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Abstract The computation of the semiclassical Schrödinger equation presents major
challenges because of the presence of a small parameter. Assuming periodic bound-
ary conditions, the standard approach consists of semi-discretisation with a spectral
method, followed by an exponential splitting. In this paper we sketch an alternative
strategy. Our analysis commences with the investigation of the free Lie algebra gener-
ated by differentiation and by multiplication with the interaction potential: it turns out
that this algebra possesses a structure which renders it amenable to a very effective
form of asymptotic splitting: exponential splitting where consecutive terms are scaled
by increasing powers of the small parameter. This leads to methods which attain high
spatial and temporal accuracy and whose cost scales as O(M log M), where M is the
number of degrees of freedom in the discretisation.
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1 Introduction

The semiclassical Schrödinger equation plays a central role in a wide range of appli-
cations and is the fundamental model of quantum mechanics [7]. Its computation
presents numerous enduring challenges [13] which form the centrepiece of this paper.

We consider the standard linear Schrödinger equation in a single space variable,

ih̄
∂u

∂t
= − h̄2

2m

∂2u

∂x2 − Ṽ (x)u, t ≥ 0, x ∈
[
−(2m)−1/2, (2m)−1/2

]
, (1.1)

where u = u(x, t) is given with an initial condition and periodic boundary condi-
tions, the interaction potential Ṽ is a periodic function and m is the mass of the
underlying particle. The parameter h̄, the reduced Planck constant, is truly minute,
h̄ ≈ 1.05457168 × 10−34 J s, whilst m is a small quantity, although substantially
larger than h̄. However, since physical interest is in fairly small spatial and temporal
‘windows’, it is usual to rescale so that (1.1) is replaced with

iε
∂u

∂t
= −ε2 ∂

2u

∂x2 − V (x)u, t ≥ 0, x ∈ [−1, 1], (1.2)

where ε > 0 is a small parameter: it is useful to keep in mind the range 10−8 ≤ ε ≤
10−2.

Equation (1.2) is a univariate model for the considerably more important multivari-
ate semiclassical Schrödinger equation with periodic boundary conditions,

iε
∂u

∂t
= −ε2 E∇2u − V (x)u, t ≥ 0, x ∈ [−1, 1]d , (1.3)

where u = u(t, x) and E is a diagonal matrix. The methodology of this paper lends
itself to straightforward generalisation to (1.3), provided that the dimension d is mod-
erate. Large values of d require combining our approach with other computational
techniques, an area under current investigation.

The small size of ε is a source of substantial difficulties in the numerical discretiza-
tion of (1.2) because, using a naïve approach, rapid oscillations require a resolution
of O(ε) in both space and time, which is often impractical or, at best, exceedingly
expensive. This is the motivation to pursue alternative approaches based in the main
on the concept of exponential splittings [4,13–15].

The construction of exponential splitting methods typically commences from space
discretisation. Rewriting (1.2) in the form

∂u

∂t
= iε

∂2u

∂x2 + iε−1V (x)u, t ≥ 0, x ∈ [−1, 1], (1.4)

we let the vector u(t) ∈ C
M represent an approximation to the solution at time t :

typically, the components of u are either approximations to the values of u on a
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spatial grid or to Fourier coefficients of this function. Replacing the second-derivative
operator by a matrix K (i.e. replacing an infinite-dimensional linear operator by a
finite-dimensional one), we obtain the ODE system

u′ = i(εK + ε−1D)u, t ≥ 0, (1.5)

where u(0) is derived from the initial conditions and D represents a multiplication by
the interaction potential V in the finite-dimensional space.

The exact solution of (1.5) is, of course,

u(t) = exp
(

it (εK + ε−1D)
)

u(0),

and a natural temptation is to approximate it (using small time steps) by any of many
methods to compute the matrix exponential, u((n + 1)�t) ≈ ei�t (εK+ε−1D)u(n�t),
n ∈ Z+. This is generally accepted as a poor idea because the vastly different scales
of εK and ε−1D require either a very small time step �t or exceedingly expensive
methods to approximate the exponential (e.g. Krylov subspace methods of large dimen-
sion) to attain reasonable accuracy. The alternative is to separate scales by means of
an exponential splitting. The starting point is usually the Strang splitting:

eit (εK+ε−1D) = e
1
2 itεKeitε−1De

1
2 itεK + O

(
t3
)
. (1.6)

This has the clear virtue of separating scales. Moreover, usually each individual expo-
nential can be computed very affordably, e.g. once we semidiscretise (1.4) using a

spectral method, K is diagonal and D a circulant; therefore, e
1
2 itεK is a diagonal

matrix, whilst eitε−1D can be approximated in O(M log M) operations with a fast
Fourier transform (FFT). Yet the order of approximation is unacceptably low. The
standard generalisation of the Strang splitting bears the form

eiα1tεKeiβ1tε−1Deiα2tεK · · · eiαr tεKeiβr tε−1Deiαr tεK · · · eiα2tεKeiβ1tε−1Deiα1tεK.

The palindromic form of this splitting (it reads the same from the left and from the
right), which is referred to as symmetric splitting in much of the literature, is not
accidental since it guarantees higher order. The coefficients αi and βi are typically
chosen to ensure higher order (because of palindromy, the order is always even),
smaller error constants, or both [1,15].

This approach retains the main virtues of (1.6), namely separation of scales and
the ease of computation of individual exponentials. However, an inordinately large
number of exponentials is required to attain significant order. The simplest means
towards a high-order splitting, the Yošida method [15,20], calls for r = 3p−1 (which
translates to 2 × 3p−1 + 1 exponentials) to attain order 2p. Our aim in this paper is to
present splittings which require far fewer exponentials to attain a given order: we wish
the number of exponentials to grow linearly, rather than exponentially, with order.
Moreover, once the number of exponentials becomes large, ideally we do not want
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all of them to fit into the same two scales but wish for them to become increasingly
smaller: to have an asymptotic splitting.

In this paper we introduce a family of exponential splittings with these favourable
features. More specifically, we introduce and analyse exponential splittings of the
form

ei�t (εK+ε−1D) = eR0 eR1 · · · eRs eTs+1 eRs · · · eR1 eR0 + O
(
ε2s+2

)
, (1.7)

where

R0 = R0(�t, ε,K,D) = O
(
ε0
)
,

Rk = Rk(�t, ε,K,D) = O
(
ε2k−2

)
, k = 1, . . . , s,

Ts+1 = Ts+1(�t, ε,K,D) = O
(
ε2s
)
,

and variations on this theme. Note a number of critical differences between (1.7) and
standard exponential splittings.

Firstly, we quantify the error not in terms of the step-size �t but of the small
parameter ε. There are three small quantities at play: ε,�t and 1/M (where M is the
number of degrees of freedom in the semidiscretisation). By letting power laws govern
the relationship between ε and the choices of �t and M , we express the error in the
single quantity ε.

Secondly, the number of individual terms in (1.7) is remarkably small and grows
linearly with s – compare with the exponential growth, as a function of order, in the
number of components of familiar splittings. The reason is that the arguments of the
exponentials in (1.7) decay increasingly more rapidly in ε.

Thirdly, each of these exponentials can be computed fairly easily. Some of the
Rks are diagonal matrices, whereby computing the exponential is trivial. Others are
circulants and can be computed with FFT. Finally, because of the minute spectral radius
of the arguments for sufficiently large k, the remaining exponentials can be evaluated
up to the requisite power of ε using a very low-dimensional Krylov subspace method.
All in all, the cost of these splittings ends up being cubic in the desired order, in
contrast with the exponential cost of the Yošida method.

The asymptotic splitting (1.7) is possible because we have deliberately breached
the consensus in the design of exponential splittings: the terms Rk and Ts+1 contain
nested commutators. The use of commutators is usually frowned upon because of their
cost and because they are believed to increase in norm. However, as we demonstrate in
Sect. 2, in the current setting the use of commutators, appropriately handled, is benign.
The first idea is to forego the standard steps of first semidiscretising like in (1.5) and
then splitting the exponential: we semidiscretise only once the splitting has been done!
Thus, the entire narrative takes place within the free Lie algebra F = FLA{∂2

x , V },
where ∂x = d

dx and V is the operation of multiplying with the interaction potential:
since we have not yet discretised, both are infinite-dimensional linear operators. We
demonstrate in Sect. 2 that F can be embedded in a larger Lie algebra G, where the
commutation has a simple, straightforward interpretation. For all intents and purposes,
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commutators are replaced by simple linear combinations of powers of ∂x . Moreover –
and this is what allows this entire procedure to work in a beneficial manner – these are
smaller powers of ∂x than naïvely expected. Section 2 also describes two Lie-algebraic
concepts which are at the heart of our methodology, the symmetric Baker–Campbell–
Hausdorff (BCH) formula and the Zassenhaus splitting.

