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Abstract This article concerns the computational problem of counting the lattice
points inside convex polytopes, when each point must be counted with a weight as-
sociated to it. We describe an efficient algorithm for computing the highest degree
coefficients of the weighted Ehrhart quasi-polynomial for a rational simple polytope
in varying dimension, when the weights of the lattice points are given by a polynomial
function h. Our technique is based on a refinement of an algorithm of A. Barvinok
in the unweighted case (i.e., h ≡ 1). In contrast to Barvinok’s method, our method is
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local, obtains an approximation on the level of generating functions, handles the gen-
eral weighted case, and provides the coefficients in closed form as step polynomials
of the dilation. To demonstrate the practicality of our approach, we report on compu-
tational experiments which show that even our simple implementation can compete
with state-of-the-art software.

Keywords Ehrhart functions · Exponential sums and integrals · Intermediate sums ·
Polynomial-time algorithms

Mathematics Subject Classification (2010) Primary 05A15 · Secondary 52C07 ·
68R05 · 68U05 · 52B20

1 Introduction

Computations with lattice points in convex polyhedra arise in various areas of com-
puter science, mathematics, and statistics (see, e.g., [14, 23, 32] and the many ref-
erences therein). Given p, a rational convex polytope in R

d , and h(x), a polynomial
function on R

d (often called a weight function), this article considers the important
problem of computing, or estimating, the sum of the values of h(x) over the lattice
points belonging to p, namely

S(p, h) =
∑

x∈p∩Zd

h(x).

The function S(p, h) has already been studied extensively in the unweighted case,
i.e., when h(x) takes only the constant value 1 (in that case S(p,1) is just the number
of lattice points of p). Many papers and books have been written about the structure
of that function (see, e.g., [12, 14] and the many references therein). Nevertheless,
in many applications h(x) can be a much more complicated function. Important ex-
amples of such a situation appear, for instance, in enumerative combinatorics [1],
statistics [22, 27], symbolic integration [6], and nonlinear optimization [25]. Still,
only a few algorithmic results exist on the case of an arbitrary polynomial h.

It is well known that when the polyhedron p is dilated by an integer factor n ∈ N,
we obtain a function of n, called the weighted Ehrhart quasi-polynomial of the pair
(p, h), namely

S(np, h) =
∑

x∈np∩Zd

h(x) =
d+M∑

m=0

Em(n mod q)nm.

This is a quasi-polynomial in the sense that the function is a sum of monomials up to
degree d + M , where M = degh, but whose coefficients Em are periodic functions
of n. The coefficient functions Em are periodic functions with period q , where q ∈ N

is the smallest positive integer such that qp is a lattice polytope, i.e., its vertices
are lattice points. We will make this more precise later (we recommend [12, 14] for
excellent introductions to this topic).
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To begin realizing the richness of S(np, h), note that its leading highest degree co-
efficient Ed+M (which actually does not depend on n) is precisely equal to

∫
p
h(x)dx,

i.e., the integral of h over the polytope p, when h is homogeneous of degree M . These
integrals were studied in [7, 8] and more recently in [6]. Still most other coefficients
are difficult to understand, even for easy polytopes, such as simplices (see [21] for a
survey of results and challenges). The key aim of this article is to achieve a fast com-
putation of the first few top-degree (weighted) coefficients Em via an approximation
of S(np, h) by a quasi-polynomial that shares the highest coefficients with S(np, h).

We now explain the known results achieved so far in the literature. We stress that
computing all the coefficients Em for m = 0, . . . , d +M is an NP-hard problem; thus,
the best one can achieve for theoretical results is to obtain an approximation, as we
propose to do here. Until now most results dealt only with the unweighted case, i.e.,
h(x) = 1, and we summarize these results here. A. Barvinok first obtained for lattice
polytopes p a polynomial-time algorithm that for a fixed integer k0 can compute the
highest k0 coefficients Em (see [9]). For this he used Morelli’s identities [33] and
relied on an oracle that computes the volumes of faces.

