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Abstract We propose new versions of accelerated first-order methods for convex com-
posite optimization, where the prox parameter is allowed to increase from one iteration
to the next. In particular, we show that a full backtracking strategy can be used within
the FISTA and FALM algorithms while preserving their worst-case iteration complex-
ities of O(

√
L( f )/ε). In the original versions of FISTA and FALM the prox parameter

value on each iteration must be bounded from above by its value on prior iterations. The
complexity of the algorithm then depends on the smallest value of the prox parameter
encountered by the algorithm. The theoretical implications of using full backtracking in
the framework of accelerated first-order and alternating linearization methods allow for
better complexity estimates that depend on the “average” prox parameter value. More-
over, we show that in the case of compressed sensing problem and Lasso, the additional
cost of the new backtracking strategy is negligible compared to the cost of the original
FISTA iteration. Our computational results show the benefit of the new algorithm.
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1 Introduction

First-order methods for convex optimization have become a focus of active research
during the past several years. Their low per-iteration complexity and improved con-
vergence rates have made them a viable alternative to the higher-order, but expensive,
interior-point methods. The rapid growth of convex optimization applications in sig-
nal processing and machine learning has further increased the popularity of first-order
methods.

We are interested in this paper in the following so-called composite unconstrained
convex programming problem:

(P) min{F(x) ≡ f (x) + g(x) : x ∈ Rn}, (1.1)

where f : Rn → R and g : Rn → R are both convex functions and only f is required
to be smooth. Many problems that arise in, for example, compressed sensing and
statistical learning are of this form. For instance, in compressed sensing g(x) = ‖x‖1.
This form also accommodates constrained problems with a simple constraint set X by
setting g(x) to be an indicator function of x ∈ X .

A class of first-order methods, pioneered by Nesterov [10] and referred to as acceler-
ated gradient methods, enjoys an improved convergence rate compared to the classical
gradient method. This class of methods has recently become exceptionally popular,
and several variants have been developed (e.g., [1,11,12], [14]). In particular, we note
that the so-called fast iterative shrinkage/thresholding algorithm (FISTA) of Beck and
Teboulle [1], which enjoys the same improved convergence rate as Nesterov’s optimal
gradient method for convex composite objective functions [9], is designed to solve
problems of the form (1.1).

Like the first-order algorithms proposed in [9], FISTA computes an ε-optimal solu-
tion in O(

√
L( f )/ε) steps, where L( f ) is a bound on the Lipschitz constant for

∇ f (x). Hence, it is an optimal gradient method since this is the best complexity
bound that one can obtain using only first-order information [8,11]. In these acceler-
ated gradient methods, a combination of previous points is used to compute the new
point at each iteration. In [12,14], these techniques together with smoothing tech-
niques were applied to nonsmooth problems yielding optimal complexity results for
such problems.

FISTA requires one gradient computation per iteration, unlike the method in [9].
Although the method in [9] employs a more general framework than FISTA, FISTA’s
convergence rate does not follow from the analysis in [9]. On the other hand, FISTA
and its analysis in [1] are very simple and intuitive, which has led to its being used
in many applications. The principal drawback of FISTA compared to the method
in [9] is the requirement that the estimates of the Lipschitz constant (or the prox
parameters) that are used must be nondecreasing from one iteration to the next. This
can substantially limit the performance of FISTA when a large Lipschitz constant
estimate is encountered early in the algorithm since this causes the sizes of the steps
taken at that point, and at all subsequent iterates, to be very small.

Another very popular class of first-order methods for problems of the form (1.1)
is the class of alternating direction methods (ADMs or ADMMs) [3]. This class of
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methods has been shown to be very effective in practice for many statistical learning
applications, but for most of its variants the convergence rates are either unknown
or worse than those of the accelerated gradient methods such as FISTA. A recently
proposed fast alternating linearization method (FALM) [7] is an accelerated version of
an ADM and was shown to have the same complexity estimates as FISTA under similar
assumptions. It is applied to problems for which both f and g have a special structure
that allows the proximity operators p f

μ(y) and pg
μ(y) (defined subsequently) to be

easily computed. Here we introduce the backtracking (BKTR) variant FALM, which
allows for large steps and hence has better practical behavior. Moreover, considering
backtracking within the FALM framework allows us to generalize the convergence
rate results and substantially simplify the proofs in [7].

In addition, we discuss the concept of a local composite Lipschitz constant and
show that with the use of a backtracking strategy the constants in complexity bounds
for the methods in [1], [7], and [9] can be improved to depend on the average local
composite Lipschitz constant for ∇ f (x) rather than the worst-case Lipschitz constant
L( f ), as in all previously derived bounds for accelerated first-order schemes. This
result is potentially important in cases where the Lipschitz constant is very large at
(or near) the solution but is moderate almost everywhere else. Important examples of
such functions include smooth approximations of nonsmooth convex functions.

The paper is organized as follows. In the next section we introduce some prelimi-
nary results and definitions. In Sect. 3 we introduce and analyze the FISTA algorithm
with full line search. In Sect. 3.1 we consider the more restricted line search scheme
proposed in [9] and show that it can be applied to FISTA. We then discuss the com-
plexity implications of this scheme. In Sect. 4 we extend our line search approach
and our complexity analysis to the FALM method. We conclude in Sect. 5 with some
computational results.

2 Preliminary Results

The following assumption is made throughout the paper:

Assumption 2.1 f : Rn → R is a smooth convex function of the type C1,1, i.e.,
continuously differentiable with Lipschitz continuous gradient L( f ):

‖∇ f (x) − ∇ f (y)‖ ≤ L( f )‖x − y‖,∀x, y ∈ Rn, (2.1)

where || · || stands for standard Euclidean norm, unless specified otherwise.
We define the following notation.

Definition 2.1

Qμ(u, v) := f (v) + 〈u − v,∇ f (v)〉 + 1

2μ
‖u − v‖2 + g(u), (2.2)

pμ(v) := arg min
u

Qμ(u, v). (2.3)

The following lemma from [1] plays a key role in our analysis.
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Lemma 2.1 For any y, x ∈ Rn and μ > 0, if

F(pμ(y)) ≤ Qμ(pμ(y), y), (2.4)

where pμ(y) is given in Definition 2.1, then

2μ(F(x)−F(pμ(y))) ≥ ‖pμ(y)−y‖2+2〈y−x, pμ(y)−y〉=‖pμ(y)−x‖2−‖y−x‖2.

(2.5)

Proof The proof can be found in [1]. �
The following fact is well known and will be used in our theoretical analysis: if

μ ≤ 1/L( f ), then (2.4) holds for any y, and hence (2.5) holds for any x and y.

2.1 Local Composite Lipschitz Constants

The lower bound on the value of the prox parameter μ is a key ingredient in the
complexity bound for the algorithms that we consider in this paper. As we will see,
the actual value of μ at each iteration is determined via a backtracking line search
so that condition (2.4) is satisfied. A lower bound on μ can be derived from the
facts that μ is reduced by a constant factor at each line search step and as soon as
μ ≤ 1/L( f ), condition (2.4) is satisfied and the line search terminates. On the other
hand condition (2.4) may be satisfied with a larger value of μ. As we will see from
our results, increasing the lower bound on μ at any of the iterations improves the
complexity bound on the algorithms. In an effort to improve this lower bound we now
define a local, composite Lipschitz constant L( f, g, y) whose value never exceeds
that of L( f ) but is often smaller.

As a first step consider any two vectors u, v ∈ Rn , and let [u, v] denote the
set of points on a segment between u and v, in other words, [u, v] = {x : x =
λu + (1 − λ)v, 0 ≤ λ ≤ 1}. Let L [u,v]( f ) be the Lipschitz constant of ∇ f (x)

restricted to [u, v], i.e.,

‖∇ f (x) − ∇ f (y)‖ ≤ L [u,v]( f )‖x − y‖,∀x, y ∈ [u, v].

From simple calculus it follows that

f (u) ≤ f (v) + ∇ f (v)�(u − v) + L [u,v]( f )

2
‖u − v‖2. (2.6)

Note that the roles of u and v are interchangeable.

Definition 2.2 We call L( f, g, y) a local composite Lipschitz constant for ∇ f (x) at
y if

‖∇ f (x1)−∇ f (x2)‖ ≤ L( f, g, y)‖x1−x2‖,∀x1, x2 ∈ [pμ(y), y], ∀μ ≤ 1/L( f, g, y).
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In other words, L( f, g, y) is a local composite Lipschitz constant if it is a Lipschitz
constant for ∇ f (x) restricted to the interval [pμ(y), y] for any μ ≤ 1/L( f, g, y).

