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2.4 Certain Bundles on Segre Product

Let m1, . . . , md ≥ 2 be given integers with d > 1. Use the notation mi =
(m1, . . . , mi−1, mi+1, . . . , md) for i ∈ [d]. Consider the Segre product �(m) :=
P(Cm1) × . . . × P(Cmd ). Let πi : �(m) → P(Cmi ) be the projections on the
i th component. Then π∗i H(mi ), π

∗
i Q(mi ), π

∗
i F(mi ) are the pullback of the bundles

H(mi ), Q(mi ), F(mi ) on P(Cmi ) to �(m), respectively.
Consider the map ιm : �(m)→ P(Cm) given by ιm([x1], . . . , [xd ]) = [⊗i∈[d]xi ].

It is straightforward to show that ι is 1 − 1. Then (m) := ιm(�(m)) ⊂ P(Cm)

is the Segre variety. Let T (m) be a tautological line bundle on P(Cm). The identity
span(⊗ j∈[d]x j ) = ⊗ j∈[d]span(x j ) implies that the line bundle ι∗T (m) is isomor-
phic to ⊗ j∈[d]π∗j T (m j ). Hence the dual bundles ι∗H(m) and ⊗ j∈[d]π∗j H(m j ) are

isomorphic. Consider next the bundle T̂ (mi ) on �(m), which is

T̂ (mi ) := ⊗ j∈[d]\{i}π∗j T (m j ). (2.4)

Hence the dual bundle T̂ (mi )
∨ is isomorphic to ⊗ j∈[d]\{i}π∗j H(m j ). In particular,

c1(T̂ (mi )
∨) = c1(⊗ j∈[d]\{i}π∗j H(m j )). (2.5)

Define the following vector bundles on �(m):

R(i, m) = Hom(T̂ (mi ), π
∗
i Q(mi )), R(i, m)′ = Hom(T̂ (m), π∗i F (mi )),

R(m) = ⊕i∈[d]R(i, m), Ri (m)′ := (⊕ j∈[d]\{i}R( j, m))⊕ R(i, m)′. (2.6)

Observe that

rank R(i, m) = rank R(i, m)′ − 1 = mi − 1, (2.7)

rank R(m) = rank Ri (m)′ − 1 = dim �(m).

Since Hom(E1, E2) ∼ E2 ⊗ E∨1 , we obtain the following relations:

C(t, R(i, m))=C(t, π∗i Q(mi )⊗ (T̂ (m)∨)=C(t, π∗i Q(mi )⊗ (⊗ j∈[d]\{i}π∗j H(m j )).

(2.8)
The formula (2.2) yields

C(t, R(m)) =
∏

i∈[d]
C(t, R(i, m)). (2.9)

Use the notation ti = c1(π
∗
i H(mi )). The cohomology ring H∗(�(m)) is

generated by t1, . . . , td , with the relations tmi
i = 0, that is, H∗(�(m)) �

C[t1, . . . , td ]/(tm1
1 , . . . , tmd

d ), and in what follows we interpret ti just as variables.
Correspondingly, the kth Chern class ck(E) is equal to pk(t1, . . . , td) for some homo-
geneous polynomial pk of degree k for k = 1, . . . , dim �(m). [Recall that c0(E) = 1
and ck(E) = 0 for k > dim �(m).]
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In what follows we need to compute the top Chern class of R(m). Since
rank R(m) = dim �(m) and �(m) is a manifold, it follows that the top Chern class
of R(m) is of the form

c(m)
∏

i∈[d]
tmi−1
i , (2.10)

where c(m) is an integer. Thus, c(m) = ν(R(m)) is the top Chern number of R(m).

Lemma 3 Let R(i, m) and R(m) be the vector bundles on the Segre product �(m)

given by (2.6). Then the total Chern classes of these vector bundles are given as
follows:

c(R(i, m)) =
mi−1∑

j=0

(1+ t̂i )
mi−1− j t j

i , t̂i :=
∑

k∈[d]\{i}
tk, (2.11)

c(R(m)) =
∏

i∈[d]

⎛

⎝
mi−1∑

j=0

(1+ t̂i )
mi−1− j t j

i

⎞

⎠ . (2.12)

The top Chern number of R(m), c(m), is the coefficient of the monomial
∏

i∈[d] t
mi−1
i

in the polynomial
∏

i∈[d]
t̂
mi
i −t

mi
i

t̂i−ti
. (In this formula of c(m) we do not assume the

identities tmi
i = 0 for i ∈ [d].)

Proof Let ζi := e
2π i
mi be the primitive mi th root of unity. Then

mi−1∏

k=0

(1− ζ k
i x) = 1− xmi ,

mi−1∑

k=0

xk = 1− xmi

1− x
=

∏

k∈[mi−1]
(1− ζ k

i x). (2.13)

The second equality of (2.13) and (2.3) yield that

C(t, π∗i Q(mi )) =
∏

k∈[mi−1]
(1− ζ k

i ti t).

Hence, ch(π∗i Q(mi )) = ∑
k∈[mi−1] e−ζ k

i ti . Clearly, ch(H(m j )) = et j . The product
formula for Chern characters yields

ch(⊗ j∈[d]\{i}π j H(m j )) = e
∑

j∈[d]\{i} t j = et̂i ,

ch(π∗i Q(mi )⊗ (⊗ j∈[d]\{i}π∗j H(m j ))) = ch(π∗i Q(mi ))ch(⊗ j∈[d]\{i}π∗j H(m j ))

=
∑

k∈[mi−1]
et̂i−ζ k

i ti .
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Hence,

C(t, R(i, m)) =
∏

k∈[mi−1]
(1+ (t̂i − ζ k

i ti )t) = 1

1+ (t̂i − ti )t

mi−1∏

k=0

(1+ (t̂i − ζ k
i ti )t),

c(R(i, m)) = C(1, R(i, m)) = 1

1+ t̂i − ti

mi−1∏

k=0

(1+ t̂i − ζ k
i ti )

= 1

1+ t̂i − ti
(1+ t̂i )

mi

mi−1∏

k=0

(1− ζ k
i x) = 1

1+ t̂i − ti
(1+ t̂i )

mi (1− xmi ),

where x = ti
1+t̂i

. Since tmi
i = 0, we deduce

c(R(i, m)) = (1+ t̂i )mi

1− ti + t̂i
= (1+ t̂i )mi−1

1− x
= (1+ t̂i )

mi−1
∞∑

p=0

x p

= (1+ t̂i )
mi−1

mi−1∑

p=0

x p =
mi−1∑

j=0

(1+ t̂i )
mi−1− j t j

i .

This establishes (2.11). Equation (2.12) follows from formula (2.2). Note that the
degree of the polynomial in t := (t1, . . . , td) appearing on the right-hand side of

(2.11) is mi − 1. The polynomial
∑mi−1

j=0 t̂mi−1− j
i t j

i = t̂
mi
i −t

mi
i

t̂i−ti
is the homogeneous

polynomial of degree mi − 1 appearing on the right-hand side of (2.11). Hence, the
homogeneous polynomial of degree dim �(m) of the right-hand side of (2.12) is
∏

i∈[d]
t̂
mi
i −t

mi
i

t̂i−ti
. Assuming the relations tmi

i = 0, i ∈ [d], we obtain that this polyno-

mial is c(m)
∏

i∈[d] t
mi−1
i . This is equivalent to the statement that c(m) is the coeffi-

cient of )
∏

i∈[d] t
mi−1
i in the polynomial

∏
i∈[d]

t̂
mi
i −t

mi
i

t̂i−ti
, where we do not assume the

relations tmi
i = 0, i ∈ [d]. ��

2.5 Bertini-Type Theorems

Let M be a compact complex manifold and E a holomorphic bundle on M . A holo-
morphic section σ of E on an open set U ⊂ E is a holomorphic map σ : U → E ,
where E is viewed as a complex manifold. Specifically, let Ui , i ∈ [N ] be the finite
cover of M such that the bundle E restricted to Ui is Ui ×C

k with the standard basis
[e1,i , . . . , ek,i ], as in §2.2. Then σ(ζ ) = ∑k

j=1 σ j,i (ζ )e j,i for ζ ∈ U ∩ Ui , where
σ j,i (ζ ), j ∈ [k] are analytic on U ∩Ui . σ is called a global section if U = M . Denote
by H0(E) the linear space of global sections on E . A subspace V ⊂ H0(E) is said to
generate E if V(ζ ), the value of all sections in V at each ζ ∈ M , is equal to Eζ .

The following proposition is a generalization of the classical Bertini’s theorem
in algebraic geometry, and it is a standard consequence of the generic smoothness
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theorem. For the convenience of the reader we state and give a short proof of this
proposition.

Theorem 4 (“Bertini-type” theorem) Let E be a vector bundle on M. Let V ⊂ H0(E)

be a subspace that generates E. Then the following statements hold:

1. If rank E > dim M for the generic σ ∈ V, then the zero locus of σ is empty.
2. If rank E ≤ dim M for the generic σ ∈ V, then the zero locus of σ is either smooth

of codimension rank E or it is empty.
3. If rank E = dim M, then the zero locus of the generic σ ∈ V consists of ν(E)

simple points, where ν(E) is the top Chern number of E.

Proof We identify the vector bundle E with its locally free sheaf of sections; see [8,
B.3]. We have the projection E

π−→M , where the fiber π−1(ζ ) is isomorphic to the
vector space Eζ . Let � ⊂ E be the zero section. By assumption we have a natural
projection of maximal rank

M × V
p−→E .

Let Z = p−1(�); then Z is isomorphic to the variety {(ζ, σ ) ∈ M×V|σ(ζ ) = 0} and
it has dimension equal to dim M + dim V − rank E . Consider the natural projection

Z
q−→V; now ∀σ ∈ V the fiber q−1(σ ) is naturally isomorphic to the zero locus of

σ . We have two cases. If q is dominant (namely the image of q is dense), then by the
generic smoothness theorem [12, Corollary III 10.7] q−1(σ ) is smooth of dimension
dim X − rank E for generic σ .