Later, in [11], Barvinok obtained a formula relating the k highest degree coeffi-
cients of the (unweighted) Ehrhart quasi-polynomial of a rational polytope to volumes
of sections of the polytope by certain affine lattice subspaces of codimension < k. As
a consequence, he proved that the k highest degree coefficients of the unweighted
Ehrhart quasi-polynomial of a rational simplex can be computed by a polynomial
algorithm, when the dimension d is part of the input, but k is fixed. More precisely,
given a dilation class n mod q with n ∈ N, Barvinok’s algorithm computes the num-
bers Em(n mod q) by an interpolation technique. However, neither a closed formula
for these Em, depending on n, nor a generating function for the coefficients became
available from [11]. In fact, that article [11, Sect. 8.2] raised the question of efficiently
computing such a closed-form expression.

A key point of both Barvinok’s and our method is the following. The sum S(p, h)

has natural generalizations, the intermediate sums SL(p, h), where L ⊆ V = R
d is a

rational vector subspace. For a polytope p ⊂ V and a polynomial h(x), we define

SL(p, h) =
∑

x

∫

p∩(x+L)

h(y)dy,

where the summation index x runs over the projected lattice in V/L. In other words,
the polytope p is sliced along lattice affine subspaces parallel to L, and the integrals
of h over the slices are added up. For L = V , there is only one term and SV (p, h) is
just the integral of h(x) over p, while, for L = {0}, we recover S(p, h). Barvinok’s
method in [11] was to introduce particular linear combinations of the intermediate
sums,

∑

L∈L
λ(L)SL(p, h).

It is natural to replace the polynomial weight h(x) with an exponential function
x �→ e〈ξ,x〉 and consider the corresponding holomorphic functions of ξ in the dual
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V ∗. Moreover, one can allow p to be unbounded; then the sums

SL(p)(ξ) =
∑

x

∫

p∩(x+L)

e〈ξ,y〉 dy

still make sense as meromorphic functions on V ∗. The map p �→ SL(p)(ξ) is a valu-
ation.

In [2], it was proved that a version of Barvinok’s construction on the level of gen-
erating functions, namely

∑
L∈L λ(L)SL(p)(ξ), approximates S(p)(ξ) in a certain

ring of meromorphic functions (a precise statement is given below). The proof in [2]
relied on the Euler–Maclaurin expansion of these functions. Another proof, using the
Poisson summation formula, will appear in [15].

Here we introduce a simplified way to approximate S(p)(ξ) for the case of a sim-
plicial affine cone p = s + c, which levels the way for a practical and efficient im-
plementation. Via Brion’s theorem, it is sufficient to sum up these local contributions
of the tangent cones of the vertices. We present a method for computing the high-
est degree coefficients of the Ehrhart quasi-polynomial of a rational simple polytope,
by applying the approximation theorem to each of the cones at vertices of p. The
complexity depends on the number of vertices of the polytope; thus, if the simple
polytope is presented by its vertices (rather than by linear inequalities), we obtain
a polynomial-time algorithm. In particular, the algorithm is polynomial-time for the
case of a simplex. We obtain the Ehrhart coefficient functions Em(n mod q) in a
closed form as step polynomials, by which we mean sums of functions of the form

f
(
(ζ1n) mod q1, . . . , (ζkn) mod qk

)
,

where f is a polynomial and ζ1, . . . , ζk ∈ Z, q1, . . . , qk ∈ N. Having a closed formula
available considerably strengthens Barvinok’s result in [11], even in the unweighted
case h = 1.