The dependence of L( f, g, y) on g arises from the dependence of pμ(y) on g;
hence we use the term composite to emphasize this dependence. If g(x) ≡ 0, then
pμ(y) = y − μ∇ f (y) for any μ and, hence, L( f, g, y) is a Lipschitz constant of
∇ f (x) restricted to an interval [y, y − 1

L( f,g,y)
∇ f (x)].

For the purposes of this paper we point to two key observations:

– L( f, g, y) ≤ L( f ) for all y and
– From Definition 2.2 it follows that for any μ and y, such that μ ≤ 1/L( f, g, y),

(2.4) holds [by (2.6)], and hence (2.5) holds for the given y and any x .

Let us now illustrate why 1/L( f, g, y) may be a better estimate for the prox para-
meter μ than 1/L( f ).

Example 2.1 Consider a compressed sensing or Lasso setting:

(P) min{F(x) ≡ ‖Ax − b‖2 + ρ‖x‖1 : x ∈ Rn}. (2.7)

In this case f (x)=‖Ax − b‖2 and L( f )=‖AA�‖2. Now consider a sparse vector
ȳ; without loss of generality assume that ȳ = (ȳ1, ȳ2) with ȳ2 =0. Also, consider the
gradient vector z = A�(Aȳ − b), and assume that ‖z2‖∞ ≤ ρ (z2 is the subvector of z
that corresponds to the subvector ȳ2). In this case it is easy to see from the properties
of the shrinkage operator that pμ(ȳ)2 = 0 for all μ > 0. This implies that for any
x ∈ [pμ(ȳ), ȳ] x2 = 0, and hence L( f, g, ȳ) = ‖A1 A�

1 ‖2, which is clearly smaller
than L( f )=‖AA�‖2, where A1 is the subset of columns of A that correspond to the
subvector y1.

Since it may be difficult, in general, to compute the local composite Lipschitz
constant accurately, we may consider estimating it via an upper bound that is still
lower than L( f ). For instance, assume that for a given f , g, and y,

‖∇ f (x) − ∇ f (y)‖ ≤ L( f, g, y)‖x − y‖,∀x : ‖x − y‖ ≤ ‖p1/L( f,g,y)(y) − y‖,
(2.8)

in other words, L( f, g, y) is a Lipschitz constant of ∇ f (x) restricted on the ball
around y of radius ‖p1/L( f,g,y)(y)−y‖. Then L( f, g, y) is a local composite Lipschitz
constant for these f , g, and y, and hence for any μ < 1/L( f, g, y), (2.4) holds.

To prove this, it is sufficient to verify that ‖pμ(y) − y‖ ≤ ‖p1/L( f,g,y)(y) − y‖ for
any μ < 1/L( f, g, y).

Lemma 2.2 Suppose that pμ(y) := arg minx Qμ(x, y) for a given y, where Qμ(x, y)

is defined as in (2.1). If μ1 ≤ μ2, then ‖pμ1(y) − y‖ ≤ ‖pμ2(y) − y‖.

Proof Assume μ1 > μ2 (μ1 = μ2 is trivial); then α ≡ 1
2μ1

− 1
2μ2

> 0. Suppose that
‖pμ1(y) − y‖ > ‖pμ2(y) − y‖. Then
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Qμ1(pμ1(y), y) − Qμ2(pμ1(y), y) = α‖pμ1(y) − y‖2 > α‖pμ2(y) − y‖2

= Qμ1(pμ2(y), y) − Qμ2(pμ2(y), y).

Hence, by applying the fact that pμ(y) is a minimizer of Qμ(x, y) in x for μ = μ1
and μ = μ2 we obtain

0 > Qμ1(pμ1(y), y) − Qμ1(pμ2(y), y) > Qμ2(pμ1(y), y) − Qμ2(pμ2(y), y) > 0,

which implies a contradiction. �
Example 2.2 To illustrate the case where an upper bound of the local composite Lip-
schitz constant can be estimated to be lower than the global Lipschitz constant, consider
the following simple setting: let f (x) = Hν‖Ax − b‖2 be the smooth Huber function
approximation of the nonsmooth function ‖Ax − b‖2, and let g(x) ≡ 0 for simplicity
of the derivations. In this case,

∇ f (x) =
{

A�(Ax−b)
ν

if ‖Ax − b‖ ≤ ν,
A�(Ax−b)
‖Ax−b‖2

otherwise.

L( f ) is then equal to ‖A� A‖2/ν, which can be very large if ν is small.
Assume now that a particular vector ȳ is given for which

‖Aȳ − b‖ ≥ 2λ

for some λ � ν. Since the function ‖Ax − b‖ is Lipschitz continuous with constant
‖A‖2, then for any x such that ‖x − ȳ‖ ≤ λ/‖A‖2 we have

‖Aȳ − b‖ − ‖Ax − b‖ ≤ ‖A‖2‖x − ȳ‖ ≤ λ,

and therefore

‖Ax − b‖ ≥ λ.

From the properties of the Huber function ‖∇2 f (x)‖ ≤ ‖A� A‖2/λ. Now consider
μ ≤ λ/‖A� A‖2, since pμ(ȳ) = ȳ − μ∇ f (ȳ); then

‖pμ(ȳ) − ȳ‖ ≤ μ‖A‖2 ≤ λ/‖A‖2.

This implies that (2.8) holds for L( f, g, ȳ) = ‖A� A‖2/λ; in other words, the local
composite Lipschitz constant for this case is bounded from above by ‖A� A‖2/λ,
which is significantly smaller than the worst-case Lipschitz constant ‖A� A‖2/ν. We
can conclude that

L( f, g, y) ≤ ‖A� A‖2

2‖Ay − b‖ , ∀y : ‖Ay − b‖ ≥ 2ν. (2.9)
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The preceding definition of local composite Lipschitz constants is provided here
to motivate the results that follow. In the following sections we will show that the
complexity bounds of line search variants of FISTA and FALM depend on the aver-
age value of the prox parameter rather than the worst-case lower bound. Hence, if
a sequence of prox parameters can be bounded from below by a sequence of local
estimates, for instance by inverses of local composite Lipschitz constants, then this
can potentially provide significantly better complexity bounds for FISTA and FALM
for certain problem classes.

3 Fast Iterative Shrinkage/Thresholding Method with Variable Step Sizes

In this section we develop an extension of the fast iterative shrinkage/thresholding
algorithm (FISTA) of [1] that computes the step size via backtracking starting from
any value. We first consider the following generalization (Algorithm 1) of FISTA. In
FISTA θk = 1, for all k, we will explain why this choice is imposed and how it can be
generalized.

Algorithm 1

FISTA
0. Set t1 = 1, 0 < β < 1 and y1 = x0, μ0 > 0;
1. for k = 1, 2, ... do

(1) Choose 0 < μ̄k < μ0, θk > 0
(2) Find the smallest ik ≥ 0 such that μk = β ik μ̄k and F(pμk (yk)) ≤

Qμk (pμk (yk), yk)

(3) xk := pμk (yk)

tk+1 :=
(

1 +
√

1 + 4θk t2
k

)
/2

yk+1 := xk + tk−1
tk+1

[
xk − xk−1

]

According to Step 2 of this algorithm, if μ0 and μ̄k are chosen so that μ0 > 1/L( f )

and μk ≥ μk−1, then μk ≥ β/L( f ), ∀k, since, as already noted, F(pμk (yk)) ≤
Qμk (pμk (yk), yk) holds for any yk if μk < 1/L( f ). The following lemma is an
immediate consequence of this.

Lemma 3.1 Let μ0 > 1/L( f ); then at each iteration of Algorithm 1 there are at
most log 1

β
(μ0 L( f )) + 1 line search backtracking steps and, hence, computations of

pμk (yk).

If for a given yk we define a local composite local Lipschitz constant Lk (=
L( f, g, yk)), as discussed in Sect. 2.1, then μk ≥ β/Lk , and the number of line
search steps at iteration k is at most log 1

β
(μ0 Lk) + 1.