If q is not dominant (and this always happens in the case rank E > dim M), then
q−1(σ ) is empty for generic σ . This concludes the proof of the first two parts. The
third part follows from [8, Example 3.2.16]. ��

For our purposes we need the following refinement of Theorem 4.

Definition 5 Let π : E → M be a vector bundle on a smooth projective variety M
such that rank E ≥ dim M . Let V ⊂ H0(E) be a subspace. Then V almost generates
E if the following conditions hold. Either V generates E (in this case k = 0) or
there exists k ≥ 1 smooth strict irreducible subvarieties Y1, . . . , Yk of M satisfying
the following properties. First, on each Y j there is a vector bundle E j . Second, after
assuming Y0 = M and E0 = E , the following conditions hold:

1. rank E j > dim Y j for each j ≥ 1.
2. Let π j : E j → Y j , and for any i, j ≥ 0 assume that Yi is a subvariety of Y j . Then

Ei is a subbundle of E j |Yi
.

3. V(ζ ) ⊂ (E j )ζ for ζ ∈ Y j .
4. Denote by Pj ⊂ [k] the set of all i ∈ [k] such that Yi are strict subvarieties of Y j .

Then V(ζ ) = (E j )ζ for ζ ∈ Y j \ ∪i∈Pj Yi .

Theorem 6 Let E be a vector bundle on a smooth projective variety M. Assume that
rank E ≥ dim M. Let V ⊂ H0(E) be a subspace that almost generates E. Then the
following conditions hold:
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1. If rank E > dim M, then for a generic σ ∈ V the zero locus of σ is empty.
2. If rank E = dim M, then the zero locus of a generic σ ∈ V consists of ν(E) simple

points lying outside ∪ j∈[k]Y j , where ν(E) is the top Chern number of E.

Proof As in the proof of Theorem 4 we consider the variety

Z = {(ζ, σ ) ∈ M × V|σ(ζ ) = 0}.

We consider the two projections

Z
↙ p ↘ q

M V

The fiber q−1(v) can be identified with the zero locus of v. If ζ ∈ Yk , then, by
4 of Definition 5, the fibers p−1(ζ ) can be identified with a subspace of V having
codimension rank Ek . It follows that the dimension of p−1(Yk) is equal to dim V −
rank Ek + dim Yk , which, by 1 of Definition 5, is strictly smaller than dim V if k ≥ 1.
Let Y = ∪k≥1Yk . Then p−1(X \ Y ) ⊂ Z is a fibration and it is smooth. Call q the
restriction of q to p−1(X \ Y ). If rank E > dim M , then we obtain that q is not
dominant and the generic fiber q−1(v) is empty. If rank E = dim M , by the generic
smoothness theorem applied to q : p−1(X \ Y ) → V, we obtain that there exists
V0 ⊂ V, with V0 open, such that the fiber q−1(v) is smooth for v ∈ V0.

Moreover, the dimension count yields that q(p−1(Y )) is a closed proper subset of
V (note that q is a proper map). Call V1 = V \ q(p−1(Y )), again open.

It follows that for v ∈ V0 ∩ V1 the fiber q−1(v) coincides with the fiber q−1(v),
which is smooth by the previous argument, given by finitely many simple points. The
number of points is ν(E), again by [8, Example 3.2.16]. ��

3 Number of Singular Vector Tuples of a Generic Tensor

In this section we compute the number of singular vector tuples of a generic tensor
T ∈ C

m. In what follows we need the following two lemmas. The first one is well
known, and we leave its proof to the reader. Denote by Qm := {x ∈ C

m, x�x = 0}
the quadric of isotropic vectors.

Lemma 7 Let x ∈ C
m \ {0}, and use the notation U := C

m/[x]. For y ∈ C
m denote

by [[y]] the element in U induced by y. Then the following statements hold:

1. Any linear functional g : U → C is uniquely represented by w ∈ C
m such that

w�x = 0 and g([[y]]) = w�y. In particular, if x ∈ Qm, then the functional
gx : U→ C given by g([[y]]) = x�y is a linear functional.

2. Suppose that x 
∈ Qm and a ∈ C is given. Then for each y ∈ C
m there exists a

unique z ∈ C
m such that [[z]] = [[y]] and x�z = a.

Lemma 8 Let m = (m1, . . . , md) ∈ N
d . Assume that xi ∈ F

mi \ {0}, yi ∈ F
mi are

given for i ∈ [d].
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1. There exists T ∈ F
m satisfying

T ×⊗ j∈[d]\{i}x j = yi , (3.1)

for any i ∈ [d] if and only if the following compatibility conditions hold:

x�1 y1 = . . . = x�d yd . (3.2)

2. Let P ⊂ [d] be the set of all p ∈ [d] such that xp is isotropic. Consider the
following system of equations

[[T ×⊗ j∈[d]\{l}x j ]] = [[yl ]] (3.3)

for any l ∈ [d]. Then there exists T ∈ F
m satisfying (3.3) if and only if one of the

following conditions holds:

a |P| ≤ 1, i.e., there exists at most one isotropic vector in {x1, . . . , xd}.
b |P| = k ≥ 2. Assume that P = {i1, . . . , ik}. Then

x�i1
yi1 = x�i2

yi2 = . . . = x�ik
yik . (3.4)

3. Fix i ∈ [d]. Let P ⊂ [d]\{i} be the set of all p ∈ [d]\{i} such that xp is isotropic.
Then there exists T ∈ F

m satisfying condition (3.1) and conditions (3.3) for all
l ∈ [d] \ {i} if and only if one of the following conditions holds:

a |P| = 0.
b |P| = k − 1 ≥ 1. Assume that P = {i1, . . . , ik−1}. Let ik = i . Then (3.4) hold.

Proof 1. Assume first that (3.1) holds. Then T ×⊗ j∈[d]x j = x�i yi for i ∈ [d]. Hence,
(3.2) holds. Suppose now that (3.2) holds. We now show that there exists T ∈ F

m

satisfying (3.1).
Let U j = [u pq, j ]m j

p=q=1 ∈ GL(m j , F) for j ∈ [d]. Let U := ⊗i∈[d]Ui . Then U
acts on F

m as a matrix acting on the corresponding vector space. That is, let T ′ = UT ,
and assume that T = [ti1,...,id ], T ′ = [t ′j1,..., jp

]. Then

t ′j1,..., jd =
∑

i1∈[m1],...,id∈[md ]
u j1i1,1 . . . u jd id ,d ti1,...,id , j1 ∈ [m1], . . . , jd ∈ [md ].

The conditions (3.1) for T ′ become

T ′ × ⊗ j∈[d]\{i}x′j = y′i , i ∈ [d], x′i = (U�i )−1xi , y′i = Ui yi , i ∈ [d]. (3.5)

Clearly, x�i yi = (x′i )�y′i for i ∈ [d]. Since xi 
= 0, there exists Ui ∈ GL(mi , F) such
that (U�i )−1xi = e1,i = (1, 0, . . . , 0)� for i ∈ [d]. Hence, it is enough to show that
(3.1) is satisfied for some T if xi = ei,1 for i ∈ [d] if e�1,1y1 = . . . = e�d,1yd . Let

yi = (y1,i , . . . , ymi ,i )
� for i ∈ [d]. Then conditions (3.2) imply that y1,1 = . . . = y1,d .
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Choose a suitable T = [ti1,...,id ] as follows. ti1,...,id = yi j , j if ik = 0 for k 
= j ,
ti1,...,id = 0 otherwise. Then (3.1) holds.

2. We now consider system (3.3). This system is solvable if and only if we can find
t1, . . . , td ∈ F such that

x�1 (y1 + t1x1) = . . . = x�d (yd + tdxd). (3.6)

Suppose first that xi 
∈ Qmi for i ∈ [d]. Fix a ∈ F. Choose ti = a−x�i yi

x�i xi
for i ∈ [d].

Hence system (3.3) is solvable. Suppose next that x j ∈ Qm j . Then x�j (y j + t j x j ) =
x�j y j . Assume that P = { j}. Let a = x�j y j . Choose ti , i 
= j as above to deduce that
(3.6) holds. Hence, (3.3) is solvable.

Assume finally that k ≥ 2 and P = {i1, . . . , ik}. Equation (3.6) yields that if (3.3)
is solvable, then (3.4) holds. Suppose that (3.4) holds. Let a = x�i1

yi1 = . . . = x�ik
yik .

For i 
∈ P let ti = a−x�i yi

x�i xi
to deduce that condition (3.6) holds. Hence, (3.3) is solvable.

3. Consider Eq. (3.1) and Eqs. (3.3) for l ∈ [d] \ {i}. Then this system is solvable
if and only if system (3.6) is solvable for ti = 0 and some tl ∈ F for l ∈ [d] \ {i}.
Let a = x�i yi . Assume that |P| = 0. Choose tl = a−x�l yl

x�l xl
for l ∈ [d] \ {i} as

above to deduce that this system is solvable. Assume that P = {i1, . . . , ik−1} for
k ≥ 2. Suppose this system is solvable for some T ∈ F

m. Then a = x�j y j for each
j ∈ P . Let ik := i . Hence (3.6) holds. Conversely, assume that (3.6) holds. Choose

tl = a−x�l yl

x�l xl
for l 
∈ P ∪ {i}. Then (3.6) holds. Hence, our system is solvable. ��

Lemma 9 Let R(i, m) and R(m) be the vector bundles over the Segre product �(m)

defined in (2.6). Denote by H0(R(i, m)) and H0(R(m)) the linear space of global
sections of R(i, m) and R(m), respectively. Then the following conditions hold:

1. For each i ∈ [d] there exists a monomorphism Li : Cm → H0(R(i, m)) such that
Li (C

m) generates R(i, m) (see §2.5).
2. L = (L1, . . . , Ld) is a monomorphism of the direct sum of d copies of C

m (denoted
by ⊕d

C
m) to H0(R(m)), which generates R(m).