In Sect. 3 we introduce – still working in an infinite-dimensional operatorial setting
– our exponential splitting. This requires a recursive procedure, based upon repeated
application of the symmetric BCH formula in G, working in the Hall basis. Although
the underlying algebra is time consuming, it need be done just once, and the outcome
is fairly simple.

Section 4 is concerned with semidiscretisation. We consider several alternatives,
finally opting for spectral collocation. This allows us to work with nodal function
values, attain spectral speed of convergence and calculate matrix exponentials very
effectively and affordably.

The computation of matrix exponentials is the theme of Sect. 5. Most exponentials
in (1.7) are trivial to calculate because the underlying matrix is either diagonal or a
circulant. The one exception are matrices of size O(εα) for sufficiently large α > 0.
Owing to the small size of their argument, once they are calculated by Krylov subspace
methods, the price tag is very small.

We discuss some variants of the splittings in Sect. 6 and present a number of
numerical results concerning these in Sect. 7. Section 8 is devoted to brief conclusions
and pointers for future research.

2 A Lie-Algebraic Setting

2.1 An Algebra of Operators

The vector field in the semiclassical Schrödinger equation (1.4) is a linear combination
of the action of two operators, ∂2

x and multiplication by the interaction potential V .
Since the calculation of exponential splittings entails nested commutation, the focus
of our interest is on the free Lie algebra

F = FLA{∂2
x , V },

i.e. the linear-space closure of all nested commutators generated by ∂2
x and V . The

elements of F are operators acting on sufficiently smooth functions including the initial
value of (1.4): for the purpose of this paper and for simplicity’s sake we assume that
the initial value, and hence the solution of (1.4) for moderate values of t ≥ 0, is a
periodic function in C∞[−1, 1], but our results extend in a straightforward manner to
functions of lower smoothness.

To compute commutators, we need in principle to describe their action on functions,
e.g.

[V, ∂2
x ]u = V (∂2

x u)− ∂2
x (V u) = −(∂2

x V )u − 2(∂x V )∂x u

123



694 Found Comput Math (2014) 14:689–720

Table 1 Terms of Hall basis of
F of grade ≤ 4

j Nested commutator χ j Grade

H1 ∂2
x 1 1

H2 V 1 1

H3 [V, ∂2
x ] 0 2

H4 [[V, ∂2
x ], ∂2

x ] − 1
24 3

H5 [[V, ∂2
x ], V ] − 1

12 3

H6 [[[V, ∂2
x ], ∂2

x ], ∂2
x ] 0 4

H7 [[[V, ∂2
x ], ∂2

x ], V ] 0 4

H8 [[[V, ∂2
x ], V ], V ] 0 4

implies that [V, ∂2
x ] = −(∂2

x V )−2(∂x V )∂x . This algebra necessitates knowing deriv-
atives of the interaction potential, which are assumed for the scope of this paper to be
given exactly but in practice can be obtained via differentiation matrices. The higher
derivatives of V appearing in our splitting need to be known only to a certain accuracy,
and spectral methods or finite difference methods of fairly reasonable orders suffice.
It must be noted that these derivatives, if not given exactly, need to be derived only
once, and the overhead is bearable.

We list the lowest-order commutators which form a so-called Hall basis [18] of the
free Lie algebra F in Table 1. In the table, Grade refers to the number of “letters” V
and ∂2

x in the expression, whilst χ j is the coefficient of this term in the symmetric
BCH formula; cf. Sect. 2.2.

Computing the commutators Hj , j = 3, 4, . . . , 8, explicitly, we have

H3 = −(∂2
x V )− 2(∂x V )∂x ,

H4 = (∂4
x V )+ 4(∂3

x V )∂x + 4(∂2
x V )∂2

x ,

H5 = −2(∂x V )2,

H6 = −(∂6
x V )− 6(∂5

x V )∂x − 12(∂4
x V )∂2

x − 8(∂3
x V )∂3

x ,

H7 = 4
[
(∂x V )(∂3

x V )+ (∂2
x V )2

]
+ 8(∂x V )(∂2

x V )∂x ,

H8 = 0.

We note that all the terms belong to the set

G =
{

n∑
k=0

yk(x)∂
k
x : n ∈ Z+, y0, . . . , yn ∈ C∞[−1, 1] periodic with period 2

}
.

It is trivial to observe that G is itself a Lie algebra.
There are numerous cancellations, similar to H8 = 0, because of the special struc-

ture induced by the letters ∂2
x and V (x); nevertheless, for our exposition it is more

appropriate to operate in the larger Lie algebra G, where all cancellations will be taken
care of by simple computation of the commutators, according to
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⎡
⎣

n∑
i=0

fi (x)∂
i
x ,

m∑
j=0

g j (x)∂
j
x

⎤
⎦ =

n∑
i=0

m∑
j=0

i∑
�=0

(
i

�

)
fi (x)

(
∂ i−�

x g j (x)
)
∂
�+ j
x

−
m∑

j=0

n∑
i=0

j∑
�=0

(
j

�

)
g j (x)

(
∂

j−�
x fi (x)

)
∂�+i

x . (2.1)

2.2 Symmetric BCH Formula

Let X and Y be two terms in a Lie algebra g. The symmetric Baker–Campbell–
Hausdorff formula (usually known in abbreviated form as the symmetric BCH for-
mula) is

e
1
2 X eY e

1
2 X = esBCH(X,Y ), (2.2)

where

sBCH(t X, tY ) = t (X + Y )− t3
(

1

24
[[Y, X ], X ] + 1

12
[[Y, X ],Y ]

)

+ t5
(

7

5,760
[[[[Y, X ], X ], X ], X ] + 7

1,440
[[[[Y, X ], X ], X ],Y ]

+ 1

180
[[[[Y, X ], X ],Y ],Y ] + 1

720
[[[[Y, X ],Y ],Y ],Y ]

+ 1

480
[[[Y, X ], X ], [Y, X ]] − 1

360
[[[Y, X ],Y ], [Y, X ]]

)

+O
(

t7
)
. (2.3)

Expansion (2.3) can be computed to an arbitrary power of t using an algorithm from
[3]. [Because (2.3) is palindromic, only odd powers of t feature in the expansion.] An
observant reader would have noticed that the coefficients are the numbers χ j from
Table 1. This is not accidental: once we let X = ∂2

x and Y = V , the table lists the
coefficients up to grade four.

2.3 Zassenhaus Splitting

Unless X and Y commute, it is in general not true that et (X+Y ) = et X etY . The Zassen-
haus splitting [17]

et (X+Y ) = et X etY et2U2(X,Y )et3U3(X,Y )et4U4(X,Y ) · · · , (2.4)
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where

U2(X,Y ) = 1

2
[Y, X ],

U3(X,Y ) = 1

3
[[Y, X ],Y ] + 1

6
[[Y, X ], X ],

U4(X,Y ) = 1

24
[[[Y, X ], X ], X ] + 1

8
[[[Y, X ], X ],Y ] + 1

8
[[[Y, X ],Y ],Y ],

quantifies this discrepancy. (More terms can be generated using the – non-symmetric
– BCH formula.)

The splitting (2.4) is not well known and seldom used in computation, for the
perfectly valid reason that it is not palindromic. The natural temptation is thus to
symmetrise it and consider a palindromic splitting of the form

et (X+Y ) = · · · et5 Q5(X,Y )et3 Q3(X,Y )e
1
2 t X etY e

1
2 t X et3 Q3(X,Y )et5 Q5(X,Y ) · · · , (2.5)

where we can deduce by inspection of (2.3) that, for example,

Q3(X,Y ) = 1

48
[[Y, X ], X ] + 1

24
[[Y, X ],Y ].

Rather than engaging in increasingly tedious calculations to compute Q5, we replace
(2.5) by a more computation-friendly splitting. We commence from the symmetric
BCH formula (2.3),

e− 1
2 t X et (X+Y )e− 1

2 t X = esBCH(−t X,t (X+Y )),

which we rewrite in the form

et (X+Y ) = e
1
2 t X esBCH(−t X,t (X+Y ))e

1
2 t X . (2.6)

It follows from (2.3) that

sBCH(−t X, t (X + Y )) = W [1] = tY + O
(

t3
)
,

and we note that we have extracted the outer term t X from the inner exponent. We
iterate (2.6) over the resulting term and continue to symmetrically pull out the lowest-
order terms, one by one, until the central exponent reaches the desired high order,

exp t (X + Y ) = e
1
2 t X esBCH(−t X,t (X+Y ))e

1
2 t X

= e
1
2 t X e

1
2 tY esBCH(−tY,sBCH(−t X,t (X+Y )))e

1
2 tY e

1
2 t X = · · · .