The complexity of Algorithm 1 for θk ≡ 1 is analyzed in [1]. The proof in [1] relies
on the fact that μ̄k+1 is chosen so that μk+1 ≤ μk for all k ≥ 1, i.e., the step size
μk is monotonically nonincreasing. Here we will use an analysis similar to that in
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[1] but that allows for increases in the step size in Algorithm 1 while preserving the
algorithm’s O(

√
L( f )/ε) complexity. As we will show, we can accomplish this by

choosing appropriate values of θk .
We will first need an auxiliary lemma, which is analogous to a part of a theorem in

[1].

Lemma 3.2 Assume that on each step of Algorithm 1, μk t2
k ≥ μk+1tk+1(tk+1 − 1).

Then for vk = F(xk) − F(x∗) and uk = tk xk − (tk − 1)xk−1 − x∗ we have for all
k ≥ 1

2μk t2
k vk + ‖uk‖2 ≥ 2μk+1t2

k+1vk+1 + ‖uk+1‖2. (3.1)

Proof Let y = yk+1, μ = μk+1, and pμ(y) = xk+1 in Lemma 2.1. Then from this
lemma it follows that for x = xk we have

2μk+1(vk − vk+1) ≥ ‖yk+1 − xk+1‖2 + 2〈xk+1 − yk+1, yk+1 − xk〉, (3.2)

and for x = x∗ we have

− 2μk+1vk+1 ≥ ‖yk+1 − xk+1‖2 + 2〈xk+1 − yk+1, yk+1 − x∗〉. (3.3)

Multiplying the first inequality by tk+1 − 1 and adding it to the second inequality
we have

2μk+1((tk+1 − 1)vk − tk+1vk+1) ≥ tk+1‖yk+1 − xk+1‖2

+2〈xk+1 − yk+1, tk+1 yk+1−(tk+1−1)xk −x∗〉.

Then multiplying this inequality by tk+1 and rearranging the right-hand-side terms
yields

2μk+1((tk+1 − 1)tk+1vk − t2
k+1vk+1) ≥ ‖tk+1xk+1 − (tk+1 − 1)xk − x∗‖2

−‖tk+1 yk+1 − (tk+1 − 1)xk − x∗‖2.

Now from the definition of yk+1 in Algorithm 1 and uk ,

tk+1 yk+1 = tk+1xk + (tk − 1)(xk − xk−1),

and it follows that

tk+1 yk+1 − (tk+1 − 1)xk − x∗ = tk xk − (tk − 1)xk−1 − x∗ = uk .

Hence,

2μk+1((tk+1 − 1)tk+1vk − t2
k+1vk+1) ≥ ‖uk+1‖2 − ‖uk‖2. (3.4)
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Since μk t2
k ≥ μk+1tk+1(tk+1 − 1), we then have

2(μk t2
k vk − μk+1t2

k+1vk+1) ≥ ‖uk+1‖2 − ‖uk‖2, (3.5)

which is equivalent to (3.1). �
Theorem 3.1 Assume that on each step of Algorithm 1, μk t2

k ≥ μk+1tk+1(tk+1 − 1).
The sequence {xk} generated by Algorithm 1 satisfies

F(xk) − F(x∗) ≤ ‖x0 − x∗‖2

2μk t2
k

. (3.6)

Proof Since ‖uk‖2 ≥ 0, t1 = 1, and u1 = x1 − x∗, it follows from Lemma 3.2 that

2μk t2
k vk ≤ 2μk t2

k vk + ‖uk‖2 ≤ 2μ1t2
1 v1 + ‖x1 − x∗‖2. (3.7)

But from Lemma 2.1 with x = x∗, y = y1 = x0, t1 = 1, and μ = μ1, we have that

− 2μ1v1 ≥ ‖x1 − x∗‖2 − ‖x0 − x∗‖2. (3.8)

Therefore, combining (3.7) and (3.8) we obtain that

2μk t2
k vk ≤ ‖x0 − x∗‖2,

which is equivalent to (3.6). �
The result we want to obtain is

F(xk) − F(x∗) = vk ≤ ‖x0 − x∗‖2

ηk2 (3.9)

for some fixed η > 0. For this to be the case, it is sufficient to show that our algorithm
satisfies

2μk t2
k ≥ ηk2 (3.10)

while maintaining
μk t2

k ≥ μk+1tk+1(tk+1 − 1). (3.11)

From the update of tk in Algorithm 1,

tk+1 = (1 +
√

1 + 4θk t2
k )/2, (3.12)

it follows that
θk t2

k = tk+1(tk+1 − 1). (3.13)

Hence, as long as θk ≤ μk/μk+1, property (3.11) holds. We know that if we
implement the constraint μk+1 ≤ μk and use θk = 1, as is done in the FISTA algorithm
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in [1], then both conditions (3.10) and (3.11) are satisfied with η = β/L( f ). However,
if we want to allow μk+1 > μk , say μk+1 ≥ μk/β, then we need to have θk < 1, e.g.,

θk ≤ β. On the other hand, condition (3.10) requires tk ≥ k
√

η
2μk

≥ k
√

η
2μ0

, hence tk
needs to grow at the same rate as k. From (3.13) and the fact that tk > 1 for all k > 1,

(tk+1 − 1)2 < tk+1(tk+1 − 1) = θk t2
k ,

and hence, tk+1 < θ
1/2
k tk + 1. Assume that for all k, we allow θk ≤ β < 1; then if

tk > 1/(1 − β1/2), we have tk+1 < tk . This means that the sequence tk will not grow
at the required rate if we simply allow θk < 1 for all iterations.

To maintain FISTA’s rate of convergence while allowing θk < 1 on some iterations,
we need to ensure that θk > 1 on some of the other iterations.

This can be accomplished on iterations on which μk/μk+1 > 1. The immediate
difficulty is that we do not know the value of μk+1 on iteration k when θk and tk+1 are
computed. Simply setting θk ≤ μk/μ0, where μ0 is an upper bound on the step size,
will imply that θk < 1 for all k. Hence, it is necessary to update θk and tk+1 along with
μk+1, thereby expanding the backtracking part of the algorithm,

We now present Algorithm 2, which is an extension of Algorithm 1, which allows
for a full backtracking and any size μk . It satisfies conditions (3.10)–(3.11) while
setting the step size μk initially to some value μ0

k at the beginning of each iteration.
As we will show, Algorithm 2 is designed to maintain θk = μk/μk+1 for all k ≥ 1.

Recall that the parameter θk is used to compute tk+1 and yk+1 in Algorithm 1 using
the updates

tk+1 := (1 +
√

1 + 4θk t2
k )/2,

yk+1 := xk + tk − 1

tk+1
[xk − xk−1].

Let us denote this computation by

(tk+1, yk+1) = FistaStep(xk, xk−1, tk, θk).

At the end of iteration k − 1 of Algorithm 2, θk−1 = μk−1/μ
0
k , where μ0

k is an
initial “guess” for the value of μk . Hence, tk and yk are computed using this guess.
Once the backtracking is called at iteration k, this guess may turn out to be correct, or
it may turn out to be an overestimate of μk . If the guess is correct, then no correction
to θk−1 is needed. If μk is reduced during the backtracking, then θk−1 is recomputed
to account for the new value of μk so that θk−1 = μk−1/μk is satisfied. Another call
to FistaStep(xk−1, xk−2, tk−1, θk−1) is then necessary. After such a call is made,
since the iterate yk has changed, pμk (yk) must be recomputed and a new backtracking
step performed. The backtracking starts with the value of μk with which the previous
backtracking stopped and, hence, that was used to compute the most recent value of
θk−1. If the value of μk is not reduced any further, then θk−1, yk and tk have the
correct value and the backtracking part of the iteration is complete. If the value of μk

is reduced further, then θk−1 is recomputed again and backtracking continues.
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Algorithm 2

FISTA-BKTR
0. Set t1 = 1, t0 = 0, 0 < β < 1, θ0 = 1 and y1 = x0 = x−1, μ0

1 > 0;
1. for k = 1, 2, ... do

(1) Set μk := μ0
k

(2) Compute ∇ f (yk), pμk (yk)

If F(pμk (yk)) > Qμk (pμk (yk), yk)

μk := βμk, θk−1 := θk−1/β

(tk, yk) := FistaStep(xk−1, xk−2, tk−1, θk−1)

Return to (2)
(3) xk := pμk (yk)

Choose μ0
k+1 > 0, and set θk := μk/μ

0
k+1

(tk+1, yk+1) := FistaStep(xk, xk−1, tk, θk)

We have the following lemma, whose proof follows from the preceding algorithm
and discussion.