3. Let δ : C
m → ⊕d

C
m be the diagonal map δ(T ) = (T , . . . , T ). Consider

([x1], . . . , [xd ]) ∈ �(m).

(a) If at most one of x1, . . . , xd is isotropic, then L ◦ δ(Cm) [as a space of sections of
R(m)] generates R(m) at ([x1], . . . , [xd ]).

(b) Let P ⊂ [d] be the set of all i ∈ [d] such that xi is isotropic. Assume that P =
{i1, . . . , ik}, where k ≥ 2. Let gxi p

be the linear functional on the fiber ofπ∗i p
Q(mi p )

at ([x1], . . . , [xd ]) as defined in Lemma 7 for p = 1, . . . , k. Let U(P) be the
subspace of all linear transformations τ = (τ1, . . . , τd) ∈ R(m)([x1],...,[xd ]), τi ∈
R(i, m)([x1],...,[xd ]), i ∈ [d] satisfying

gxi1
(τi1(⊗ j∈[d]\{i1}x j )) = . . . = gxik

(τik (⊗ j∈[d]\{ik }x j )). (3.7)

Then L ◦ δ(T )([x1], . . . , [xd ]) ∈ U(P) for each T ∈ C
m. Furthermore, L ◦

δ(Cm)([x1], . . . , [xd ]) = U(P).
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Proof ForT ∈ C
m we define the section Li (T )(([x1], . . . , [xd ]))∈ R(i, m)([x1],...,[xd ])

as follows:

Li (T )(([x1], . . . , [xd ]))(⊗ j∈[d]\{i}x j ) := [[T ×⊗ j∈[d]\{i}x j ]]. (3.8)

It is straightforward to check that Li (T ) is a global section of R(i, m).
Assume T 
= 0. Then there exist v j ∈ C

m j , j ∈ [d] such that T ×⊗ j∈[d]v j 
= 0.
Hence, ui := T × ⊗ j∈[d]\{i}v j ∈ C

mi \ {0}. Let x j = v j for j 
= i . Choose xi ∈
C

mi \ {[ui ]}. Then Li (T )(([x1], . . . , [xd ])) 
= 0. Hence, Li is injective.
We now show that Li (C

m) generates R(i, m). Let yi ∈ C
mi . Choose g j ∈ C

m j

such that g�j x j = 1 for j ∈ [d]. Set T = (⊗ j∈[i−1]g j ) ⊗ yi ⊗ (⊗ j∈[d]\[i]g j ). Then
Li (T )(([x1], . . . , [xd ])) = [[yi ]]. This proves 1.

Define L((T1, . . . , Td))(([x1], . . . , [xd ])) = ⊕i∈[d]Li (Ti )(([x1], . . . , [xd ])). Then
L((T1, . . . , Td)) ∈ H0(R(m)). Clearly L is a monomorphism. Furthermore,
L(⊕d

C
m) generates R(m). This shows 2.

Cases 3a and 3b of our lemma follow from parts 2a and 2b of Lemma 8, respectively.
��

Künneth’s formula [14] yields the equalities

Li (C
m) = H0(R(i, m)), i ∈ [d], L(⊕d

C
m) = H0(R(m)). (3.9)

The following result is a corollary to Lemma 8.

Corollary 10 Assume that ([x1], . . . , [xd ]) ∈ �(m) is a singular vector tuple of a
tensor T corresponding to a nonzero singular value. Then one of the following holds:

1. All xi are isotropic.
2. All xi are nonisotropic.

For T ∈ R
m with a real singular vector tuple ([x1], . . . , [xd ]) ∈ �R(m) the

condition
∏

i∈[d] λi = 0 implies that λi = 0 for each i . Indeed, since xi ∈ R
mi \ {0},

it follows from (1.2) that λi = T ×⊗ j∈[d]x j

x�i xi
for each i ∈ [d]. Thus λk = 0 for some

k ∈ [d] yields that T ×⊗ j∈[d]x j = 0. Hence, each λi = 0.
However, this observation is not valid for complex tensors, already in the case of

complex-valued matrices (d = 2); see subsequent example. It is straightforward to
see that a singular vector pair ([x1], [x2]) of A ∈ C

m1×m2 is given by the following
conditions:

Ax2 = λ1x1, A�x1 = λ2x2, xi ∈ C
mi \ {0}, λi ∈ C, i = 1, 2. (3.10)

Consider the following simple example:

A =
[

1 i
−i 1

]
, x1 =

[
1
0

]
, x2 =

[
1
i

]
.

Then A�x1 = x2, Ax2 = 0, i.e., λ1 = 1, λ2 = 0.

123



1224 Found Comput Math (2014) 14:1209–1242

Lemma 11 Let T ∈ C
m, and consider the section T̂ := L ◦ δ(T ) ∈ H0(R(m)). We

have that ([x1], . . . , [xd ]) ∈ �(m) is a zero of T̂ if and only if ([x1], . . . , [xd ]) is a
singular vector tuple corresponding to T .

Proof Suppose first that T̂ (([x1], . . . , [xd ])) = 0. Then Li (T )(([x1], . . . , [xd ]))
is a zero vector in the fiber R(i, m) at ([x1], . . . , [xd ]). Suppose first that T ×
(⊗ j∈[d]\{i}x j ) 
= 0. Then T × (⊗ j∈[d]\{i}x j ) = λi xi for some λi 
= 0. Other-
wise, the previous equality holds with λi = 0. Hence, ([x1], . . . , [xd ]) is a singu-
lar vector tuple corresponding to T . Conversely, it is straightforward to see that if
([x1], . . . , [xd ]) is a singular vector tuple corresponding to T , then the section T̂
vanishes at ([x1], . . . , [xd ]) ∈ �(m). ��

We now present the proof of Theorem 1, which was stated in § 1.
Proof of Theorem 1. Let V = L◦δ(Cm) be the subspace of sections of R(m) given

by tensors (embedded diagonally). We now show that V almost generates R(m) as
defined in Definition 5. First, rank R(m) = dim �(m). Second, let 2[d]k be the set of all
subsets of [d] of cardinality k for each k ∈ [d]. Let α ∈ 2[d]k . Define Yα = X1×. . . Xd ,
where Xi = P(Qmi ) if i ∈ α and Xi = P(Cmi ) otherwise. Clearly, Yα is a strict smooth
subvariety of �(m) of codimension k. Note that Yβ � Yα if and only if α � β. We
now define the subbundle Eα of π−1(Yα). If α ∈ 2[d]1 , then Eα = π−1(Yα). Assume
now that k > 1. Let α = {i1, . . . , ik}. Let ([x1], . . . , [xd ]) ∈ Yα . Thus, xil ∈ Qmil

for
l = 1, . . . , k. Then the fiber Eα at ([x1], . . . , [xd ]) is the set of all vectors satisfying
(3.7). Note that rank Eα = dim Yα + 1. Assume that α � β. Clearly, Eβ is a strict
subbundle of π−1

α (Yβ). Hence conditions 1 and 2 of Definition 5 hold. Lemma 9
implies that conditions 3 and 4 of Definition 5 hold. Theorem 6 implies that for a
generic T ∈ C

m the section L ◦ δ(T ) has a finite number of simple zeros. Moreover,
this number is equal to the top Chern number of R(m). Lemma 3 yields that the top
Chern number of R(m) is c(m).

It remains to show that a generic T ∈ C
m does not have a zero singular value.

Fix i ∈ [d], and consider the set of all T ∈ C
m that have a singular vector tuple

([x1], . . . , [xd ]) ∈ �(m) with λi = 0.
Let R(i, m)′ and Ri (m)′ be defined in (2.6). Similar to definition (3.8), we can

define a monomorphism L ′i : Cm → H0(R(i, m)′) by the equality

L ′i (T )(([x1], . . . , [xd ]))(⊗ j∈[d]\{i}x j ) := T ×⊗ j∈[d]\{i}x j .

Let L̃i = (L1, . . . , Li−1, L ′i , Li+1, . . . , Ld) : ⊕ j∈[d]Cm → H0(Ri (m)′).
We claim that L̃i ◦ δ(Cm) almost generates Ri (m)′. Clearly, rank Ri (m)′ =

dim �(m)+1. Recall that a vector (τ1, . . . , τd) ∈ Ri (m)′([x1],...,[xd ]) is of the form

τ j : T̂ (m j )→ π∗j Q(m j ) for j ∈ [d] \ {i}, τi : T̂ (mi )→ π∗j F(mi ). (3.11)

Let α ⊂ [d] \ {i} be a nonempty set. Then Yα = X1 × . . . × Xd , where X j =
P(Qm j ) if j ∈ α and X j = P(Cm j ) if j 
∈ α. [Note that Xi = P(Cmi ).] We now
define the vector bundles πα : Eα → Yα . Let π : Ri (m)′ → �(m). Assume that
α = {i1, . . . , ik−1} ⊂ [d] \ {i}, where k − 1 ≥ 1. Then Eα is the subbundle π−1(Yα)
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defined as follows. For ([x1], . . . , [xd ]) ∈ Yα it consists of all sections of the form
(3.11) satisfying a variation of the condition (3.7):

gxi1
(τi1(⊗ j∈[d]\{i1}x j )) = . . . = gxik−1

(τik−1(⊗ j∈[d]\{ik−1}x j )) = x�i τi (⊗ j∈[d]\{i}x j ).

Note that rank Eα = dim Yα + 1. Clearly, the conditions of 1–2 of Definition 5
hold. Part 3 of Lemma 8 implies conditions 3 and 4 of Definition 5. Theorem 6 yields
that a generic section of L̃i ◦δ(T ) does not have zero. Thus, T does not have a singular
vector tuple satisfying (1.2) with λi = 0. Hence, a generic tensor T ∈ C

m does not
have a zero singular value.