The structure of this paper is as follows. In Sect. 2, we first present some neces-
sary preliminaries. Section 3 explains the intermediate generating function SL(p)(ξ)

in more detail. Then we show how to use an expansion of S(p)(ξ) into homogeneous
components to extract the highest degree coefficients of the weighted Ehrhart poly-
nomial in the case of a lattice polytope. This motivates the approximation results for
generating functions. In Sect. 4, we give a simple proof of the approximation theo-
rem of [2], in the case of a simplicial cone (see Theorem 26). The theorem uses the
notion of a patching function (essentially a form of Möbius inversion formulas de-
scribed in Sect. 4.1). We exhibit an explicit and easily computable patching function.
Using these tools, we show in Sect. 5 that the approximation for a cone s + c (on the
level of generating functions) can be computed efficiently as a closed formula. The
formula makes the periodic dependence on the vertex s explicit. Finally, in Sect. 6,
we give the polynomial-time algorithm to compute the coefficients Em(n mod q) as
step polynomials. Our main result (Theorem 38) says that, for every fixed number k0,
there exists a polynomial-time algorithm that, given a simple polytope p of arbitrary
dimension, a linear form � ∈ V ∗, and a nonnegative integer M , computes the highest
k0 + 1 coefficients EM+d−k0, . . . ,EM+d of the weighted Ehrhart quasi-polynomial
S(np, h = �M) in the form of step polynomials.
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Four comments are in order about the applicability and potential practicality of the
main results. First, although the weight h used in Theorem 38 is a power of a linear
form, as is carefully explained in [6], one can obtain similar complexity of computa-
tion for polynomials that depend on a fixed number of variables, or with fixed degree
(Corollary 45). Second, note that using perturbations (see, e.g., [28]), triangulations
[26], or simplicial cone decompositions of polyhedra (see, e.g., [30]), one can extend
computations from simple polytopes to arbitrary polytopes. Third, since our approx-
imation is done at the level of generating functions, it extends the complexity result
from [11] to the weighted case. Finally, at the end of the article we report on ex-
periments using a simple implementation of the algorithm in Maple, demonstrating
it to be competitive with more sophisticated software tools. This indicates a poten-
tial to use this algorithm to experimentally verify conjectures on the positivity of the
Ehrhart coefficients of certain polytopes, for examples where the computation of the
full Ehrhart polynomials is out of reach. The algorithms presented here require a rich
mixture of computational geometry and algebraic-symbolic computation.

2 Preliminaries

2.1 Rational Convex Polyhedra

We consider a rational vector space V of dimension d , that is, a finite-dimensional
real vector space with a lattice denoted by Λ. We will need to consider subspaces and
quotient spaces of V ; thus we cannot simply let V = R

d and Λ = Z
d . A point v ∈ V

is called rational if there exists a nonzero integer q such that qv ∈ Λ. The set of
rational points in V is denoted by VQ. A subspace L of V is called rational if L ∩ Λ

is a lattice in L, or, equivalently, if L is spanned by vectors in Λ. If L is a rational
subspace, the image of Λ in V/L is a lattice in V/L, so that V/L is a rational vector
space. The image of Λ in V/L is called the projected lattice. A rational space V ,
with lattice Λ, has a canonical Lebesgue measure dx = dmΛ(x), for which V/Λ has
measure 1.

A convex rational polyhedron p in V (we will simply say polyhedron) is, by def-
inition, the intersection of a finite number of closed half-spaces bounded by rational
affine hyperplanes. We say that p is full dimensional (in V ) if the affine span of p

is V .
In this article, a cone is a polyhedral cone (with vertex 0), and an affine cone is

a translated set s + c of a cone c. A cone c is called simplicial if it is generated by
linearly independent elements of V . A simplicial cone c is called unimodular if it is
generated by linearly independent lattice vectors v1, . . . , vk such that {v1, . . . , vk} can
be completed to a basis of Λ. An affine cone a is called simplicial (respectively, sim-
plicial unimodular) if the associated cone is. A polytope p is a compact polyhedron.
The set of vertices of p is denoted by V (p). For each vertex s, the cone of feasible
directions at s is denoted by cs . For details of all these notions see, e.g., [12].