Notice that by pulling out, we essentially subtract a term and add higher-order cor-
rections. It is important to observe that the order of the exponent given by the sBCH
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formula (2.6) is never decreased by this procedure,1 and thus we can easily control the
order of the approximation error when truncating the BCH formula. With the notation

W [k+1] = sBCH
(
−W [k],W [k]) , W [0] = t (X + Y ), (2.7)

the result after s steps can be written as

exp t (X + Y ) = e
1
2 W [0]

e
1
2 W [1] · · · e

1
2 W [s]

eW [s+1]
e

1
2 W [s] · · · e

1
2 W [1]

e
1
2 W [0]

.

We emphasise that, in principle, we can freely choose the elements W [k] which we want
to extract. A first idea is to choose the W [k] = O

(
t2k−1

)
for k > 0 and W [0] = O(t),

which yields a separation of powers, analogous to (2.5), and thus for s stages and
approximating W [s+1] = W [s+1] + O

(
t2s+3

)
, we obtain a symmetric Zassenhaus

splitting of order 2s + 2.
We have almost established the splitting (1.7) – ‘almost’ because of yet another

consideration. In standard splittings, e.g. in the context of a numerical solution of
Hamiltonian ordinary differential equations, there is usually a single small parameter,
�t (the time step), and it makes perfect sense to expand in its powers. However, once
we contemplate the discretisation of (1.4), we have three small parameters to reckon
with:

1. The built-in small parameter ε;
2. The time step �t ;
3. 1/M , where M is the number of degrees of freedom in the spatial semidiscretisation.

Although we derive our splitting before the infinite-dimensional operator ∂2
x has been

discretised, we must keep the eventual discretisation at the back of our minds. In other
words, sooner or later (more specifically, in Sect. 4) we replace ∂2

x with a differentiation
matrix acting on an appropriate M-dimensional space: M might be the number of nodal
values or of Fourier modes. It is elementary that the norm of a differentiation matrix
corresponding to ∂n

x scales as O(Mn), n ∈ N. Therefore, we employ in our analysis
the shorthand ∂n

x = O(Mn).
We propose to deal with three small parameters in unison by converting them into a

single currency. More specifically, we assume that our choice of�t and M is governed
by the scaling laws

M = O
(
ε−ρ
)
, �t = O

(
εσ
)
, (2.8)

where ρ, σ > 0 are given. As a consequence, each ∂n
x scales as O

(
ε−nρ
)
.

The choice of these parameters is not entirely arbitrary. Wentzel–Kramers–Brillouin
(WKB) analysis of the semiclassical Schrödinger equation [13] shows that even with
arbitrary well-behaved initial conditions the full solution develops spatial oscillations
of order O

(
ε−1
)
. A reasonable approximation of the solution therefore necessitates

taking M = O
(
ε−1
)

Fourier modes or nodal values at the very least, restricting us to
ρ ≥ 1.

1 Unless a non-existing term is subtracted and thus newly introduced instead of removed.
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It must be noted that, despite equally high oscillations in time, similar considerations
do not apply to σ . This is because the solution in time is obtained via exponentials
and is exact except for the omission of terms in the splitting. The accuracy in time is
tied to the accuracy of the splitting.

The simplest choice of parameters in (2.8), keeping the preceding considerations
in mind, is ρ = σ = 1, and this is what we assume in the next section.

3 An Asymptotic Splitting

3.1 Towards an Asymptotic Splitting

Recalling that ρ = σ = 1, we commence in this section with the asymptotic splitting
(1.7) with s = 2, i.e. bearing the error of O

(
ε6
)
. Given that ε > 0 is very small,

this presents a method which is very accurate – arguably, of higher accuracy than
is required in standard numerical computations. We will expand the commutators in
powers of ε and successively remove them from the core of our expansion, aiming for
W [ j] = O

(
ε2 j−2

)
, except for W [0], which will be O

(
ε0
)
. Our next observation is that

�t is always multiplied by i; therefore, it is handy to let

τ = i�t = O(ε) .

Note that τε∂2
x = O

(
ε0
)

and τε−1V = O
(
ε0
)
, or more generally

τ �ε−m∂n
x = O

(
ε�−m−n

)
, ε → 0. (3.1)

We can now commence algorithm (2.7), setting

W [0] = τε−1V + τε∂2
x , W [0] = τε−1V .

With the help of (2.3), we compute the commutators in W [1] = sBCH(−W [0],W [0])
according to (2.1). This task confronts us with long and tedious algebra but can, how-
ever be automatised with a computer algebra programme. It is worth pointing out that
all simplifications, such as [[[V, ∂2

x ], V ], V ] = 0, are automatically performed once
we work in the larger Lie algebra S with differential operators and scalar functions.
Likewise, there is no need for a tedious representation of expansion elements in, say,
the Hall basis because this is done automatically in G.

Substituting and aggregating terms of the same order of magnitude, we obtain

W [1] =
O
(
ε0
)

︷︸︸︷
τε∂2

x +

O
(
ε2
)

︷ ︸︸ ︷
1

12
τ 3ε−1(∂x V )2 − 1

3
τ 3ε(∂2

x V )∂2
x −

O
(
ε3
)

︷ ︸︸ ︷
1

3
τ 3ε(∂3

x V )∂x

+

O
(
ε4
)

︷ ︸︸ ︷
1

60
τ 5ε−1(∂2

x V )(∂x V )2 − 1

12
τ 3ε(∂4

x V )
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+

O
(
ε4
)

︷ ︸︸ ︷
τ 5ε

{
4

45
(∂2

x V )2 − 1

90
(∂3

x V )(∂x V )

}
∂2

x + 1

45
τ 5ε−3(∂4

x V )∂4
x

+

O
(
ε5
)

︷ ︸︸ ︷
τ 5ε

{
1

6
(∂3

x V )(∂2
x V )− 1

90
(∂4

x V )(∂x V )

}
∂x

+

O
(
ε5
)

︷ ︸︸ ︷
2

45
τ 5ε−3(∂5

x V )∂3
x +O

(
ε6
)
. (3.2)

Unfortunately, (3.2) contains terms of order O
(
ε3
)

and O
(
ε5
)
, both of which are

due to the presence of odd powers of ∂x . This presence is worrisome for an important
reason, namely stability. Both ∂2

x and multiplication by V are Hermitian operators;
therefore, τ(ε∂2

x +ε−1V ) is a skew-Hermitian operator: its exponential is thus unitary.
This survives under eventual discretisation because any reasonable approximation
of ∂2

x preserves the Hermitian structure. However, ∂x (and, in general, odd powers
of ∂x ) is a skew-Hermitian operator; hence, i∂x is Hermitian, as are its reasonable
approximations. Therefore, the introduction of odd powers of ∂x is fraught with loss
of unitarity and stability. An extra ingredient is required in our algorithm!

3.2 Intermezzo: Getting Even

Let y be a C1 function. The starting point for our current construction is the operatorial
identity

y(x)∂x = −1

2

⎡
⎣

x∫

x0

y(ξ) dξ

⎤
⎦ ∂2

x − 1

2
∂x y(x)+ 1

2
∂2

x

⎡
⎣

x∫

x0

y(ξ) dξ ·
⎤
⎦ , (3.3)

where x0 is arbitrary: its direct proof is trivial. Note that, whilst we have ∂x on the
left, the right-hand side features ∂0

x and ∂2
x , both even powers of the differentiation

operator. Since in principle we might be interested in expanding beyond O
(
ε7/2
)

or
employing different values of ρ and σ , we wish to cater not just for ∂x but for all its
odd powers. The challenge is thus to generalise (3.3) and express y(x)∂2s+1

x , s ∈ Z+,
solely by means of even derivatives.