Lemma 3.3 At each iteration, upon completion of the backtracking, the iterate xk is
computed as pμk (yk), where

yk = xk−1 + tk−1 − 1

tk
[xk−1 − xk−2]

and

tk = (1 +
√

1 + 4(μk−1/μk)t2
k−1)/2, (3.14)

which is equivalent to (3.12) since θk−1 = μk−1/μk .

From the expression for tk in this lemma, (3.11) is satisfied for each k. We now
need to show that condition (3.14) implies (3.10), in which case the complexity result
(3.9) follows.

Lemma 3.4 Let {μk, tk} be a sequence that satisfies (3.14); then we have μk t2
k ≥

(
∑k

i=1
√

μi/2)2.

Proof We will prove the lemma using induction. Since t1 = 1, the statement trivially
holds for k = 1. Let us assume that μk t2

k ≥ (
∑k

i=1
√

μi/2)2 for a given k ≥ 1. From
the fact that (3.14) holds for each k it follows that

tk+1 ≥ 1/2 +
√

μk

μk+1
tk,

and hence,

√
μk+1tk+1 ≥ √

μk+1/2 + √
μk tk .

123



400 Found Comput Math (2014) 14:389–417

We know that
√

μk tk ≥ ∑k
i=1

√
μi/2; hence, from the induction assumption

√
μk+1tk+1 ≥ √

μk+1/2 +
k∑

i=1

√
μi/2 =

k+1∑
i=1

√
μi/2,

which concludes the induction argument.
Moreover, since μi ≥ β/L( f ),

(
k∑

i=1

√
μi/2

)2

≥ k2β

4L( f )
.

�
Since Algorithm 2 maintains θk = μk/μk+1, (3.11) holds automatically, and we

have shown that (3.10) holds with η = βL( f )/4 by Lemma 3.4. Thus the following
two complexity results follow immediately from Theorem 3.1.

Theorem 3.2 At the kth iteration of Algorithm 2 we have

F(xk) − F(x∗) = vk ≤ 2L( f )‖x0 − x∗‖2

βk2 . (3.15)

Theorem 3.3 Let
√

Lk = (
∑k

i=1

√
L( f, g, yi ))/k be the average estimate of local

composite Lipschitz constants encountered during the first k iterations of Algorithm 2.
Assume that μ0

i ≥ 1/L( f, g, yi ) for all 1 ≥ i ≥ k. Then

F(xk) − F(x∗) = vk ≤ 2Lk‖x0 − x∗‖2

βk2 . (3.16)

Proof The proof follows trivially by observing that for any i = 1, . . . , k μi ≥
β/L( f, g, yi ) and applying Lemma 3.4. �

In [9], Nesterov gives an accelerated method for solving problem (1.1) that involves
a backtracking process and has an iteration complexity of O(

√
L( f )/ε). Like Algo-

rithm 2, Nesterov’s method allows repeated reduction of the prox parameter μk by a
given factor on the kth iteration until a backtracking condition is met.

While Nesterov’s method minimizes the same function Qμk on each inner step, as
do FISTA and Algorithm 2, it utilizes a different update of the parameters that are
used to compute the new extrapolated point yk and relies on a criterion for terminating
each backtracking step other than F(pμk (yk)) > Qμk (pμk (yk), yk). In particular, the
criterion in [9] involves ∇ f (pμk (yk)) at each backtracking step, thereby increasing
the per-iteration cost compared to that of Algorithm 2 [assuming that the cost of
computing ∇ f (y) is higher than that of computing F(pμk (yk)), as in compressed
sensing, for instance, where the former requires two matrix vector multiplications,
while the latter requires only one]. Whether either of the criteria yields larger step
sizes and, hence, possibly fewer iterations remains to be investigated. For the sake
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of theoretical comparison, one can easily modify the results in [9] to obtain a lemma
similar to Lemma 3.4. However, Theorem 3.3 does not apply directly to the method
in [9] because in that case μk increases by a constant factor between two consecutive
iterations. We discuss this strategy and its advantages next.

Each iteration of the algorithm can start with any value of the prox parameter μ0
k , and

the condition μk t2
k = μk+1(t2

k+1−tk+1) is maintained at each iteration. If μ0
k is chosen

to be a large fixed value μ0 at each iteration, this implies a potentially large number of
calls to the FistaStep procedure to update yk and tk and the consequent recomputation
of ∇ f (yk), pμk (yk), and F(pμk (yk)). However, we know that the number of such
internal steps does not exceed log 1

β
(μ0 L( f ))+1; hence, the complexity of Algorithm 2

is at most a logarithmic factor L( f ) worse than that of FISTA, i.e., Algorithm 1. The
advantage of choosing large μ0

k is in the potentially rapid increase of the prox parameter
if such an increase is possible and desirable due to a rapid change in the local Lipschitz
behavior of ∇ f (x).

On the other hand, μ0
k can be selected to have a more conservative value (as long

as the value of θk is chosen accordingly). For instance, one can choose μ0
k to equal

μk−1/β at the beginning of the kth iteration. This will significantly reduce the number
of backtracking steps. This strategy of increasing μk incrementally is what is used in
Nesterov’s method in [9], where μ0

k is set to μk−1/α for some fixed α ≥ β. It is then
possible to bound the total number of line search steps used by the algorithm. The
following lemma is proved in [9] and applies readily to Algorithm 2 if μ0

k is chosen
to equal μk−1/α instead of some fixed large value μ0.

Lemma 3.5 For any k ≥ 1 the number of calls to FistaStep by the end of the kth
iteration is bounded by

[
1 + ln α

ln β

]
(k + 1) + 1

ln β

[
ln

αμ0

β(1/L( f ))

]
+

.

If we choose α = β, then we see that the average number of calls of FistaStep per
iteration is 2. Hence, the logarithmic factor is removed from the overall complexity of
Algorithm 2.

It is easy to see that (3.14) still holds for this case, and hence Lemma 3.4 applies.
However, the drawback of this approach is that we can no longer guarantee that μk ≥
β/Lk for each k and Theorem 3.3 may not hold for Lk as the estimate of the local
composite Lipschitz constant defined in Sect. 2.1. The bound on μk is now μk ≥
min{μk−1/β, βLk}. Ideally, one should select the increase of the prox term based on
the estimated increase of the local Lipschitz constant. The applicability of such an
approach is a subject for future investigation.

Let us consider the extra work required by each of the backtracking steps. The
FistaStep(xk, xk−1, tk, θk) requires only an additional O(n) operations; hence, the
main additional work comes from the necessity of recomputing F(pμk (yk)) and
Qμk (pμk (yk), yk). In the case of compressed sensing and Lasso problems, which
we consider for our computational results, the dominating cost of all these computa-
tions can be reduced to one additional matrix vector multiplication per backtracking
step.
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3.1 A Practical Backtracking FISTA Algorithm for Compressed Sensing and Lasso
Problems

The additional cost of each backtracking step of Algorithm 2 compared to that of
Algorithm 1 lies in a call to FistaStep updates and recomputation of ∇ f (yk), which is
needed to construct Qμ(yk, x). All remaining computational cost is the same for both
algorithms. The number of backtracking steps is defined solely by the choice of μk

0 at
each iteration, as discussed in the previous section. The choice of a practical approach
is likely to depend on the comparisons of the cost of computation of ∇ f (yk), pμk (yk),
and F(pμk (yk)). Here we consider specific application of our backtracking algorithm
to problems of the form

(P) min{F(x) ≡ ‖Ax − b‖2 + g(x) : x ∈ Rn}. (3.17)

We assume here that g(x) is a simple function, such as ‖x‖1, as in the case of
CS or Lasso [4,13] or

∑
i ‖xi‖2 as in the case of group Lasso [15]. In this case,

∇ f (x) = A�(Ax − b). Recall the expression for yk :

yk = xk−1 + tk−1 − 1

tk
[xk−1 − xk−2],

which implies that

∇ f (yk) = ∇ f (xk−1) + tk−1 − 1

tk
[∇ f (xk−1) − ∇ f (xk−2)].

Hence, if ∇ f (xk−1) and ∇ f (xk−2) are available, then ∇ f (yk) can be computed
in O(n) operations for any value of tk . Since the backtracking step changes only the
value of tk but not xk−1 or xk−2, this means that the extra cost of each backtracking
step of Algorithm 2 compared to that of Algorithm 1 is only O(n), which is negligible.

