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Abstract An effective means to approximate an analytic, nonperiodic function on a
bounded interval is by using a Fourier series on a larger domain. When constructed
appropriately, this so-called Fourier extension is known to converge geometrically
fast in the truncation parameter. Unfortunately, computing a Fourier extension re-
quires solving an ill-conditioned linear system, and hence one might expect such
rapid convergence to be destroyed when carrying out computations in finite preci-
sion. The purpose of this paper is to show that this is not the case. Specifically, we
show that Fourier extensions are actually numerically stable when implemented in
finite arithmetic, and achieve a convergence rate that is at least superalgebraic. Thus,
in this instance, ill-conditioning of the linear system does not prohibit a good approx-
imation.

In the second part of this paper we consider the issue of computing Fourier exten-
sions from equispaced data. A result of Platte et al. (SIAM Rev. 53(2):308–318, 2011)
states that no method for this problem can be both numerically stable and exponen-
tially convergent. We explain how Fourier extensions relate to this theoretical barrier,
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and demonstrate that they are particularly well suited for this problem: namely, they
obtain at least superalgebraic convergence in a numerically stable manner.

Keywords Fourier series · Fourier extension · Convergence · Stability · Equispaced
data
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Symbols
T Extension parameter
N Truncation parameter
M , γ Number of equispaced nodes of the equispaced FE,

and the oversampling parameter γ = M/N

φn(x) The exponential 1√
2T

ei nπ
T

x

GN , SN , CN Finite-dimensional spaces of exponentials, sines
and cosines

FN , F̃N (f ), FN,M(f ) Exact continuous, discrete and equispaced FEs
GN , G̃N(f ), GN,M(f ) Numerical continuous, discrete and equispaced FEs
a Vector of coefficients of an FE
A, Ã, Ā Matrices of the continuous, discrete and equispaced

FE’s
b, b̃, b̄ Data vectors for the continuous, discrete and

equispaced FEs
x, y, z Physical domain variable x ∈ [−1,1], and the

mapped variables y ∈ [c(T ),1] and z ∈ [−1,1]
fe(x), fo(x) Even and odd parts of the function f (x)

g1(y), g2(y), g1,N (y), g2,N (y) Images of fe(x) and fo(x)/ sin π
T

x in the y-domain
and their polynomial approximations

hi(z), hi,N (z) Images of gi and gi,N in the z-domain
m(x) The mapping x �→ z

c(T ), E(T ) FE constants cos π
T

and cot2( π
4T

).
B(ρ), D(ρ) Bernstein ellipse in the z-domain and its image in

the x-domain
κ(F ) Condition number of a mapping F

N0, N1, N2 Breakpoints in convergence
{un,σn, vn} Singular system of A, Ã or Ā

�n Fourier series corresponding to vn

GN,ε , G′
N,ε , GN,M,ε The subspace span{�n : σn > ε}

HN,ε(f ), H̃N,ε(f ), HN,M,ε(f ) Truncated SVD FEs corresponding to the
continuous, discrete and equispaced cases

a(γ ;T ) Quantity determining the maximal achievable
accuracy of the equispaced FE

L2(I ), 〈·, ·〉I , ‖ · ‖I Space of square-integral functions on a domain I

and corresponding inner product and norm
〈·, ·〉, ‖ · ‖ Inner product and norm on L2(−1,1)
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L2
w(I), 〈·, ·〉w,I , ‖ · ‖w,I Space of square integrable functions with respect to

a weight function w and corresponding inner
product and norm

‖ · ‖∞,I , ‖ · ‖∞ Uniform norms on an arbitrary domain I and the
interval [−1,1] respectively

1 Introduction

Let f : [−1,1] → R be an analytic function. When periodic, an extremely effec-
tive means to approximate f is via its truncated Fourier series. This approximation
converges geometrically fast in the truncation parameter N , and can be computed ef-
ficiently via the Fast Fourier Transform (FFT). Moreover, Fourier series possess high
resolution power. One requires an optimal two modes per wavelength to resolve oscil-
lations, making Fourier methods well suited for (most notably) PDEs with oscillatory
solutions [19].

For these reasons, Fourier series are extremely widely used in practice. However,
the situation changes completely when f is nonperiodic. In this case, rather than
geometric convergence, one witnesses the familiar Gibbs phenomenon near x = ±1
and only linear pointwise convergence in (−1,1).

1.1 Fourier Extensions

For analytic and nonperiodic functions, one way to restore the good properties of a
Fourier series expansion (in particular, geometric convergence and high resolution
power) is to approximate f with a Fourier series on an extended domain [−T ,T ].
Here T > 1 is a user-determined parameter. Thus we seek an approximation FN(f )

to f from the set

GN := span
{
φn : |n| ≤ N

}
, φn(x) := 1√

2T
ei nπ

T
x .

Although there are many potential ways to define FN(f ), in [5, 12, 22] it was pro-
posed to compute FN(f ) as the best approximation to f on [−1,1] in a least squares
sense:

FN(f ) := argmin
φ∈GN

‖f − φ‖. (1.1)

Here ‖ · ‖ is the standard norm on L2(−1,1)—the space of square-integrable func-
tions on [−1,1]. Henceforth, we shall refer to FN(f ) as the continuous Fourier ex-
tension (FE) of f .

In [1, 22] it was shown that the continuous FE FN(f ) converges geometrically fast
in N and has a resolution constant (number of degrees of freedom per wavelength re-
quired to resolve an oscillatory wave) that ranges between 2 and π depending on
the choice of the parameter T , with T ≈ 1 giving close to the optimal value 2 (see
Sect. 2.4 for a discussion). Thus the continuous FE successfully retains the key prop-
erties of rapid convergence and high resolution power of a standard Fourier series in
the case of nonperiodic functions.
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We note that one does not usually compute the continuous FE (1.1) in practice.
A more convenient approach [1, 22] is to replace (1.1) by the discrete least squares

F̃N (f ) := argmin
φ∈GN

∑

|n|≤N

∣∣f (xn) − φ(xn)
∣∣2, (1.2)

for nodes {xn}|n|≤N ⊆ [−1,1]. We refer to F̃N (f ) as the discrete Fourier extension
of f . When chosen suitably—in particular, as in (2.11)—such nodes ensure that the
difference in approximation properties between the extensions (1.1) and (1.2) is min-
imal (for details, see Sect. 2.2).

1.2 Numerical Convergence and Stability of Fourier Extensions

The approximation properties of the continuous and discrete FEs were analyzed in
[1, 22]. Therein it was also observed numerically that the condition numbers of the
matrices A and Ã of the least squares (1.1) and (1.2) are exponentially large in N . We
shall confirm this observation later in the paper. Thus, if a = (a−N, . . . , aN)� is the
vector of coefficients of the continuous or discrete FE, i.e. FN(f ) or F̃N (f ) is given
by
∑

|n|≤N anφn, one expects small perturbations in f to lead to large errors in a. In
other words, the computation of the coefficients of the continuous or discrete FE is
ill-conditioned.

Because of this ill-conditioning, it is tempting to think that FEs will be useless in
applications. At first sight it is reasonable to expect that the good approximation prop-
erties of exact FEs (i.e. those obtained in exact arithmetic) will be destroyed when
computing numerical FEs in finite precision. However, previous numerical studies
[1, 5, 12, 22, 24, 25] indicate otherwise. Despite very large condition numbers, one
typically obtains an extremely good approximation with a numerical FE, even for
poorly behaved functions and in the presence of noise.

The aim of this paper is to give a full explanation of this phenomenon. This ex-
planation can be summarized as follows. In computations, one’s interest does not lie
with the accuracy in computing the coefficient vector a, but rather the accuracy of
the numerical FE approximation

∑
|n|≤N anφn. As we show, although the mapping

from a function to its coefficients is ill-conditioned, the mapping from f to its numer-
ical FE is, in fact, well-conditioned. In other words, whilst the small singular values
of A (or Ã) have a substantial effect on a, they have a much less significant, and
completely quantifiable, effect on the FE itself.

Although this observation explains the apparent stability of numerical FEs, it does
not address their approximation properties. In [1, 22] it was shown that the exact
continuous and discrete FEs FN(f ) and F̃N (f ) converge geometrically fast in N .
However, the fact that there may be substantial differences between the coefficients
of FN(f ), F̃N (f ) and those of the numerical FEs, which henceforth we denote by
GN(f ) and G̃N(f ), suggests that geometric convergence may not be witnessed in fi-
nite arithmetic for large N . As we show later, for a large class of functions, geometric
convergence of FN(f ) (or F̃N (f )) is typically accompanied by geometric growth of
the norm ‖a‖ of the exact (infinite-precision) coefficient vector. Hence, whenever N

is sufficiently large, one expects there to be a discrepancy between the exact coeffi-
cient vector and its numerically computed counterpart, meaning that the numerical
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extensions GN(f ) and G̃N(f ) may not exhibit the same convergence behavior. In
the first half of this paper, besides showing stability, we also give a complete analy-
sis and description of the convergence of GN(f ) and G̃N(f ), and discuss how this
differs from that of FN(f ) and F̃N (f ).

We now summarize the main conclusions of the first half of the paper. Concerning
stability, we have:

1. The condition numbers of the matrices A and Ã of the continuous and discrete
FEs are exponentially large in N (see Sect. 3.1).

2. The condition number κ(FN) of the exact continuous FE mapping is exponen-
tially large in N . The condition number of the exact discrete FE mapping satisfies
κ(F̃N) = 1 for all N (see Sect. 3.4).

3. The condition number of the numerical continuous and discrete FE mappings GN

and G̃N satisfy

κ(GN) � 1/
√

ε, κ(G̃N) � 1, ∀N ∈ N,

where ε = εmach is the machine precision used (see Sect. 4.3).

To state our main conclusions regarding convergence, we first require some notation.
Let D(ρ), ρ ≥ 1, be a particular one-parameter family of regions in the complex plane
related to Bernstein ellipses (see (2.15) and Definition 2.10), and define the Fourier
extension constant [1, 22] by

E(T ) = cot2
(

π

4T

)
. (1.3)

We now have the following:

1. Suppose that f is analytic in D(ρ∗) and continuous on its boundary. Then the
exact continuous and discrete FEs satisfy

∥∥f − FN(f )
∥∥, ‖f − F̃Nf ‖ ≤ cf ρ−N,

where ρ = min{ρ∗,E(T )} and cf is proportional to maxx∈D(ρ) |f (x)| (see
Sect. 2.3).

2. For f as in 4. the errors of the numerical continuous and discrete FEs satisfy (see
Sect. 4.2):

(i) For N ≤ N0 (continuous) or N ≤ N1 := 2N0 (discrete), where N0 is a
function-independent breakpoint depending on ε and T only, both ‖f −
GN(f )‖ and ‖f − G̃Nf ‖ decay like ρ−N , where ρ is as in 4.

(ii) When N = N0 or N = N1, the errors

∥
∥f − GN0(f )

∥
∥≈ cf (

√
ε)df ,

∥
∥f − G̃N1(f )

∥
∥≈ cf εdf ,

where cf is as in 4. and df = logρ
logE(T )

∈ (0,1].
(iii) When N > N0 or N > N1, the errors decay at least superalgebraically fast

down to maximal achievable accuracies of order
√

ε and ε, respectively. In
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other words,

lim sup
N→∞

∥∥f − GN(f )
∥∥�

√
ε, lim sup

N→∞
∥∥f − G̃N(f )

∥∥� ε.

Remark 1.1 In this paper we refer to several different types of convergence of an
approximation fN ≈ f . We say that fN converges algebraically fast to f at rate
k if ‖f − fN‖ = O(N−k) as N → ∞. If ‖f − fN‖ decays faster than any al-
gebraic power of N−1 then fN is said to converge superalgebraically fast. We
say that fN converges geometrically fast to f if there exists a ρ > 1 such that
‖f − fN‖ = O(ρ−N). We shall also occasionally use the term root-exponential to
describe convergence of the form ‖f − fN‖ = O(ρ−√

N).

As we explain in Sect. 4, the reason for the disparity between the exact and numer-
ical FEs can be traced to the fact that the system of functions {ei nπ

T
·}n∈Z forms a frame

for L2(−1,1). The inherent redundancy of this frame, i.e. the fact that any function
f has infinitely many expansions in this system, leads to both the ill-conditioning
in the coefficients and the differing convergence between the exact and numerical
approximations FN , F̃N , and GN , G̃N , respectively.

This aside, observe that conclusion 5. asserts that the numerical continuous FE
GN(f ) converges geometrically fast in the regime N < N0 down to an error of order
(
√

ε)df , and then at least superalgebraically fast for N > N0 down to a best achiev-
able accuracy of order

√
ε. Note that df = 1 whenever f is analytic in D(ρ) with

ρ ≥ E(T ). Thus GN approximates all sufficiently analytic functions possessing mod-
erately small constants cf with geometric convergence down to order

√
ε, and this is

achieved at N = N0. For functions only analytic in regions D(ρ) with ρ < E(T ), or
possessing large constants cf , this accuracy is obtained after a further regime of at
least superalgebraic convergence. Note that cf is large typically when f is oscillatory
or possessing boundary layers. Hence for such functions, even though they may well
be entire, one usually still sees the second phase of superalgebraic convergence.

The limitation of
√

ε accuracy for the numerical continuous FE is undesirable.
Since ε = εmach ≈ 10−16 in practice, this means that one cannot expect to obtain
more than 7 or 8 digits of accuracy in general. The condition number is also large—
specifically, κ(GN) ≈ 108 (see 3.)—and hence the continuous FE has limited practi-
cal value. This is in addition to GN(f ) being difficult to compute in practice, since it
requires calculation of 2N + 1 Fourier integrals of f (see Sect. 2.2.1).

On the other hand, conclusion 3. shows that the discrete FE is completely stable
when implemented numerically. Moreover, it possesses the same qualitative conver-
gence behavior as the continuous FE, but with two key differences. First, the region of
guaranteed geometric convergence is precisely twice as large, N1 = 2N0. Second, the
maximal achievable accuracy is on the order of machine precision, as opposed to its
square root (see 5.). Thus, an important conclusion of the first half of this paper is the
following: it is possible to compute a numerically stable FE of any analytic function
which converges at least superalgebraically fast in N (in particular, geometrically fast
for all small N ), and which attains close to machine accuracy for N sufficiently large.

Remark 1.2 This paper is about the discrepancy between theoretical properties of so-
lutions to (1.1) and (1.2) and their numerical solutions when computed with standard
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solvers. Throughout we shall consistently use Mathematica’s LeastSquares rou-
tine in our computations, though we would like to stress that Matlab’s command \
gives similar results. Occasionally, to compare theoretical and numerical properties,
we shall carry out computations in additional precision to eliminate the effect of
round-off error. When done, this will be stated explicitly. Otherwise, it is to be as-
sumed that all computations are carried out as described in standard precision.

1.3 Fourier Extensions from Equispaced Data

In many applications, one is faced with the problem of recovering an analytic function
f to high accuracy from its values on an equispaced grid {f ( n

M
) : n = −M, . . . ,M}.

This problem turns out to be quite challenging. For example, the famous Runge phe-
nomenon states that the polynomial interpolant of this data will diverge geometrically
fast as M → ∞ unless f is analytic in a sufficiently large region.

Numerous approaches have been proposed to address this problem, and thereby
‘overcome’ the Runge phenomenon (see [8, 28] for a comprehensive list). Whilst
many are quite effective in practice, ill-conditioning is often an issue. This was
recently explained by Platte, Trefethen and Kuijlaars in [28] (see also Sect. 5.4),
wherein it was shown that any exponentially convergent method for recovering an-
alytic functions f from equispaced data must also be exponentially ill-conditioned.
As was also proved, the best possible that can be achieved by a stable method is root-
exponential convergence. This profound result, most likely the first of its kind for this
type of problem, places an important theoretical benchmark against which all such
methods must be measured.

