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Abstract We prove a conjecture of Comon and Ottaviani that typical real Waring
ranks of bivariate forms of degree d take all integer values between � d+2

2 � and d .
That is, we show that for all d and all � d+2

2 � ≤ m ≤ d there exists a bivariate form
f such that f can be written as a linear combination of m dth powers of real linear
forms and no fewer, and additionally all forms in an open neighborhood of f also
possess this property. Equivalently we show that for all d and any � d+2

2 � ≤ m ≤ d

there exists a symmetric real bivariate tensor t of order d such that t can be written
as a linear combination of m symmetric real tensors of rank 1 and no fewer, and
additionally all tensors in an open neighborhood of t also possess this property.

Keywords Waring problem · Real symmetric tensor rank · Typical rank · Bivariate
forms

Mathematics Subject Classification 14P99 · 15A69 · 14N05

1 Introduction

Symmetric tensor decomposition (also known as the Waring problem) is usually stud-
ied over the complex numbers: given a multivariate form f ∈C[x1, . . . , xn] of degree
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d the problem is to find the least integer number m such that f = ∑m
i=1 �d

i , where
�i are linear forms. The number m is known as the Waring rank or symmetric tensor
rank of f . It is of significant interest to find efficient algorithms to compute a mini-
mal representation of f [13]. The symmetric tensor decomposition problem over the
complex numbers has been widely investigated [1, 4, 5, 9, 11].

A rank m is called generic for forms of degree d if forms of rank m contain a
dense open subset of all forms of degree d . There is a unique generic rank for forms
in C[x1, . . . , xn]d , which depends on the degree d and the number of variables n.
The Alexander–Hirschowitz theorem gives the generic rank for all n and d [1]. The
question of uniqueness, and more generally, the variety of all possible decompositions
for a form f has also been studied extensively [5, 11, 12, 14].

The same question can be asked over the real numbers, which often makes
more sense with respect to potential applications. Given a multivariate form f ∈
R[x1, . . . , xn] of degree d we now ask to find the least integer number m such that
f = ∑m

i=1 �d
i where �i ∈ R[x1, . . . , xn] are real linear forms. The theory of real sym-

metric tensor decompositions is not nearly as developed. One obstacle is that there
may be more than one “generic” rank. Following Comon and Ottaviani in [7] we will
call any rank that occurs on an open subset of R[x1, . . . , xn]d (with the Euclidean
topology induced by viewing f as a vector of coefficients) a typical rank. We note
that definitions of typical and generic rank are equivalent over the complex numbers:
once forms of rank m contain an open subset of C[x1, . . . , xn]d they will also contain
a dense open subset.

The complex tensor decomposition problem in two variables has already been
well understood by Sylvester and completely and algorithmically solved by Comas
and Seiguer in [6]. In contrast for binary forms over R the list of all typical ranks was
conjectured by Comon and Ottaviani [7].

In this paper we prove this conjecture and solve the problem of finding all typical
ranks for real binary forms. It has already been observed by Reznick that all ranks
m with 1 ≤ m ≤ d occur as real ranks of binary in R[x, y]d [16]. It was noted by
Comon and Ottaviani that only ranks m with � d+2

2 � ≤ m ≤ d may be typical ranks
for forms in R[x, y]d . They showed that all such ranks occur for d ≤ 5 and later this
was proved by Ballico for d ≤ 7 in [2]. It was also shown in [7] that ranks � d+2

2 � and
d are typical. The case of real ranks of bivariate monomials was completely analyzed
by Boij, Carlini and Geramita in [3].

The case of Waring ranks of binary forms over some field extensions of R was
analyzed by Reznick in [17]. Finally we note that the question of decompositions of
real forms f of even degree as sums of 2d th powers of linear forms is related to the
truncated moment problem in real analysis [10], [15].

2 Proofs

Let f ∈ R[x, y]d be given by f = ∑d
i=0 aix

iyd−i . We can associate to f the differ-
ential operator ∂f given by

∂f =
d∑

i=0

ai

∂d

∂xi∂yd−i
.
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The apolar ideal of f , denoted by f ⊥, is the ideal of all forms in R[x, y] whose
differential operator annihilates f :

f ⊥ = {
h ∈ R[x, y] | ∂h(f ) = 0

}
.

The following is a special bivariate version of the general Apolarity Lemma [8]. It
was already known to Sylvester [16].