2.2 Generating Functions: Exponential Sums and Integrals

Definition 1 We denote by H(V ∗) the ring of holomorphic functions defined around
0 ∈ V ∗. We denote by M(V ∗) the ring of meromorphic functions defined around
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0 ∈ V ∗ and by M�(V
∗) ⊂ M(V ∗) the subring consisting of meromorphic functions

φ(ξ) which can be written as a quotient of a holomorphic function and a product of
linear forms.

This paper relies on the study of important examples of functions in M�(V
∗):

the continuous and discrete generating functions I (p,Λ) and S(p,Λ) associated to a
convex polyhedron p. Both have an important additivity property which makes them
valuations (see [12, Chap. 8] or the survey [13] for a detailed presentation; here we
summarize the essentials).

Definition 2 Let M be a vector space. A valuation F is a map from the set of poly-
hedra p ⊂ V to the vector space M such that whenever the indicator functions [pi]
of a family of polyhedra pi satisfy a linear relation

∑
i ri[pi] = 0, then the elements

F(pi ) satisfy the same relation
∑

i riF (pi ) = 0.

Proposition 3 There exists a unique valuation I (·,Λ) which associates to every
polyhedron p ⊂ V a meromorphic function I (p,Λ) ∈ M�(V

∗), so that the follow-
ing properties hold:

(i) If the polyhedron p is not full dimensional or if p contains a straight line, then
I (p,Λ) = 0.

(ii) If ξ ∈ V ∗ is such that e〈ξ,x〉 is integrable over p, then

I (p,Λ)(ξ) =
∫

p

e〈ξ,x〉 dmΛ(x).

(iii) For every point s ∈ VQ, one has

I (s + p,Λ)(ξ) = e〈ξ,s〉I (p,Λ)(ξ).

We will call I (p,Λ)(ξ) the continuous generating function of p.

Proposition 4 There exists a unique valuation S(·,Λ) which associates to every
polyhedron p ⊂ V a meromorphic function S(p,Λ) ∈ M�(V

∗), so that the follow-
ing properties hold:

(i) If p contains a straight line, then S(p,Λ) = 0.
(ii) If ξ ∈ V ∗ is such that e〈ξ,x〉 is summable over the set of lattice points of p, then

S(p,Λ)(ξ) =
∑

x∈p∩Λ

e〈ξ,x〉.

(iii) For every point s ∈ Λ, one has

S(s + p,Λ)(ξ) = e〈ξ,s〉S(p,Λ)(ξ).

S(p,Λ)(ξ) is called the (discrete) generating function of p.
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2.3 Brion’s Theorem

A consequence of the valuation property is the following fundamental theorem. It
follows from the Brion–Lawrence–Varchenko decomposition of a polyhedron into
the supporting cones at its vertices [12, 18]; see also [19], Proposition 3.1, for a more
general Brianchon–Gram type identity.

Theorem 5 Let p be a polyhedron with a set of vertices V (p). For each vertex s, let
cs be the cone of feasible directions at s. Then

S(p,Λ) =
∑

s∈V (p)

S(s + cs ,Λ).

2.4 Notation and Basic Facts in the Case of a Simplicial Cone

For all of the notions below, see [12]. Let vi ∈ Λ, i = 1, . . . , d be linearly independent
integral vectors and let c = ∑d

i=1 R+vi be the cone that they span.

Definition 6 The fundamental parallelepiped b of the cone (with respect to the gen-
erators vi, i = 1, . . . , d) is the set

b =
d∑

i=1

[0,1[vi.

Note that the set has a half-open boundary. We immediately have the following.

Lemma 7 Let s ∈ V . Then

I (s + c,Λ)(ξ) = e〈ξ,s〉 (−1)d volΛ(b)
∏d

i=1 〈ξ, vi〉
, (1)

where volΛ(b) is the volume of the fundamental parallelepiped with respect to the
Lebesgue measure dmΛ defined by the lattice.