As we show in the first half of this paper, the numerical discrete FE is well-
conditioned and has good convergence properties. Yet it relies on particular inter-
polation points (2.11) which are not equispaced. In the second half of this paper we
consider Fourier extensions based on equispaced data. In particular, if xn = n

M
we

study the so-called equispaced Fourier extension

FN,M(f ) := argmin
φ∈GN

∑

|n|≤M

∣∣f (xn) − φ(xn)
∣∣2, (1.4)

and its finite-precision counterpart GN,M(f ).
Our primary interest shall lie with the case where M = γN for some γ ≥ 1, i.e.

where the number of points M scales linearly with N . In this case we refer to γ as the
oversampling parameter. Observe that (1.4) results in an (2M + 1) × (2N + 1) least
squares problem for the coefficients of FN,M(f ). We shall denote the corresponding
matrix by Ā.

Our main conclusions concerning the exact equispaced FE FN,M(f ) are as follows
(see Sect. 5.2):

6. The condition number of Ā is exponentially large as N,M → ∞ with M ≥ N .
7. The condition number of exact equispaced FE mapping κ(FN,γN ) is exponen-

tially large in N whenever M = γN for γ ≥ 1 fixed. Moreover, the approximation
FN,γN(f ) suffers from a Runge phenomenon for any fixed γ ≥ 1. In particular,
the error ‖f −FN,γN(f )‖ may diverge geometrically fast in N for certain analytic
functions f .
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8. The scaling M = O(N2) is required to overcome the ill-conditioning and the
Runge phenomenon in FN,M . In this case, FN,M(f ) converges at the same rate
as the exact continuous FE FN(f ), i.e. geometrically fast in N . Although the
condition number of Ā remains exponentially large, the condition number of the
mapping κ(FN,M) is O(1) for this scaling.

These results lead to the following conclusion. The exact (infinite-precision) equis-
paced FE FN,M with M = O(N2) attains the stability barrier of Platte, Trefethen and
Kuijlaars: namely, it is well-conditioned and converges root-exponentially fast in the
parameter M .

However, since the matrix Ā is always ill-conditioned, one expects there to be dif-
ferences between the exact equispaced extension FN,M(f ) and its numerical counter-
part GN,M(f ). In practice, one sees both differing stability and convergence behavior
of GN,M(f ), much like in the case of continuous and discrete FEs. Specifically, in
Sect. 5.3 we show the following:

9. The condition number κ(GN,γN) satisfies

κ(GN,γN) � ε−a(γ ;T ), ∀N ∈ N,

where ε = εmach is the machine precision used, and 0 < a(γ ;T ) ≤ 1 is indepen-
dent of N and satisfies a(γ ;T ) → 0 as γ → ∞ for fixed T (see (5.23) for the
definition of a(γ ;T )).

10. The error ‖f − GN,γN(f )‖ behaves as follows:
(i) If N < N2, where N2 is a function-independent breakpoint, ‖f −

GN,γN(f )‖ converges or diverges exponentially fast at the same rate as
‖f −FN,γN(f )‖.

(ii) If N2 ≤ N < N1, where N1 is as introduced previously in Sect. 1.2,
then ‖f −GN,γN(f )‖ converges geometrically fast at the same rate as
‖f − FN(f )‖, where FN(f ) is the exact continuous FE.

(iii) When N = N1 the error
∥
∥f − GN1,γN1(f )

∥
∥≈ cf εdf −a(γ ;T ),

where cf and df are as in 5. of Sect. 1.2.
(iii) If N > N1 then ‖f − GN,γN(f )‖ decays at least superalgebraically fast in

N down to a maximal achievable accuracy of order ε1−a(γ ;T ).

These results show that the condition number of the numerical equispaced FE
is bounded whenever M = γN , unlike for its exact analogue. Moreover, after a
(function-independent) regime of possible divergence, we witness geometric con-
vergence of GN,γN(f ) down to a certain accuracy. As in the case of the continuous
or discrete FEs, if the function f is sufficiently analytic with small constant cf then
the convergence effectively stops at this point. If not, we witness a further regime
of guaranteed superalgebraic convergence. But in both cases, the maximal achiev-
able accuracy is of order ε1−a(γ ;T ), which, since a(γ ;T ) → 0 as γ → ∞, can be
made arbitrarily close to ε by increasing γ . Note that doing this both improves the
condition number of the numerical equispaced FE and yields a less severe rate of
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exponential divergence in the region N < N2. As we show via numerical computa-
tion of the relevant constants, double oversampling γ = 2 with T = 2 gives perfectly
adequate results in most cases.

The main conclusion of this analysis is that numerical equispaced FEs, unlike their
exact counterparts, are able to circumvent the stability barrier of Platte, Trefethen
and Kuijlaars to an extent (see Sect. 5.4 for a more detailed discussion). Specifically,
the numerical FE FN,γN has a bounded condition number, and for all sufficiently
analytic functions—namely, those analytic in the region D(E(T ))—the convergence
is geometric down to a finite accuracy of order cf ε1−a(γ ;T ). This latter observation,
namely the fact that the maximal accuracy is nonzero, is precisely the reason why the
stability theorem, which requires geometric convergence for all N , does not apply. On
the other hand, for all other analytic functions (or those possessing large constants cf )

the convergence is at least superalgebraic for N > N1 down to roughly ε1−a(γ ;T );
again not in contradiction with the theorem. Importantly, one never sees divergence
of the numerical FE after the finite breakpoint N2.

For this reason, we conclude that equispaced FEs are an attractive method for
approximations from equispaced data. To further support this conclusion we also
remark that although the primary concern of this paper is analytic functions, equis-
paced FEs are also applicable to functions of finite regularity. In this case, one wit-
nesses algebraic convergence, with the precise order depending solely on the degree
of smoothness (see Theorem 2.9).

1.4 Relation to Previous Work

One-dimensional FEs for overcoming the Gibbs and Runge phenomena were studied
in [5] and [8], and applications to surface parametrizations considered in [12]. Anal-
ysis of the convergence of the exact continuous and discrete FEs was presented by
Huybrechs in [22] and Adcock and Huybrechs in [1]. The issue of resolution power
was also addressed in the latter. The content of the first half of this paper, namely
analysis of exact/numerical FEs, follows on directly from this work.

A different approach to FEs, known as the FC–Gram method, was introduced
in [26]. This approach forms a central part of an extremely effective method for solv-
ing PDEs in complex geometries [2, 11]. For previous work on using FEs for PDE
problems (so-called Fourier embeddings) see [6, 27].

Equispaced FEs of the form studied in this paper were first independently con-
sidered by Boyd [5] and Bruno [10], and later by Bruno et al. [12]. In particular,
Boyd [5] describes the use of truncated singular value decompositions (SVDs) to
compute equispaced FEs, and gives extensive numerical experiments (see also [8]).
Bruno focuses on the use of Fourier extensions (also called Fourier continuations in
the above references) for the description of complicated smooth surfaces. He sug-
gested in [10] a weighted least squares to obtain a smooth extension for this purpose,
with numerical evidence supporting convergence results in [12]. Most recently Lyon
has presented an analysis of equispaced FEs computed using truncated SVDs [24].
In particular, numerical stability and convergence (down to close to machine preci-
sion) were shown. In Sect. 5.3 we discuss this work in more detail (see, in particular,
Remark 5.10), and give further insight into some of the questions raised in [24].
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1.5 Outline of the Paper

The outline of the remainder of this paper is as follows. In Sect. 2 we recap properties
of the continuous and discrete FEs from [1, 22], including convergence and how to
choose the extension parameter T . Ill-conditioning of the coefficient map is proved
in Sect. 3, and in Sect. 4 we consider the stability of the numerical extensions and
their convergence. Finally, in Sect. 5 we consider the case of equispaced FEs.

A comprehensive list of symbols is given at the end of the paper.

2 Fourier Extensions

In this section we introduce FEs, and recap salient important aspects of [1, 22].

2.1 Two Interpretations of Fourier Extensions

There are two important interpretations of FEs which inform their approximation
properties and their stability, respectively. These are described in the next two sec-
tions.

2.1.1 Fourier Extensions as Polynomial Approximations

The space GN can be decomposed as GN = CN ⊕ SN , where

CN = span

{
cos

nπ

T
x : n = 0, . . . ,N

}
, SN = span

{
sin

nπ

T
x : n = 1, . . . ,N

}
,

consist of even and odd functions, respectively. Likewise, for f we have

f (x) = fe(x)+fo(x), fe(x) = 1

2

[
f (x)+f (−x)

]
, fo(x) = 1

2

[
f (x)−f (−x)

]
,

and for any FE fN of f :

fN = fe,N + fo,N , fe,N ∈ CN, fo,N ∈ SN. (2.1)

Throughout this paper we shall use the notation fN to denote an arbitrary FE of f

when not wishing to specify its particular construction. From (2.1), it follows that the
problem of approximating f via a FE fN decouples into two problems fe,N ≈ fe and
fo,N ≈ fo in the subspaces CN and SN , respectively, on the half-interval [0,1].

Let us define the mapping y = y(x) : [0,1] → [c(T ),1] by y = cos π
T

x, where

c(T ) = cos π
T

. The functions cos nπ
T

x and sin (n+1)π
T

x/ sin π
T

x are algebraic polyno-
mials of degree n in y. Therefore CN and SN are (up to multiplication by sin π

T
x

for the latter) the subspaces PN and PN−1 of polynomials of degree N and N − 1,
respectively, in the transformed variable y. Letting

g1(y) = fe(x), g2(y) = fo(x)

sin π
T

x
,
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g1,N (y) = fe,N (x), g2,N (y) = fo,N (x)

sin π
T

x
,

with g1,N (y) ∈ PN and g2,N (y) ∈ PN−1, we conclude that the FE approximation fN

in the variable x is completely equivalent to two polynomial approximations in the
transformed variable y ∈ [c(T ),1].

This fact is central to the analysis of FEs. It allows one to use the rich literature on
polynomial approximations to determine the theoretical behavior of the continuous
and discrete FEs (see Sect. 2.3).

Remark 2.1 The interpretation of fN in terms of polynomials is solely for the pur-
poses of analysis. We always perform computations in the x-domain using the stan-
dard trigonometric basis for GN (see Sect. 2.2).

The interval [c(T ),1] ⊆ (−1,1] is not standard. It is thus convenient to map it
affinely to [−1,1]. Let

z := z(y) = 2
y − c(T )

1 − c(T )
− 1 ∈ [−1,1].

Observe that y = y(z) = c(T ) + 1−c(T )
2 (z + 1). Let m : [0,1] → [−1,1] be the map-

ping x �→ z, i.e.

z = m(x) = 2
cos π

T
x − c(T )

1 − c(T )
− 1. (2.2)

Note that x = m−1(z) = T
π

arccos[c(T ) + 1−c(T )
2 (z + 1)]. If we now define

hi(z) = gi

(
y(z)
)
, i = 1,2, (2.3)

then the FE fN is equivalent to the two polynomial approximations

h1,N (z) = g1,N

(
y(z)
)= fe,N

(
m−1(z)

)
,

h2,N (z) = g2,N

(
y(z)
)= fo,N (m−1(z))

sin( π
T

m−1(z))
,

(2.4)

of degree N and N − 1 respectively in the new variable z ∈ [−1,1].

2.1.2 Fourier Extensions as Frame Approximations

Definition 2.2 Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. A set
{φn}∞n=1 ⊆ H is a frame for H if (i) span{φn}∞n=1 is dense in H and (ii) there exist
c1, c2 > 0 such that

c1‖f ‖2 ≤
∞∑

n=1

∣∣〈f,φn〉
∣∣2 ≤ c2‖f ‖2, ∀f ∈ H. (2.5)

If c1 = c2 then {φn}∞n=1 is referred to as a tight frame.
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Introduced by Duffin and Schaeffer [16], frames are vitally important in signal pro-
cessing [14]. Note that all orthonormal, indeed Riesz, bases are frames, but a frame
need not be a basis. In fact, frames are typically redundant: any element f ∈ H may
well have infinitely many representations of the form f =∑∞

n=1 αnφn with coeffi-
cients {αn}∞n=1 ∈ l2(N).

The relevance of frames to Fourier extensions is due to the following observation:

Lemma 2.3 [1] The set { 1√
2T

ei nπ
T

x}n∈Z is a tight frame for L2(−1,1) with c1 =
c2 = 1.

Note that { 1√
2T

ei nπ
T

x}n∈Z is an orthonormal basis for L2(−T ,T ): it is precisely the
standard Fourier basis on [−T ,T ]. However, it forms only a frame when considered
as a subset of L2(−1,1). This fact means that ill-conditioning may well be an issue
in numerical algorithms for computing FEs, due to the possibility of redundancies.
As it happens, it is trivial to see that the set { 1√

2T
ei nπ

T
x}n∈Z is redundant:

Lemma 2.4 Let f ∈ L2(−1,1) be arbitrary, and suppose that f̃ ∈ L2(−T ,T ) is

such that f = f̃ a.e. on [−1,1]. If φn(x) = 1√
2T

ei nπ
T

x and αn = 〈f̃ , φn〉[−T ,T ], then

f =
∑

n∈Z

αnφn a.e. (2.6)

In particular, there are infinitely many sequences {αn}n∈Z ∈ l2(Z) for which f =∑
n∈Z

αnφn.

Proof The sum
∑

n∈Z
αnφn is the Fourier series of f̃ on [−T ,T ]. Thus it coincides

with f̃ a.e. on [−T ,T ], and hence f when restricted to [−1,1]. Since there are
infinitely many possible f̃ , each giving rise to a different sequence {αn}n∈Z, the result
now follows. �

This lemma is valid for arbitrary f ∈ L2(−1,1). When f has higher regularity—
say f ∈ Hk(−1,1), where Hk(−1,1) is the kth standard Sobolev space on (−1,1)—
it is useful to note that there exist extensions f̃ with the same regularity on the torus
T = [−T ,T ). This is the content of the next result. For convenience, given a domain
I , we now write ‖ · ‖Hk(I ) for the standard norm on Hk(I ):

Lemma 2.5 Let f ∈ Hk(−1,1) for some k ∈ N. Then there exists an extension
f̃ ∈ Hk(T) of f satisfying ‖f̃ ‖Hk(T) ≤ ck(T )‖f ‖Hk(−1,1), where ck(T ) > 0 is in-

dependent of f . Moreover, f = ∑n∈Z
αnφn, where αn = 〈f̃ , φn〉[−T ,T ] satisfies

αn = O(n−k) as |n| → ∞.

Proof The first part of the lemma follows directly from the proof of Theorem 2.1 in
[1]. The second follows from integrating by parts k times and using the fact that f̃ is
periodic. �
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This lemma, which shall be important later when studying numerical FEs, states

that there exist representations of f in the frame { 1√
2T

ei nπ
T

x}n∈Z that have nice (i.e.
rapidly decaying) coefficients and which cannot grow large on the extended region
[−T ,T ].

2.2 The Continuous and Discrete Fourier Extensions

We now describe the two types of FEs we consider in the first part of this paper.

2.2.1 The Continuous Fourier Extension

The continuous FE of f ∈ L2(−1,1), defined by (1.1), is the orthogonal projection
onto GN . Computation of this extension involves solving a linear system. Let us write
FN(f ) =∑N

n=−N anφn with unknowns {an}Nn=−N . If a = (a−N, . . . , aN)� and b =
(b−N, . . . , bN)�, where

bn = 〈f,φn〉 =
∫ 1

−1
f (x)φn(x)dx, n = −N, . . . ,N, (2.7)

and A ∈ C
(2N+1)×(2N+1) is the matrix with (n,m)th entry

An,m = 〈φm,φn〉 =
∫ 1

−1
φm(x)φn(x)dx, n,m = −N, . . . ,N, (2.8)

then a is the solution of the linear system Aa = b. We refer to the values {an}Nn=−N

as the coefficients of the FE FN(f ). Note that the matrix A is a Hermitian positive-

definite, Toeplitz matrix with An,m = An−m, where A0 = 1
T

and An = sin nπ
T

nπ
other-

wise. In fact, A coincides with the so-called prolate matrix [31, 33]. We shall discuss
this connection further in Sect. 3.2.