Lemma 2.1 (Apolarity Lemma) Let f ∈ R[x, y]d be a bivariate form of degree d .
The form f can be written as a linear combination of d th powers of linear forms,

f =
r∑

i=1

ci(aix + biy)d,

if and only if the form p = (b1x − a1y) · · · (brx − ary) is in the apolar ideal f ⊥.

From the Apolarity Lemma we see that rankf = m if and only if m is the lowest
degree for which f ⊥ contains a form with all roots real and distinct. The structure
of bivariate apolar ideals is highly regular. It was already shown by Sylvester that all
bivariate apolar ideals are complete (empty) intersections over C and the converse
also holds.

Theorem 2.2 Let f ∈ R[x, y]d then f ⊥ is a complete intersection ideal over C,
i.e. f ⊥ is generated by two real forms g1, g2 such that degg1 + degg2 = d + 2 and
VC(g1, g2) = ∅. Conversely, any two such forms g1, g2 generate an ideal f ⊥ for some
f ∈ R[x, y] of degree degg1 + degg2 − 2.

It is well known that the forms f ∈ R[x, y]d for which the generator degrees of
f ⊥ are not equal to ( d+2

2 , d+2
2 ) if d is even or ( d+1

2 , d+3
2 ) if d is odd lie on a Zariski

closed subset of R[x, y]d . This can be seen for instance by considering the middle
catalecticant matrix of f and observing that these generator degrees occur precisely
when the middle catalecticant matrix is not of full rank [16]. Therefore when f ⊥ is
generated by forms of degrees ( d+2

2 , d+2
2 ) if d is even or ( d+1

2 , d+3
2 ) if d is odd we

will say that f ⊥ is generated in generic degrees.
We now observe that an essential obstruction to f being a typical form of rank

m is that (f ⊥)m−1 may contain a form with all real roots, but no forms with all real
distinct roots. Then perturbing f may result in a form of rank m − 1. As the next
lemma shows, this is the only obstruction to f being typical if f ⊥ is generated in
generic degrees.

Lemma 2.3 Let f ∈ R[x, y]d such that f ⊥ is generated in generic degrees and let
m = rankf . Then f is a typical form if and only if all forms in (f ⊥)m−1 have (at
least a conjugate pair of) complex roots.

Proof First suppose that (f ⊥)m−1 contains a form with all real roots, call this form s.
For any ε > 0 there exists a form rε ∈ R[x, y]m−1 in the ε-neighborhood of s such
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that s + rε has distinct real zeroes. Let hε = ∂(s + rε)(f ) = ∂rε(f ) and consider the
map

Tε : R[x, y]d → R[x, y]d−m+1, Tε(p) = ∂(s + rε)(p).

Since Tε is a linear map with nontrivial kernel, which for small enough ε is suf-
ficiently close to just applying ∂s, we can find a form gε ∈ R[x, y]d , gε 	= −f

such that Tε(gε) = −hε and gε approaches 0 as ε goes to 0. Then we see that
∂(s + rε)(f + gε) = 0 and by Apolarity Lemma there exist forms of rank at most
m − 1 in any ε-neighborhood of f , which is a contradiction.

For the other direction, we note that all forms h in a sufficiently small neighbor-
hood of f will have h⊥ generated in generic degrees. In this neighborhood of f the
ideal h⊥ depends continuously of the coefficients of h. This can be seen, for exam-
ple, by noting that h⊥ consists of the forms in the kernels of the catalecticant matrices
of h [16]. As long as h⊥ is generated in generic degrees the dimensions of the kernels
do not change and therefore there is a continuous dependence. Now perturb the coef-
ficients of f slightly and call the resulting form h. For a small enough perturbation,
given the continuous dependence of h⊥ on the coefficients of h we can ensure that
(h⊥)m−1 has no forms with all real roots, while (h⊥)m has such a form. Thus the rank
of h is m, where h is any sufficiently small perturbation of the coefficients of f . �

We now inductively build apolar ideals f ⊥ where the form f is a typical form
of rank m for all m in the desired range. Instead of constructing f directly we build
generators of the ideal, which by Theorem 2.2 is an apolar ideal for some f , and then
apply Lemma 2.3 to show that f is typical.

Theorem 2.4 All ranks m with � d+2
2 � ≤ m ≤ d are typical for forms in R[x, y]d .

Proof We use induction on the degree d . The base case d = 2 is just bivariate
quadratic forms and the real rank corresponds to the usual rank of the matrix. There-
fore there is only one typical rank, which is 2.