Clearly, a generic T ∈ R
m has exactly c(m) simple complex-valued singular vector

tuples. Only some of those can be realized as points in �R(m). ��
We first observe that Theorem 1 agrees with the standard theory of singular values

for m × n real matrices. That is, a generic A ∈ R
m×n has exactly min(m, n) nonzero

singular values all of which are positive and pairwise distinct. The corresponding
singular vector pairs are simple.

We now point out a matrix proof of Theorem 1 for d = 2. Let O(m) ⊂ C
m×m

be a variety of m × m orthogonal matrices and Dm,n ⊂ C
m×n the linear subspace of

all diagonal matrices. Consider the trilinear polynomial map F : O(m1)× Dm1,m2 ×
O(m2)→ C

m1×m2 given by (U1, D, U2) "→ U1 DU�2 . Singular value decomposition
yields that any A ∈ R

m1×m2 is of the form U1 DU�2 , where U1, U2 are real orthogonal
and D is a nonnegative diagonal matrix. Hence, F(O(m1) × Dm1,m2 × O(m2)) =
R

m1×m2 . Therefore, the image of F is dense in C
m1×m2 . Hence, a generic A ∈ C

m1×m2

is of the form U�1 DU2. Furthermore, we can assume that D = diag(λ1, . . . , λl), l =
min(m1, m2), where the diagonal entries are nonzero and pairwise distinct. Assume
that xi , yi are the i th columns of U1, U2 respectively for i = 1, . . . , l. Then ([xi ], [yi ])
is a simple singular vector tuple corresponding to λi for i = 1, . . . , l.

We list for the convenience of the reader a few values c(m). First,

c(2, . . . , 2︸ ︷︷ ︸
d

) = d! (3.12)

Indeed,
t̂2
i −t2

i
t̂i−ti

= (t̂i + ti ) = ∑
j∈[d] t j . Therefore,

∏
j∈[d]

t̂2
i −t2

i
t̂i−ti

= (
∑

j∈[d] t j )
d .

Clearly, the coefficient of t1 . . . td in this polynomial is d!.
Second, we list in Table 1 the first values in the case where d = 3. From

this table one sees that c(m1, m2, m3) stabilizes for m3 ≥ m1 + m2 − 1, and
the case where equality holds is called the boundary format case in the theory of
hyperdeterminants ([9]). It is the case where a “diagonal” naturally occurs, as in
Fig. 1:

In the d = 2 case, a boundary format means a square.

4 Partially Symmetric Singular Vector Tuples

For an integer m ≥ 2 let m×d := (m, . . . , m︸ ︷︷ ︸
d

). Then T ∈ F
m×d

is called a d-cube,

or simply a cube tensor. Denote by Sd(Fm) ⊂ F
m×d

the subspace of symmetric
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Table 1 Values of c(d1, d2, d3)
d1, d2, d3 c(d1, d2, d3)

2, 2, 2 6

2, 2, n 8 n ≥ 3

2, 3, 3 15

2, 3, n 18 n ≥ 4

2, 4, 4 28

2, 4, n 32 n ≥ 5

2, 5, 5 45

2, 5, n 50 n ≥ 6

2, m, m + 1 2m2

3, 3, 3 37

3, 3, 4 55

3, 3, n 61 n ≥ 5

3, 4, 4 104

3, 4, 5 138

3, 4, n 148 n ≥ 6

3, 5, 5 225

3,5,6 280

3,5,n 295 n ≥ 7

3, m, m + 2 8
3 m3 − 2m2 + 7

3 m

4, 4, 4 240

4, 4, 5 380

4,4,6 460

4,4,n 480 n ≥ 7

4, 5, 5 725

4,5,6 1030

4,5,7 1185

4,5,n 1220 n ≥ 8

5, 5, 5 1621

5,5,6 2671

5,5,7 3461

5,5,8 3811

5,5,n 3881 n ≥ 9

Fig. 1 A diagonal in
three-dimensional case
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tensors. For T ∈ Sd(Fm) it is natural to consider a singular vector tuple (1.2) where
x1 = . . . = xd = x [16, Formula (7), with p = 2]. This is equivalent to the system

T ×⊗d−1x = λx, x 
= 0. (4.1)

Here⊗d−1x := x⊗ . . .⊗ x︸ ︷︷ ︸
d−1

. Furthermore, the contraction in (4.1) is on the last d − 1

indices. Equation (4.1) makes sense for any cube tensor T ∈ C
m×d

[16,19,22]. For
d = 2, x is an eigenvector of the square matrix T . Hence, for a d-cube tensor (d ≥ 3)
x is referred to as a nonlinear eigenvalue of T . Abusing slightly our notation we
call ([x], . . . , [x]) ∈ �(m×d) a symmetric singular vector tuple of T . [Note that if
T ∈ Sd(Cm), then ([x], . . . , [x]) is a proper symmetric singular vector tuple of T .]

Let sd−1(T ) = [t ′i1,...,id
] be the symmetrization of a d-cube T = [ti1,...,id ] with

respect to the last d − 1 indices

t ′i1,...,id
= 1

p(i2, . . . , id)

∑

{ j2,..., jd }={i2,...,id }
ti1, j2,..., jd . (4.2)

Here p(i2, . . . , id) is the number of multisets { j2, . . . , jd} that are equal to {i2, . . . , id}.
[Note that for d = 2, s1(T ) = T .] It is straightforward to see that

T ×⊗d−1y = sd−1(T )⊗d−1 y for all y. (4.3)

Hence, in (4.1) we can assume that T is symmetric with respect to the last d − 1
indices.

As for singular vector tuples we view the eigenvectors of T as elements of P(Cm).
It was shown by Cartwright and Sturmfels [3] that a generic T ∈ C

m×d
has exactly

(d−1)m−1
d−2 distinct eigenvectors. (This formula was conjectured in [19].)
The aim of this section is to consider partially symmetric singular vectors and their

numbers for a generic tensor. This number will interpolate our formula c(m) for the
number of singular vector tuples for a generic T ∈ C

m and the number of eigenvalues
of generic T ∈ C

m×d
given in [3].

Let d = ω1 + . . .+ ωp be a partition of d. Thus, each ωi is a positive integer. Let
ω0 = m′0 = 0 and ω = (ω1, . . . , ωp), and denote by m(ω) the d-tuple

m(ω) = (m′1, . . . , m′1︸ ︷︷ ︸
ω1

, . . . , m′p, . . . , m′p︸ ︷︷ ︸
ωp

) = (m1, . . . , md). (4.4)

Denote by Sω(F) ⊂ F
m(ω) the subspace of tensors that are partially symmetric with

respect to the partition ω. That is, the entries of T = [ti1,...,id ] ∈ Sω(F) are invariant
if we permute indices in the kth group of indices [∑k

j=0 ω j ] \ [∑k−1
j=0 ω j ] for k ∈ [p].

Note that Sω(F) = Sd(Fm)) for p = 1 and Sω(F) = F
m for p = d. We call

ω = (1, . . . , 1), i.e., p = d, a trivial partition.
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For simplicity of notation we let Sω := Sω(C). Assume that T ∈ Sω. Consider a
singular vector tuple ([x1], . . . , [xd ]) satisfying (1.2) and ω-symmetric conditions

x j = zk for j ∈
[

k∑

i=1

ωi m
′
i

]
\

[
k−1∑

i=0

ωi m
′
i

]
, k ∈ [p]. (4.5)

We rewrite (1.2) for an ω-symmetric singular vector tuple ([x1], . . . , [xd ]) as follows.
Define

⊗l∈[p] (⊗ωl−δlk zl) := ⊗ j∈[d]\{1+∑k−1
i=0 ωi m′i }x j , for k ∈ [p]. (4.6)

Hence our equations for an ω-symmetric singular vector tuple for T ∈ Sω is given by

T ×⊗l∈[p](⊗ωl−δlk zl) = λkzk k ∈ [p]. (4.7)

In view of the definition of ⊗l∈[p](⊗ωl−δlk zl), we agree that the contraction on the
left-hand side of (4.7) is done on all indices except the index 1+∑k−1

i=0 ωi m′i . As for
the d-cube tensor, system (4.7) makes sense for any T ∈ C

m(ω).
Let m′ := (m′1, . . . , m′p). We call ([z1], . . . , [zp]) ∈ �(m′) satisfying (4.7), a

ω-symmetric singular vector tuple of T ∈ C
m(ω). We say that ([z1], . . . , [zp]) corre-

sponds to a zero (nonzero) singular value if
∏p

i=1 λi = 0 ( 
= 0).
The aim of this section is to generalize Theorem 1 to tensors in Sω.

Theorem 12 Let d ≥ 3 be an integer, and assume that ω = (ω1, . . . , ωp) is a partition
of d. Let m(ω) be defined by (4.6). Denote by Sω ⊂ C

m(ω) the subspace of tensors
partially symmetric with respect to ω. Let c(m′,ω) be the coefficient of the monomial
∏p

i=1 t
m′i−1
i in the polynomial

∏

i∈[p]

t̂
m′i
i − t

m′i
i

t̂i − ti
, t̂i = (ωi − 1)ti +

∑

j∈[p]\{i}
ω j t j , i ∈ [p]. (4.8)

A generic T ∈ Sω has exactly c(m′,ω) simple ω-symmetric singular vector tuples that
correspond to nonzero singular values. A generic T ∈ Sω does not have a zero singular
value. In particular, a generic real-valued tensor T ∈ Sω

R
has at most c(m′,ω) real

singular vector tuples, and all of them are simple.