Theorem 1 Let s ∈ Z+, define the real sequence {βk}k≥0 by

∞∑
k=0

(−1)kβk

(2k + 1)!T k = 1

T

(
1 − T 1/2

sinh T 1/2

)
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and set

Qk(x) = (−1)s−k+1βs−k

(
2s + 1

2k

)
∂2s−2k+1

x y(x), k = 0, 1, . . . , s, (3.4)

Qs+1(x) = 1

2s + 2

x∫

x0

y(ξ) dξ, (3.5)

Pk(x) = −
s+1∑
�=k

(
2�

2k

)
∂2�−2k

x Q�(x), k = 1, 2, . . . , s + 1. (3.6)

Then

y(x)∂2s+1
x =

s+1∑
k=0

Pk(x)∂
2k
x +

s+1∑
k=0

∂2k
x [Qk(x) · ]. (3.7)

Proof We act on the second sum on the right-hand side of (3.7) with the Leibnitz rule,
whereby

y∂2s+1
x =

s+1∑
k=1

Pk∂
2k
x +

s+1∑
�=0

2�∑
k=0

(
2�

k

)(
∂2�−k

x Q�

)
∂k

x

=
s+1∑
k=1

Pk∂
2k
x +

s+1∑
k=0

[
s+1∑
�=k

(
2�

2k

)(
∂2(�−k)

x Q�

)]
∂2k

x

+
s∑

k=0

[
s+1∑
�=k+1

(
2�

2k + 1

)(
∂2(�−k)−1

x Q�

)]
∂2k+1

x .

Equating powers of ∂x on both sides, we obtain (3.5), (3.6) and the equations

s+1∑
�=k+1

(
2�

2k + 1

)
∂2(�−k)−1

x Q� = 0, k = s − 1, s − 2, . . . , 0. (3.8)

Our contention is that there exist coefficients {βk}k≥0 such that (3.4) is true. Indeed,
substituting (3.4) into (3.8) yields, after simple algebra, the triangular linear system

s∑
�=k+1

(−1)s−�
(

2s − 2k

2s + 1 − 2�

)
βs−� = 1

2s − 2k + 1
, k = 0, 1, . . . , s − 1.

We deduce that

k−1∑
�=0

(−1)�
(

2k

2�+ 1

)
β� = 1

2k + 1
, k ∈ N.
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Finally, we multiply the last equation by T k−1/(2k)! and sum up for k ∈ N. On the
left-hand side we have

∞∑
k=1

1

(2k)!
k−1∑
�=0

(−1)�
(

2k

2�+ 1

)
β�T

k−1 =
∞∑
�=0

(−1)�β�
(2�+ 1)!

∞∑
�=k+1

T k−1

(2k − 2�− 1)!

=
∞∑
�=0

(−1)�β�
(2�+ 1)!T �

∞∑
k=0

T k

(2k + 1)!

= sinh T 1/2

T 1/2

∞∑
�=0

(−1)�β�
(2�+ 1)!T �,

whilst on the right we obtain

∞∑
k=1

T k−1

(2k + 1)! = 1

T

(
sinh T 1/2

T 1/2 − 1

)
.

This confirms (3.4) and completes the proof. 
�
The first few values are β0 = 1

6 , β1 = 7
60 , β2 = 31

126 , β3 = 127
120 , β4 = 511

66 ,
β5 = 1414,477

16,380 and β6 = 8,191
6 . Since

text

(et − 1)
=

∞∑
k=0

Bk(x)

k! tk,

where Bk is the kth Bernoulli polynomial, it is easy to confirm that

βk = (−1)k+122k+1 B2k+2(
1
2 )

k + 1
, k ∈ Z+.

Practically, just

y∂x = −1

2

⎡
⎣

x∫

0

y(ξ) dξ

⎤
⎦ ∂2

x − 1

2
∂x y + 1

2
∂2

x

⎡
⎣

x∫

0

y(ξ) dξ ·
⎤
⎦ ,

y∂3
x = −(∂x y)∂2

x − 1

4

⎡
⎣

x∫

0

y(ξ) dξ

⎤
⎦ ∂4

x + 1

4
∂3

x y − 1

2
∂2

x [(∂x y) · ] + 1

4
∂4

x

⎡
⎣

x∫

0

y(ξ) dξ ·
⎤
⎦ ,

y∂5
x = 4

3
(∂3

x y)∂2
x − 5

3
(∂x y)∂4

x − 1

6

⎡
⎣

x∫

0

y(ξ) dξ

⎤
⎦ ∂6

x − 1

2
∂5

x y + 7

6
∂2

x [(∂3
x y) · ]

−5

6
∂4

x [(∂x y) · ] + 1

6
∂6

x

⎡
⎣

x∫

0

y(ξ) dξ ·
⎤
⎦

are ever likely to be needed in practical computation.

123



702 Found Comput Math (2014) 14:689–720

Table 2 Symmetric Zassenhaus
splitting of the first kind in
even-order derivatives

Symmetric Zassenhaus algorithm

s := 0; W[0] := τ(ε∂2
x + ε−1V ); W [0] := τε−1V

do

s := s + 1

compute W[s] := sBCH(−W [s−1],W[s−1])
rewrite W[s] in even derivatives, cf. (3.7)

expand result in powers of ε

define W [s] := O
(
ε2s−2

)
, s.t. W [s] − W[s] = O

(
ε2s
)

while s < desired order smax

Resulting method:

eW[0] = eW [0]/2eW [1]/2 · · · eW [smax] · · · eW [1]/2eW [0]/2
+O
(
ε2smax+2

)

3.3 Asymptotic Splitting

All necessary tools are now available, and in this subsection we will illustrate how to
compute the splitting (1.7) with the algorithm in Table 2.

Using (3.3) and its generalisations to replace all the occurrences of ∂x and ∂3
x in

(3.2), we express W [1] in the form

W[1] =
O
(
ε0
)

︷ ︸︸︷
τε∂2

x +

O
(
ε2
)

︷ ︸︸ ︷
1

12
τ3ε−1(∂x V )2 − 1

6
τ3ε
{
(∂2

x V )∂2
x + ∂2

x

[
(∂2

x V ) ·
]}

+

O
(
ε4
)

︷ ︸︸ ︷
1

60
τ5ε−1(∂2

x V )(∂x V )2 + 1

12
τ3ε(∂4

x V )

+

O
(
ε4
)

︷ ︸︸ ︷
1

180
τ5ε
{

8(∂2
x V )2∂2

x + 8∂2
x

[
(∂2

x V )2 ·
]

− (∂3
x V )(∂x V )∂2

x − ∂2
x

[
(∂3

x V )(∂x V ) ·
]}

+

O
(
ε4
)

︷ ︸︸ ︷
1

90
τ5ε−3

{
(∂4

x V )∂4
x + ∂4

x

[
(∂4

x V ) ·
]}

+O
(
ε6
)
.

Recall that we started the algorithm with

R0 = 1

2
W [0] = 1

2
τε−1V,

and to progress to the second stage, we choose to eliminate the lowest ε-order term,

R1 = 1

2
W [1] = 1

2
τε∂2

x ,

from W [1].
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Although the new W [1] and W [1] are more complicated, the computations are now
much simpler. The main reason is that the ε-order behaves under commutation like

[
τ i1ε− j1 f (x)∂k1

x , τ
i2ε− j2 g(x)∂k2

x

]
= O
(
τ i1+i2ε−( j1+ j2)∂k1+k2−1

x

)
,

and thus, the order increases under very general assumptions. The first commutators
then become
[
W [1],W[1]] = O

(
ε3
)

and
[[

W[1],W [1]] ,W [1]] ,
[[

W[1],W [1]] ,W[1]] = O
(
ε4
)
.

Continuing the argument we find that all grade four and five commutators scale as
O
(
ε5
)

and O
(
ε6
)

respectively. Subsequent commutators are even smaller, and we
obtain

W[2] = sBCH
(
−W [1],W[1])

= −W [1] + W[1] − 1

24

[[
W[1],W [1]] ,W [1]]− 1

12

[[
W[1],W [1]] ,W[1]]+ O

(
ε6
)

=

O
(
ε2
)

︷ ︸︸ ︷
1

12
τ3ε−1(∂x V )2 − 1

6
τ3ε
{
(∂2

x V )∂2
x + ∂2

x

[
(∂2

x V ) ·
]}

+

O
(
ε4
)

︷ ︸︸ ︷
1

60
τ5ε−1(∂2

x V )(∂x V )2 + 1

12
τ3ε(∂4

x V )

+

O
(
ε4
)

︷ ︸︸ ︷
1

120
τ5ε
{

7(∂2
x V )2∂2

x + 7∂2
x

[
(∂2

x V )2 ·
]

+ (∂3
x V )(∂x V )∂2

x + ∂2
x

[
(∂3

x V )(∂x V ) ·
]}

−

O
(
ε4
)

︷ ︸︸ ︷
1

60
τ5ε−3

{
(∂4

x V )∂4
x + ∂4

x

[
(∂4

x V ) ·
]}

+O
(
ε6
)
.