Inductive Step: d =⇒ d + 1. We first note that it was already shown in [7] that
rank d + 1 is typical for forms in R[x, y]d+1. Suppose that f ∈ R[x, y]d is a typical
form of rank � d+3

2 � ≤ m ≤ d . By perturbing f we may assume that the apolar ideal
f ⊥ is generated in generic degrees.

Suppose d = 2k is even. Then f ⊥ is generated by forms p1,p2 with degp1 =
degp2 = k + 1.

First suppose that m = k + 1. Now let � ∈ R[x, y]1 be any linear form such that
the zero of � is not one of the zeroes of p1 and consider the ideal I = 〈p1, �p2〉. The
forms p1 and �p2 form a complete intersection over C. By Theorem 2.2, I is the
apolar ideal of some form g ∈ R[x, y]d+1. Since we have g⊥ ⊂ f ⊥ by Lemma 2.3
we know that g is a typical form of rank m.

Now suppose that m > k + 1. By the Apolarity Lemma there exists s ∈ (f ⊥)m
such that s has all real distinct roots and by Lemma 2.3 we know that all forms in
(f ⊥)m−1 have at least two complex roots. Since s ∈ (f ⊥)m we can write s in terms
of the generators p1 and p2 of f ⊥:

s = p1q1 + p2q2 for q1, q2 ∈ R[x, y]m−k−1.
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We now claim that we may choose two generators p1 and p2 of f ⊥ so that the
multiplier q2 has a real root distinct from the roots of p1. If this does not hold, then
we may pick a different set of generators of f ⊥: let

p′
1 = p1 + αp2 with some α ∈R.

Then

s = p′
1q1 + p2(q2 − αq1).

We can easily adjust α so that q2 − αq1 has a real root, and we need to argue that we
can also make this root distinct from the roots of p′

1 = p1 + αp2. Suppose not; then
for any (a, b) ∈ R

2 that is not a root of q1 we may set α = −q2(a, b)/q1(a, b) and
make (a, b) a root of q2 − αq1. Therefore we must have p1

p2
= − q2

q1
, which implies

that s = p1q1 + p2q2 = 0 and that is a contradiction. Thus we have q2 − αq1 = �q

with � ∈ R[x, y]1, q ∈R[x, y]k−m−2 and � does not divide p′
1. Let

I = 〈
p′

1, �p2
〉
.

As before, p′
1 and �p2 form a compete intersection over C and by Theorem 2.2 I is

the apolar ideal of some form g ∈ R[x, y]d+1. Since s ∈ I we know that the rank of
g is at most m and since I ⊂ f ⊥ we know that the rank of g is at least m. Therefore
the rank of g is m. Further, g⊥ ⊂ f ⊥ has no forms of degree m− 1 with all real roots
and g⊥ is generated in generic degrees. Therefore g is a typical form of rank m.

Now suppose that d = 2k + 1 is odd. Then f ⊥ is generated by forms p1,p2 with
degp1 = k + 1 and degp2 = k + 2. We note that we only need to deal with the cases
m ≥ k+2. By the Apolarity Lemma there exists s ∈ (f ⊥)m such that s has all distinct
real roots and by Lemma 2.3 all forms in (f ⊥)m−1 have at least two complex roots.
Since s ∈ (f ⊥)m we can write

s = p1q1 + p2q2 for q1 ∈ R[x, y]m−k−1, q2 ∈R[x, y]m−k−2.

The generator p1 is uniquely determined, but p2 is unique only modulo the ideal
generated by p1. We now claim that we may choose generators of f ⊥ so that the
multiplier q1 has a real root distinct from the roots of p2. If this does not hold, then
let

p′
2 = p2 + �p1 for some linear form � ∈ R[x, y]1.

We have

s = p1(q1 − �q2) + p′
2q2.

We can adjust � so that q1 −�q2 has a real root, and we need to argue that we may also
make this root distinct from the roots of p′

2 = p2 + �p1. Arguing as before we must
have p2

p1
= − q1

q2
, which implies that s = p1q1 + p2q2 = 0, which is a contradiction.

Let

I = 〈
�p1,p

′
2

〉
.

Since �p1 and p′
2 form a compete intersection over C by Theorem 2.2 I is the apolar

ideal of some form g ∈ R[x, y]d+1. Since s ∈ I we know that the rank of g is at most
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m and since I ⊂ f ⊥ we know that the rank of g is at least m. Therefore the rank of
g is m. Further, g⊥ ⊂ f ⊥ has no forms of degree m − 1 with all real roots and g⊥ is
generated in generic degrees. Therefore g is a typical form of rank m. �
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