Proof The proof of this theorem is analogous to the proof of Theorem 1, so we
point out briefly the needed modifications. Let H(m′i ), Q(m′i ), and F(m′i ) be the
vector bundles defined in §2.4. Let πi be the projection of �(m′) on the component
P(Cm′i ). Then π∗i H(m′i ), π∗i Q(m′i ), π∗i F(m′i ) are the pullbacks of the vector bundles
H(m′i ), Q(m′i ), F(m′i ) to �(m′), respectively. Clearly, c(π∗i H(m′i )) = 1 + ti , and

moreover c(⊗kπ∗i H(m′i )) = 1+ kti , where t
m′i
i = 0.

We next observe that we can view �(m′) as a submanifold of �(m(ω)) using the
embedding

η : �(m′)→ �(m(ω)), η(([z1], . . . , [zp])) = ([x1], . . . , [xd ]), (4.9)
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where we assume relations (4.5). Let R̃(i, m′) and R̃(i, m′)′ be the pullbacks of
R( j, m) and R( j, m)′, respectively, where j = 1+∑i−1

k=0 ωkm′k [see (2.6)]. Then

R̃(i, m′) :=Hom(η∗T̂ (m j ), π
∗
i Q(m′i )), R̃(i, m′)′ :=Hom(η∗T̂ (m j ), π

∗
i F(m′i )),

R̃(m′) :=⊕i∈[p] R̃(i, m′), R̃i (m′)′ := (⊕ j∈[p]\{i} R̃(i, m′))⊕ R̃(i, m′)′. (4.10)

Note that

rank R̃(i, m′) = rank R̃(i, m′)′ − 1 = m′i − 1,

rank R̃(m′) = rank R̃i (m′)′ − 1 = dim �(m′).

As in the proof of Lemma 3 we deduce that the top Chern class of R̃(i, m′) is given
by the polynomial

m′i−1∑

j=0

(
∑

k∈[p]
(ωk − δki )tk)

j t
m′i−1− j
i ), i ∈ [p], (4.11)

where we assume the relations t
m′i
i = 0 for i ∈ [p]. Use (2.2) to deduce that the top

Chern number of R̃(m′) is c(m′,ω).
From the results of §3, in particular Lemma 9, we deduce that there exists

a monomorphism Li : C
m(ω) → H0(R̃(i, m′)). Furthermore, Li (C

m(ω)) gen-
erates R̃(i, m′). Let L = (L1, . . . , L p) : ⊕i∈[p]Cm(ω) → H0(R̃(m′)). Then
L(⊕i∈[p]Cm(ω)) generates H0(R̃(m′)). Let δ : Cm(ω) ⊕p

C
m(ω) be the diagonal map.

We claim that L ◦ δ almost generates H0(R̃(m′)).
First, we consider a special case of Lemma 8 for T ∈ Sω. Here we assume that

x1, . . . , xd and y1, . . . , yd satsify the conditions induced by the equalities (4.5):

x1 = . . . = xω1(= z1), . . . , xd−ωp+1 = . . . = xd = (zp),

y1 = . . . = yω1(= w1), . . . , yd−ωp+1 = . . . = yd = (wp).

Then all parts of the lemma need to be stated in terms of z1, . . . , zp and w1, . . . , wp.
Second, we restate Lemma 9 for T ∈ Sω and x1, . . . , xd and y1, . . . , yd of the pre-
ceding form. Third, let Yα � �(m′), where α are nonempty subsets of [p], be the
varieties defined in the proof of Theorem 1. The proof of Theorem 1 yields that
L ◦ δ(Sω) almost generates R̃(m′) with respect to the varieties Yα . Theorem 6 yields
that a generic T ∈ Sω has exactly c(m′,ω) simple ω-symmetric singular vector tuples.
The proof that a generic T ∈ Sω does not have a zero singular value is analogous to
the proof given in Theorem 1. ��
Remark 13 In the special case where ω = (1, 1, . . . , 1), we have c(m′,ω)) = c(m′),
and Theorem 12 reduces to Theorem 1. In the case where ω = (d), we have c(m,ω) =
(d−1)m−1

d−2 , and Theorem 12 reduces to the results in [3]. This last reduction was already
performed in [20].
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Lemma 14 In the case where ω = (d − 1, 1), we have

c((m1, m2), (d − 1, 1)) =
m1−1∑

i=0

m2−1∑

j=0

(
i

j

)
(d − 2) j (d − 1)i− j .

If m1 ≤ m2, then we have c((m1, m2), (d − 1, 1)) = (2d−3)m1−1
2d−4 .

If m1 = m2+1, then we have c((m1, m2), (d−1, 1)) = (2d−3)m1−1
2d−4 −(d−1)m1−1.

We now compare our formulas for the 3 × 3 × 3 partially symmetric tensors.
Consider first the case where c((3), (3)) = 23−1

2−1 = 7, i.e., the Cartwright–Sturmfels
formula. That is, a generic symmetric 3× 3× 3 tensor has 7 singular vector triples of
the form ([x], [x], [x]). Second, consider a generic (2, 1) partially symmetric tensor.
The previous lemma gives c((3, 3), (2, 1)) = 13, i.e., a generic partially symmetric
tensor has 13 singular vector triples of the form ([x], [x], [y]). Third, consider a generic
3×3×3 tensor. In this case, our formula gives c(3, 3, 3) = c((3, 3, 3), (1, 1, 1)) = 37
singular vector triples of the form [x], [y], [z].

Let us assume that we have a generic symmetric 3× 3× 3 tensor. Let us estimate
the total number of singular vector triples it may have, assuming that it behaves as
a generic partially symmetric tensor and a nonsymmetric one. First it has 7 singular
vector triples of the form [x], [x], [x]. Second, it has 3 · 6 = 18 singular vector triples
of the form [x], [y], [z], where exactly two out of these three classes are the same.
Third, it has 12 singular vector triples of the form [x], [y], [z], where all three classes
are distinct. Note also that the number 37 was computed, in a similar setting, in [18].

The previously discussed situation indeed occurs for the diagonal tensor T =
[δi1,i2δi2i3] ∈ C

3×3×3.
We list in Table 2 the singular vector triples of this tensor T . The first 7 singular

vector triples have equal entries, and they are the ones counted by the formula in [3].
The first 7+ 6 = 13 singular vector have the form ([x], [x], [y]). Any singular vector
of this form gives 3 singular vector triples ([x], [x], [y]), ([x], [y], [x]), ([y], [x], [x]).
Note that six singular vector triples have zero singular value, but this does not corre-
spond to the generic case; indeed, for a generic tensor all 37 singular vector triples
correspond to a nonzero singular value.

In the case of 4× 4× 4 tensors, the diagonal tensor has 156 singular vector triples
corresponding to a nonzero singular value and infinitely many singular vector triples
corresponding to zero singular values. These infinitely many singular vector triples
fill exactly 36 projective lines in the Segre product P(C4) × P(C4) × P(C4), which
“count” in this case for the remaining 240− 156 = 84 singular vector triples.

5 A Homogeneous Pencil Eigenvalue Problem

By x = (x1, . . . , xm)� ∈ C
m denote x◦(d−1) := (xd−1

1 , . . . , xd−1
m )�. Let T ∈ C

m×d
.

The eigenvalues of T satisfying (4.1) are called the E-eigenvalues in [22]. The homo-
geneous eigenvalue problem introduced in [16,17,21], sometimes referred to as N -
eigenvalues, is

T ×⊗d−1x = λx◦(d−1), x 
= 0. (5.1)
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Table 2 List of 37 singular
vector triples of a 3× 3× 3
diagonal tensor

(x0,x1,x2)(y0,y1,y2)(z0,z1,z2) Singular value

(1,0,0)(1,0,0)(1,0,0) 1

(0,1,0)(0,1,0)(0,1,0) 1

(0,0,1)(0,0,1)(0,0,1) 1

(1,1,0)(1,1,0)(1,1,0) 1

(1,0,1)(1,0,1)(1,0,1) 1

(0,1,1)(0,1,1)(0,1,1) 1

(1,1,1)(1,1,1)(1,1,1) 1

(1,1,0)(1,−1,0)(1,−1,0) 1 3 permutations

(1,0,1)(1,0,−1)(1,0,−1) 1 3 permutations

(0,1,1)(0,1,−1)(0,1,−1) 1 3 permutations

(1,1,1)(1,1,−1)(1,1,−1) 1 3 permutations

(1,1,1)(1,−1,1)(1,−1,1) 1 3 permutations

(1,1,1)(−1,1,1)(−1,1,1) 1 3 permutations

(1,0,0)(0,1,0)(0,0,1) 0 6 permutations

(1,1,−1)(1,−1,1)(−1,1,1) −1 6 permutations

Let S ∈ C
m×d

. Then a generalized d − 1 pencil eigenvalue problem is

T ×⊗d−1x = λS ×⊗d−1x. (5.2)

For d = 2 the preceding homogeneous system is the standard eigenvalue problem for
a pencil of matrices T − λS.

A tensor S is called singular if the system

S ×⊗d−1x = 0 (5.3)

has a nontrivial solution. Otherwise, S is called nonsingular. It is very easy to give an
example of a symmetric nonsingular S [7]. Let w1, . . . , wm be linearly independent in
C

m . Then S =∑m
i=1⊗dwi is nonsingular. The set of singular tensors in C

m×d
is given

by the zero set of some multidimensional resultant [9, Chapter 13]. It can be obtained
by elimination of variables. Let us denote by resm,d ∈ C[Cm×d ] the multidimensional
resultant corresponding to system (5.3), which is a homogeneous polynomial in the
entries of S of degree μ(m, d) = m(d − 1)m−1; see formula (2.12) of [9, Chapter
9]. Denote by Z(resm,d) the zero set of the polynomial resm,d . Then resm,d is an
irreducible polynomial such that system (5.3) has a nonzero solution if and only if
resm,d(S) = 0. Furthermore, for a generic point S ∈ Z(resm,d) system (5.3) has
exactly one simple solution in P(Cm). The eigenvalue problem (5.2) consists of two
steps. First, find all λ satisfying resm,d(λS − T ) = 0. Clearly, resm,d(λS − T ) is a
polynomial in λ of degree at most μ(m, d). (It is possible that this polynomial in λ is a
zero polynomial. This is the case where there exists a nontrivial solution to the system
S ⊗d−1 x = T ⊗d−1 x = 0.) Then one needs to find the nonzero solutions of the
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system (λS − T )⊗d−1 x = 0, which are viewed as eigenvectors in P(Cm). Assume
that S is nonsingular. Then resm,d(λS − T ) = resm,d(S)λμ(m,d)+ polynomial in λ

of degree at most μ(m, d) − 1. We show below a result, known to experts, that for
generic S, T each eigenvalue λ of the system (λS − T )⊗d−1 x = 0 has exactly one
corresponding eigenvector in P(Cm). We outline a short proof of the following known
theorem, which basically uses only the existence of the resultant for system (5.3). For
an identity tensor S, i.e., (5.1), see [21].