However, as discussed earlier, using larger values of μk
0 may result in a higher

number of backtracking steps; hence, we should analyze the cost of a backtrack-
ing step itself. For simple forms of g(x), computing pμk (yk) given ∇ f (yk) takes
O(n) operations. Finally, computing F(pμk (yk)) requires one matrix-vector prod-
uct for computing Ax − b. Once xk is determined via backtracking, an additional
matrix-vector product is employed to compute ∇ f (xk); however, this last com-
putation is not a part of the backtracking procedure. Assuming that matrix-vector
products comprise the dominant cost of each iteration, the total cost of an itera-
tion without backtracking equals two matrix-vector products, while the cost of an
iteration with backtracking contains an additional matrix-vector product per back-
tracking step. For instance, if μ0

k = μk−1/β, then, by Lemma 3.5, the aver-
age cost of an iteration of Algorithm 2 is 3/2 that of Algorithm 1. Such a cost
increase is beneficial if the number of iterations of Algorithm 2 is proportionately
smaller.

In the examples we consider in our computational experiments in Sect. 5, increasing
μk at each iteration appears to be wasteful. Hence, we choose to allow for the increase
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in the value of the prox parameter every l iteration, where l is chosen heuristically. In
particular, we try several different values of l during the first 100 iterations and then
settle with the value of l, which gives the least number of failed backtracking steps.
The key assumption in using such a heuristic is that the behavior of the algorithm
at later iterations is similar to that during earlier iterations. While the behavior of
the algorithm is problem-dependent, in our experiments this heuristic produced good
results. We believe that this is due to the fact that the local Lipschitz constants do not
vary dramatically for the problems in our experiments. If significant changes occur
in the Lipschitz constants, we believe that any backtracking heuristic will produce
significant improvements over the pure FISTA algorithm because it will allow the
prox parameter to increase sooner or later.

4 Fast Alternating Linearization Methods

In this section, we propose a backtracking version of the fast alternating linearization
method (FALM) with step skipping [7], which is given below as Algorithm 3. This
algorithm can be viewed as an extension of FISTA, where the linearization is applied
to each of the two parts of F(x) in turn. This similarity to FISTA allows us to extend
our backtracking approach and convergence rates results to FALM.

The main difference between FISTA and FALM is that FISTA approximates only
the first part of the composite objective function F(x), while FALM applies alternating
approximations to each of the two parts of F(x). Hence, we consider the following
two approximations of F(x) and their minimizers:

Definition 4.1

Q f
μ(u, v) := f (v) + 〈u − v,∇ f (v)〉 + 1

2μ
‖u − v‖2 + g(u);

p f
μ(v) := arg min

u
Q f

μ(u, v);

Qg
μ(u, v) := f (v) + 〈v − u, λ〉 + 1

2μ
‖u − v‖2 + g(u),

where λ is some element of the subdifferential ∂g(u);

pg
μ(u) := arg min

v
Qg

μ(u, v).

Algorithm 3 (FALM-S) given below was proposed in [7] for cases where computing
p f
μ(v) and pg

μ(u), defined earlier, is relatively easy, i.e., comparable to a gradient
computation of g and f , respectively. We call the kth iteration of this algorithm a
skipping step if xk = zk and a regular step if xk �= zk . Skipping steps are designed to
accommodate those cases where the condition F(pg

μ(u)) ≤ Qg
μ(u, pg

μ(u)) fails. Since
g is not a smooth function, it may not be possible to satisfy the preceding condition by
choosing a sufficiently small value of μ. Hence, when the minimization of Qg

μ(v, u)

in v does not produce the desired function reduction, the corresponding step is simply
skipped.
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Algorithm 3

FALM with Skipping Steps (FALM-S)
0. Choose x0 = y0 = y−1 = z1 and λ1 ∈ −∂g(z1), set t1 = 1 and t0 = 0;
1. for k = 1, 2, ... do

(1) xk := pg
μ(zk)

(2) If F(xk) > Qg
μ(zk, xk) then

If x-step was not skipped at iteration k − 1, θk−1 := 2
else θk−1 := 1
(tk, zk) := FistaStep(yk−1, yk−2, tk−1, θk−1)

xk := zk

(3) yk := p f
μ(xk)

If xk = zk then θk := 1/2
else θk := 1
(tk+1, zk+1) := FistaStep(yk, yk−1, tk, θk)

(4) Choose λk+1 ∈ −∂g(zk+1)

For the efficient computation of λk+1 ∈ −∂g(zk+1) we refer the reader to [7].
As one can observe, Algorithm 3 does not include a mechanism for selecting μ at

each iteration – the prox parameter is assumed to be fixed. In that case, the θk parameter
in FistaStep computation equals (μ + μ)/(μ + μ) = 1 when on both iterations, k
and k + 1, there are no skipped steps. Alternatively, θk = μ/(μ + μ) = 1/2 when a
step is skipped on iteration k but not on iteration k + 1, while θk = (μ + μ)/μ = 2
when a step is skipped on iteration k + 1 but not on iteration k. The convergence rate
results in [7] can be easily extended to the case where μk is chosen via backtracking,
as is done in FISTA, as long as μk ≤ μk−1, with the same values for θk . Here we
propose a backtracking variant of FALM-S, which is given below as Algorithm 4. We
note that we now have two linearization and minimization steps per iteration; hence,
we allow the parameter μ to be set separately from μx

k and μ
y
k , respectively, for each

of the minimization steps. The average μk = (μx
k + μ

y
k )/2 is then used to compute

θk and, hence, to update the parameter tk+1. The new algorithm is a generalization
of Algorithm 3 and includes skipping steps as a special case when skip = true and
μx

k = 0.
Let us first observe that the algorithm generates a sequence {μk, tk} that satisfies a

condition analogous to condition (3.11), which we required for FISTA-BKTR. Indeed,

it is evident from the computation of θk that θk = μk/μk+1, with μk = μx
k +μ

y
k

2 , and
hence μk t2

k = μk+1tk+1(tk+1 − 1) for all k.
To obtain a bound on the number of iterations required by Algorithm 4 to reach an

ε-optimal solution, we need the following lemma.

Lemma 4.1 The sequence {xk, yk} generated by Algorithm 4 satisfies

2(μk t2
k vk − μ̄k+1t2

k+1vk+1) ≥ ‖uk+1‖2 − ‖uk‖2, (4.1)

where uk := tk yk −(tk −1)yk−1−x∗, vk := 2F(yk)−2F(x∗) and μk = (μx
k +μ

y
k )/2.
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Algorithm 4

FALM-BKTR
0. Choose x0 = y0 = y−1 = z1, μ0 = μ̄x

1 = μ̄
y
1 > 0, 0 < β < 1, set t1 = 1 and

t0 = 0;
1. for k = 1, 2, ... do

(1) Set μx
k := μ̄x

k , μ
y
x := μ̄

y
k , skip := true

(2) Compute pg
μx

k
(zk)

If F(pg
μx

k
(zk)) ≤ Qg

μx
k
(zk, pg

μx
k
(zk)) then xk := pg

μx
k
(zk), skip := f alse

else μx
k = 0, θk−1 := 2μk−1/μ

y
k , (tk, zk) := FistaStep(yk−1, yk−2,

tk−1, θk−1), xk := zk

(3) Compute p f
μ

y
k
(xk)

If F(p f
μ

y
k
(xk)) ≤ Q f

μ
y
k
(p f

μ
f
k

(xk), xk), then yk := py
μ

y
k
(xk)

else μ
y
k :=βμ

y
k , μk := μx

k +μ
y
k

2 , θk :=μk−1/μk, (tk, zk) := FistaStep(yk−1,

yk−2, tk−1, θk−1)

If skip = f alse, return to (2)
else xk := zk , return to (3)

(4) Choose μ̄
y
k+1, μ̄

x
k+1

θk := 2μk

μ̄
y
k+1+μ̄x

k+1
,

(tk+1, zk+1) := FistaStep(yk, yk−1, tk, θk)

Proof We will prove that the following inequality holds:

2(μk t2
k vk − μk+1t2

k+1vk+1) ≥ tk+1(tk+1−1)
(
‖yk+1−yk‖2−‖zk+1−yk‖2

)
+ tk+1

(
‖yk+1−x∗‖2−‖zk+1−x∗‖2

)
.