In the next iteration, we pull out the O
(
ε2
)

term,

2R2 = W [2] = 1

12
τ 3ε−1(∂x V )2 − 1

6
τ 3ε
{(
∂2

x V
)
∂2

x + ∂2
x

[
(∂2

x V ) ·
]}
,

and need to compute W [3]. Because of [W [2],W [2]] = O
(
ε7
)
, again, commutators

can be disregarded to obtain T3 = W [3] = O
(
ε4
)
; the asymptotic splitting is therefore

S[1]
(1,1),2 = eR0 eR1 eR2 eT3 eR2 eR1 eR0 , (3.9)

where

R0 = 1

2
τε−1V = O

(
ε0
)
, (3.10)
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R1 = 1

2
τε∂2

x = O
(
ε0
)
,

R2 = 1

24
τ 3ε−1(∂x V )2 − 1

12
τ 3ε

{
(∂2

x V )∂2
x + ∂2

x [(∂2
x V ) · ]

}
= O
(
ε2
)
,

T3 = 1

60
τ 5ε−1(∂2

x V )(∂x V )2 + 1

12
τ 3ε(∂4

x V )

+ 1

120
τ 5ε
{

7(∂2
x V )2∂2

x + 7∂2
x

[
(∂2

x V )2 ·
]

+ (∂3
x V )(∂x V )∂2

x

+ ∂2
x

[
(∂3

x V )(∂x V ) ·
]}

− 1

60
τ 5ε−3

{
(∂4

x V )∂4
x + ∂4

x

[
(∂4

x V ) ·
]}

= O
(
ε4
)
.

The notation S[1]
(1,1),2 is mostly self-explanatory: (1, 1) refers to the values of ρ and σ ,

whilst s = 2. The superscript [1] stands for an asymptotic splitting of the first kind: in
Sect. 3.5 we consider an alternative splitting (with initial W [0] equalling τε∂2

x ), which
we designate as an asymptotic splitting of the second kind.

Once we replace derivatives by differentiation matrices, the evaluation of a single
time step un+1 = S̃[1]

(1,1),2un requires in principle seven exponentials. However, we

note that, once we use nodal values in semidiscretisation, the discretised matrix R̃0 is
diagonal and the computation of its exponential can be accomplished in O(M) oper-
ations.2 The next discretised matrix, R̃1, is circulant and its exponentiation involves
O(M log M) operations. This is an important point because R̃0 and R̃1 are (spectrally)
the largest matrices present. All other matrices are O

(
ε2
)

or less, and, as will be clear
in Sect. 5, their computation with Krylov subspace methods is very affordable.

3.4 Stability

The convergence of classical methods for initial-value partial differential equations
is governed by the Lax equivalence theorem: convergence equals consistency plus
stability [11]. Our method is clearly consistent, but the question is whether, once
derivatives are replaced by differentiation matrices, the ensuing finite-dimensional
operator is stable in the sense of Lax. Within our formalism this is equivalent to

lim
ε→0

lim sup
n→∞

‖(S̃[1]
(1,1),2)

n‖ < ∞, (3.11)

where S̃[1]
(1,1),2 is the finite-dimensional discretisation of S[1]

(1,1),2. Here ‖ · ‖ is the
standard Euclidean norm.

Condition (3.11) is clearly implied by S̃[1]
(1,1),2 being a unitary matrix for all (suffi-

ciently small) ε > 0, in other words, by the discretisation method’s unitarity. This has
the added virtue of the discretisation method mimicking the unitarity of the infinite-
dimensional operator exp(it (ε∂2

x + ε−1V )). (The latter follows because both i∂2
x and

multiplication by iV are skew-Hermitian.) Consequently, in that case we obtain a geo-

2 Using a Fourier basis the cost is O(M log M).
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metric integrator in the sense of [4,8,14]. Once we use Krylov methods for approxi-
mating the exponentials, unitarity is lost, but the conservation of the �2 norm guarantees
stability nevertheless.

Suppose that R̃0, R̃1, R̃2 and T̃3 are all skew-Hermitian matrices. Then, by (3.9),
S̃[1]
(1,1),2 is unitary. But are they?

The discretisation of ∂2
x is the subject of Sect. 4. Here we preempt the discussion

by identifying two options. Either we choose the unknowns as nodal values (e.g.
by using finite differences or spectral collocation) or as Fourier coefficients (using a
spectral method). In the first case, ∂2

x is approximated by a symmetric circulant K
and multiplication by V by a diagonal matrix D. In the second case, all is reversed:
∂2

x is approximated by a diagonal matrix and multiplication by V by a symmetric
circulant. In either case, iK, iD ∈ suM (C), the Lie algebra of M × M complex
skew-Hermitian matrices. It follows at once that R̃0, R̃1 ∈ suM (C); consequently,

eR̃0 , eR̃1 ∈ UM (C).3 However,

R̃2 = 1

24
τ 3ε−1D(∂x V )2 − 1

12
τ 3ε(KD∂2

x V + D∂2
x V K),

where D f is the discretisation of a multiplication by f , may seem problematic:
iK, iD ∈ suM (C) need not imply that iKD, iDK ∈ suM (C).4 Fortunately, it is trivial
to verify that i(KD +DK) ∈ suM (C), and this proves that R̃2 ∈ suM (C). Examining

carefully (3.10), we observe that so does T̃3. We deduce that eR̃2 , eT̃3 ∈ UM (C), and
stability (3.11) follows.

The unitarity of S̃[1]
(1,1),2 is not accidental, and we do not need to repeat our analysis

on a case-by-case basis for different values ofρ, σ and s or for the asymptotic splittings
of the second kind from the next subsection.

Theorem 2 Supposing that the splitting (1.7) has been derived by the symmetric
Zassenhaus algorithm of Table 2, it is true that W [i] ∈ suM (C) for all i ≥ 0 and, thus,
also R̃0, R̃1, . . . , R̃s, T̃s+1 ∈ suM (C).

Proof The algorithm starts from a skew-Hermitian operator W [0] and, in each step,
pulls out a term W [ j] via the symmetric BCH formula (2.3). Assume that W [ j] is skew-
Hermitian; then so is W [ j+1] because skew-Hermiticity is preserved under commuta-
tion. What remains to be shown is that at each step, the lowest-order ε terms in W [ j]
after the ‘odd to even’ substitution (3.3), namely W [ j], are indeed skew-Hermitian.
Recall that, by assumption, W [ j] is skew-Hermitian, and since the substitution is exact,
it remains so after it has been applied. For this reason, it is clear that its summands
are either skew-Hermitian or feature in skew-Hermitian pairs i(KlD + DKl), where
Kk is a symmetric discretisation of ∂2k

x . The algorithm groups terms with the same
scaling, and since DKk = O

(
ε−2k
) = KkD, the pair will not be split, and thus

W [ j] ∈ suM (C). 
�

3 As before, a tilde denotes a discretisation.
4 All powers of τ are odd because of the palindromy of the symmetric BCH formula. Since τ = i�t , this
means that they always contribute a multiple of ±i.
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3.5 Asymptotic Splitting of the Second Kind

The motivation for splitting W [0] = τε−1V + τε∂2
x derives from the structural differ-

ences in τε−1V and τε∂2
x , which make it easy to exponentiate either one separately.

There is, however, no reason why we must commence with W [0] = τε−1V . In this
subsection we start with the term τε∂2

x instead and arrive at a variant of the splitting
S[1]
(1,1),2.

Revisiting the narrative of Sect. 3.1, whilst proceeding faster and sparing the reader
many details of algebraic computations, we start from

2R0 = W [0] = τε∂2
x , W [0] = τε∂2

x + τε−1V .

This results in

W [1] = sBCH
(
−W [0],W [0]) =

∞∑
j=0

W [1]
j , where W [1]

j = O
(
ε2 j
)

and

W [1]
0 = τε−1V,

W [1]
1 = −1

6
τ 3ε−1(∂x V )2 + 1

12
τ 3ε
{(
∂2

x V
)
∂2

x + ∂2
x

[(
∂2

x V
)

·
]}
,

W [1]
2 = − 1

24
τ 3ε
(
∂4

x V
)

+ 2

45
τ 5ε−1

(
∂2

x V
)
(∂x V )2

+ 1

60
τ 5ε

{
∂2

x

[
(∂2

x V )2 ·
]

+
(
∂2

x V
)2
∂2

x − 2∂2
x

[(
∂3

x V
)
(∂x V ) ·

]

−2
(
∂3

x V
)
(∂x V )∂2

x

}
+ 1

240
τ 5ε3

{(
∂4

x V
)
∂4

x + ∂4
x

[(
∂4

x V
)

·
]}
.