For later use, we also note the following characterization of FN(f ):

Proposition 2.6 [1, 22] Let FN(f ) be the continuous FE (1.1) of a function f , and
let hi(z) and hi,N (z) be given by (2.3) and (2.4), respectively (i.e. the symmetric and
anti-symmetric parts of f and fN with the coordinate transformed from the trigono-
metric argument x to the polynomial argument z). Then h1,N (z) and h2,N (z) are
the truncated expansions of h1(z) and h2(z), respectively, in polynomials orthogonal
with respect to the weight functions

w1(z) = [(1− z)
(
z−m(T )

)]− 1
2 , w2(z) = [(1− z)

(
z−m(T )

)] 1
2 , z ∈ [−1,1],

(2.9)
where m(T ) = 1 − 2 cosec2( π

2T
) < −1. In other words, hi,N (z), i = 1,2, is the or-

thogonal projection of hi(z) onto PN+1−i with respect to the weighted inner product
〈·, ·〉wi

with weight function wi .
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2.2.2 The Discrete Fourier Extension

The discrete FE F̃N (f ) is defined by (1.2). To use this extension it is first necessary
to choose nodes {xn}Nn=−N . This question was considered in [1], and a solution was
obtained by exploiting the characterization of FEs as polynomial approximations in
the transformed variable z.

A good system of nodes for polynomial interpolation is given by the Chebyshev
nodes

zn = cos

(
(2n + 1)π

2N + 2

)
, n = 0, . . . ,N. (2.10)

Mapping these back to the x-variable and symmetrizing about x = 0 leads to the
so-called mapped symmetric Chebyshev nodes

xn = −x−n−1 = T

π
arccos

[
1

2

(
1 − c(T )

)
cos

(
(2n + 1)π

2N + 2

)
+ 1

2

(
1 + c(T )

)]
,

n = 0, . . . ,N. (2.11)

This gives a set of 2N + 2 nodes. Therefore, rather than (1.2), we define the discrete
FE by

F̃N (f ) := argmin
φ∈G′

N

N∑

n=−N−1

∣∣f (xn) − φ(xn)
∣∣2, (2.12)

from now on, where G′
N = CN ⊕ SN+1. Exploiting the relation between FEs and

polynomial approximations once more, we now obtain the following:

Proposition 2.7 Let fN = F̃N (f ) ∈ G′
N be the discrete FE (2.12) based on the nodes

(2.11), and let hi(z) and hi,N (z) ∈ PN be given by (2.3) and (2.4), respectively. Then
hi,N (z), i = 1,2 is the N th degree polynomial interpolant of hi(z) at the Chebyshev
nodes (2.10).

Write φn(x) = cos nπ
T

x, φ−(n+1)(x) = sin n+1
T

πx, n ∈ N, and let F̃N (f )(x) =
∑N

n=−N−1 anφn(x). If a = (a−N−1, . . . , aN)−T and Ã ∈ R
(2N+2)×(2N+2) has (n,m)th

entry

Ãn,m =
√

π

N + 1
φm(xn), n,m = −N − 1, . . . ,N, (2.13)

then we have Ãa = b̃, where b̃ = (b̃−N−1, . . . , b̃N )� and b̃n =
√

π
N+1f (xn).

The following lemma concerning the matrix Ã will prove useful in what follows:

Lemma 2.8 [1] The matrix AW = (Ã)∗Ã has entries

〈φn,φm〉W :=
∫ 1

−1
φn(x)φm(x)W(x)dx, n,m = −N − 1, . . . ,N,
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where W is the positive, integrable weight function given by W(x) =√
2π
T

cos π
2T

x√
cos π

T
x−cos π

T

.

This lemma implies that the left-hand side of the normal equations of the discrete
FE are the equations of a continuous FE based on the weighted least-squares mini-
mization with weight function W .

2.3 Convergence of Exact Fourier Extensions

A detailed analysis of the convergence of the exact continuous FE, which we now
recap, was carried out in [1, 22]. We commence with the following theorem:

Theorem 2.9 [1] Suppose that f ∈ Hk(−1,1) for some k ∈ N and that T > 1. If
FN(f ) is the continuous FE of f defined by (1.1), then

∥∥f − FN(f )
∥∥≤ ck(T )N−k‖f ‖Hk(−1,1), ∀N ∈ N, (2.14)

where ck(T ) > 0 is independent of f and N .

This theorem confirms algebraic convergence of FN(f ) whenever the approxi-
mated function f has finite degrees of smoothness, and superalgebraic convergence,
i.e. faster than any fixed algebraic power of N−1, whenever f ∈ C∞[−1,1].

Suppose now that f is analytic. Although superalgebraic convergence is guaran-
teed by Theorem 2.9, it transpires that the convergence is actually geometric. This is
a direct consequence of the interpretation of the FN(f ) as the sum of two polynomial
expansions in the transformed variable z (Proposition 2.6). To state the corresponding
theorem, we first require the following definition:

Definition 2.10 The Bernstein ellipse B(ρ) ⊆ C of index ρ ≥ 1 is given by

B(ρ) =
{

1

2

(
ρ−1eiθ + ρe−iθ ) : θ ∈ [−π,π]

}
.

Given a compact region bounded by the Bernstein ellipse B(ρ), we shall write

D(ρ) ⊆ C (2.15)

for its image in the complex x-plane under the mapping x = m−1(z), where m is as
in (2.2).

Theorem 2.11 [1, 22] Suppose that f is analytic in D(ρ∗) and continuous on its
boundary. Then ‖f − FN(f )‖∞ ≤ cf ρ−N , where ρ = min{ρ∗,E(T )}, cf > 0 is
proportional to maxx∈D(ρ) |f (x)|, and E(T ) is as in (1.3).

Proof A full proof was given in [1, Theorem 2.3]. The expansion gN of an ana-
lytic function g in a system of orthogonal polynomials with respect to some inte-
grable weight function satisfies ‖g − gN‖∞ ≤ cgρ

−N , where cg is proportional to
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maxz∈B(ρ) |g(z)| [30]. In view of Proposition 2.6, it remains only to determine the
maximal parameter ρ of Bernstein ellipse B(ρ) within which h1(z) and h2(z) are
analytic.

The mapping z = m(x) introduces a square-root type singularity into the functions
hi(z) at the point z = m(T ) < −1. Hence the maximal possible value of the parameter
ρ satisfies

1

2

(
ρ + ρ−1)= −m(T ). (2.16)

Observe that if ψ(t) = t + √
t2 − 1 then

ψ
(
m(T )

)= E(T ). (2.17)

Thus, since ρ > 1, the solution to (2.16) is precisely ρ = E(T ). Conversely, any
singularity of f introduces a singularity of hi(z), which also limits this value. Hence
we obtain the stated minimum. �

Theorem 2.11 shows that if f is analytic in a sufficiently large region (for example,
if f is entire) then the rate of geometric convergence is precisely E(T ). Recall that
the parameter T can be chosen by the user. In the next section we consider the effect
of different choices of T .

Remark 2.12 Although Theorems 2.9 and 2.11 are stated for FN(f ), they also hold
for the discrete FE F̃N (f ), since the latter is equivalent to a sum of Chebyshev inter-
polants (Proposition 2.7).

2.4 The Choice of T

Note that E(T ) ∼ 1 + π(T − 1) as T → 1+ and E(T ) ∼ 16
π2 T 2 when T → ∞. Thus,

small T leads to a slower rate of geometric convergence, whereas large T gives a
faster rate. As discussed in [1], however, a larger value of T leads to a worse resolu-
tion power, meaning that more degrees of freedom are required to resolve oscillatory
behavior. On the other hand, setting T sufficiently close to 1 yields a resolution power
that is arbitrarily close to optimal.

In [1] a number of fixed values of T were used in numerical experiments. These
typically give good results, with small values of T being particularly well suited
to oscillatory functions. Another approach for choosing T was also discussed. This
involves letting

T = T (N; εtol) = π

4

(
arctan

(
(εtol)

1
2N
))−1

, (2.18)

where εtol � 1 is some fixed tolerance (note that this is very much related to the
Kosloff Tal-Ezer map in spectral methods for PDEs [4, 23]—see [1] for a discussion).
This choice of T , which now depends on N , is such that E(T )−N = εtol. Although
this limits the best achievable accuracy of the FE with this approach to O(εtol), setting
εtol = 10−14 is normally sufficient in practice. Numerical experiments in [1] indicate



Found Comput Math (2014) 14:635–687 651

that this works well, especially for oscillatory functions. In fact, since

T (N; εtol) ∼ 1 − log(εtol)

πN
+ O
(
N−2), N → ∞, (2.19)

this approach has formally optimal resolution power.

Remark 2.13 The strategy (2.18) is particularly good for oscillatory problems. How-
ever, if this is not a concern, a practical choice appears to be T = 2. In this case, the
FE has a particular symmetry that can be exploited to allow for its efficient computa-
tion in only O(N(logN)2) operations [25].

3 Condition Numbers of Exact Fourier Extensions

The redundancy of the frame { 1√
2T

ei nπ
T

·}n∈Z means that the matrices associated
with the continuous and discrete FEs are ill-conditioned. We next derive bounds
for the condition number of these matrices. The spectrum of A is considered fur-
ther in Sect. 3.2, and the condition numbers of the FE mappings f �→ FN(f ) and
f �→ F̃N (f ) are discussed in Sect. 3.4.

3.1 The Condition Numbers of the Continuous and Discrete FE Matrices

Theorem 3.1 Let A be the matrix (2.8) of the continuous FE. Then the condition
number of A is O(E(T )2N) for large N . Specifically, the maximal and minimal eigen-
values satisfy

T −1 ≤ λmax(A) ≤ 1, c1(T )N−3E(T )−2N ≤ λmin(A) ≤ c2(T )N2E(T )−2N,

(3.1)
where c1(T ) and c2(T ) are positive constants with c1(T ), c2(T ) = O(1) as T → 1+.

Proof It is a straightforward exercise to verify that

λmin(A) = min
φ∈GN

{‖φ‖2 : ‖φ‖[−T ,T ] = 1
}
,

λmax(A) = max
φ∈GN

{‖φ‖2 : ‖φ‖[−T ,T ] = 1
}
.

(3.2)

Using the fact that ‖φ‖ ≤ ‖φ‖[−T ,T ], we first notice that λmax(A) ≤ 1. On the other
hand, setting φ = 1√

2T
, we find that λmax(A) ≥ T −1, which completes the result for

λmax(A).
We now consider λmin(A). Recall that any φ ∈ GN can be decomposed into even

and odd parts φe and φo, with each function corresponding to a polynomial in the
transformed variable z. Hence,
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λmin(A) = min
φ∈GN
φ �=0

{ ‖φ‖2

‖φ‖2[−T ,T ]

}

= min
p1∈PN ,p2∈PN−1‖p1‖+‖p2‖�=0

{ ‖p1‖2
w1

+ ‖p2‖2
w2

‖p1‖2
w1,[m(T ),1] + ‖p2‖2

w2,[m(T ),1]

}
, (3.3)

where wi , i = 1,2, is given by (2.9). Since the weight function wi is integrable, we
have

‖pi‖wi,[m(T ),1] ≤√Ci(T )‖pi‖∞,[m(T ),1], i = 1,2, (3.4)

where Ci(T ) = ∫ 1
m(T )

dwi , i = 1,2. Moreover, by Remez’s inequality,

‖p‖∞,[m(T ),1] ≤ ‖TN‖∞,[m(T ),1]‖p‖∞, ∀p ∈ PN,

where TN ∈ PN is the N th Chebyshev polynomial. Since TN is monotonic outside
[−1,1], we have ‖TN‖∞,[m(T ),1] = |TN(m(T ))|. Moreover, due to the formula

TN(x) = 1

2

[(
x −
√

x2 − 1
)n +

(
x +
√

x2 − 1
)n]

,

an application of (2.17) gives

‖TN‖∞,[m(T ),1] = 1

2

[
E(T )N + E(T )−N

]
< E(T )N, ∀N ∈ N, T > 1. (3.5)

Next we note that w1(z) ≥ D1(T ) and w2(z) ≥ D2(T )
√

1 − z2, ∀z ∈ [−1,1], for
positive constants D1(T ) and D2(T ). Moreover, there exist constants d1, d2 > 0 in-
dependent of T such that

‖p‖∞ ≤ d1N‖p‖, ‖p‖∞ ≤ d2N
3
2 ‖p‖v, p ∈ PN,

where v(z) = √
1 − z2 (this follows from expanding p in orthonormal polynomials

{pn}n∈N on [−1,1] corresponding to the weight function w(z) = 1, i.e. Legendre
polynomials, or w(z) = v(z), i.e. Chebyshev polynomials of the second kind, and

using the known estimate ‖pn‖∞ = O(n
1
2 ) for the former and ‖pn‖∞ = O(n

3
2 ) for

the latter [3, Chapt. X]). Therefore

‖p‖∞ ≤ di√
Di(T )

N
1+i

2 ‖p‖wi
, ∀p ∈ PN, i = 1,2. (3.6)

Substituting (3.4), (3.5) and (3.6) into (3.3) now gives

λmin(A) ≥ 1

max{C1(T )/D1(T ),C2(T )/D2(T )}N
−3E(T )−2N,

which gives the lower bound in (3.1).
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For the upper bound, we set p2 = 0 and p1 = TN in (3.3) to give

λmin(A) ≤ ‖TN‖2
w1

‖TN‖2
w1,[m(T ),1]

≤ C1(T )

‖TN‖2
w1,[m(T ),1]

. (3.7)

Using (3.5) we note that ‖TN‖∞,[m(T ),1] ≥ 1
2E(T )N . Recall also that ‖p‖∞ ≤

d1N‖p‖, ∀p ∈ PN . Scaling this inequality to the interval [m(T ),1] now gives

‖p‖∞,[m(T ),1] ≤ d1

√
2

1 − m(T )
N‖p‖[m(T ),1] =√C3(T )N‖p‖[m(T ),1].

Note also that w1(z) ≥ D3(T ), ∀z ∈ [m(T ),1]. Therefore,

‖TN‖w1,[m(T ),1] ≥√D3(T )‖TN‖[m(T ),1]

≥
√

D3(T )√
C3(T )N

‖TN‖∞,[m(T ),1]

≥
√

D3(T )

2
√

C3(T )N
E(T )N .

Substituting this into (3.7) now gives the result. �

We now consider the case of the discrete FE:

Theorem 3.2 Let Ã be the matrix (2.13) of the discrete FE. Then the condition num-
ber of Ã is O(E(T )N) for large N . Specifically, the maximal and minimal singular
values of Ã satisfy

c1(T ) ≤ σmax(Ã) ≤ c2(T )N
3
2 ,

d1(T )N− 3
2 E(T )−N ≤ σmin(Ã) ≤ d2(T )N

5
2 E(T )−N,

(3.8)

where c1(T ), c2(T ), d1(T ), d2(T ) are positive constants that are O(1) as T → 1+.

Proof Using Lemma 2.8, the values σ 2
min(Ã) and σ 2

max(Ã) may be expressed as in

(3.2) (with ‖ · ‖ replaced by ‖ · ‖W ). Note that W(0)‖φ‖2 ≤ ‖φ‖2
W ≤ ‖φ‖2∞

∫ 1
−1 dW .

It is a straightforward exercise (using the bound (3.6) and the fact that φ can be

expressed as the sum of two polynomials) to show that ‖φ‖∞ ≤ C1(T )N
3
2 ‖φ‖, where

C1(T ) = O(1) as T → 1+. Thus we obtain

W(0)
‖φ‖2

‖φ‖2[−T ,T ]
≤ ‖φ‖2

W

‖φ‖2[−T ,T ]
≤
(

C1(T )2
∫ 1

−1
dW

)
N3 ‖φ‖2

‖φ‖2[−T ,T ]
.

The result now follows immediately from the bounds (3.1). �

Theorems 3.1 and 3.2 demonstrate that the condition numbers of the continuous
and discrete FE matrices grow exponentially in N . This establishes conclusion 1. of
Sect. 1.
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Remark 3.3 Although exponentially large, the matrix of the discrete FE is sub-
stantially less poorly conditioned than that of the continuous FE. In particular, the
condition number is of order E(T )N as opposed to E(T )2N . This can be under-
stood using Lemma 2.8. The normal form AW = (Ã)∗Ã of the discrete FE ma-
trix is a continuous FE matrix with respect to the weight function AW . Hence
κ(Ã) = √

κ(AW ) ≈ √
κ(A) ≈ E(T )N . As we shall see later, this property also trans-

lates into superior performance of the numerical discrete FE over its continuous coun-
terpart (see Sect. 4.2).