The proof of (4.1), and hence the lemma, then follows from the fact that the right-
hand side of inequality (4.2) equals

‖tk+1 yk+1 − (tk+1−1)yk −x∗‖2−‖tk+1zk+1−(tk+1−1)yk −x∗‖2 = ‖uk+1‖2−‖uk‖2,

where we have used the fact that tk+1zk+1 := tk+1 yk + tk(yk − yk−1) − (yk − yk−1).

First applying Lemma 2.1 to the function Q f
μ(·, ·), with μ = μ

y
k+1, x = yk , and

y = xk+1, we have p f
μ

y
k+1

(y) = yk+1 and

2μ
y
k+1(F(yk) − F(yk+1)) ≥ ‖yk+1 − yk‖2 − ‖xk+1 − yk‖2. (4.2)

In the case of a regular iteration, that is, when μx
k+1 > 0, applying Lemma 2.1 to the

function Qg
μ(·, ·), with μ = μx

k+1, x = yk , and y = zk+1, we obtain pg
μx

k+1
(y) = xk+1

and
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2μx
k+1(F(yk) − F(xk+1)) ≥ ‖xk+1 − yk‖2 − ‖zk+1 − yk‖2. (4.3)

In the case where μx
k+1 = 0, since xk+1 := zk+1, (4.3) still holds.

Summing (4.2) and (4.3), and using the fact that F(yk+1) ≤ F(xk+1), we obtain

2μk+1(vk − vk+1) = 2μk+1(2F(yk) − 2F(yk+1)) ≥ ‖yk+1 − yk‖2 − ‖zk+1 − yk‖2.

(4.4)
Again, applying Lemma 2.1 in the case where μx

k+1 > 0 to the function Qg
μx

k+1
(·, ·)

with x = x∗ and y = zk+1, we obtain pg
μx

k+1
(y) = xk+1 and

2μx
k+1(F(x∗) − F(xk+1)) ≥ ‖xk+1 − x∗‖2 − ‖zk+1 − x∗‖2. (4.5)

On the other hand, if μx
k+1 = 0, then xk+1 := zk+1, and (4.5) still holds. Lemma 2.1

applied to the function Q f
μ

y
k+1

(·, ·), with x = x∗, y = xk+1, and p f
μ

y
k+1

(xk+1) = yk+1,

gives
2μ

y
k+1(F(x∗) − F(yk+1)) ≥ ‖yk+1 − x∗‖2 − ‖xk+1 − x∗‖2. (4.6)

Summing (4.5) and (4.6), and again using the fact that F(yk+1) ≤ F(xk+1) and
μk = (μx

k + μ
y
k )/2, we obtain

− 2μk+1vk+1 = 2μk+1(2F(x∗) − 2F(yk+1)) ≥ ‖yk+1 − x∗‖2 − ‖zk+1 − x∗‖2.

(4.7)
If we multiply (4.4) by tk+1(tk+1 −1), and (4.7) by t2

k+1, and take the sum of the two
resulting inequalities, we obtain (4.2) by using the fact that μk t2

k ≥ μk+1tk+1(tk+1−1).
�

Since Algorithm 4 maintains θk = μk/μk+1 on each iteration, then from Lemma 3.4
we know that for the sequence {μk, tk} generated by Algorithm 4,

μk t2
k ≥ (

k∑
i=1

√
μi/2)2. (4.8)

Now we are ready to give the complexity of Algorithm 4. Applying a proof equiv-
alent to that of Theorem 3.1 we obtain

F(xk) − F(x∗) ≤ ‖x0 − x∗‖2

4μk t2
k

. (4.9)

In the worst case, we have μx
0 = 0 and μk ≥ 1

2L( f )
and the algorithm reduces to

FISTA. Hence, just as for FISTA, from (4.8) we have the following theorem.

Theorem 4.1 At each iteration k of Algorithm 2 we have

F(xk) − F(x∗) = vk ≤ 2L( f )‖x0 − x∗‖2

βk2 . (4.10)
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More generally, similarly to the case of FISTA-BKTR, we have the following
complexity result.

Theorem 4.2 Let
√

μ(k) = (
∑k

i=1
√

μi )/k be the average of the square roots of the
average prox parameters μi used during the first k iterations of Algorithm 4. Then

F(xk) − F(x∗) = vk ≤ 2‖x0 − x∗‖2

μ(k)k2 . (4.11)

Note that the prox parameters μi now depend on the local composite Lipschitz
constants of both f and g, i.e, L( f, g, yk) and L(g, f, zk). For simplicity we write
the statement of the theorem in terms of μ(k) instead of L( f, g, yk) and L(g, f, zk)

since the latter may not be well defined in some cases and the skipped steps need to
be accounted for.

4.1 A Practical Backtracking FALM Algorithm for Compressed Sensing and Lasso
Problems

We now discuss the additional cost of each backtracking step of Algorithm 4 compared
to that of Algorithm 3 and a general efficient implementation of the algorithm targeted
at the problems of the form (3.17).

We again assume here that g(x) is a simple function, hence computing pg
μx (y) is a

relatively cheap operation. Computing p f
μy (x), however, involves solving a system of

linear equations with the matrix A� A + 1
2μy I . In some compressed sensing problems,

A has a special structure, such that this system can be solved in O(n log n) operations
– the same work as is required to multiply A or A� by a vector and, hence, to compute
the gradient ∇ f (x) = A�(Ax − b) [7]. In cases where such a special structure is not
present, work that involves factorization of A� A + 1

2μy I may be the dominant cost

of the iteration because it generally requires O(m3) operations.
If μy is fixed beforehand, then the matrix A� A + 1

2μy I can be factorized once, at
the initialization stage of the algorithm, and hence the per-iteration cost only involves
additional matrix-vector products. Ifμy is updated in an arbitrary way on each iteration,
then the factorization must be repeated each time. Recall that ideally we want μy to
have the largest possible value that satisfies the line search conditions in Step 2 of
Algorithm 4 and that keeping μy constant may result in very slow progress. Hence,
again, there exists a tradeoff between choosing a suitable value of the prox parameter
and the per-iteration cost. For practical efficiency we strive to achieve a reasonable
balance. Assume that we choose some value μ̄

y
1 at the beginning of the algorithm

and we choose μ̄
y
k+1 = β iμ

y
k for some i ∈ Z at each iteration k. Note that in this

case, for all k, μ
y
k can only take values β jμ

y
1 for j ∈ Z . Let us consider β = 0.5.

We also impose the following restriction of μ
y
k : if μ

y
k < μ

y
1/1000, then the expected

improvement achieved by Step 2 is too small and the step is automatically skipped;
if μ

y
k > 1000μ

y
1 , the prox parameter is large enough and no additional increase of

μ
y
k is necessary. Hence the only values allowed for μ

y
k throughout the algorithm are

{2−10μ
y
1, 2−9μ

y
1, ..., 0, 2μ

y
1 , 4μ

y
1, ..., 210μ

y
1}, overall 21 possible values. As soon as
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one of these values occurs in the algorithm, the corresponding matrix factorization
can be computed and stored for future use.

If the skipping of Step 2 occurs for a few consecutive iterations, we may choose
to automatically skip this step in the further iterations and thus avoid the additional
cost of computing p f

μy (x). In this case, the FALM-BKTR algorithm reduces FISTA-
BKTR. We found it beneficial to attempt Step 2 from time to time, even after it has
been skipped consistently on prior iterations.

The management of the μx
k parameter and the additional per-iteration cost of Step 3

can be executed similarly to what is described in Sect. 3.1 for the FISTA-BKTR
implementation.

5 Computational Results

We now present numerical results for several sparse optimization problems of the
standard compressed sensing or Lasso form:

x̄ := arg min
x

1

2
‖Ax − b‖2

2 + ρ‖x‖1, (5.1)

with f (x) := 1
2‖Ax − b‖2

2 and g(x) := ρ‖x‖1.
We compare the following algorithms:

– FISTA: the original FISTA, [1], as described in Algorithm 1 with θk = 1.
– FISTA-BKTR: an efficient implementation of Algorithm 2, as discussed in Sect. 3.1.
– FALM: an implementation of Algorithm 3, as discussed in Sect. 4.
– FALM-BKTR: an efficient implementation of Algorithm 4, as discussed in Sect. 4.1.
– SpaRSA: a gradient-based algorithm, with the use of shrinking, described in [5].
– Yall1: a solver based on alternating-direction methods, described in [16].