We next remove 2R1 = W [1] = W [1]
0 = O

(
ε0
)

and obtain, with the shorthand
X = −W [1], Y = W [1],

W [2] = sBCH(X,Y ) = X + Y − 1

24
[[Y, X ], X ] − 1

12
[[Y, X ],Y ] + O

(
ε6
)

=
∞∑
j=1

W [2]
j ,

where

W [2]
1 = −1

6
τ 3ε−1(∂x V )2 + 1

12
τ 3ε

{
(∂2

x V )∂2
x + ∂2

x [(∂2
x V ) · ]

}
,

W [2]
2 = − 1

24
τ 3ε(∂4

x V )+ 7

120
τ 5ε−1(∂2

x V )(∂x V )2
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+ 1

60
τ 5ε

{
∂2

x

[
(∂2

x V )2 · ]+(∂2
x V )2∂2

x −2∂2
x

[
(∂3

x V )(∂x V ) · ]−2(∂3
x V )(∂x V )∂2

x

}

+ 1

240
τ 5ε3
{ (
∂4

x V
)
∂4

x + ∂4
x

[(
∂4

x V
) · ]
}
.

Finally,

R2 = 1

2
W [2]

1 , T3 = W [2]
2 .

The outcome is the splitting

S[2]
(1,1),2 = eR0 eR1 eR2 eT3 eR2 eR1 eR0 , (3.12)

where

R0 = 1

2
τε∂2

x ,

R1 = 1

2
τε−1V,

R2 = − 1

12
τ 3ε−1(∂x V )2 + 1

24
τ 3ε
{
∂2

x

[
(∂2

x V ) ·
]

+ (∂2
x V )∂2

x

}
,

T3 = − 1

24
τ 3ε(∂4

x V )+ 7

120
τ 5ε−1(∂2

x V )(∂x V )2

+ 1

60
τ 5ε
{
∂2

x [(∂2
x V )2 · ] + (∂2

x V )2∂2
x − 2∂2

x [(∂3
x V )(∂x V ) · ]

−2(∂3
x V )(∂x V )∂2

x

}
+ 1

240
τ 5ε3

{
(∂4

x V )∂4
x + ∂4

x [(∂4
x V ) · ]

}
.

As in the case of (3.9), we end up needing to compute seven exponentials. R̃0 is either
a circulant (once we use nodal values) or a diagonal matrix (if we employ a Fourier
expansion), whilst R̃1 is then either a diagonal matrix or a circulant – the opposite of
R̃0. Therefore, the cost of computing R̃i , i = 0, 1, is O(M log M) operations. This
leaves R̃2 = O

(
ε2
)

and T̃3 = O
(
ε4
)
, which need be computed with Krylov subspace

methods. The small magnitude of both these matrices means that their exponentials
can be computed in a ridiculously small number of Krylov iterations; cf. Sect. 5.

Note that the palindromic property allows us to further reduce the number of expo-
nentials if no output at intermediate steps is required. This so-called First-Same-As-
Last (FSAL) property effectively yields a method

S̃(α)[2]
(1,1),2 = eR̃1 eR̃2 eT̃3 eR̃2 eR̃1 eαR̃0 , (3.13)

where the first step must be calculated with α = 1 and further steps with α = 2.

Whenever output is required, we apply eR̃0 and initialise the method by letting α = 1
for the next step. All in all, we only need to compute six exponentials in each step,
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two of which are diagonal matrices, one is circulant and the remaining three can be
approximated cheaply by Krylov methods.

4 Semidiscretisation

The asymptotic splittings (3.9) and (3.12) are expressed in operatorial terms: to render
them into proper computational algorithms, we must replace ∂2

x with an appropriate
differentiation matrix, acting on an M-dimensional space.

It is common in the numerical solution of the Schrödinger equation to use spectral
discretisation [4,13]. Thus, the unknowns are the Fourier coefficients of u, K is a
diagonal matrix, K j, j = −π2 j2, | j | ≤ (M −1)/2 [note that indeed ‖K‖ = O

(
M2
) =

O
(
ε−2
)
] and the operator of a multiplication by f is discretised by a circulant D f

composed of the Fourier coefficients of f . We deduce that, for any v ∈ C
M , the

computation of Kv costs O(M) operations, whilst the price tag of D f v, computed with
FFT, is O(M log M). The main appeal of spectral methods is that they exhibit spectral
convergence: for sufficiently large M the error decays faster than M−α = O(εα) for
any α > 0. In classical terms, the method is of an infinite order.

Alternative methods of discretisation are based on nodal values. In all such methods,
multiplication by a function f discretises into a diagonal matrix. Since it is compelling
in the presence of period boundary conditions to use equispaced points, the unknowns
are thus um ≈ u(m/(N + 1

2 )), |m| ≤ N , where M = 2N + 1. Two methods that fall
into this category are finite differences and spectral collocation.

The idea in spectral collocation [9] is to interpolate the solution at the nodal values
using a trigonometric polynomial. Since a trigonometric interpolation can be written
as a convolution with the values of the scaled Dirichlet kernel

DN (x) = sin((N + 1
2 )πx)

(2N + 1) sin( 1
2πx)

– in other words
∑N
�=−N DN (x − �/(N + 1

2 ))u� is an N th-order trigonometric
polynomial which equals um at m/(N + 1

2 ) – the differentiation matrix given by
K j,� = D′′

N (( j − �)/(N + 1
2 )) is a circulant.

Like spectral methods, spectral collocation exhibits spectral convergence. The two
are, in fact, equivalent in the context of periodic boundaries and equispaced points
– they are just a Fourier transform away from each other. For this reason it is not
uncommon in the literature to refer to both by the same name – usually spectral
collocation – and the choice between them is mostly a matter of convenience, having
little influence on the efficiency. Here we end up favouring the nodal representation
of ‘spectral collocation’ over the Fourier represenation of ‘spectral methods’.

At this point, a word about finite differences is also in order. At first glance, finite
differences might be considered a viable alternative to spectral collocation. An order
five central difference method for the second derivative, for instance, incurs an error
of O

(
(�x)6

) = O
(
ε6
)
, which seems acceptable considering that we already have

an error of O
(
ε6
)

in the splitting. A closer look at the finite difference error term,
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Fig. 1 Error in approximating u′′ committed by Fourier method (top row) and spectral collocation (bottom
row) for function u(x) = 1/(2 + sin πx) and M = ε−1

however, reveals a factor of u(8), which is far from a constant. In fact, it scales as
O
(
ε−8
)
, upsetting the entire balance and bringing the overall error to O

(
ε−2
)

– as
huge as the norm of the Laplacian! It is possible to coax and cajole finite differences
to work with ρ > 1, but the O

(
ε−1 log ε−1

)
cost of spectral collocation cannot be

improved upon in this way, and spectral collocation remains the method of choice.
The error for 1/(2 + sin πx) and ecosπx is displayed in Figs. 1 and 2 respectively.

Although the spectacular performance of spectrally convergent methods is hardly
surprising, it is amazing nonetheless. The reason spectral convergence for ecosπx is
so fast – super-exponential, compared to exponential convergence for 1/(2 + sin πx)
– is because the first function is entire, whereas the second has a polar singularity at
i(
√

3 − 2).

5 Computation of Exponentials

Considering splittings (3.9) and (3.12), each step forward in time calls for the com-
putation of

un+1 = eR̃0 eR̃1 eR̃2 eT̃3 eR̃2 eR̃1 eR̃0 un, (5.1)

where un is the initial value at tn , say, whilst un+1 approximates u( · , tn+1), where
tn+1 = tn +�tn . The matrices R̃k and T̃3 depend on �tn . We recall that, using finite
differences or spectral collocation, un is comprised of equally distributed function
values, and in splitting of the second kind, R̃0 is a Toeplitz circulant whilst R̃1 is
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Fig. 2 Error in approximating u′′ committed by Fourier method (top row) and spectral collocation (bottom
row) for function u(x) = ecosπx and M = ε−1

diagonal. However, once we use a spectral method, the entries of un consist of Fourier
coefficients, R̃0 is diagonal and R̃1 is a circulant. The roles are reversed in splitting of
the first kind. One way or the other, we need to calculate [or approximate up to O

(
ε6
)
]

the vector eSv for v ∈ C
M and three types of M × M skew-Hermitian matrices

S: (a) diagonal, (b) Toeplitz circulant and (c) neither, yet small: R̃2 = O
(
ε2
)

and

T̃3 = O
(
ε4
)
. Note that we must keep in mind three prerogatives: not just the error of

O
(
ε6
)

and low cost but also the conservation of the �2 norm.
Cases (a) and (b) are straightforward. The exponential of a diagonal matrix is itself

diagonal and can be computed in O(M) = O
(
ε−1
)

operations, whilst eSv for a circu-
lant S can be calculated by two FFTs, at the cost of O(M log M) = O

(
ε−1 log ε−1

)
operations. Since both calculations are exact (up to machine accuracy), unitarity is
maintained. Finally, to deal with case (c), we use a Krylov subspace method. Such
methods have undergone many enhancements since the pioneering work of [19]: in
the current paper we adopt the approach in [5].