Theorem 15 Let S, T ∈ C
m×d

, and assume that S is nonsingular. Then resm,d(λS−
T ) is a polynomial in λ of degree m(d − 1)m−1. For a generic S and T to each
eigenvalue λ of the pencil (5.1) corresponds one eigenvector in P(Cm).

Proof Consider the space P(C2)× P(Cm×d ×C
m×d

)× P(Cm) with the local coordi-
nates ((u, v), (S, T ), x). Consider the system of m equations that are homogeneous
in (u, v), (S, T ), x given by

(uS − vT )×⊗d−1x = 0. (5.4)

The existence of the multidimensional resultant is equivalent to the assumption that
the preceding variety V (m, d) is an irreducible variety of dimension 2md − 1 in
P(C2)× P(Cm×d ×C

m×d
)× P(Cm). Thus, it is enough to find a good point (S0, T0)

such that it has exactly μ(m, d) = m(d−1)m−1 smooth points ((ui , vi ), (S0, T0), xi )

in V (m, d).
We call T = [ti1,...,id ] ∈ C

m×d
an almost diagonal tensor if ti1,...,id = 0 whenever

i p 
= iq for some 1 < p < q ≤ d. An almost diagonal tensor T is represented by a
matrix B = [bi j ] ∈ C

m×m , where ti, j,..., j = bi j . Assume now that S0, T0 are almost
diagonal tensors represented by the matrices A, B, respectively. Then

S0 ×⊗d−1x = Ax◦(d−1), T0 ×⊗d−1x = Bx◦(d−1). (5.5)

Assume furthermore that A = I , and B is a cyclic permutation matrix, i.e.,
B(x1, . . . , xm)� = (x2, . . . , xm, x1)

�. Then B has m distinct eigenvalues, the mth
roots of unity. x is an eigenvector of (5.5) if and only if x◦(d−1) is an eigenvector of
B. Fix an eigenvalue of B. One can set x1 = 1. Then we have exactly (d − 1)m−1

eigenvectors in P(Cm) corresponding to each eigenvalue λ of B. Thus, all together
we have m(d − 1)m−1 distinct eigenvectors. It remains to show that each point
((ui , vi ), (S0, T0), xi ) is a simple point of V (m, d). For that we need to show that
the Jacobian of system (5.4) at each point has rank m, the maximal possible rank, at
((ui , vi ), (S0, T0), xi ). For that we assume that ui = λi , vi = 1, x1 = 1. This easily
follows from the fact that each eigenvalue of B is a simple eigenvalue. Hence, the
projection of V (m, d) on P(Cm×d × C

m×d
) is m(d − 1)m−1 valued.

Note that in this example each eigenvalue λ of (5.5) is of multiplicity (d − 1)m−1.
It remains to show that when we consider the pair S0, T , where T varies in the neigh-
borhood of T0, we obtain m(d − 1)m−1 different eigenvalues. Since the Jacobian of
system (5.5) has rank m at each eigenvalue λi = ui

vi
and the corresponding eigenvector

xi , one has a simple variation formula for each δλi using the implicit function theorem.
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Set x1 = 1 and denote F(x, λ, T ) = (F1, . . . , Fm) := (λS0 − T ) × ⊗d−1x. Thus,
we have the system of m equations F(x, λ) = 0 in m variables x2, . . . , xm, λ. We let
T = T0 + tT1, and we want to find the first term of λi (t) = λi + αi t + O(t2). We
also assume that xi (t) = xi + tyi + O(t2), where yi = (0, y2,i , . . . , ym,i )

�. Let

zi =
∑

j∈[d−1]
⊗ j−1xi ⊗ yi ⊗d−1− j xi .

The first-order computation yields the equation

T1 ×⊗d−1xi + T0 × zi = αiS0 ×⊗d−1xi + λiS0 × zi . (5.6)

Let w = (w1, . . . , wm)� be the left eigenvector of B corresponding to λi , i.e.,
w�B = λi w� normalized by the condition w�(S0×⊗d−1xi ) = (S0×⊗d−1xi )×w =
1. Contracting both sides of (5.6) using the vector w we obtain

αi = T1 × (w⊗ (⊗d−1xi )). (5.7)

It is straightforward to show that α1, . . . , αm(d−1)m−1 are pairwise distinct for a
generic T1. ��

The proof of Theorem 15 yields the following corollary.

Corollary 16 Let T ∈ C
m×d

be a generic tensor. Then the homogeneous eigenvalue
problem (5.1) has exactly m(d − 1)m−1 distinct eigenvectors in P(Cm), which corre-
spond to distinct eigenvalues.

We close this section with a heuristic argument that shows that a generic pencil
(S, T ) ∈ P(Cm×d × C

m×d
) has μ(m, d) = m(d − 1)m−1 distinct eigenvalues in

P(Cm). Let S ∈ C
m×d

be nonsingular. Then S induces a linear map Ŝ from the line
bundle ⊗d−1T (m) to the trivial bundle C

m over P(Cm) by ⊗d−1x "→ S × ⊗d−1x.
Then we have an exact sequence of line bundles

0→⊗d−1T (m)→ C
m → Qm,d → 0,

where Qm,d = C
m/(Ŝ(⊗d−1T (m))). The Chern polynomial of Qm,d is 1+∑m−1

i=1 (d−
1)i t iαi . A similar computation for finding the number of eigenvectors of (4.1) shows
that the number of eigenvalues of (5.2) is the coefficient of tm−1

1 in the polynomial
t̂m
1 −t̃m

1
t̂1−t̃1

. Here, t̂1 = t̃1 = (d − 1)t1. Hence, the coefficient of tm−1
1 is (d−1)m−(d−1)m

(d−1)−(d−1)
.

The calculus interpretation of this formula is the derivative of tm at t = d − 1, which
gives the value of the coefficient m(d − 1)m−1.

6 Uniqueness of a Best Approximation

Let 〈·, ·〉, ‖ · ‖ be the standard inner product and the corresponding Euclidean norm on
R

n . For a subspace U ⊂ R
n we denote by U⊥ the subspace of all vectors orthogonal

123



1234 Found Comput Math (2014) 14:1209–1242

to U in R
n . Let C � R

n be a given nonempty closed set (in Euclidean topology, see
§1). For each x ∈ R

n we consider the function

dist(x, C) := inf{‖x − y‖, y ∈ C} (≥ 0). (6.1)

We first recall that this infimum is achieved for at least one point y� ∈ C , which is
called a best approximation of x. Observe that ‖x − y‖ ≥ ‖y‖ − ‖x‖. Hence, in the
infimum (6.1) it is enough to restrict the values of y to the compact set C(x) := {y ∈
C, ‖y‖ ≤ ‖x‖ + dist(x, C)}. Since ‖x − y‖ is a continuous function on C(x), it
achieves its minimum at some point y�, which will sometimes be denoted by y(x).

The following result is probably well known, and we present its short proof for
completeness.

Lemma 17 Let C � R
n be a given closed set. Let U ⊂ R

n be a subspace with
dim U ∈ [n] and such that U is not contained in C. Let d(x), x ∈ U be the restriction
of dist(·, C) to U.

1. The function dist(·, C) is Lipschitz with constant 1:

|dist(x, C)− dist(z, C)| ≤ ‖x − z‖ f or allx, z ∈ R
n . (6.2)

2. The function d(·) is differentiable a.e. in U.
3. Let x ∈ U \ C, and assume that d(·) is differentiable at x. Denote the differential

by ∂d(x), which is viewed as a linear functional on U. Let y� ∈ C be a best
approximation to x. Then

∂d(x)(u) = 〈u,
1

dist(x, C)
(x − y�)〉 for each u ∈ U. (6.3)

If z� is another best approximation to x, then z� − y� ∈ U⊥.

Proof Assuming that dist(x, C) = ‖x − y�‖ we deduce the following inequality:

dist(z, C) ≤ ‖z− y�‖ for each z ∈ R
n . (6.4)

Suppose next that dist(z, C) = ‖z− y‖, y ∈ C . Hence,

−‖x − z‖ ≤ ‖x − y�‖ − ‖z− y�‖ ≤ dist(x, C)− dist(z, C)

≤ ‖x − y‖ − ‖z− y‖ ≤ ‖x − z‖.

This proves (6.2) and part 1. Clearly, d(·) is also Lipschitz on U. Rademacher’s theorem
yields that d(·) is differentiable a.e., which proves part 2. To prove part 3 we fix u ∈ U.
Then

dist(x + tu, C) = dist(x, C)+ t∂d(x)(u)+ to(t)
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(6.4) yields the inequality

dist(x + tu, C) ≤ ‖x + tu− y�‖ = ‖x − y∗‖ + t〈u,
1

dist(x, C)
(x − y�)〉 + O(t2).

Compare this inequality with the previous equality to deduce that

t∂d(x)(u) ≤ t〈u,
1

dist(x, C)
(x − y�)〉

for all t ∈ R. This implies (6.3). If z� is another best approximation to x, then (6.3)
yields that z� − y� ∈ U⊥. ��
Corollary 18 Let C � R

n be a given closed set.