Since the constants in Theorems 3.1 and 3.2 are bounded as T → 1+, this allows
one also to determine the condition number in the case that T → 1+ as N → ∞
(see Sect. 2.4). In particular, if T is given by (2.18), then κ(A) and κ(Ã) are (up to
possible small algebraic factors in N ) of order (εtol)

−2 and (εtol)
−1.

3.2 The Singular Value Decomposition of A

Although we have now determined the condition number of A, it is possible to give a
rather detailed analysis of its spectrum. This follows from the identification of A with
the well-known prolate matrix, which was analyzed in detail by Slepian [31, 33]. We
now review some of this work.

Following Slepian [31], let P(N,W) ∈ C
N×N be the prolate matrix with entries

P(N,W)m,n =
{ sin 2πW(m−n)

π(m−n)
m �= n,

2W m = n,
m,n = 0, . . . ,N − 1,

where 0 < W < 1
2 is fixed, and write 1 > λ0(N,W) > · · · > λN−1(N,W) > 0 for its

eigenvalues. Note that

λk

(
N,

1

2
− W

)
= 1 − λN−1−k(N,W). (3.9)

The following asymptotic results are found in [31]:

(i) For fixed and small k,

1 − λk(N,W) ∼ √
π(k!)−12(14k+9)/4α(2k+1)/4(2 − α)−(k+1/2)Nk+1/2β−N,

(3.10)

where α = 1 − cos 2πW and β =
√

2+√
α√

2−√
α

.

(ii) For large N and k with k = �2WN(1 − ε)� and 0 < ε < 1, 1 − λk(N,W) ∼
e−c1−c2N for explicitly known constants c1, c2 depending only on W and ε.

(iii) For large N and k with k = �2WN + (b/π) logN�, λk(N,W) ∼ 1
1+eπb .

(Slepian also derives similar asymptotic results for the eigenvectors of P(N,W)

[31].) From these results we conclude that the eigenvalues of the prolate matrix clus-
ter exponentially near 0 and 1 and have a transition region of width O(logN) around
k = 2WN . This is shown in Fig. 1.
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Fig. 1 Eigenvalues of the matrices (2.8) (left) and (2.13) (right) for N = 200 and T = 2

The matrix A of the continuous FE is precisely the prolate matrix P(2N + 1, 1
2T

).
In this case, the parameter β in (3.10) is given by

β =
√

2 + √
α√

2 − √
α

= cot2
(

π

4T

)
= E(T ).

Applying Slepian’s analysis, we now see that the eigenvalues of A cluster exponen-
tially at rate E(T )2 near zero and one (note that A corresponds to a prolate matrix of
size 2N ), and in particular, that the condition number is O(E(T )2N). The latter esti-
mate agrees with that given in Theorem 3.1. We remark, however, that Theorem 3.1
gives bounds for the minimal eigenvalue of A that hold for all N and T , unlike (3.10),
which holds only for fixed T and sufficiently large N . Hence Theorem 3.1 remains
valid when T is varied with N , an option which, as discussed in Sect. 2.4, can be
advantageous in practice.

Since the matrix Ã of the discrete FE is related to A (see Lemma 2.8), we expect
a similar structure for its singular values. This is illustrated in Fig. 1. As is evident,
the only qualitative difference between Ã and A is found in the large singular values.
The other features—the narrow transition region and the exponential clustering of
singular values near 0—are much the same.

Remark 3.4 The choice T = 2 (W = 1
4 ) is special. As shown by (3.9), the eigenvalues

λk(N,W) are symmetric in this case, and the transition region occurs at k = 1
2N . This

is unsurprising. When T = 2, the frame {ei nπ
2 x}n∈Z decomposes into two orthogonal

bases, related to the sine and cosine transforms. Using this decomposition and the as-
sociated discrete transforms for each basis, M. Lyon has introduced an O(N(logN)2)

complexity algorithm for computing FEs [25].

3.3 Numerical Examples

We now consider several numerical examples of the continuous and discrete FEs. In
Fig. 2 we plot the error ‖f − fN‖∞ against N for various choices of f . Here the
extension fN is the numerically computed continuous or discrete FE—i.e. the result
of solving the corresponding linear system in standard precision (recall Remark 1.2).
Henceforth, we use the notation GN(f ) and G̃N(f ) for these numerical extensions,
so as to distinguish them from their exact counterparts FN(f ) and F̃N (f ). Note that
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Fig. 2 The error ‖f − fN‖∞, where fN = GN(f ) (squares and circles) or fN = G̃N (f ) (crosses and
diamonds) and T = 2 (squares/crosses) or T = T (N; εtol) (circles/diamonds) with εtol = 10−14

the word ‘exact’ in this context refers to exact arithmetic. We do not mean exact in
the sense that FN(f ) = f for f ∈ GN .

At first sight, Fig. 2 appears somewhat surprising: for all three functions we obtain
good accuracy, and there is no drift or growth in the error, even in the case where f

is nonsmooth or has a complex singularity near x = 0. Evidently the ill-conditioning
of the FE matrices established in Theorems 3.1 and 3.2 appears to have little effect
on the numerical extensions GN(f ) and G̃N(f ). The purpose of Sect. 4 is to offer an
explanation of this phenomenon.

In Fig. 2 we also compare two choices of T : fixed T = 2 and the N -dependent
value (2.18) with εtol = 10−14. Note that the latter typically outperforms the fixed
value T = 2, especially for oscillatory functions. This is unsurprising in view of the
discussion in Sect. 2.4.

Figure 2 also illustrates an important disadvantage of the continuous FE: namely,
the approximation error levels off at around

√
εmach, where εmach ≈ 10−16 is the

machine precision used, as opposed to around εmach for the discrete extension. Our
analysis in Sect. 4 will confirm this phenomenon. Note that the differing behavior
between the continuous and discrete extensions in this respect can be traced back to
the observation made in Remark 3.3.

3.4 Condition Numbers of the Exact Continuous and Discrete FE Mappings

The exponential growth in the condition numbers of the continuous and discrete FE
matrices imply extreme sensitivity in the FE coefficients to perturbations. However,
the numerical results of Fig. 2 indicate that the FE approximations themselves are far
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more robust. Although we shall defer a full explanation of this difference to Sect. 4,
it is possible to give a first insight by determining the condition numbers of the map-
pings FN and F̃N .

For vectors b ∈ C
2N+1 and b̃ ∈ C

2N+2 let us write, with slight abuse of notation,
FN(b) and F̃N (b̃) for the corresponding continuous and discrete Fourier extensions
whose coefficient vectors are the solutions of the linear systems Aa = b and Ãa = b̃,
respectively. We now define the condition numbers

κ(FN) = sup
{∥∥FN(b)

∥∥ : b ∈ C
2N+1, ‖b‖ = 1

}
,

κ(F̃N ) = sup
{∥∥FN(b)

∥∥
W

: b ∈ C
2N+2, ‖b‖ = 1

}
.

(3.11)

Here ‖ · ‖ denotes the usual l2 vector norm, and W is the weight function of
Lemma 2.8. Note that (3.11) gives the absolute condition numbers of FN and F̃N , as
opposed to the more standard relative condition number [32]. The key results of this
paper can easily be reformulated for the latter. However, we shall use (3.11) through-
out, since it coincides with the definition given in [28] for linear mappings such as
FEs. The work of [28] will be particularly relevant when considering equispaced FEs
in Sect. 5.

We now have the following result:

Lemma 3.5 The condition numbers of the exact continuous and discrete FEs satisfy

κ(FN) = 1/
√

λmin(A), κ(F̃N ) = 1.

Proof Write FN(b) =∑N
n=−N anφn, where Aa = b. We have ‖FN(b)‖2 = a∗Aa =

b∗A−1b, and therefore κ(FN) = 1/
√

λmin(A), as required. For the second result, we
note that ‖F̃N (b̃)‖2 = a∗AWa, where AW = (Ã)∗Ã is the matrix of Lemma 2.8.
Since Ãa = b̃ the second result now follows. �

As with the FE matrices, this lemma shows that condition number of the discrete
mapping F̃N , which is identically one, is much better than that of the continuous
mapping FN . Similarly, the reason can be traced back to Remark 3.3. Note that this
lemma establishes 2. of Sect. 1.

At first, it may seem that the fact that κ(F̃N ) = 1 explains the observed numerical
stability in Fig. 2. However, since λmin(A) is exponentially small (Theorem 3.1),
the above lemma clearly does not explain the lack of drift in the numerical error in
the case of the continuous FE. This is symptomatic of a larger issue: in general, the
exact FEs FN(f ) and F̃N (f ) differ substantially from their numerical counterparts
GN(f ) and G̃N(f ). As we show in the next section, there are important differences
in both their stability and their convergence. In particular, any analysis based solely
on FN and F̃N is insufficient to describe the behavior of the numerical extensions GN

and G̃N .
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4 The Numerical Continuous and Discrete Fourier Extensions

We now analyze the numerical FEs GN and G̃N , and describe both when and how
they differ from the exact extensions FN and F̃N .

4.1 The Norm of the Exact FE Coefficients

In short, the reason for this difference is as follows. Since the FE matrices A and Ã

are so ill-conditioned, the coefficients of the exact FEs FN and F̃N will not usually be
obtained in finite precision computations. To explain exactly how this affects stability
and convergence, we first need to determine when this will occur. We require the
following theorem:

Theorem 4.1 Suppose that f is analytic in D(ρ∗) and continuous on its boundary.
If a ∈ C

2N+1 is the vector of coefficients of the continuous FE FN(f ) then

‖a‖ ≤ cf

{
(
E(T )
ρ∗ )N ρ∗ < E(T ),

N ρ∗ ≥ E(T ),
(4.1)

where cf is proportional to maxx∈D(ρ) |f (x)|. If f ∈ L2(−1,1), then

‖a‖ ≤ c‖f ‖E(T )N , (4.2)

for some c > 0 independent of f and N .

Proof Write FN(f ) = fN = fe,N + fo,N , where fe,N and fo,N are the even and odd
parts of fN , respectively. Since the set {φn}n∈Z is orthonormal over [−T ,T ] we find
that

‖a‖ = ‖fN‖[−T ,T ] ≤ 2
(‖fe,N‖[0,T ] + ‖fo,N‖[0,T ]

)

≤ 2
√

T
(‖fe,N‖∞,[0,T ] + ‖fo,N‖∞,[0,T ]

)
.

Recall from Sect. 2.1.1 that fe,N (x) = h1,N (z) and fo,N (x) = sin( π
T

m−1(z))h2,N (z),
where hi,N ∈ PN+1−i , i = 1,2, is defined by (2.4). Thus, ‖a‖ ≤ c(‖h1,N‖∞,[m(T ),1]+
‖h2,N‖∞,[m(T ),1]) for some c > 0. Consider h1,N (z). This is precisely the expansion
of the function h1(z) = f1(m

−1(z)) in polynomials {pn}∞n=0 orthogonal with respect

to the weight function w1: i.e. h1,N =∑N
n=0〈h1,pn〉w1pn. Therefore

‖h1,N‖∞,[m(T ),1] ≤
N∑

n=0

∣∣〈h1,pn〉w1

∣∣‖pn‖∞,[m(T ),1].

It is known that ‖pn‖∞,[m(T ),1] ≤ cE(T )n [22]. Also, since h1 is analytic in B(ρ∗)
we have |〈h1,pn〉w1 | ≤ cf (ρ∗)−n. Hence

‖h1,N‖∞,[m(T ),1] ≤ cf

N∑

n=0

(
E(T )/ρ∗)n,



Found Comput Math (2014) 14:635–687 659

which gives (4.1). For (4.2) we use the bound |〈h1,pn〉w1 | ≤ ‖h1‖w1 ≤ c‖f ‖ in-
stead. �

Corollary 4.2 Let f be as in Theorem 4.1. Then the vector of coefficients a ∈ C
2N+2

of the discrete Fourier extension F̃N (f ) of f satisfies the same bounds as those given
in Theorem 4.1.

Proof The functions hi,N , i = 1,2 are the polynomial interpolants of hi at the
nodes (2.10) (Proposition 2.7). Write hi,N (z) =∑N

n=0 d̃nTn(z), where Tn(z) is the
nth Chebyshev polynomial, and let d̂n = 〈hi, Tn〉w be the Chebyshev polynomial
coefficient of hi . Note that |d̂n| ≤ cf (ρ∗)−n. Due to aliasing formula d̃n = d̂n +
∑

k �=0(d̂2kN+n + d̂2kN−n) (see [13, Eq. (2.4.20)]) we obtain

|d̃n| ≤ cf

(
(
ρ∗)−n +

∞∑

k=1

(
ρ∗)−2kN−n +

∞∑

k=1

(
ρ∗)−2kN+n

)

≤ cf

((
ρ∗)−n + (ρ∗)n−2N )≤ cf

(
ρ∗)−n

.

The result now follows along the same lines as the proof of Theorem 4.1. �

To compute the continuous or discrete FE we need to solve the linear system
Aa = b (respectively Ãa = b̃). When N is large, the columns of A (Ã) become near-
linearly dependent, and, as shown in Sect. 3.2, the numerical rank of A is roughly
1/T times its dimension. Now suppose we solve Aa = b with a standard numerical
solver. Loosely speaking, the solver will use the extra degrees of freedom to con-
struct approximate solutions a′ with small norms. The previous theorem and corollary
therefore suggest the following. In general, only in those cases where f is analytic
with ρ∗ ≥ E(T ) can we expect the theoretical coefficient vector a to be produced
by the numerical solver for all N . Outside of this case, we may well have a′ �= a for
sufficiently large N , due to the potential for exponential growth of the latter. Hence,
in this case, the numerical extension GN(f ) will not coincide with the exact exten-
sion FN(f ).

This raises the following question: if the numerical solver does not give the exact
coefficients vector, then what does it yield? The following proposition confirms the
existence of infinitely many approximate solutions of the equations Aa = b with
small norm coefficient vectors:

Proposition 4.3 Suppose that f ∈ Hk(−1,1). Then there exist a[N ] ∈ C
2N+1, N ∈

N, satisfying
∥∥a[N ]∥∥≤ ck(T )‖f ‖Hk(−1,1), (4.3)

and
∥∥Aa[N ] − b

∥∥≤ ck(T )N−k‖f ‖Hk(−1,1), (4.4)

where ck(T ) is the constant of Lemma 2.5. Moreover, if gN =∑|n|≤N a
[N ]
n φn then

‖f − gN‖ ≤ ck(T )N−k‖f ‖Hk(−1,1). (4.5)
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Proof Let f̃ ∈ Hk(T) be the extension guaranteed by Lemma 2.5, and write a[N ]
for the vector of its first 2N + 1 Fourier coefficients on T = [−T ,T ). By Bessel’s
inequality, ‖a[N ]‖ ≤ ‖f̃ ‖[−T ,T ] ≤ ck(T )‖f ‖Hk(−1,1), which gives (4.3). For (4.4),
we merely note that (Aa[N ] − b)n = 〈f − gN,φn〉. Using the frame property (2.5)
we obtain ‖Aa[N ] − b‖ ≤ ‖f − gN‖. Thus, (4.4) follows directly from (4.5), and the
latter is a standard result of Fourier analysis (see [13, eq. (5.1.10)], for example). �

This proposition states that there exist vectors with norms bounded independently
of N that solve the equations Aa = b up to an error of order N−k . Moreover, these
vectors yield extensions which converge algebraically fast to f at rate k. Whilst it
does not imply that these are the vectors produced by the numerical solver, it does
indicate that, in the case where the exact extension FN(f ) or F̃N (f ) has a large co-
efficient norm, geometric convergence of the numerical extension GN(f ) or G̃N(f )

may be sacrificed for superalgebraic convergence so as to retain boundedness of the
computed coefficients.