Given an M × M matrix A and v ∈ C
M , the mth Krylov subspace is

K m(A, v) = span {v,Av,A2v, . . . ,Am−1v}, m ∈ N.

It is well known that dim K m−1(A, v) ≤ dim K m(A, v) ≤ min{m,M}, and we
refer the reader to [6] for other properties of Krylov subspaces. The main idea is to
approximate

123



Found Comput Math (2014) 14:689–720 711

eAv ≈ VmeHm V∗
mv, (5.2)

where Vm and Hm are M × m and m × m respectively and m � M . In addition, the
columns of Vm are orthonormal vectors, which form a basis of K m(A, v), whilst Hm

is upper Hessenberg.
The matrices Vm and Hm are generated by the Arnoldi process [6,5]. Note that,

The Arnoldi process

v1 = v/‖v‖2

for j = 1, . . . ,m − 1 do

t = Av j

for i = 1, . . . , j do

hi, j = v∗
i t, t = t − hi, j vi

end for

h j+1, j = ‖t‖2; v j+1 = t/h j+1, j

end for

once A ∈ suM (C), it follows that Hm ∈ sum(C). Therefore, because the columns of
Vm are orthonormal, the �2 norm is conserved. Moreover, since V∗

mv = ‖v‖2e1, where
e1 ∈ C

m is the first unit vector, it follows that eHm V∗
mv is merely the first column

of eHm , scaled by ‖v‖2. To compute approximation (5.2), we thus need to evaluate a
small exponential and calculate a single matrix–vector product.

The computational cost is dominated by the cost of the iterations, each involving a
matrix–vector product of the form Av j . In any Zassenhaus splitting, matrices which
require exponentiation by Krylov methods will involve a multiplication of a diagonal
and a circulant. A few FFTs are therefore unavoidable in each iteration, bringing the
overall cost to O(m M log M) operations.

The question of an appropriate value of m is answered by the inequality

‖eAv − VmeHm V∗
mv‖2 ≤ 12e−ρ2/(4m)

( eρ

2m

)m
, m ≥ ρ, (5.3)

where ρ = ρ(A) is the spectral radius of A [10]. We know that R̃2 = O
(
ε2
)

and

assume, with a very minor loss of generality, that ρ(R̃2) ≤ cε2 for some c > 0. We
thus deduce from (5.3) that

‖eR̃2v − VmeHm V∗
mv‖2 ≤ 12

( ec

2m

)m
ε2m, m ≥ ρ,

and m = 3 is sufficient to reduce the error to O
(
ε6
)
, in line with the error of our

symmetric Zassenhaus algorithm. This is true provided that ρ ≤ 3, i.e. ε ≤ √
3/c

– since we expect ε > 0 to be very small, this is not much in a way of restriction.
Likewise, T̃3 = O

(
ε4
)

and the inequality ρ(T̃3) ≤ c̃ε4 implies that
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Fig. 3 Error, compared to required order O
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ε6
)

, in computing eR̃2v (left) and eT̃3v (right)

‖eT̃3v − VmeHm V∗
mv‖2 ≤ 12

(
ec̃

2m

)m

ε4m, m ≥ ρ,

and for ε ≤ (2/c̃)1/4 we need just m = 2. Altogether, we deduce that the computation

[consistent with the error of O
(
ε6
)
] of eR̃2v (twice) and eT̃3v in each step (5.1) cost

just O(M log M) operations.

Figure 3 presents the L2 error committed in approximating the exponentials eR̃2v

and eT̃3v, where we take φ(x) = e−20 sin2(πx/2) as the interaction potential V and
ψ(x) = e−4(sin2(5πx/2)+sin2(πx/2)) as the wave function u, both discretised as nodal
values at M = 2N + 1 grid points with N = �ε−1�. Although we have used just

m = 3 for eR̃2v [i.e. approximated the (2N + 1)× (2N + 1) exponential by an 3 × 3
one] the error is truly minuscule. Moreover, consistently with our theory (but not with
conventional numerical intuition), it decreases with ε. Indeed, the sort of accuracies we
obtain for small values of ε are well in excess of what is required in realistic numerical

computations. In the case of eT̃3v, we approximate with just a 2 × 2 exponential!
Again, everything is consistent with our analysis.

The slope of the error bound is steeper than ε6 in the second figure, and this should

cause no surprise. The error for eT̃3v decays as O
(
ε8
)
, much faster than required.

6 Asymptotic Splittings with Different Values of ρ and σ

The Zassenhaus splitting procedure used for deriving the S[2]
(1,1),2 splitting (3.12) is

hardly tied to the choice of (ρ, σ ) = (1, 1) and works just as well for any other pair
(except that WKB considerations restrict us to ρ ≥ 1). With small modifications in the
working and with little difficulty, for instance, we are able to arrive at variants of this
splitting with ρ = 1 and σ = 1

2 or 1
4 . The common form of the splittings we present

is
S[2]
(1,σ ),2 = eR0 eR1 eR2 eT3 eR2 eR1 eR0 , (6.1)
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with

R0 = 1

2
τε∂2

x ,

R1 = 1

2
τε−1V,

R2 = 1

24
τ 3ε
{
∂2

x

[
(∂2

x V ) ·
]

+ (∂2
x V )∂2

x

}
− 1

12
τ 3ε−1(∂x V )2

being common to the three cases σ = 1, 1
2 ,

1
4 . The components of the final term,

T3 = 1

240
τ 5ε3

{
∂4

x

[
(∂4

x V ) ·
]

+ (∂4
x V )∂4

x

}
− 1

24
τ 3ε(∂4

x V )

+ 1

60
τ 5ε
{
∂2

x

[
(∂2

x V )2 ·
]

+ (∂2
x V )2∂2

x

}

− 1

30
τ 5ε
{
∂2

x

[
(∂x V )(∂3

x V ) ·
]

+ (∂x V )(∂3
x V )∂2

x

}

+ 7

120
τ 5ε−1(∂x V )2(∂2

x V ),

are also identical, apart from the factor − 1
24τ

3ε(∂4
x V ), which features in the case of

σ = 1 and is missing for σ = 1
2 and σ = 1

4 . The error in these splittings is O
(
ε7σ−1

)
.

6.1 Implementation Issues

As before, the first two terms R̃0 and R̃1, which constitute a circulant and a diagonal,
are easily exponentiated after discretisation. The remaining terms are R̃2 = O

(
ε3σ−1

)
and T̃3 = O

(
ε5σ−1

)
. Except for cases with σ < 1

3 , where the spectral radius of

R̃2 increases with a decreasing ε, the number of iterations required in the Krylov
approximation of the exponentials is small and derived in a straightforward manner
from the bound (5.3). The exponentiation of R̃2 requires three iterations for σ = 1
and five iterations for σ = 1

2 , whilst T̃3 can be exponentiated in two, two and three
iterations, respectively, in the cases σ = 1, 1

2 ,
1
4 .

For the case σ = 1
4 , the spectral radius of R̃2 becomes large enough to be of

concern with regard to the side condition in (5.3), m ≥ ρ, where, it should be recalled,
m was the number of iterations and ρ the spectral radius. In this case, as noted by [10],
the error does not decrease substantially till m ≥ ρ, decreasing rapidly thereafter.
Rewriting (5.3) as

‖eAv − VmeHm V∗
mv‖2 ≤ 12 exp

(−ρ2 + 4m2(1 − log 2)

4m

)( ρ
m

)m
, m ≥ ρ,

(6.2)
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from which, with the choice m ≥ αρ for some α > 1, we end up with an estimate

‖eAv − VmeHm V∗
mv‖2 ≤ 12 exp

(−ρ2 + 4m2(1 − log 2 − logα)

4m

)
.

Exponential convergence, well in excess of what we require, can be achieved by an
appropriate choice of α, whereby O

(
ε−1/4

)
iterations prove adequate. With α = 2, for

instance, the error term works out to roughly exp(− 7
8ρ). After O

(
ε−1/4

)
iterations we

are also left with the task of exponentiating a O
(
ε−1/4

)×O
(
ε−1/4

)
upper Hessenberg

matrix, which, although large, can be exponentiated by brute force using MATLAB’s
expm in O

(
ε−3/4 log ε−1

)
operations.

The O
(
ε−5/4 log ε−1

)
cost of the Krylov iterations for eR̃2v dominates the cost of

each time step of the splitting with σ = 1
4 , making the overall cost O

(
ε−3/2 log ε−1

)
.