We compared the performance of the algorithms, benchmarking them against
FISTA. In particular, we ran FISTA for j iterations and recorded the best objective
function value F I ST A( j) achieved by FISTA thus far. Then for all other algorithms
we recorded the number of iterations it took to reach a function value smaller than
F I ST A( j). We report the number of iterations as well as the number of matrix-vector
multiplications. Throughout our tests, the maximum number of iterations is set to be
100,000, and the tolerance is set to be 10−3, which means that the algorithm terminates
when the objective function value is within 10−3 from the optimal (precomputed). We
report the final objective function value when each algorithm terminates.

The main goal of our experiments is to demonstrate that our full backtracking
strategy provides not only theoretical but practical advantage when applied to FISTA
and FALM methods. The comparison to Yall1 and SpaRSA methods is only presented
here to gauge the difficulty of the problems in our experiments and to demonstrate
that the behavior of our methods is reasonable. Our implementations were written in
MATLAB and run in MATLAB R2010b on a laptop with an Intel Core Duo 1.8 GHz
CPU and 2 GB RAM. We used the default setting for both Yall1 and SpaRSA, which
likely accounts for the bad performance of these algorithms on some of the problems.
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5.1 Spear Examples

This set of instances is obtained from the Sparse Exact and Approximate Recovery
Project and can be downloaded from either of the following links:

– http://imo.rz.tu-bs.de/mo/spear/
– https://coral.ie.lehigh.edu/projects/SPAROPTLIB/wiki/SparseOptimizationLibrary.

Spear10 (1024 × 512) Dynamic range is 3.02e+4. Sparsity is 18 (i.e., 18 nonzero
elements in the true solution). This problem provides a relatively easy instance when
ρ = 1, but the difficulty increases substantially as ρ decreases.

From Table 1, we see that the algorithms with backtracking (FISTA-BKTR and
FALM-BKTR) were generally faster than their basic counterparts (FISTA, FALM)
in terms of the number of matrix-vector multiplications. For example, it only takes
627 iterations and 1,343 matrix-vector multiplications for FISTA-BKTR to reduce the
objective function value below FISTA(1000) = 1.0035e + 5. Comparing FALM-S1
and FALM-BKTR, we observe that the latter is faster for the same initial choice of μg

(μg = 1). The initial performance of FALM-S2 and, especially, FALM-S3 is good due
to the larger starting values for μg; however, this performance slows down compared to
FALM-BKTR as iterations progress. This indicates that the full backtracking strategy
can help accelerate the original algorithms at any stage.

In Fig. 1 we plot how μ changes during iterations taken by FISTA and FISTA-
BKTR when solving (5.1) with ρ = 1 on Spear10. We see that FISTA-BKTR can
achieve larger values of μ by allowing backtracking and thus performs large steps on
some of the iterations, which corresponds to the smaller number of iterations required
by FISTA-BKTR.

Table 2 shows the results on a Spear10 problem with ρ = 0.01. This problem
provides a difficult instance where our backtracking method appears to provide a clear
advantage. SpaRSA did not converge to the proximity of the solution, while Yall1
achieved an accuracy of only 10−1, not 10−3. Here we observe that FISTA-BKTR

Table 1 Comparison of algorithms for solving (5.1) with ρ = 1 on Spear10

solver Iter Mult Iter Mult Iter Mult Final iter Mult Final Obj.

FISTA 100 206 500 1006 1000 2006 1065 2133 9.997e+4

FISTA_BKTR 69 170 283 619 627 1343 647 1404 9.997e+4

FALM-S1 30 94 (2) 117 355 (2) 376 1037 (11) 586 1457 (11) 9.997e+4

FALM-S2 10 34 (2) 39 121 (2) 206 565 (11) 273 699 (11) 9.997e+4

FALM-S3 4 16 (2) 17 57 (4) 355 812 (11) 464 1030 (11) 9.997e+4

FALM_BKTR 8 28 (8) 26 112 (10) 85 396 (21) 136 546 (21) 9.997e+4

SpaRSA 98 196 1487 2974 1689 3378 1729 3458 9.997e+4

YALL1 18 55 30 91 89 268 93 280 9.997e+4

FISTA(100) = 5.3839e + 5, FISTA(500) = 1.2799e + 5, FISTA(1000) = 1.0035e + 5. The starting μ for
FISTA/FISTA-BKTR, μ f for FALM/FALM-BKTR and μg for FALM-BKTR are all set at 1. For FALM
(with skipping), we tried different values for μg . The starting μg for FALM-S1, FALM-S2, and FALM-S3
is 1, 10, and 100, respectively. Moreover, for FALM/FALM-BKTR the number in parentheses is the number
of matrix factorization required overall
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Fig. 1 Comparison on μ values while solving (5.1) with ρ = 1 on Spear10

Table 2 Comparison of algorithms for solving (5.1) with ρ = 0.01 on Spear10

Solver Iter Mult Iter Mult Iter Mult Final iter Mult Final obj.

FISTA 100 206 500 1006 1000 2006 17846 35695 999.4

FISTA_BKTR 79 190 372 804 746 1607 12547 26527 999.4

FALM-S1 24 76 (2) 156 472 (2) 313 943 (2) 5298 15903 (11) 999.4

FALM-S2 7 25 (2) 53 163 (2) 108 328 (2) 1221 3674 (11) 999.4

FALM-S3 4 16 (2) 16 52 (2) 33 103 (2) 287 869 (11) 999.4

FALM_BKTR 7 25 (7) 12 40 (11) 18 64 (11) 252 1078 (21) 999.4

SpaRSA 30 60 687 1374 5024 10048 100000 200000 2151.1 (Failed)

YALL1 65 196 65 196 66 199 95 286 1015.3

The starting μ is set to be 0.01. FISTA(100) = 6.0980e + 3, FISTA(500) = 5.8943e + 3, FISTA(1000) =
5.4176e + 3

retains its advantage, while FALM-BKTR seems to slow down compared to FALM
method when it gets closer to the solutions. The reasons for this behavior will be
investigated in the future (Table 3).

Spear3 (1024 × 512) with ρ = 0.1. The dynamic range is 2.7535e+4, the sparsity
is 6. We observe that the behavior of FALM-BKTR converges to that of FISTA-BKTR
in later iterations due to persistent skipping of Step 2.
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Table 3 Comparison of algorithms for solving (5.1) with ρ = 0.1 on Spear3

Solver Iter Mult Iter Mult Iter Mult Final iter Mult Final obj.

FISTA 100 211 500 1011 1000 2011 28517 57045 7.33e+3

FISTA_BKTR 236 535 241 547 324 722 3149 6767 7.33e+3

FALM-S1 8 28 (2) 166 378 (11) 559 1164 (11) 27287 54620 (11) 7.33e+3

FALM-S2 6 34 (2) 112 266 (11) 547 1136 (11) 28063 56168 (11) 7.33e+3

FALM-S3 105 245 (11) 506 1047 (11) 826 1687 (11) 22430 44895 (11) 7.33e+3

FALM_BKTR 6 34 (6) 145 485 (17) 276 827 (17) 3819 10271 (17) 7.33e+3

SpaRSA 5 10 264 528 1215 2430 100000 200000 1.02e+4 (Failed)

YALL1 418 1255 418 1255 418 1255 809 2428 7.33e+3

The starting μ is set to be 1. FISTA(100) = 1.1825e + 4, FISTA(500) = 1.1793e + 4, FISTA(1000) =
1.1784e + 4

Table 4 Comparison of algorithms for solving (5.1) with ρ = 0.0001 on Bdata1

Solver Iter Mult Iter Mult Iter Mult Final iter Mult Final obj.