This hypothesis is verified numerically in Fig. 3 (all computations were carried
out in Mathematica, with additional precision used to compute the exact FEs and
standard precision used otherwise). Geometric convergence of the exact extension is
replaced by slower, but still high-order convergence for sufficiently large N . Note
that the ‘breakpoint’ occurs at roughly the same value of N regardless of the function
being approximated. Moreover, the breakpoint occurs at a larger value of N for the
discrete extension than for the continuous extension.

These observations will be established rigorously in the next section. However, we
now make several further comments on Fig. 3. First, note that the breakdown of geo-
metric convergence is far less severe for the classical Runge function f (x) = 1

1+16x2

than for the functions f (x) = 1
8−7x

and f (x) = 1 + cosh 40x
cosh 40 . This can be explained

by the behavior of these functions near x = ±1. The Runge function f (x) = 1
1+16x2

is reasonably flat near x = ±1. Hence it possesses extensions with high degrees of
smoothness which do not grow large on the extended domain [−T ,T ]. Conversely,
the other two functions have boundary layers near x = 1 (also x = −1 for the latter).
Therefore any smooth extension will be large on [−T ,T ], and by Parseval’s relation,
the coefficient vectors corresponding to the Fourier series of this extension will also
have large norm.

Second, although it is not apparent from Fig. 3 that the convergence rate beyond
the breakpoint is truly superalgebraic, this is in fact the case. This is confirmed by
Fig. 4. In the right-hand diagram we plot the error against N in log–log scale. The
slight downward curve in the error indicates superalgebraic convergence. Had the
convergence rate been algebraic of fixed order, then the error would have followed a
straight line.

4.2 Analysis of the Numerical Continuous and Discrete FEs

We now wish to analyze the numerical extensions GN(f ) and G̃N(f ). Since the
numerical solvers used in environments such as Matlab or Mathematica are difficult
to analyze directly, we shall look at the result of solving Aa = b (or Ãa = b̃) with
a truncated singular value decomposition (SVD). This represents an idealization of
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Fig. 3 Comparison of the numerical continuous and discrete FEs GN(f ) and G̃N (f ) (squares and cir-
cles) and their exact counterparts FN(f ) and F̃N (f ) (crosses and diamonds) for T = 2. Left: the uniform
error ‖f − fN‖∞ against N . Right: the norm ‖a‖ of the coefficient vector. Top row: f (x) = 1

1+16x2 .

Middle row: f (x) = 1
8−7x

. Bottom row: f (x) = 1 + cosh 40x
cosh 40

Fig. 4 Comparison of the numerical continuous and discrete FEs GN(f ) and G̃N (f ) (squares and
circles) and their exact counterparts FN(f ) and F̃N (f ) (crosses and diamonds) for T = 2 and
f (x) = 1

101−100x
. Left: the uniform error in log scale. Right: the uniform error in log–log scale

the numerical solver. Indeed, neither Matlab’s \ or Mathematica’s LeastSquares
actually performs a truncated SVD. However, in practice, this simplification appears
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reasonable: numerical experiments indicate that these standard solvers give roughly
the same approximation errors as the truncated SVD with suitably small truncation
parameter (typically ε = 10−14). We shall also assume throughout that the truncated
SVD is computed without error. However, this also seems fair: in experiments, we
observe that the finite-precision SVD gives similar results to the numerical solver
whenever the tolerance is sufficiently small.

Suppose that A (respectively Ã) has SVD USV ∗ with S being the diagonal matrix
of singular values. Given a truncation parameter ε > 0, we now consider the solution

aε = V S†U∗b, (4.6)

where S† is the diagonal matrix with nth entry 1/σn if σn > ε and 0 otherwise. We
write

HN,ε(f ) =
∑

|n|≤N

(aε)nφn,

for the corresponding FE. Suppose that vn ∈ C
2N+1 is the right singular vector of A

with singular value σn, and let

Φn =
∑

|m|≤N

(vn)mφm ∈ GN,

be the Fourier series corresponding to vn. Note that the functions Φn are orthonormal
with respect to 〈·, ·〉[−T ,T ] and span GN . Also, if we define GN,ε = span{Φn : σn >

ε} ⊆ GN , then we have HN,ε(f ) ∈ GN,ε .
We now consider the cases of the continuous and discrete FEs separately.

4.2.1 The Continuous Fourier Extension

In this case, since A is Hermitian and positive definite, the singular vectors vn are
actually eigenvectors of A with Avn = σnvn. By definition, we have 〈Φn,Φm〉 =
(vn)

∗Avm = σnδn,m, and therefore

HN,ε(f ) =
∑

n:σn>ε

1

σn

〈f,Φn〉Φn. (4.7)

Our main result is as follows:

Theorem 4.4 Let f ∈ L2(−1,1) and suppose that HN,ε(f ) is given by (4.7). Then

∥∥f − HN,ε(f )
∥∥≤ ‖f − φ‖ + √

ε‖φ‖[−T ,T ], ∀φ ∈ GN, (4.8)

and

‖aε‖ = ∥∥HN,ε(f )
∥
∥[−T ,T ] ≤ 1√

ε
‖f − φ‖ + ‖φ‖[−T ,T ], ∀φ ∈ GN. (4.9)
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Proof The function HN,ε(f ) is the orthogonal projection of f onto GN,ε with respect
to 〈·, ·〉. Hence for any φ ∈ GN we have ‖f − HN,ε(f )‖ ≤ ‖f − HN,ε(φ)‖ ≤ ‖f −
φ‖+‖φ −HN,ε(φ)‖. Consider the latter term. Since φ ∈ GN , the observation that the
functions Φn are also orthonormal on [−T ,T ] gives

∥
∥φ − HN,ε(φ)

∥
∥2 =

∥∥
∥∥
∑

n:σn<ε

〈φ,Φn〉[−T ,T ]Φn

∥∥
∥∥

2

=
∑

n:σn<ε

σn

∣∣〈φ,Φn〉[−T ,T ]
∣∣2 ≤ ε‖φ‖2[−T ,T ].

This yields (4.8). For (4.9) we first write ‖HN,ε(f )‖[−T ,T ] ≤ ‖HN,ε(f −φ)‖[−T ,T ] +
‖HN,ε(φ)‖[−T ,T ]. By orthogonality,

∥∥HN,ε(f − φ)
∥∥2

[−T ,T ] =
∑

n:σn>ε

1

σ 2
n

∣∣〈f − φ,Φn〉
∣∣2 ≤ 1

ε

∑

n:σn>ε

1

σn

∣∣〈f − φ,Φn〉
∣∣2

= 1

ε

∥∥HN,ε(f − φ)
∥∥2

.

Since HN,ε is an orthogonal projection, we conclude that ‖HN,ε(f − φ)‖2[−T ,T ] ≤
1
ε
‖f − φ‖2, which gives the first term in (4.9). For the second, we notice that

∥∥HN,ε(φ)
∥∥2

[−T ,T ] =
∑

n:σn>ε

∣∣〈φ,Φn〉[−T ,T ]
∣∣2 ≤ ‖φ‖2[−T ,T ],

since φ ∈ GN . �

This theorem allows us to explain the behavior of the numerical FE GN(f ). Sup-
pose that f is analytic in D(ρ) and continuous on its boundary, where ρ < E(T )

and D(ρ) is as in Theorem 2.11. Set φ = FN(f ) in (4.8), where FN(f ) is the exact
continuous FE. Then Theorems 2.11 and 4.1 give

∥∥f − HN,ε(f )
∥∥≤ cf

(
1 + √

εE(T )N
)
ρ−N. (4.10)

For small N , the first term in the brackets dominates, and we see geometric conver-
gence of HN,ε(f ), and therefore also GN(f ), at rate ρ. Convergence continues as
such until the breakpoint

N0 = N0(ε, T ) := − log ε

2 logE(T )
, (4.11)

at which point the second term dominates and the bound begins to increase. On
the other hand, Proposition 4.3 establishes the existence of functions φ ∈ GN with
bounded coefficients which approximate f to any given algebraic order. Substituting
such a function φ into (4.8) gives

∥∥f − HN,ε(f )
∥∥≤ ck(T )

(
N−k + √

ε
)‖f ‖Hk(−1,1), ∀N,k ∈ N. (4.12)
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Therefore, once N > N0(ε, T ) we expect at least superalgebraic convergence of
HN,ε(f ) down to a maximal achievable accuracy of order

√
ε‖f ‖. Note that at the

breakpoint N = N0, the error satisfies

∥∥f − HN0,ε(f )
∥∥≤ 2cf

(√
ε
)df , df = logρ

logE(T )
∈ (0,1]. (4.13)

If f is analytic in D(E(T )), and if cf = maxx∈D(ρ) |f (x)| is not too large, then f

is already approximated to order
√

ε accuracy at this point. It is only in those cases
where either ρ < E(T ) or where cf is large (or both) that one sees the second phase
of superalgebraic convergence.

Theorem 4.1 also explains the behavior of the coefficient norm ‖aε‖. Observe that
breakpoint N0(ε, T ) is (up to a small constant) the largest N for which all singular
values of A are included in its truncated SVD (see Theorem 3.1). Thus, when N <

N0(ε, T ), we have HN,ε(f ) = FN(f ), and Theorem 4.1 indicates exponential growth
of ‖aε‖. On the other hand, once N > N0(ε, T ), we use (4.9) to obtain

‖aε‖ ≤ ck(T )
(
N−k/

√
ε + 1

)‖f ‖Hk(−1,1), ∀N,k ∈ N.

In particular, for N > N0(ε, T ), we expect decay of ‖aε‖ down from its maximal
value at N = N0(ε, T ).

This analysis is corroborated in Fig. 5, where we plot the error and coefficient
norm for the truncated SVD extension for various test functions. Note that the max-
imal achievable accuracy in all cases is order

√
ε, consistently with our analysis.

Moreover, for the meromorphic functions f (x) = 1
1+16x2 and f (x) = 1

8−7x
we see

initial geometric convergence followed by slower convergence after N0, again as our
analysis predicts. The qualitative difference in convergence for these functions in the
regime N > N0 is due to the contrasting behavior of their derivatives (recall the dis-
cussion in Sect. 4.1). On the other hand, the convergence effectively stops at N0 for
f (x) = x, since this function has small constant cf and is therefore already resolved
down to order

√
ε when N = N0.

Since N0(10−6,2) ≈ 4, N0(10−12,2) ≈ 8, N0(10−18,2) ≈ 12, and N0(10−24,

2) ≈ 16, Fig. 5 also confirms the expression (4.11) for the breakpoint in conver-
gence. In particular, the breakpoint is independent of the function being approx-
imated. This latter observation is unsurprising. As noted, N0(ε, T ) is the largest
value of N for which HN,ε(f ) coincides with FN(f ). Beyond this point, HN,ε(f )

will not typically agree with FN(f ), and thus we cannot expect further geometric
convergence in general. Note that our analysis does not rule out geometric con-
vergence for N > N0. There may well be certain functions for which this oc-
curs. However, extensive numerical tests suggest that in most cases, one sees only
superalgebraic convergence in this regime, and indeed, this is all that we have
proved.

Remark 4.5 At first sight, it may appear counterintuitive that one can still obtain
good accuracy when excluding all singular values below a certain tolerance. How-
ever, recall that we are not interested in the accuracy of computing a, but rather the
accuracy of FN(f ) on the domain [−1,1]. Since the nth singular value σn is equal
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Fig. 5 Error (left) and coefficient norm (right) against N for the continuous FE with T = 2, where
f (x) = 1

1+16x2 (top row), f (x) = 1
8−7x

(middle row) and f (x) = x (bottom row). Squares, circles,

crosses and diamonds correspond to the truncated SVD extension HN,ε(f ) with ε = 10−6,10−12,10−18,

10−24, respectively, and pluses correspond to the exact extension FN(f )

Fig. 6 The SVD functions |Φn(x)| for n = 0, n = 20 and n = 40, where N = 20 and T = 2

to ‖Φn‖2/‖Φn‖2[−T ,T ], the functions Φn excluded from HN,ε(f ) are precisely those

for which ‖Φn‖2 < ε‖Φn‖2[−T ,T ]. In other words, they have little effect on FN(f ) in
[−1,1].

In Fig. 6 we plot the functions Φn for several n. Note that these functions are
precisely the discrete prolate spheroidal wavefunctions of Slepian [31]. As predicted,
when n is small, the function Φn is large in [−1,1] and small in [−T ,T ]\[−1,1].
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When n is in the transition region (n ≈ 2N/T , see Sect. 3.2), the function Φn

is roughly of equal magnitude in both regions, and for n ≈ 2N , Φn is much
smaller in [−1,1] than on [−T ,T ]. Note also that Φn is increasingly oscillatory
in [−1,1] as n increases, and decreasingly oscillatory in [−T ,T ]\[−1,1]. This fol-
lows from the fact that Φn has precisely n zeroes in [−1,1] and 2N − n zeroes in
[−T ,T ]\[−1,1] [31]. Such behavior also implies that any ‘nice’ function will even-
tually be well approximated by functions Φn corresponding to ‘nice’ eigenvalues, as
expected.

4.2.2 The Discrete Fourier Extension

In this case, we have (Φn,Φm)N = σ 2
n δn,m, where

(f, g)N = π

N + 1

N∑

n=−N−1

f (xn)g(xn),

is the discrete inner product corresponding to the quadrature nodes {xn}Nn=−N−1.
Therefore

H̃N,ε(f ) =
∑

n:σn>ε

1

σ 2
n

(f,Φn)NΦn ∈ G′
N,ε := span{Φn : σn > ε}, (4.14)

is the orthogonal projection of f onto G′
N,ε with respect to the discrete inner prod-

uct (·, ·)N .

Theorem 4.6 Let f ∈ L∞(−1,1) and H̃N,ε(f ) be given by (4.14). Then

∥∥f −H̃N,ε(f )
∥∥

W
≤ ‖f −φ‖W +√2πQ(N; ε)‖f −φ‖∞+ε‖φ‖[−T ,T ], ∀φ ∈ GN,

(4.15)
and

‖aε‖ = ∥∥H̃N,ε(f )
∥∥[−T ,T ] ≤ 1

ε

√
2πQ(N; ε)‖f − φ‖∞ + ‖φ‖[−T ,T ], ∀φ ∈ GN,

(4.16)
where Q(N; ε) = |{n : σn > ε}| ≤ 2(N + 1) and W is the weight function of
Lemma 2.8.

Proof By the triangle inequality,
∥∥f − H̃N,ε(f )

∥∥
W

≤ ‖f −φ‖W +∥∥φ − H̃N,ε(φ)
∥∥

W
+∥∥H̃N,ε(f −φ)

∥∥
W

, ∀φ ∈ G′
N.

Consider the second term. Since φ ∈ G′
N , and the quadrature is exact on G′

N , we have

∥∥φ − H̃N,ε(φ)
∥∥2

W
= (φ − H̃N,ε(φ),φ − H̃N,ε(φ)

)
N

=
∑

n:σn<ε

σ 2
n

∣∣〈φ,Φn〉[−T ,T ]
∣∣2 ≤ ε2‖φ‖2[−T ,T ].
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For the third term, let g be arbitrary. Then (H̃N,ε(g), H̃N,ε(g))N =∑n:σn>ε
1
σ 2

n
|(g,

Φn)N |2. Hence

∥
∥H̃N,ε(g)

∥
∥2

W
= (H̃N,ε(g), H̃N,ε(g)

)
N

≤ (g, g)N
∑

n:σn>ε

1

σ 2
n

(Φn,Φn)N

= (g, g)NQ(N; ε), (4.17)

since (Φn,Φn)N = σ 2
n . It is straightforward to show that (g, g)N ≤ 2π‖g‖2∞. Setting

g = f − φ now gives the corresponding term in (4.15), and completes its proof. For
(4.16), we proceed as in the proof of Theorem 4.4. Note that

∥∥H̃N,ε(g)
∥∥2

[−T ,T ] =
∑

n:σn>ε

1

σ 4
n

∣∣(g,Φn)N
∣∣2 ≤ 1

ε2

∥∥H̃N,ε(g)
∥∥2

W
, (4.18)

for any g ∈ L∞(−1,1). Also,
∥∥H̃N,ε(φ)

∥∥[−T ,T ] ≤ ‖φ‖[−T ,T ], φ ∈ GN. (4.19)

The result now follows by writing ‖H̃N,ε(f )‖[−T ,T ] ≤ ‖H̃N,ε(f − φ)‖[−T ,T ] +
‖H̃N,ε(φ)‖[−T ,T ] and using (4.17)–(4.19). �

As with the continuous FE, this theorem allows us to analyze the numerical dis-
crete extension G̃N(f ). Once more we deduce geometric convergence in N up to the
function-independent breakpoint

N1(T ; ε) := − log ε

logE(T )
≡ 2N0(T ; ε), (4.20)

with superalgebraic convergence beyond this point. These conclusions are confirmed
in Fig. 7. Note, however, two key differences between the continuous and discrete
FE. First, the bound (4.15) involves ε, as opposed to

√
ε, meaning that we expect

convergence of G̃N(f ) down to close to machine precision. Second, the breakpoint
N1(T ; ε) is precisely twice N0(T ; ε). Hence, the regime of geometric convergence
of G̃N(f ) is exactly twice as large as that of the continuous FE. These observations
are in close agreement with the behavior seen in the numerical examples in Sect. 4.1.