This is no less than the cost of the more accurate σ = 1
2 splitting. In the case of

σ = 1 – where, of course, a much smaller error is achieved with the same number of
exponentials – the overall cost comes to O

(
ε−2 log ε−1

)
.

There seems little point in considering a σ smaller than 1
3 , where R̃2 becomes O(1)

or larger and the number of Krylov iterations required for eR̃2v starts increasing as
ε → 0. Even where the spectral radius does decrease with ε, a small σ makes the
constraint m ≥ ρ in (5.3) a graver concern. With σ = 1

4 , for instance, where T̃3 scales
as c̃ε1/4, this requires ε ≤ (3/c̃)4. The constant c̃ depends on the interaction potential
and circumstances where this constraint can become a serious concern are far from
inconceivable.

7 Numerical Results

We present numerical results for two interaction-potential wave-function pairs. The
wave functions used in our experiments are u1(x) = 1

100φ(x +0.6)ei20πx and u2 = ψ ,
where φ and ψ were previously introduced as

φ(x) = e−20 sin2(πx/2), ψ(x) = e−4(sin2(5πx/2)+sin2(πx/2)).

The first of these is a moderately oscillating wave train with a periodic Gaussian
envelope seen travelling to the right in free space (V = 0). In our experiments, these
move under the influence of the interaction potentials

V1(x) = b(s(x)) sin(20πx),

V2(x) = 1

5
+ 1

2
b

(
s
(

x + 1

10

))
+ 3

10

(
sin4
(

2πx − 24

35

)
+ sin2

(
5πx − 8

3

))
,
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Fig. 4 Interaction-potential wave-function pair u1, V1 (top row) and u2, V2 (bottom row)

where b is a bump function turned periodic by composition with s,

b(x) =
{

exp
(
− 1

1−x2

)
|x | < 1

0 |x | ≥ 1
,

s(x) = 1 − sin(π(x + 1/2)).

Physically, the first pair shown in Fig. 4 (top row) is an attempt at modelling a wave
packet heading towards a periodic lattice. The second pair, Fig 4 (bottom row), has no
physical motivation and is chosen for its complexity.

The error estimates are, of course, of an asymptotic nature, and it is hardly surprising
that for some cases the true nature of the error estimate does not emerge till very small
values of ε (Fig. 5). In the case of V1, with σ = 1

2 or 1
4 , for instance, where one of the

terms omitted in the splitting, − 1
24τ

3ε(∂4
x V ), is fairly large, we do not see a noticeable

decrease till very small values of ε, unless the magnitude of the interaction potential
is decreased. In Fig. 6 (top row) the error is seen to approach the asymptotic estimate
at an earlier stage in the case of a smaller potential. The asymptotic bounds are very
much adhered to, but here we become limited by the inefficiency of the reference
method – MATLAB’s expm – which does not allow us to go beyond moderate values
of M = O

(
ε−1
)
.
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Fig. 5 Error plots for (1, 1)-splittings showing L2 error for pairs (u1, V1) (left column) and (u2, V2) (right

column): S[2]
(1,1),2 splitting (top row) with seven exponentials has an error estimate of O

(
ε5
)

; S[2]
(1,1),1

splitting (bottom row), which omits T̃3, uses five exponentials and has an error estimate of O
(
ε3
)

All estimates and bounds in our analysis were, of course, derived with respect to
the L2 norm. This is approximated by the �2 norm on the grid xM = (x1, . . . , xM ),

‖ f ‖L2[−1,1] =

√√√√√
1∫

−1

| f (x)|2dx ≈
√√√√ 2

M

M∑
i=1

| f (xi )|2 =
√

2

M
‖ f ‖�2[xM ] .

(7.1)
Of more consequence in numerical settings, arguably, is the behaviour of the L∞ error.
The �∞ norm is a very good approximation for the L∞ norm, converging rapidly as
M → ∞. Noting the inequality ‖ f ‖�∞ ≤ ‖ f ‖�2

, one should expect the L∞ error to
be worse off than the L2 error by a factor of

√
M = O

(
ε−1/2

)
, and this is indeed seen

to be the case in our experiments (bottom row, Figs. 6, 7).

8 Conclusions

In this paper we presented a methodology for the computation of the semiclassical
Schrödinger equation (1.4) with small values of ε. It led to asymptotic exponential
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Fig. 6 Error plots for S[2]
(1, 1

2 ),2
splitting: (top) L2 error for pairs (u1,

1
10 V1) (left) and (u1,

1
100 V1) (right)

demonstrates asymptotic nature of error estimate O
(
ε2
)

; (bottom) relation between L2 error (left) and L∞

error (right) for (u2, V2) is evident, error estimates being O
(
ε2
)

and O
(
ε

3
2

)
respectively

splitting á la (3.9), (3.12) and (6.1), where each consecutive argument (except per-
haps for one) is progressively smaller. Moreover, these arguments are skew-Hermitian
(whence stability and unitarity follow) and the underlying exponentials are easy to
compute. All this was accomplished by creating a Lie-algebraic framework that uses
nested commutators yet avoids their expensive computation, combined with a repeated
use of the symmetric BCH formula to form a symmetric Zassenhaus splitting. We
also discussed the choice of semidiscretisation and of effective means to approximate
matrix exponentials.

We do not view the work of this paper as a finished and complete endeavour: it
is more in the nature of an initial foray into a broad and fascinating subject area.
There is a wide range of issues that our work raises. Some are already under active
investigation, others more speculative:

(1) A time-dependent interaction potential In place of (1.4) we can consider the (non-
autonomuos) semiclassical Schrödinger equation with time-dependent potential

∂u

∂t
= iε

∂2u

∂x2 + iε−1V (x, t)u, t ≥ 0, x ∈ [−1, 1],
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Fig. 7 Error plots for S[2]
(1, 1

4 ),2
splitting: (top) L2 error for pairs (u1,

1
10 V1) (left) and (u1,

1
100 V1) (right)

demonstrates asymptotic nature of error estimate O
(
ε

1
2

)
; (bottom) relation between L2 error (left) and

L∞ error (right) for (u2, V2) is evident – error estimates being O
(
ε

1
2

)
and O

(
ε0
)

respectively

again with periodic boundary conditions. To this end, we need to combine our
methodology – algebra of operators, symmetric Zassenhaus – with Magnus expan-
sions [12]. Preliminary work indicates that, inasmuch as this leads to a consid-
erably more complicated framework, it can fit into our narrative. Specifically,
different Magnus terms can be written in a form consistent with the Lie algebra
G. We expect to report on this work in the near future.

(2) A multivariate setting An effective numerical discretisation of Eq. (1.3), evolving
in a torus in C

d , is the ultimate goal of this work. Insofar as small d ≥ 1 is con-
cerned, this is a fairly straightforward exercise, but matters are more complicated
when d becomes large and the cost of O

(
Md log M

)
becomes unsustainable. It

is clear that for our methodology to be scaleable to large dimensions, it must be
combined with other approaches, e.g. sparse grids [2].

(3) The nonlinear Schrödinger equation A major challenge is to apply our method-
ology in a nonlinear setting, e.g. to the nonlinear Schrödinger equation

iε
∂u

∂t
= − ε2

2m

∂2u

∂x2 − V (x)u + λ|u|2u.
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Preliminary investigation seems to indicate that a naïve generalisation does not
work because we are not enjoying the reduction of negative powers of ε after
commutation with Lie derivatives corresponding to |u|2.

(4) Symmetric Zassenhaus in other settings Exponential splittings have reached their
apogee in the context of symplectic integrators for Hamiltonian ordinary differ-
ential equations [8,15]. Can symmetric Zassenhaus be used in this setting? The
idea seems particularly appealing in the context of Hamiltonian functions of the
form

H( p, q) = H1( p, q)+ εH2( p, q),

where 0 < |ε| � 1. Such systems occur often in celestial mechanics and many-
body problems once there exists a large disparity of masses, and it is tempting to
use an asymptotic splitting. However, in general we cannot employ in this context
the formalism of Sect. 2.1, computing commutators easily. The computation of
commutators in this context (in which they become Poisson brackets) is frowned
upon because it is expensive. However, for special Hamiltonian functions this
approach might be feasible.
Similar reasoning applies to volume-conserving geometric integrators based on
splittings [16].
The symmetric Zassenhaus formula might also be relevant within the realm of
partial differential equations in the presence of a small parameter, e.g. the Klein–
Gordon equation

1

c2

∂2u

∂t2 = ∇2u + m2c2

h̄2 u.

This, again, is a matter for further research.
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