FISTA 10 22 50 102 100 202 200 402 1.63e-4

FISTA_BKTR 8 18 40 99 81 193 160 368 1.63e-4

FALM-S1 8 22 (2) 37 112 (5) 114 282 (11) 190 434 (11) 1.63e-4

FALM-S2 4 10 (2) 17 51 (5) 95 224 (11) 172 378 (11) 1.63e-4

FALM-S3 2 4 (1) 12 38 (8) 93 212 (11) 169 364 (11) 1.63e-4

FALM_BKTR 5 13 (5) 14 60 (9) 80 331 (19) 142 479 (19) 1.63e-4

SpaRSA 8 16 55 110 166 332 230 460 1.63e-4

YALL1 16 49 27 82 36 109 81 244 1.63e-4

The starting μ is set to be 1. FISTA(10) = 0.0015, FISTA(50) = 4.6868e−4, FISTA(100) = 1.8933e−4,
FISTA(200) = 1.6275e − 4. The toleranceεb is set to be 0.001

5.2 Bdata Problems

A Bdata test set was originally created by A. Nemirovski with the aim of imitating
examples with worst-case complexity for the first-order methods. This problem, how-
ever, provides a relatively easy instance, probably due to the presence of the �1 term in
the objective. Here we present the results for Bdata1 (1036×1036), with ρ = 0.0001;
the dynamic range is 5.9915 and the sparsity is 16 (Table 4).

5.3 Sparco Problems

This category of instances is obtained from [2]. Due to the fact that the Sparco instances
use function handles for matrix computation, which our FALM implementation is not
equipped to do, we do not include FALM in this comparison. We present the results for
Sparco3 (2048 × 1024), with ρ = 0.01, dynamic range 2, and sparsity 2. We observe
that, for this relatively easy instance, FISTA-BKTR has a minor advantage over FISTA
in terms of the number of matrix-vector multiplications. For this example, FISTA
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Table 5 Comparison of algorithms for solving (5.1) with ρ = 0.01 on Sparco3

Solver Iter Mult Iter Mult Iter Mult Final iter Mult Final obj.

FISTA 10 24 50 104 100 204 207 418 2.22278

FISTA_BKTR 6 18 38 97 78 187 173 387 2.22278

SpaRSA 7 14 11 22 72 144 99 198 2.22278

YALL1 10 20 10 20 19 38 262 534 2.22278

The starting μ is set to be 1. FISTA(10) = 13.07180, FISTA(50) = 8.187212, FISTA(100) = 2.710062.
The toleranceεb is set to be 0.001

outperforms the alternating-direction-based method Yall1, while SpaRSA seems to be
the winning method for this instance (Table 5).

5.4 Smoothed �2 Norm Minimization

As an alternative to problem (5.1) one may wish to solve the following problem with
an exact �2 penalty term:

x̄ := arg min
x

‖Ax − b‖2 + ρ‖x‖1. (5.2)

To apply the FISTA and FALM family of methods, we can smooth the �2 term
with the well-known Huber penalty function and obtain the following minimization
problem:

x̄ := arg min
x

Hν(||Ax − b||2) + ρ‖x‖1, (5.3)

where

Hν(y) =
{

y2

2ν
, 0 ≤ |y| ≤ ν

|y| − ν
2 , |y| ≥ ν,

for ν > 0. If ν < ε, then the solution of (5.3) is an ε-solution to (5.2). We define
f (x) := Hν(||Ax − b||2) and g(x) := ρ‖x‖1. It is well known that the global Lip-
schitz constant of ∇ f (x) is O(1/ν). Recall Example 2.2, where we analyze the local
composite Lipschitz constant for the case where g(x) ≡ 0 and show that away from
the optimal solution the local composite Lipschitz constant of ∇ f (x) is much smaller
than O(1/ν). The analysis of the case where g(x) := ρ‖x‖1 is much more complex,
but the essential expectation remains for our first-order schemes: the prox parameter μ

will be relatively large away from the solutions, while it will decrease as the algorithm
converges. In fact, FISTA and FALM in their original form will observe the same
behavior of the prox parameter because they allow the prox parameter to decrease
but not increase. Hence, we do not expect a significant saving using backtracking
in this setting; however, we present experiments for illustration and to confirm our
expectation of the prox parameter behavior.
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Table 6 Comparison of algorithms for solving (5.3) with ρ = 0.1 on Spear10

Solver Iter Mult Iter Mult Iter Mult Final iter Mult Final obj.

FISTA 100 200 500 1000 1000 2000 2242 4486 9.99e+3

FISTA_BKTR 18 36 27 54 29 62 48 144 9.99e+3

SpaRSA 1558 3116 36014 72028 57198 114396 60313 120626 9.99e+3

The starting μ is set to be 1. FISTA(100) = 4.4552e + 4, FISTA(500) = 2.4248e + 4, FISTA(1000) =
1.1554e + 4

Table 7 Comparison of the algorithms for solving (5.3) with ρ = 0.1 on Spear10

Solver Iter Mult Iter Mult Iter Mult Final iter Mult Final obj.

FISTA 10 20 20 40 40 91 42 97 9.99e+3

FISTA_BKTR 7 14 11 28 25 92 28 102 9.99e+3

SpaRSA 18129 36258 57282 114564 59130 118260 59131 118262 9.99e+3

The starting μ is set to be 1000. FISTA(10) = 3.4189e + 4, FISTA(20) = 1.0866e + 4, FISTA(40) =
9.9944e + 3

Fig. 2 Comparison on μ values while solving (5.3) with ρ = 0.1 on Spear10

In Tables 6 and 7 we present a comparison of the first-order methods on Spear10
data and formulation (5.3). We observe that FISTA-BKTR is much faster than FISTA
and SpaRSA in the case where the initial prox parameter value is not very large. As
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Table 8 Comparison of algorithms for solving (5.3) with ρ = 0.01 on Bdata1

Solver Iter Mult Iter Mult Iter Mult Final iter Mult Final obj.

FISTA 100 210 500 1010 1000 2010 2105 5249 0.0164

FISTA_BKTR 120 342 539 1290 539 1290 1624 3822 0.0164

The starting μ is set to be 1. FISTA(100) = 0.0196, FISTA(500) = 0.0164, FISTA(1000) = 0.0164

Fig. 3 Comparison on μ values while solving (5.3) with ρ = 0.001 on Bdata

compared with FISTA, FISTA-BKTR allows for a huge increase in μ. If the initial
μ is set to 1, then FISTA’s performance is very slow, as is shown in Table 6. But if
μ = 1000, then FISTA’s performance improves, to the level of FISTA-BKTR, as seen
in 7. This is well explained by showing graphically the change of μ in Fig. 2.

In Table 8 and Fig. 3 we show the outcome of the experiments on the Bdata1 test
set. In this case, FISTA and FISTA-BKTR perform as expected, with FISTA-BKTR
retaining a small advantage. In fact, after 500 iterations, the μ value for both algorithms
becomes small, which indicates a large Lipschitz constant for solving (5.3) on Bdata1.

5.5 �2 Regularized Logistic Regression

Finally, we illustrate the behavior of FISTA vs. FISTA-BKTR on an example of �2
regularized logistic regression applied to an optical character recognition data set,
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Fig. 4 Comparison on μ values while solving logistic regression problem on Optdigits data set

Optdigits, from the UCI repository [6]. We present this example here purely for illus-
tration purposes to show that on settings other than compressed sensing the backtrack-
ing strategy can produce significant improvements. As we discussed, to obtain optimal
performance from backtracking, a careful implementation is needed that tries to take
into account the problem structure. Such an implementation for logistic regression
and other problems will be the subject of future research. Here we present the results
of the basic approach where μ is increased by a factor of 2 on each iteration. FISTA
required 5705 iterations and 11417 matrix-vector multiplications to obtain a solution
with a gradient norm less than 10−2, while FISTA-BKTR required 1315 iterations and
3512 matrix-vector multiplications. In Fig. 4 we plot the behavior of the μ parame-
ter for both algorithms, which clearly shows that FISTA-BKTR benefits from much
larger steps. The analysis of local Lipschitz constants for logistic regression will be
the subject of future research.

6 Conclusion

We present a generalized version of accelerated first-order schemes capable of esti-
mating the prox parameter via backtracking, thereby allowing for the value of this
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parameter to increase as well as decrease. We show that the value of the parameter
depends on the so-called local composite Lipschitz constant of the gradient, rather
than the global Lipschitz constant. We show that the complexity results can then be
derived in terms of the average of the local composite Lipschitz constants along the
iterates of the algorithm. We show via some examples that the local constants can be
much smaller than the global ones; hence, one could potentially obtain better conver-
gence bounds. To produce such bounds, one would need to combine the analysis in
this paper with the analysis of the iterates of a first-order algorithm, which will be
the subject of a future study. Our computational experiments and the discussion of
a practical implementation show that in practice our proposed backtracking schemes
offer improvements in terms of accelerated first-order algorithms.
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