4.3 The Condition Numbers of the Numerical Continuous and Discrete FEs

Having analyzed the convergence of the numerical FE—and in particular, estab-
lished 5. of Sect. 1—we next address its condition number. Once more, we do this by
considering the extensions HN,ε and H̃N,ε :

Theorem 4.7 Let HN,ε be the continuous truncated SVD FE given by (4.7). Then

κ(HN,ε) = 1/min
{√

σn : σn > ε
}≤ min

{
1/

√
ε, c(T )N

3
2 E(T )N

}
, N ∈ N, ε > 0,

where c(T ) is a positive constant independent of N . Conversely, if H̃N,ε is the discrete
extension (4.14), then κ(H̃N,ε) = 1 for all N ∈ N and ε > 0.
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Fig. 7 Error (left) and coefficient norm (right) against N for the discrete FE with T = 2,
where f (x) = 1

1+16x2 (top row), f (x) = 1
8−7x

(middle row) and f (x) = x (bottom row).

Squares, circles, crosses and diamonds correspond to the truncated SVD extension HN,ε(f ) with
ε = 10−6,10−12,10−18,10−24, respectively, and pluses correspond to the exact extension FN(f )

Proof The proof of the equalities is similar to that of Lemma 3.5 with A and Ã

replaced by their truncated SVD versions. The upper bound for κ(HN,ε) is a conse-
quence of Theorem 3.1. �

This theorem, which establishes 3. of Sect. 1, has some interesting consequences.
First, the discrete FE is perfectly stable. On the other hand, the numerical continuous
FE is far from stable. The condition number grows exponentially fast at rate E(T )

until it reaches 1/
√

ε, where ε is the truncation parameter in the SVD. Thus, with the
continuous FE, we may see perturbations being magnified by a factor of 1/

√
εmach ≈

108 in practice.
Note that GN and G̃N are both substantially better conditioned than the corre-

sponding coefficient mappings. The explanation for this difference comes from Re-
mark 4.5. A perturbation η in the input vector b gives large errors in the FE coeffi-
cients if η has a significant component in the direction of a singular vector vn asso-
ciated with a small singular value σn. However, since the corresponding function Φn
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Table 1 The functions K(GN) and K(G̃N ) for T = 2

N 40 80 120 160 200

K(GN) 4.93 × 106 4.22 × 106 3.30 × 106 3.82 × 106 5.28 × 106

K(G̃N ) 8.00 × 100 1.04 × 101 1.23 × 101 1.39 × 101 1.53 × 101

is small on [−1,1], this error is substantially reduced (in the case of the continuous
FE) or canceled out altogether (for the discrete FE) in the resulting extension.

Another implication of Theorem 4.7 is the following: varying T has no substantial
effect on stability. Although the condition number of the FE matrices depends on T

(recall Theorems 3.1 and 3.2), as does the condition number of the exact continuous
FE (see Lemma 3.5), the condition numbers of the numerical mappings G̃N and, for
all large N , GN are actually independent of this parameter.

It is important to confirm that the results of this theorem on the condition number
of the truncated SVD extensions predict the behavior of the numerical extensions GN

and G̃N . It is easiest to do this by computing upper bounds for κ(GN) and κ(G̃N).
Let {en}2N+1

n=1 be the standard basis for C
2N+1. Then a simple argument gives

∥∥GN(b)
∥∥≤ ‖b‖

√√√√
2N+1∑

n=1

∥∥GN(en)
∥∥2

, ∀b ∈ C
2N+1, (4.21)

and therefore

κ(GN) ≤ K(GN) :=
√√√√

2N+1∑

n=1

∥
∥GN(en)

∥
∥2

. (4.22)

We define the upper bound K(G̃N) in a similar manner:

κ(G̃N) ≤ K(G̃N) :=
√√√√

2N+2∑

n=1

∥∥G̃N(en)
∥∥2

W
.

In Table 1 we show K(GN) and K(G̃N) for various choices of N . As we see, the
discrete FE is extremely stable: not only is there no blowup in N , but the value of
K(G̃N) is also close to one in magnitude. For the continuous extension, we see that
K(GN) ≈ 5 × 106 = 1/

√
ε, where ε = 2.5 × 10−13. This behavior is in good agree-

ment with Theorem 4.7.
The difference in stability between the continuous and discrete FEs is highlighted

in Fig. 8. Here we perturbed the right-hand side b of the function f (x) = ex by
noise of magnitude δ, and then computed its FE. As is evident, the discrete exten-
sion approximates f to an error of magnitude roughly δ, whereas for the continuous
extension the error is of magnitude ≈ 106δ, as predicted by Table 1.
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Fig. 8 The error |f (x)−fN(x)| against x, where fN = GN(f ) (left) or fN = G̃N (f ) (right),
for N = 30, T = 2 and f (x) = ex , with noise at amplitudes δ = 10−4,10−8,10−12,0

5 Fourier Extensions from Equispaced Data

We now turn our attention to the problem of computing FEs when only equispaced
data is prescribed. As discussed in Sect. 1, a theorem of Platte, Trefethen and Kui-
jlaars [28] states that any exponentially convergent method for this problem must also
be exponentially ill-conditioned (see Sect. 5.4 for the precise result). However, as we
show in this section, FEs give rise to a method, the so-called equispaced Fourier ex-
tension, that allows this barrier to be circumvented to a substantial extent. Namely, it
achieves rapid convergence in a numerically stable manner.

5.1 The Equispaced Fourier Extension

Let

xn = n

M
, n = −M, . . . ,M, (5.1)

be a set of 2M + 1 equispaced points in [−1,1], where M ≥ N . We define the equi-
spaced Fourier extension of a function f ∈ L∞[−1,1] by

FN,M(f ) := argmin
φ∈GN

∑

|n|≤M

∣∣f (xn) − φ(xn)
∣∣2. (5.2)

If FN,M(f ) =∑|n|≤N anφn, then the vector a = (a−N, . . . , aN)� is the least squares

solution to Āa ≈ b̄, where Ā ∈ C
(2M+1)×(2N+1) has (n,m)th entry 1√

M+1/2
φm(xn)

and b̄ has nth entry 1√
M+1/2

f (xn).

Note that FN,M(f ), as defined by (5.2), is (up to minor changes of pa-
rameters/notation) identical to the extensions considered in the previous papers
[5, 8, 12, 24, 25] on equispaced FEs.

5.2 The Exact Equispaced Fourier Extension

Consider first the case M = N . Then FN,N(f ) is equivalent to polynomial interpola-
tion in z:
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Proposition 5.1 Let FN,N(f ) = fN = fe,N + fo,N ∈ GN be defined by (5.2) with
N = M and let hi,N (z) be given by (2.4). Then hi,N (z), i = 1,2 is the (N + 1 − i)th
degree polynomial interpolant of hi(z) at the nodes {zn}Nn=i−1 ⊆ [−1,1], where

zn = m(xn) = 2
cos( nπ

NT
) − c(T )

1 − c(T )
− 1, n = 0, . . . ,N. (5.3)

This proposition allows us to analyze the theoretical convergence/divergence of
FN,N(f ) using standard results on polynomial interpolation. Recall that associated
with a set of nodes {zn}Nn=0 is a node density function μ(z), i.e. a function such that

(i)
∫ 1
−1 μ(z)dz = 1 and (ii) each small interval [z, z + h] contains a total of Nμ(z)h

nodes for large N [18]. In the case of (5.3) we have

Lemma 5.2 The nodes (5.3) have node density function μ(z) = T/

(π
√

(1 − z)(z − m(T ))).

Proof Note first that
∫ 1
−1 μ(z)dz = 1. Now let I = [z, z+h] ⊆ [−1,1] be an interval.

Then the node zn ∈ I if and only if m−1(z + h) ≤ xn ≤ m−1(z). Therefore, as N →
∞, the proportion of nodes lying in I tends to m−1(z) − m−1(z + h). Now suppose
that h → 0. Then

m−1(z + h) = T

π
arccos

[
c(T ) + 1 − c(T )

2
(z + h + 1)

]

= m−1(z) − μ(z)h + O
(
h2).

Thus m−1(z) − m−1(z + h) = μ(z)h + O(h2), as required. �

It is useful to consider the behavior of μ(z). When z → 1−, μ(z) ∼ T/(π
√

1 − z).
On the other hand, μ is continuous at z = −1 with μ(−1) = T

2π
tan( π

2T
). Hence

the nodes {zn}Nn=0 cluster quadratically near z = 1 and are linearly distributed near
z = −1. It is well known that to avoid the Runge phenomenon in a polynomial in-
terpolation scheme, it is essentially necessary for the nodes to cluster quadratically
near both endpoints (as is the case with Chebyshev nodes) [18]. If this is not the case,
one expects the Runge phenomenon: that is, divergence (at a geometric rate) of the
interpolant for any function having a singularity in a certain complex region contain-
ing [−1,1] (the Runge region for the interpolation scheme). Since the nodes (5.3) do
not exhibit the correct clustering at the endpoint z = −1, we consequently expect this
behavior in the equispaced FE FN,N(f ).

As it transpires, the corresponding Runge region R = R(T ) for FN,N can be de-
fined in terms of the potential function φ(t) = − ∫ 1

−1 μ(z) log |t − z|dz + c. Here c is
an arbitrary constant. Standard polynomial interpolation theory [18] then gives

R(T ) = {x ∈ C : φ(m(x)
)= φ(−1)

}
,

(observe that this is a subset of the complex x-plane). We note also that the
convergence/divergence of FN,N(f ) at a point x will be exponential at a rate
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eφ(m(x0))−φ(m(x)), where x0 is the limiting singularity of f . This follows from a gen-
eral result on polynomial interpolation [18]. In particular, if f has a singularity in
R(T ), then there will be some points x ∈ [−1,1] for which FN,N(f ) diverges.

We next discuss two approaches for overcoming the Runge phenomenon in
FN,N(f ).

5.2.1 Overcoming the Runge Phenomenon I: Varying T

One way to attempt to overcome (or, at least, mitigate) the Runge phenomenon ob-
served above is to vary the parameter T . Note that:

Lemma 5.3 The Runge region R(T ) satisfies R(T ) → [−1,1] as T → 1+, and
R(T ) → R as T → ∞, where R is the Runge region for equispaced polynomial
interpolation.

Proof Suppose first that T → 1+. Since m(T ) ∼ −1, we have μ(z) ∼ 1

π
√

1−z2
. The

right-hand side is the potential function for Chebyshev interpolation, and thus the first
result follows.

For the second result, we first recall that φ(m(x)) = − ∫ 1
−1 μ(z) log |m(x) − z|dz.

Define the change of variable z = m(s). Since m′(s) = −1/μ(m(s)) we have

φ
(
m(x)

)= −
∫ 1

0
log
∣∣m(x) − m(s)

∣∣ds.

Note that

m(x) − m(s) = cos πx
T

− cos πs
T

sin2 π
2T

= −2 sin π(x−s)
2T

sin π(x+s)
2T

sin2 π
2T

∼ −2(x − s)(x + s), T → ∞.

Therefore

φ
(
m(x)

)∼ −
∫ 1

−1
log |x − s|ds + C, T → ∞,

which is the potential function of equispaced polynomial interpolation, as required. �

This lemma comes as no surprise. As T → 1+ for fixed N , the system {ei nπ
T

·}|n|≤N

tends to the standard Fourier basis on [−1,1]. The problem of equispaced interpola-
tion with trigonometric polynomials is well-conditioned and convergent. On the other
hand, when T → ∞, the subspaces CN and SN both resemble spaces of algebraic
polynomials in x. Thus, in the large T limit, FN,N(f ) is an algebraic polynomial
interpolant of f at equispaced nodes.

Since the Runge region R(T ) can be made arbitrarily small by letting T → 1+,
one way to overcome the Runge phenomenon is to vary T in the way described in
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Sect. 2.4 and set T = T (N; ε). One could also take T ≈ 1 fixed. However, this will
always lead to a nontrivial Runge region, and consequently divergence of FN,N for
some nonempty class of analytic functions.

5.2.2 Overcoming the Runge Phenomenon II: Oversampling

An alternative means to overcome the Runge phenomenon in FN,M(f ) is to allow
M ≥ N . Oversampling is known to defeat the Runge phenomenon in equispaced
polynomial interpolation [8, 9, 28], and the same is true in this context (see [5, 12]
for previous discussions on oversampling for equispaced FEs).

It is now useful to introduce some notation. For nodes {xn}|n|≤M given by (5.1),
let (·, ·)M be the discrete bilinear form (g,h)M = 1

M+ 1
2

∑
|n|≤M g(xn)h(xn), and de-

note the corresponding discrete semi-norm by ‖ · ‖M . Much as before, we define the
condition number of FN,M by

κ(FN,M) = sup
{∥∥FN,M(b)

∥∥ : b ∈ C
2M+1, ‖b‖ = 1

}
. (5.4)

We now have:

Theorem 5.4 Let FN,M(f ) be given by (5.2), and suppose that

D(N,M) = sup
{‖φ‖ : φ ∈ GN, ‖φ‖M = 1

}
, (5.5)

then
∥∥f − FN,M(f )

∥∥≤ √
2
(
1 + D(N,M)

)
inf

φ∈GN

‖f − φ‖∞.

Moreover, the condition number κ(FN,M) = D(N,M).

Proof For the sake of brevity, we omit the first part of the proof (a very similar
argument is given in [9] for the case of polynomial interpolation). For the second
part, we first notice that

κ(FN,M) = sup
{∥∥FN,M(f )

∥∥ : f ∈ L∞(−1,1), ‖f ‖M = 1
}
.

Since FN,M(φ) = φ for φ ∈ GN we have κ(FN,M) ≥ D(N,M). Conversely, since
FN,M(f ) ∈ GN , and since FN,M is an orthogonal projection with respect to the bilin-
ear form (·, ·)M , we have ‖FN,M(f )‖ ≤ D(N,M)‖FN,M(f )‖M ≤ D(N,M)‖f ‖M .
Hence κ(FN,M) ≤ D(N,M), and we get the result. �

This theorem implies that FN,M(f ) will converge, regardless of the analyticity of
f , provided M is chosen such that D(N,M) is bounded. Note that this is always
possible: D(N,M) → 1 as M → ∞ for fixed N since ‖ · ‖M is a Riemann sum
approximation to ‖ · ‖ and GN is finite-dimensional. Up to small algebraic factors
in M and N , the quantity D(N,M) is equivalent to

D̃(N,M) = sup
{‖p‖∞ : p ∈ PN,

∣∣p(zn)
∣∣≤ 1, n = 0, . . . ,M

}
. (5.6)
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Note the meaning of D̃(N,M): it informs us how large a polynomial of degree N

can be on [−1,1] if that polynomial is bounded at the M points zn. Unfortunately,
numerical evidence suggests that

α
N2
M ≤ D̃(N,M) ≤ β

N2
M , (5.7)

for constants β ≥ α > 1. Thus one requires M = O(N2) nodes for boundedness of
D(N,M). This is clearly less than ideal: it means that we require many more samples
of f to compute its N -term equispaced FE. In particular, the exact equispaced FE
FN,M(f ) of an analytic function f will converge only root-exponentially fast in the
number M of equispaced grid values.