1. The function dist(x, C) is differentiable a.e. in R
n.

2. Let x ∈ R
n \ C, and assume that dist(·, C) is differentiable at x. Then x has a

unique best approximation y(x) ∈ C. Furthermore,

∂dist(x, C)(u) = 〈u,
1

dist(x, C)
(x − y(x))〉 for each u ∈ R

n . (6.5)

In particular, a.a. x ∈ R
n have a unique best approximation y(x) ∈ C.

Proof Choose U = R
n , so d(·) = dist(·, C) is differentiable a.e. by part 2 of

Lemma 17. This establishes part 1 of our lemma. Assume that y� and z� are best
approximations of x. Then z�− y� ∈ (Rn)⊥ by part 3 of Lemma 17. As (Rn)⊥ = {0},
we obtain that z� = y�. Furthermore, (6.5) holds. ��

7 Best Rank-One Approximations of d-Mode Tensors

On C
m define an inner product and its corresponding Hilbert–Schmidt norm 〈T ,S〉 :=

T × S̄, ‖T ‖ = √〈T , T 〉. We first present some known results of the best rank-one
approximations of real tensors. In this section we assume that F = R and T ∈ R

m. Let
Sm−1 ⊂ R

m be the m−1-dimensional sphere ‖x‖ = 1. Denote by S(m) the d-product
of the spheres Sm1−1 × . . . × Smd−1. Let (x1, . . . , xd) ∈ S(m), and associate with
(x1, . . . , xd) the d one-dimensional subspaces Ui = span(xi ), i ∈ [d]. Note that

‖ ⊗i∈[d] xi‖ =
∏

i∈[d]
‖xi‖ = 1.

The projection P⊗i∈[d]Ui (T )ofT onto the one-dimensional subspace U := ⊗i∈[d]Ui ⊂
⊗i∈[d]Rmi is given by

fT (x1, . . . , xd)⊗i∈[d] xi , fT (x1, . . . , xd) := 〈T ,⊗i∈[d]xi 〉, (x1, . . . , xd) ∈ S(m).

(7.1)
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Let P(⊗i∈[d]Ui )
⊥(T ) be the orthogonal projection of T onto the orthogonal comple-

ment of ⊗i∈[d]Ui . The Pythagorean identity yields

‖T ‖2 = ‖P⊗i∈[d]Ui
(T )‖2 + ‖P(⊗i∈[d]Ui )

⊥(T )‖2. (7.2)

With this notation, a best rank-one approximation of T from S(m) is given by

min
(x1,...,xd )∈S(m)

min
a∈R
‖T − a ⊗i∈[d] xi‖.

Observing that

min
a∈R
‖T − a ⊗i∈[d] xi‖ = ‖T − P⊗i∈[d]Ui

(T )‖ = ‖P(⊗i∈[d]Ui )
⊥(T )‖,

it follows that a best rank-one approximation is obtained by the minimization of
‖P(⊗i∈[d]Ui )

⊥(T )‖. In view of (7.2), we deduce that a best rank-one approximation is
obtained by the maximization of ‖P⊗i∈[d]Ui

(T )‖, and, finally, using (7.1), it follows
that a best rank-one approximation is given by

σ1(T ) := max
(x1,...,xd )∈S(m)

fT (x1, . . . , xd). (7.3)

As in the matrix case, σ1(T ) is called in [13] the spectral norm. Furthermore, it is
shown in [13] that the computation of σ1(T ) in general is NP-hard for d > 2.

We will make use of the following result of [16], where we present the proof for
completeness.

Lemma 19 For T ∈ R
m, the critical points of f |S(m), defined in (7.1), are singular

vector tuples satisfying

T × (⊗ j∈[d]\{i}x j ) = λxi for all i ∈ [d], (x1, . . . , xd) ∈ S(m). (7.4)

Proof We need to find the critical points of 〈T ,⊗ j∈[d]x j 〉, where (x1, . . . , xd) ∈ S(m).
Using Lagrange multipliers we consider the auxiliary function

g(x1, . . . , xd) := 〈T ,⊗ j∈[d]x j 〉 −
∑

j∈[d]
λ j x�j x j .

The critical points of g then satisfy

T × (⊗ j∈[d]\{i}x j ) = λi xi , i ∈ [d],

and hence 〈T ,⊗ j∈[d]x j 〉 = λi x�i xi = λi for all i ∈ [d], which implies (7.4). ��
Observe next that (x1, . . . , xd) satisfies (7.4) if and only if the vectors (±x1, . . . ,

±xd) satisfy (7.4). In particular, we could choose the signs in (±x1, . . . ,±xd) such
that each corresponding λ is nonnegative and then these λ could be interpreted as
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the singular values of T . The maximal singular value of T is denoted by σ1(T )

and is given by (7.3). Note that to each nonnegative singular value are associated
at least 2d−1 singular vector tuples of the form (±x1, . . . ,±xd). Thus, it is more
natural to view the singular vector tuples (x1, . . . , xd) as points ([x1], . . . , [xd ]) in
the real projective Segre product �R(m). Furthermore, the projection of T on the
one-dimensional subspace spanned by ⊗i∈[d](±xi ), where (x1, . . . , xd) ∈ S(m), is
equal to one vector (T ×⊗i∈[d]xi )⊗i∈[d] xi .

Theorem 20 For a.a. T ∈ R
m a best rank-one approximation is unique.

Proof Let

C(m) := {T ∈ R
m, T = ⊗ j∈[d]x j , x j ∈ R

m j , j ∈ [d]}. (7.5)

C(m) is a compact set consisting of rank-one tensors and the zero tensor. Corollary 18
yields that for a.a. T a best rank-one approximation is unique. ��

Note that Theorem 20 implies part 1 of Theorem 2. Let ω = (ω1, . . . , ωp) be a
partition of d. For T ∈ Sω(R) it is natural to consider a best rank-one approximation
to T of the form ±∏

i∈[p] ⊗ωi xi , where xi ∈ R
m′i , i ∈ [p]. We call such an approxi-

mation a best ω-symmetric rank-one approximation. (The factor ± is needed only if
each ωi is even.) As in the case T ∈ R

m, a best ω-symmetric rank-one approximation
of T ∈ Sω(R) is a solution to the following maximum problem:

max
(x1,...,xp)∈S(m′)

|T ×⊗i∈[p] ⊗ωi xi |. (7.6)

As before, the critical points of the functions ±T ×⊗i∈[p] ⊗ωi xi on S(m′) satisfy

T ×⊗ j∈[p] ⊗ω j−δ j i x j = λxi , i ∈ [p], (x1, . . . , xp) ∈ S(m′). (7.7)

A best ω-symmetric rank-one approximation corresponds to all λ for which |λ| has a
maximal possible value. The arguments of the proof of Theorem 20 imply the following
result.

Proposition 21 For almost all T ∈ Sω(R) a best rank-one ω-symmetric approxima-
tion is unique.

Assume that ⊗ j∈[d]y j ∈ R
m(ω) is a best rank-one approximation to a tensor T ∈

Sω(R). It is not obvious a priori that⊗ j∈[d]y j is ω-symmetric. However, the following
result is obvious:

⊗ j∈[d]yσ( j) is a best rank-one approximation of T ∈ Sω(R) (7.8)

for each permutation σ : [d] → [d], which preserves Sω(R).

Lemma 22 For a.a. T ∈ Sω(R) there exists a unique rank-one tensor ⊗ j∈[d]y j ∈
R

m(ω) such that all best rank-one approximations of T are of the form (7.8).
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To prove this lemma, we need an auxiliary lemma.

Lemma 23 Let ⊗ j∈[d]x j ,⊗ j∈[d]y j ∈ R
n×d

. Assume that

〈⊗ j∈dx j ,⊗du〉 = 〈⊗ j∈dy j ,⊗du〉 ∀u ∈ R
n . (7.9)

Then there exists a permutation σ : [d] → [d] such that ⊗ j∈[d]y j = ⊗ j∈[d]xσ( j).

Proof Note that condition (7.9) is equivalent to the equality

∏

j∈[d]
u�x j =

∏

j∈[d]
u�y j ∀u ∈ R

n . (7.10)

If ⊗ j∈dx j = 0, then
∏

j∈[d] u�y j = 0 for all u. Hence, y j = 0 for some j , so
⊗ j∈[d]y j = ⊗ j∈[d]x j = 0. Thus, we assume that ⊗ j∈[d]x j and ⊗ j∈[d]y j are both
nonzero.

We now prove the lemma by induction. For d = 1 the lemma is trivial. Assume that
the lemma holds for d = k. Let d = k+1. Assume that u ∈ span(xk+1)

⊥. Then (7.10)
yields that

∏
j∈[d] u�y j = 0. Hence, span(xk+1)

⊥ ⊂ ∪ j∈[k+1]span(y j )
⊥. Therefore,

there exists j ∈ [k + 1] such that span(xk+1)
⊥ = span(y j )

⊥. Thus, y j = txk+1
for some t ∈ R \ {0}. Hence, there exist z1, . . . , zd+1 ∈ R

n and a permutation
σ ′ : [k + 1] → [k + 1] such that ⊗ j∈[k+1]zσ ′( j) = ⊗ j∈[k+1]y j , where zk+1 = xk+1.
Thus, ⊗ j∈[k+1]x j and ⊗ j∈[k+1]z j satisfy (7.10). Therefore, ⊗ j∈[k]x j and ⊗ j∈[k]z j

satisfy (7.10). Use the induction hypothesis to deduce the lemma. ��
Proof of Lemma 22. We use part 3 of Lemma 17 as follows. Let R

n = R
m(ω), and

assume that C = C(m(ω)), as defined in (7.5). We let U := Sω(R). Assume that d(·)
is differentiable at T ∈ Sω(R)\C . Suppose that⊗ j∈[d]y j ,⊗ j∈[d]z j are best rank-one
approximations of T . Thus,

σ1(T ) = ‖ ⊗ j∈[d] y j‖ =
∏

j∈[d]
‖y j‖ = ‖ ⊗ j∈[d] z j‖ =

∏

j∈[d]
‖z j‖ > 0.