Had the nodes {zn}Mn=0 clustered quadratically near z = ±1, then M = O(N)

would be sufficient to ensure boundedness of D̃(N,M). Note that when N = M ,
D̃(N,M) is precisely the Lebesgue constant of polynomial interpolation. On the
other hand, if {zn}Mn=0 were equispaced nodes on [−1,1] then (5.7) would coincide
with a well-known result of Coppersmith and Rivlin [15]. The intuition for a bound
of the form (5.7) for the nodes (5.3) comes from the fact that these nodes are lin-
early distributed near z = −1. Thus, at least near z = −1 they behave like equispaced
nodes.

We remark that it is straightforward to show that the scaling M = O(N2) is suf-
ficient for boundedness of D̃(N,M). This is based on Markov’s inequality for poly-
nomials. Necessity of this condition would follow directly from the lower bound
in (5.7), provided (5.7) were shown to hold. It may be possible to adapt the proof
of [15] to establish this result.

Since the scaling M = O(N2) is undesirable, one can ask what happens when
M = γN for some fixed oversampling parameter γ ≥ 1. Using potential theory ar-
guments, one can show that D̃(N,γN) grows exponentially in N (with the constant
of this growth becoming smaller as γ increases), as predicted by the conjectured
bound (5.7). In other words,

N−1 logD(N,γN) ∼ log c(γ ;T ), N → ∞, (5.8)

for some c(γ ;T ) > 1.1 In view of this behavior, Theorem 5.4 guarantees convergence
of the FE (5.2), provided ρ ≥ c(γ ;T ), where ρ is as in Theorem 2.11. In other words,
f needs to be analytic in the region D(c(γ ;T )) (recall D from Theorem 2.11) to
ensure convergence. Therefore, one expects a Runge phenomenon whenever f has a
complex singularity lying in the corresponding Runge region R(γ ;T ) = D(c(γ ;T )).
Naturally, a larger value of γ leads to a smaller (but still nontrivial) Runge region.
However, regardless of the choice of γ , there will always be analytic functions for
which one expects divergence of FN,γN(f ) (see [9] for a related discussion in the
case of equispaced polynomial interpolation). Moreover, the mapping f �→ FN,γN

1The constant of growth was obtained in private communication with A. Kuijlaars. A closed expression
(up to several integrals involving the potential function φ for the nodes zn) can be found for c(γ ;T ). We
omit the full argument as it is rather lengthy, but note that it is based on standard results in potential theory.
A general reference is [29].
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will always be exponentially ill-conditioned for any fixed γ , since the condition num-
ber is precisely D(N,γN) (Theorem 5.4).

Primarily for later use, we now note that it is also possible to study the condition
number of the equispaced FE matrix Ā in a similar way. Straightforward arguments
show that

1/σmin(Ā) = B(N,M), B(N,M) = sup
{‖φ‖[−T ,T ] : φ ∈ GN,‖φ‖M = 1

}
. (5.9)

Using the fact that 1/σmin(A) = sup{‖φ‖[−T ,T ] : φ ∈ GN,‖φ‖ = 1}, where A is the
matrix of the continuous FE, one can show that

1/σmin(A) � B(N,M) ≤ D(N,M)/σmin(A),

(here we use � to mean up to possible algebraic factors in N ). Theorem 3.1 now
shows that Ā is always exponentially ill-conditioned in N , regardless of M ≥ N .

Much like the case of D(N,M) and D̃(N,M), one can show that the quantity
B(N,M) is, up to algebraic factors, equivalent to

B̃(N,M) = sup
{‖p‖∞,[m(T ),1] : p ∈ PN,

∣∣p(zn)
∣∣≤ 1, n = 0, . . . ,M

}
. (5.10)

Potential theory can be used once more to determine the exact behavior of B̃(N,γN).
In particular,

N−1 logB(N,γN) ∼ d(γ ;T ), N → ∞, (5.11)

for some constant d(γ ;T ) ≥ c(γ ;T ) > 1.

5.2.3 Numerical Examples

In the previous section we established (up to the conjecture (5.7)) 6., 7. and 8. of
Sect. 1. The main conclusion is as follows. In order to obtain a convergent FE in
exact arithmetic using equispaced data one either needs to oversample quadratically
(and thereby reduce the convergence rate to only root-exponential), or scale the ex-
tension parameter T suitably with N or both. However, recall from Sect. 4 that a FE
obtained from a finite precision computation may differ quite dramatically from the
corresponding infinite-precision extension. Is it therefore possible that the unpleasant
effects described in the previous section may not be witnessed in finite precision? The
answer transpires to be yes, and consequently FEs can safely be used for equispaced
data, even in situations where divergence is expected in exact arithmetic.

To illustrate, consider the function f (x) = 1
1+100x2 . When T = 2, this function has

a singularity lying in the Runge region R(1;2). The predicted divergence of its exact
(i.e. infinite-precision) equispaced FE is shown in Fig. 9. Note that double oversam-
pling also gives divergence, whilst with quadruple oversampling the singularity of f

no longer lies in R(γ ;T ). We therefore witness geometric convergence, albeit at a
very slow rate. This behavior is typical. Given a function f it is always possible to
select the oversampling parameter γ in such a way that FN,γN(f ) converges geomet-
rically. However, such a γ depends on f in a nontrivial manner (i.e. the location of
the nearest complex singularity of f ) and therefore cannot in practice be determined
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Fig. 9 The error ‖f − fN ‖∞ against N for the equispaced FEs fN = FN,γN (f ) (left) and

fN = GN,γN (f ) (right) of f (x) = 1
1+100x2 with oversampling factor γ = 1,2,4 (squares, circles and

crosses) and T = 2

from the given data. Note that this phenomenon—namely, the fact that careful tuning
of a particular parameter in a function-dependent way allows geometric convergence
to be restored—is also seen in other methods for approximating functions to high
accuracy, such as the Gegenbauer reconstruction technique [20, 21] (see Boyd [7] for
a description of the phenomenon) and polynomial least squares [9].

Fortunately, and unlike for these other methods, the situation changes completely
for Fourier extensions when we carry out computations in finite precision. This is
shown in Fig. 9. For all choices of γ used, the finite precision FE, which we denote
GN,γN(f ), converges geometrically fast, and there is no drift in the error once the
best achievable accuracy is attained. Note that oversampling by a constant factor im-
proves the approximation, but in all cases we still witness convergence. In particular,
no careful selection of γ , such as that discussed above, appears to be necessary in
finite precision.

5.3 The Numerical Equispaced Fourier Extension

We now explain these results by analyzing the numerical equispaced FE. Proceeding
as in Sect. 4.2 we shall consider the truncated SVD approximation, which we denote
HN,M,ε(f ). Note that a similar analysis has also recently been presented in [24]; see
Remark 5.10 for further details.

Let Φn ∈ GN be the function corresponding to the right singular vector vn of the
matrix Ā. Write GN,M,ε = span{Φn : σn > ε} and G⊥

N,M,ε = span{Φn : σn ≤ ε}, and
note that HN,M,ε is the orthogonal projection onto GN,M,ε with respect to (·, ·)M .
Since (Φn,Φm)M = σ 2

n δn,m, we have

HN,M,ε(f ) =
∑

n:σn>ε

1

σ 2
n

(f,Φn)MΦn. (5.12)

Our main result is as follows:

Theorem 5.5 Let f ∈ L∞(−1,1) and HN,M,ε(f ) be given by (5.12). Then

∥∥f − HN,M,ε(f )
∥∥ ≤ √

2
(
1 + C1(N,M;T , ε)

)‖f − φ‖∞
+ C2(N,M;T , ε)‖φ‖[−T ,T ], ∀φ ∈ GN, (5.13)
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and

‖aε‖ = ∥∥HN,M,ε(f )
∥∥[−T ,T ] ≤

√
2

ε
‖f − φ‖∞ + ‖φ‖[−T ,T ], ∀φ ∈ GN, (5.14)

where

C1(N,M;T , ε) = sup
φ∈GN,M,ε

φ �=0

{ ‖φ‖
‖φ‖M

}
, C2(N,M;T , ε) = sup

φ∈G⊥
N,M,ε

φ �=0

{ ‖φ‖
‖φ‖[−T ,T ]

}
.

(5.15)

Proof Let φ ∈ GN . Then
∥∥f − HN,M,ε(f )

∥∥≤ ‖f − φ‖ + ∥∥HN,M,ε(f − φ)
∥∥+ ∥∥φ − HN,M,ε(φ)

∥∥. (5.16)

Consider the second term. By definition of C1(N,M;T , ε),
∥∥HN,M,ε(f − φ)

∥∥≤ C1(N,M,ε)
∥∥HN,M,ε(f − φ)

∥∥
M

≤ C1(N,M,ε)‖f − φ‖M,

where the second inequality follows from the fact that HN,M,ε is an orthogonal pro-
jection with respect to (·, ·)M . Noting that ‖g‖,‖g‖M ≤ √

2‖g‖∞ for any function
g ∈ L∞(−1,1) now gives the corresponding term in (5.13). The bound for the third
term of (5.16) follows immediately from the definition of C2(N,M;T , ε) and the
inequality ‖φ − HN,M,ε(φ)‖[−T ,T ] ≤ ‖φ‖[−T ,T ].

For (5.14), we first write ‖HN,M,ε(f )‖[−T ,T ] ≤ ‖HN,M,ε(f − φ)‖[−T ,T ] +
‖HN,M,ε(φ)‖[−T ,T ]. Observe that for any g ∈ L∞(−1,1) we have

∥∥HN,M,ε(g)
∥∥2

[−T ,T ] =
∑

n:σn>ε

1

σ 4
n

∣∣(g,Φn)M
∣∣2

≤ 1

ε2

∥∥HN,M,ε(g)
∥∥2

M
≤ 1

ε2
‖g‖2

M ≤ 2

ε2
‖g‖2∞.

Also, ‖HN,M,ε(φ)‖[−T ,T ] ≤ ‖φ‖[−T ,T ] for φ ∈ GN . Setting g = f −φ and combining
these two bounds now gives (5.14). �

Corollary 5.6 If f ∈ L∞(−1,1) then ‖HN,M,ε(f )‖ ≤ √
2/ε‖f ‖∞, ∀N ∈ N,

M ≥ N . Moreover, if f ∈ H1(−1,1), T = [−T ,T ) is the T -torus and c1(T ) > 0
is as in Lemma 2.5, then

lim sup
N,M→∞

M≥N

∥∥HN,M,ε(f )
∥∥ ≤ inf

{‖f̃ ‖[−T ,T ] : f̃ ∈ H1(T), f̃ |[−1,1] = f
}

≤ c1(T )‖f ‖H1(−1,1).

Proof By (5.14), we have

∥∥HN,M,ε(f )
∥∥≤ ∥∥HN,M,ε(f )

∥∥[−T ,T ] ≤
√

2

ε
‖f − φ‖∞ + ‖φ‖[−T ,T ], ∀φ ∈ GN.

(5.17)
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Fig. 10 The quantity C1(N,γN;T , ε) against N for γ = 1 (top row) or γ = 2 (bottom row) and
ε = 10−6,10−12,10−18,10−24,10−30 (squares, circles, crosses, diamonds and dashes, respectively)

Setting φ = 0 gives the first result. For the second, we let φ be the N -term Fourier
series of f̃ on T, so that ‖f − φ‖∞ → 0 as N → ∞. The final inequality follows
from Lemma 2.5. �

This corollary shows that the equispaced FE cannot suffer from a Runge phenomenon
in finite precision, since it is bounded in N and M . This should come as no surprise.
Divergence of HN,M,ε(f ) would imply unboundedness of the coefficients aε , a be-
havior which is prohibited by truncating the singular values of Ā at level ε. Note
that this corollary actually shows a much stronger result, namely that HN,M,ε(f ) is
bounded on the extended domain [−T ,T ], not just on [−1,1].

Although this corollary demonstrates lack of divergence of HN,M,ε(f ), it says
littles about its convergence besides the observation that ‖HN,M,ε(f )‖ is asymptoti-
cally bounded by ‖f ‖H1(−1,1). To study convergence we shall use (5.13). For this we
first need to understand the constants Ci(N,M;T , ε).

5.3.1 Behavior of Ci(N,M;T , ε)

Although Theorem 5.5 holds for arbitrary M ≥ N , we now focus on the case of linear
oversampling, i.e. M = γN for some γ ≥ 1.

Let N2(γ,T , ε) be the largest N such that all the singular values of Ā are at least
ε in magnitude:

N2(γ,T , ε) = max
{
N : σmin(Ā) > ε

}
.

For N ≤ N2(γ,T , ε) we have GN,γN,ε = GN and therefore C1(N,γN;T , ε) =
D(N,γN), where D(N,M) is given by (5.5). Thus we witness exponential diver-
gence of C1(N,γN;T , ε) at rate c(γ ;T ), where c(γ ;T ) is as in (5.8). This is shown
numerically in Fig. 10.

However, once N > N2(γ,T , ε) the numerical results in Fig. 10 indicate a com-
pletely different behavior: namely, C1(N,γN;T , ε) appears to be bounded. Al-
though we have no proof of this fact, these results strongly suggest the following
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Fig. 11 The quantity C2(N,γN;T , ε) against N for γ = 1 (top row) or γ = 2 (bottom row) and
ε = 10−6,10−12,10−18,10−24,10−30 (squares, circles, crosses, diamonds and dashes, respectively)

conjecture:

C1(N,γN;T , ε) � C1(N2, γN2;T , ε) ∼ c(γ ;T )N2, ∀N ∈ N. (5.18)

In other words, C1(N,γN;T , ε) achieves its maximal value in N at N ≈ N2. Recall-
ing (5.9) and (5.11), we note that

N2(γ,T , ε) ≈ − log ε

logd(γ ;T )
. (5.19)

Thus, substituting this into bound (5.18) results in the following conjecture:

C1(N,γN;T , ε) � min
{
c(γ ;T )N, ε

− log c(γ ;T )
logd(γ ;T )

}
, ∀N ∈ N. (5.20)

In particular, C1(N,γN;T , ε) is bounded for all N by some power of ε−1. Impor-
tantly, this power cannot be too large. Note that c(γ ;T ) ≤ d(γ ;T ), ∀T > 1, since
the maximum of a polynomial on [m(T ),1] is at least as large as its maximum on the
smaller interval [−1,1]—compare (5.10) to (5.6). Therefore the ratio log c(γ ;T )

logd(γ ;T )
is at

most one. Moreover, by varying either γ or T we may decrease this ratio to arbitrarily
close to 1. We discuss this further in the next section.

The quantity C2(N,M;T , ε) is harder to analyze, although clearly we have
C2(N,M;T , ε) = 0 when N < N2. Figure 11 demonstrates that C2(N,γN, ε) is
also bounded in N . Moreover, closer comparison with Fig. 10 suggests the existence
of a bound of the form

C2(N,γN;T , ε) � εC1(N,γN;T , ε). (5.21)

Once more, we have no proof of this observation.

Remark 5.7 The quantities C1(N,M;T , ε) and C2(N,M;T , ε) have the explicit ex-
pressions

C1(N,M;T , ε) =
√∥∥(Sε

)†
V ∗AV

(
Sε
)†∥∥, C2(N,M;T , ε) =

√∥∥(V ε
)∗

AV ε
∥∥,
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where A is the continuous FE matrix, USV ∗ is the singular value decomposition of
the equispaced FE matrix Ā, Sε is formed by replacing the nth column of S by the
zero vector whenever σn ≤ ε, and V ε is formed by doing the same for columns of V

corresponding to indices n with σn > ε. These expressions were used to obtain the
numerical results in Figs. 10 and 11. Computations were carried out with additional
precision to avoid effects due to round-off.

5.3.2 Behavior of the Truncated SVD Fourier Extension

Combining the analysis of the previous section with Theorem 5.5, we now conjecture
the bound
∥∥f − HN,γN,ε(f )

∥∥≤ C(γ,T , ε)
(‖f − φ‖∞ + ε‖φ‖[−T ,T ]

)
, ∀φ ∈ GN, (5.22)

where C(γ,T , ε) is proportional to ε−a(γ ;T ) and a(γ ;T ) is given by

a(γ ;T ) = log c(γ ;T )

logd(γ ;T )
. (5.23)

This estimate allows us to understand the behavior of the numerical equispaced
FE GN,γN(f ). When N < N2 we have GN,γN(f ) = FN,γN(f ) and therefore
GN,γN(f ) will diverge geometrically fast in N whenever f has a singularity in the
Runge region R(γ ;T ) (see Sect. 5.2.1). However, once N exceeds N2, one obtains
convergence. Indeed, setting φ = FN(f ) in (5.22), we find that the convergence is
geometric up to the breakpoint N1 (see (4.20)), and then, much as before, at least su-
peralgebraic beyond that point. Note that the maximal achievable accuracy of order
C(γ,T , ε)ε ≈ ε1−a(γ ;T ).

In summary, we have now identified the following convergence behavior for
HN,γN,ε(f ):

(i) N < N2(γ,T , ε) ≈ − log ε
logd(γ ;T )

. Geometric divergence/convergence of
HN,γN,ε(f ) at a rate of, at worst, c(γ ;T )/ρ, where ρ is as in Theorem 2.11
and c(γ ;T ) is given by (5.8).

(ii) N2(γ,T , ε) ≤ N < N1(T , ε) ≈ − log ε
logE(T )

. Geometric convergence at a rate of at
least ρ.

(iii) N = N1(T , ε). The error
∥∥f − HN,γN,ε(f )

∥∥≈ cf εdf −a(γ ;T ),

where a(γ ;T ) is as in (5.23) and df = logρ
logE(T )

∈ (0,1].
(iv) N ≥ N1(γ, T ). Superalgebraic convergence of HN,γN,ε(f ) down to a maximal

achievable accuracy proportional to ε1−a(γ ;T ).

(This establishes 10. of Sect. 1.) Much as in the case of the discrete FE, we see that
if f is analytic in D(E(T )), and if cf is not too large, then convergence stops at
N = N1 with maximal accuracy of order cf ε1−a(γ ;T ). Otherwise, we have a further
regime of at least superalgebraic convergence before this accuracy is reached.

An important question is the role of the oversampling parameter γ in this conver-
gence. We note:
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Fig. 12 Error against N for HN,γN,ε(f ), where f (x) = 1
1+16x2 , T = 2, γ = 1 (left) or γ = 2 (right)

and ε = 10−6,10−12,10−18 (squares, circles, crosses). Diamonds correspond to the exact equispaced FE
FN,γN (f )

Lemma 5.8 Let a(γ ;T ) be given by (5.23). Then a(γ ;T ) satisfies 0 ≤ a(γ ;T ) ≤ 1
for all γ and T . Moreover, a(γ ;T ) → 0 as γ → ∞ for fixed T , and a(γ ;T ) → 0 as
T → ∞ for fixed γ .

Proof Note that c(γ ;T ) ≤ d(γ ;T ). Also c(γ ;T ) → 1 and d(γ ;T ) → E(T ) as
γ → ∞ for fixed T , and d(γ ;T ) → ∞ as T → ∞ for fixed γ , whereas c(γ ;T )

is bounded. �

This lemma suggests that increasing γ will lead to a smaller constant C(γ,T , ε)

in (5.22). In fact, numerical results (Figs. 10 and 11) indicate that using T = 2 and
γ = 2 gives a bound of a little over 1 in magnitude for ε = 10−14. Note that the
effect of even just double oversampling is quite dramatic. Without oversampling (i.e.
γ = 1), the constant C(γ,T , ε) is approximately 104 in magnitude when ε = 10−14

(see Figs. 10 and 11).
Let us make several further remarks. First, in practice the regime N < N1 is typi-

cally very small—recall that N1 is around 20 for T = 2 (see Sect. 4.2.2)—and there-
fore one usually does not witness all three types of behavior in numerical examples.
Second, as γ → ∞, we have N2 → N1 (recall that d(γ ;T ) → E(T ) as γ → ∞).
Thus, with a sufficient amount of oversampling, the regime (ii) will be arbitrarily
small. On the other hand, oversampling decreases c(γ ;T ), and therefore the rate of
divergence in the regime (i) is also lessened by taking γ > 1. Indeed, the numerical
results in Fig. 12, as well as in Sect. 5.3.4 later, indicate that oversampling by a factor
of 2 is typically sufficient in practice to mitigate the effects of divergence for most
reasonable functions.

Figure 12 confirms these observations for the function f (x) = 1
1+16x2 . For γ = 1

the initial exponential divergence is quite noticeable. However, this effect largely van-
ishes when γ = 2. Notice that a larger cutoff ε actually gives a smaller error initially,
since there is a smaller regime of divergence. However, the maximal achievable ac-
curacy is correspondingly lessened. We note also that maximal achievable accuracies
for ε = 10−6,10−12,10−18 are roughly 10−4, 10−8 and 10−12, respectively, when
γ = 1 and 10−7, 10−12 and 10−16 when γ = 2. These are in close agreement with
the corresponding numerical values of C2(N,γN;T , ε) (see Fig. 11), as predicted
by Theorem 5.5.
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Table 2 The function K(GN,γN ) against N with T = 2 and γ = 1,2,4

N 40 80 120 160 200

γ = 1 2.37 × 104 3.50 × 104 2.24 × 104 2.47 × 104 1.93 × 104

γ = 2 2.18 × 101 2.66 × 101 2.40 × 101 2.56 × 101 2.47 × 101

γ = 4 8.03 × 100 1.05 × 101 1.23 × 101 1.39 × 101 1.54 × 101

Remark 5.9 A central conclusion of this section is that one requires a lower asymp-
totic scaling of M with N for the numerical equispaced FE than for its exact counter-
part. Since GN,M,ε is a subset of GN , we clearly have C1(N,M;T , ε) ≤ D(N,M),
where D(N,M) is given by (5.5). Hence quadratic scaling M = O(N2) is suffi-
cient (see Sect. 5.2.1) to ensure boundedness of C1(N,M;T , ε), and one can make
a similar argument for C2(N,M;T , ε). However, Figs. 10 and 11 indicate that this
condition is not necessary, and that one can get away with the much reduced scaling
M = O(N) in practice.

This difference can be understood in terms of the singular values of Ā. Recall that
small singular values correspond to functions φ ∈ GN with ‖φ‖[−T ,T ] � ‖φ‖M . Now
consider an arbitrary φ ∈ GN . If the ratio ‖φ‖/‖φ‖M is large, it suggests that φ lies
approximately in the space G⊥

N,M,ε corresponding to small singular values. Hence,
‖φ‖/‖φ‖M cannot be too large over φ ∈ GN,M,ε , and thus we see boundedness of
C1(N,M,ε), even when D(N,M)—the supremum of this ratio over the whole of
GN —is unbounded.

Remark 5.10 A similar analysis of the equispaced FE, also based on truncated SVDs,
was recently presented by M. Lyon in [24]. In particular, our expressions (5.13)
and (5.22) are similar to equations (30) and (31) of [24]. Lyon also provides ex-
tensive numerical results for his analogues of the quantities C1(N,M;T , ε) and
C2(N,M;T , ε), and describes a bound which is somewhat easier to use in com-
putations. The main contributions of our analysis are the conjectured scaling of the
constant C(γ,T , ε) in terms of ε, γ and T , the description and analysis of the break-
points N2 and N1, and the differing convergence/divergence in the corresponding
regions.

5.3.3 The Condition Number of the Numerical Equispaced FE

We now consider the condition number κ(GN,M) (defined as in (5.4)) of the numeri-
cal equispaced extension. In Table 2 we plot K(GN,γN) against N , where K(GN,M)

is an upper bound for κ(GN,M) defined analogously to (4.22). The results indicate
numerical stability, and, as we expect, improved stability with more oversampling.

Besides oversampling it is also possible to improve stability by varying the ex-
tension parameter T . In Fig. 13 we give a contour plot of K(GN,γN) in the (γ, T )-
plane. Evidently, increasing T improves stability. Recall, however, that a larger T

corresponds to worse resolution power (see Sect. 2.4). Conversely, increasing γ also
leads to worse resolution when measured in terms of the total number M = γN of
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Fig. 13 Contour plot of the
quantity K(GN,γN ) against
1 ≤ γ ≤ 4 and 1 < T ≤ 4 for
N = 200

equispaced function values required. Hence a balance must be struck between the
two quantities. Figure 13 suggests that γ = T = 2 is a reasonable choice in practice.
Recall also that the choice T = 2 allows for fast computation of the equispaced FE
(Remark 3.4), and hence is desirable to use in computations.

The behavior of the condition number can be investigated with the following the-
orem (the proof is similar to that of Theorem 4.7 and hence omitted):

Theorem 5.11 The condition number κ(HN,M,ε) of the truncated SVD equispaced
FE HN,M,ε satisfies κ(HN,M,ε) = C1(N,M;T , ε), where C1(N,M;T , ε) is given
by (5.15).

From the analysis of Sect. 5.3.1 we conclude that κ(HN,γN,ε) � ε−a(γ ;T ), where
a(γ ;T ) is as in (5.23). Lemma 5.8 therefore shows that κ(HN,γN,ε) � 1 as γ → ∞
for fixed T , and κ(HN,γN,ε) � 1 as T → ∞ for fixed γ . This confirms the behavior
described above.

5.3.4 Numerical Examples

In Fig. 14 we consider the equispaced FE for four test functions. In all cases we
use γ = 2 and T = 2. As is evident, all choices of T give good, stable numerical
results, with the best achievable accuracy being at least 10−12. Robustness in the
presence of noise is shown in Fig. 15. Observe that when γ = 1, noise of amplitude δ

is magnified by around 105, in a manner consistent with Theorem 5.11. Conversely,
with double oversampling, this factor drops to less than 102, again in agreement with
Theorem 5.11.

5.4 Relation to the Theorem of Platte, Trefethen and Kuijlaars

We are now in a position to explain how FEs relate to the impossibility theorem
of Platte, Trefethen and Kuijlaars [28]. A restatement of this theorem (with minor
modifications to notation) is as follows:
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Fig. 14 The error ‖f − GN,γN (f )‖∞, where γ = 2 and T = 2. Left: f (x) = e25
√

5π ix (squares),

f (x) = |x|7 (circles). Right: f (x) = 1
1+25x2 (squares), f (x) = 1

8−7x
(circles)

Fig. 15 The error |f (x) − GN,γN (f )(x)| against x, where γ = 1 (left) or γ = 2 (right), for N = 30,

T = 2 and f (x) = ex , with noise at amplitudes δ = 10−4,10−6,10−8,10−10,0

Theorem 5.12 [28] Let FM , M ∈ N, be a sequence of approximations such that
FM(f ) depends only on the values of f on an equispaced grid of M points. Let
E ⊆ C be compact and suppose that there exist C < ∞, α > 1 and τ ∈ ( 1

2 ,1] such
that

∥∥f − FM(f )
∥∥∞ ≤ Ccf α−Mτ

, cf = max
x∈E

∣∣f (x)
∣∣, (5.24)

for all M ∈ N and all f that are continuous on E and analytic in its interior. Then
there exists a β > 1 such that the condition numbers κ(FM) ≥ βM2τ−1

for all suffi-
ciently large M .

This theorem has two important consequences. First, any exponentially convergent
method is also exponentially ill-conditioned. Second, the best possible convergence
for a stable method is root-exponential in M . Note that the theorem is valid for all
methods, both linear and nonlinear, that satisfy (5.24).

Consider now the exact equispaced Fourier extension FN,M . As shown in
Sect. 5.2, when N = O(

√
M) this method is stable and root-exponentially conver-

gent. Hence equispaced FEs in infinite precision attain the maximal possible conver-
gence rate for stable methods satisfying the conditions of the theorem.

Now consider the numerical equispaced FE GηM,M , where 0 < η ≤ 1 is the recip-
rocal of the oversampling parameter γ used in the previous sections. We have shown
that this approximation is stable, so at least one condition in Theorem 5.12 must be
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violated. Suppose that we take E = D(E(T )), for example. Then (5.22) shows that

∥∥f − GηM,M(f )
∥∥∞ � cf ε−a(η−1;T )

((
E(T )η

)−M + ε
)
. (5.25)

The finite term ε in the brackets means that this approximation does not satisfy (5.24),
and hence Theorem 5.12 does not apply. Recall that if cf is small then (5.25) de-
scribes the full convergence behavior for all M . On the other hand, if cf is large, or
if f ∈ D(ρ) with ρ < E(T ), then the convergence is, after initial geometric conver-
gence, at least superalgebraic down to the maximal achievable accuracy ε1−a(η−1;T ).
This is also not in contradiction with the conditions of Theorem 5.12.

To summarize, equispaced FEs, when implemented in finite precision, possess
both numerical stability and rapid convergence, and hence allow one to circumvent
the impossibility theorem to an extent. In particular, for all functions f ∈ D(E(T ))

possessing small constants cf , the approximations converge geometrically fast down

to a maximal accuracy of order ε1−a(η−1;T ). In all other cases, the convergence is at
least superalgebraic down to the same accuracy.

6 Conclusions and Challenges

We conclude by making the following remark. Extensive numerical experiments [5, 8,
12, 24, 25] have shown the effectiveness of FEs in approximating even badly behaved
functions to high accuracy in a stable fashion. The purpose of this paper has been
to provide analysis to explain these results. In particular, we have shown numerical
stability for all three types of extensions considered, and analyzed their convergence.
The reason for this robustness, despite the presence of exponentially ill-conditioned
matrices, is due to the fact that the FE is a frame approximation and that for all
functions f , even those with oscillations or large derivatives, there eventually exist
coefficient vectors with small norms which approximate f to high accuracy.

The main outstanding theoretical challenge is to understand the constants
Ci(N,M;T , ε) of the equispaced FE. In particular, we wish to show that linear scal-
ing M = γN is sufficient to ensure boundedness of these constants in N , with a
larger γ corresponding to a smaller bound. Note that the analysis of Sect. 5.2.1 im-
plies the suboptimal result that M = O(N2) is sufficient (Remark 5.9). It is also a
relatively straightforward exercise to show that if M = cN/ε for suitable c > 0, then
Ci(N,M;T , ε) is bounded. This is based on making rigorous the arguments given
in Remark 5.9—we do not report it here for brevity’s sake. Unfortunately, although
this estimate gives the correct scaling M = O(N), it is wildly pessimistic. It implies
that M should scale like ≈ 1016N , whereas the numerics in Sect. 5.3.1 indicate that
M = γN is sufficient for any γ ≥ 1.

One approach towards establishing a more satisfactory result is to perform a closer
analysis of the singular values of the matrix Ā. Some preliminary insight into this
problem was given in [17]. Therein it was proved that (whenever M = N and 2T ∈ N)
the singular values cluster near zero and one, and the transition region is O(logN) in
width, much like for the prolate matrix A. Unfortunately, little is known outside of
this result. There is no existing analysis for Ā akin to that of Slepian’s for the prolate
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matrix—see [17] for a discussion. Note, however, that the normal form B = Ā∗Ā has

entries Bn,m = sin (n−m)π
T

MT sin (n−m)π
MT

, and can therefore be viewed as a discretized version of

the prolate matrix A. Indeed, B → A as M → ∞ for fixed N . Given the similarities
between the two matrices, there is potential for Slepian’s analysis to be extended to
this case. However, this remains an open problem.

Another issue is that of understanding how to choose the parameters T and γ

in the case of the equispaced extension. As discussed in Sect. 2.4, the choice of T

is reasonably clear for the continuous and discrete FEs (where there is no γ ). If
resolution of oscillatory functions is a concern, one should choose a small value of T

(in particular, (2.18)). Otherwise, a good choice appears to be T = 2. However, for
the equispaced FE, small T adversely affects stability (see Sect. 5.3.3). Hence it must
be balanced by taking a larger value of the oversampling parameter γ , which has the
effect of reducing the effective resolution power. In practice, however, a reasonable
choice appears to be T = γ = 2. Investigating whether or not this is optimal is a topic
for further investigation.
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