Without loss of generality we may assume that

‖y j‖ = ‖z j‖ = σ1(T )
1
d ∀ j ∈ [d]. (7.11)

Lemma 17 yields that

〈⊗i∈[p] ⊗ωi ui ,⊗ j∈[d]y j −⊗ j∈[d]z j 〉 = 0 ∀ui ∈ R
m′i i ∈ [p].

The preceding equality is equivalent to

∏

i∈[p]

∏

ji∈[ωi ]
u�i yαi+ ji =

∏

i∈[p]

∏

ji∈[ωi ]
u�i zαi+ ji , ∀ui ∈ R

m′i , i ∈ [p], (7.12)
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where ω0 = 0 and αi =∑i−1
k=0 ωk for all i ∈ [p].

Suppose first that p = 1, i.e., Sω(R) is the set of all symmetric tensors in R
m
×ω1
1 .

(Note that d = ω1.) Then Lemma 23 and (7.12) yield that ⊗ j∈[d]z j = ⊗ j∈[d]yσ( j)

for some permutation σ : [d] → [d]. This proves our lemma for p = 1.
Assume now that p > 1. Fix k ∈ [p] and ui ∈ i ∈ [p] \ {k}. Let

sk :=
∏

i∈[p]\{k}

∏

l j∈[ω j ]
u�l j

yα j+l j , tk :=
∏

i∈[p]\{k}

∏

l j∈[ω j ]
u�l j

zα j+l j .

Assume that sk 
= 0. Then the two rank-one tensors sk ⊗lk∈[ωk ] yαk+lk and tk ⊗lk∈[ωk ]
zαk+lk ∈ R

(m′k )×ωk satisfy the assumptions of Lemma 23. Hence, there exists a permu-
tation σk : [ωk] → [ωk] such that tk ⊗lk∈[ωk ] zαk+lk = sk ⊗lk∈[ωk ] yαk+σk (lk). In view
of (7.11), we deduce the equality⊗lk∈[ωk ]zαk+lk = ±⊗lk∈[ωk ] yαk+σk (lk ). Hence, there
exists ω : [d] → [d], which leaves invariant each set [α j+1] for j ∈ [p − 1] such
that ⊗ j∈[d]z j = ± × j∈[d] yσ( j). Because ⊗ j∈[d]z j and ⊗ j∈[d]y j are best rank-one
approximation to T , we deduce that ⊗ j∈[d]z j = ⊗ j∈[d]yσ( j). ��

A recent result of the first author claims that each T ∈ Sω(R) has a best rank-
one approximation that is ω-symmetric [7, Theorem 1]. For symmetric tensors this
theorem is equivalent to the old theorem of Banach [1]. (See [4, Theorem 4.1] for
another proof of Banach’s theorem.) We now give a refined version of [7, Theorem
1], whose proof uses the results in [7].

Theorem 24 Each T ∈ Sω(R) has a best rank-one approximation that is ω-
symmetric. Furthermore, for a.a. T ∈ Sω(R) a best rank-one approximation is unique
and ω-symmetric.

Proof The claim that each T ∈ Sω(R) has a best rank-one approximation that is ω-
symmetric is proved in [7]. It is left to show that for a.a. T ∈ Sω(R) a best rank-one
approximation is unique and ω-symmetric. Lemma 22 claims that for a.a. T ∈ Sω(R)

there exists a unique rank-one tensor ⊗ j∈[d]y j ∈ R
m(ω) such that all best rank-one

approximations of T are of the form (7.8). The first part of the theorem yields that one
of these best rank-one approximations⊗ j∈[d]y j ∈ R

m(ω) is ω-symmetric . Hence, all
the tensors of the form (7.8) are equal to ⊗ j∈[d]y j ∈ R

m(ω). ��
Note that part 2 of Theorem 2 follows from Theorem 24.

8 Best Rank-r Approximation

In the first part of this section we assume that F is any field. Let m = (m1, . . . , md) ∈
N

d , M = ∏
j∈d m j , Mi = M

mi
, and mi = (m1, . . . , mi−1, mi+1, . . . , md) ∈ N

d−1

for i ∈ [d]. Assume that T = [ti1,...,id ] ∈ F
m. Denote by Ti ∈ F

mi×Mi the unfolded
matrix of the tensor T in mode i . That is, let T j,k ∈ F

mk be the following d − 1
mode tensor. Its entries are [ti1,...,ik−1, j,ik+1,...,id ] for i p ∈ [m p], p ∈ [d] \ {k}. Thus,
j ∈ [mk]. Then row j of Ti is a tensor T j,i viewed as a vector in F

mi . Then rankiT
is the rank of the matrix Ti . Ti can be seen as the matrix of the contraction map
⊗ j∈[d]\{i}(F∨)m j → F

mi for i ∈ [d]. Clearly,
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rankiT ≤ min(mi , Mi ) i ∈ [d]. (8.1)

Carlini and Kleppe characterized the possible ri occurring as in the following the-
orem.

Theorem 25 ([2], Theorem 7) Suppose that ri ∈ [mi ] for i ∈ [d]. Then there exists
T ∈ F

m such that rankiT = ri for i ∈ [d] if and only if

r2
i ≤

∏

j∈[d]
r j for each i ∈ [d]. (8.2)

We show a related argument working over any infinite field. For each i let fi be one
minor of Ti of order min(mi , Mi ). Let f =∏

i∈[d] fi , which is a nonzero polynomial
in the entries of T = [ti1,...,id ]. Let V (m) ⊂ F

m be the zero set of f .

Theorem 26 Let m ∈ N
d , and assume that V (m) ⊂ F

m is defined as previously.
Then for each T ∈ F

m \ V (m) the following equality holds:

rankiT = min(mi , Mi ) for i ∈ [d]. (8.3)

In particular, when F is a infinite field, a generic tensor T ∈ F
m satisfies (8.3).

Proof Suppose first that mi ≤ Mi . We claim that the mi tensors T1,i , . . . , Tmi ,i are
linearly independent. Suppose not. Then any mi × mi minor of Ti is zero. This con-
tradicts the assumption that T ∈ F

m \ V (m). Hence, rankiT = mi . Suppose that
mi > Mi . Let Tk1,i , . . . , TkMi ,i

be the Mi tensors that contribute to the minor fi .
Since fi (T ) 
= 0, we deduce that Tk1,i , . . . , TkMi ,i

are linearly independent. Hence,
rankiTi = Mi for each i ∈ [d]. Since f is a nonzero polynomial, for an infinite field
F, V (m) is a proper closed subset of F

m in the Zariski topology. Hence, (8.3) holds
for a generic tensor. ��

Over infinite fields, Theorem 25 can be proved as a consequence of Theorem 26.
Indeed, let r = (r1, . . . , rd) ∈ N

d , and assume that (8.2) holds. Choose a generic
T ′ = [t ′j1,..., jd

] ∈ F
r. Thus, rankiT ′ = ri , i ∈ [d]. Extend T ′ to T = [ti1,...,id ] ∈ F

m

by adding zero entries, i.e., t j1,..., jd = t ′j1,..., jd
for ji ∈ [ri ], i ∈ [d], and all other

entries of T are zero. Then rankiT = ri , i ∈ [d].
In what follows we assume that F = R. Observe that the set of tensors having

rank (r1, . . . , rd) contains in the closure exactly all tensors of rank (a1, . . . , ad), with
ai ≤ ri . This closure is an algebraic variety, defined as the zero set of all the minors
of order ri + 1 of Ti for i ∈ [d]. We denote it by Cr. Note that having rank (1, . . . , 1)

is equivalent to having rank 1.
Clearly, Cr is a closed set in R

m. The best r-rank approximation of T is the closest
tensor in Cr to T in the Hilbert–Schmidt norm [6].

Corollary 18 yields the following theorem.

Theorem 27 Let m = (m1, . . . , md), r = (r1, . . . , rd), where ri ∈ [mi ] for i ∈ [d],
and they satisfy (8.2). Then almost all T ∈ R

m have a unique best r-rank approxima-
tion.
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Let ω = (ω1, . . . , ωp) be a partition of d, m′ = (m′1, . . . , m′p), and assume that
m(ω) is defined by (4.4). Assume that r′ = (r ′1, . . . , r ′p), where r ′i ∈ [m′i ] for i ∈ [p].
Let r(ω) = (r ′1, . . . , r ′1︸ ︷︷ ︸

ω1

, . . . , r ′p, . . . , r ′p︸ ︷︷ ︸
ωp

).

Let C ′r′ = Cr(ω)∩Sω. Clearly, C ′r′ is a closed set, consisting of ω-symmetric tensors
in R

m(ω) having rank r(ω) .
Let T ∈ Sω. Then a best ω-symmetric r(ω)-rank approximation of T is the closest

tensor in C ′r′ to T . Corollary 18 yields the following theorem.

Theorem 28 Let ω = (ω1, . . . , ωp) be a partition of d. Assume that m′ =
(m′1, . . . , m′p), r′ = (r ′1, . . . , r ′p), r ′i ∈ [m′i ], i ∈ [p] and that m(ω) satisfies (8.2).
Then a.a. T ∈ Sω have a unique best ω-symmetric r(ω)-rank approximation.

We close our paper with the following problem. Let T ∈ Sω. Does T have a best
r(ω)-rank approximation that is ω-symmetric? If so, is a best r(ω)-rank approximation
unique for a.a. T ∈ Sω? In the previous section we showed that for r(ω) = (1, . . . , 1)

the answers to these problems are yes.
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