If V = R
d and Λ = Z

d , then volΛ(b) = |det(v1, . . . , vd)|, and so

I
(
s + c,Z

d
)
(ξ) = e〈ξ,s〉 (−1)d |det(v1, . . . , vd)|

∏d
i=1 〈ξ, vi〉

. (2)

We also recall the following elementary but crucial lemma.

Lemma 8

(i) The affine cone (s + c) ∩Λ is the disjoint union of the translated parallelepipeds
s + b + v, for v ∈ ∑d

j=1 Nvj .
(ii) The set of lattice points in the affine cone s + c is the disjoint union of the sets

x + ∑d
i=1 Nvi when x runs over the set (s + b) ∩ Λ.
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(iii) The number of lattice points in the parallelepiped s + b is equal to the volume
of the parallelepiped with respect to the Lebesgue measure dmΛ defined by the
lattice, that is,

Card
(
(s + b) ∩ Λ

) = volΛ(b).

In particular, when V = R
d and Λ = Z

d , then

Card
(
(s + b) ∩ Z

d
) = ∣∣det(v1, . . . , vd)

∣∣.

The study of the generating function S(s + c,Λ)(ξ) of the affine cone s + c will be
a crucial tool. It relies on expressing S(s+c,Λ)(ξ) in terms of the generating function
S(s + b,Λ)(ξ) = ∑

x∈(s+b)∩Λ e〈ξ,x〉 of the fundamental parallelepiped. Lemma 8(ii)
immediately gives the following.

Lemma 9

S(s + c,Λ)(ξ) = S(s + b,Λ)(ξ)
1

∏d
j=1(1 − e〈ξ,vj 〉)

. (3)

We next rewrite this using the following analytic function.

Definition 10 Let

T (τ, x) = eτx x

1 − ex
= −

∞∑

n=0

Bn(τ)
xn

n! , (4)

where Bn(τ) are the Bernoulli polynomials.

Lemma 11

S(s + c,Λ)(ξ) = S(s + b,Λ)(ξ)

d∏

j=1

T
(
0, 〈ξ, vj 〉

) · 1
∏d

j=1 〈ξ, vj 〉
. (5)

Example 12 Consider the case where V = R and Λ = Z. Let c = R+. Let s ∈ R;
then the “fractional part” {s} ∈ [0,1[ is defined as the unique real number such that
s − {s} ∈ Z. Then the unique integer s̄ in s + b is s + {−s}, and so (1) and (3) give

I (s + c,Z)(ξ) = eξs −1

ξ
and S(s + c,Z)(ξ) = eξ(s+{−s}) 1

1 − eξ
.

The latter can be rewritten using (5) as

S(s + c,Z)(ξ) = eξ(s+{−s})T (0, ξ) · 1

ξ
= eξsT

({−s}, ξ) · 1

ξ
.
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3 Key Ideas of the Approximation Theory

3.1 Weighted Ehrhart Quasi-polynomials

Let p ⊂ V be a rational polytope and let h(x) be a polynomial function of degree M

on V . We consider the following weighted sum over the set of lattice points of p:

∑

x∈p∩Λ

h(x).

When p is dilated by a nonnegative integer n ∈ N, we obtain a function of n. As men-
tioned in the introduction, it is a well-known theorem (see, e.g., [14]) that this func-
tion is a quasi-polynomial whose coefficient functions are periodic functions with
period q , where q ∈ N is the smallest positive integer such that qp is a lattice poly-
tope. This allows us to make the following definition.

Definition 13 Let q be the smallest positive integer such that qp is a lattice poly-
tope. Then we define the Ehrhart quasi-polynomial E(p, h;n) and its coefficients
Em(p, h;n mod q) by

E(p, h;n) =
∑

x∈np∩Λ

h(x) =
d+M∑

m=0

Em(p, h;n mod q)nm.

We note that the coefficients Em depend on n, but they actually depend only on
n mod q . If h(x) is homogeneous of degree M , the highest degree coefficient Ed+M

is equal to the integral
∫
p
h(x)dx (see [6] and references therein). We also remark

that the quasi-polynomial behavior of E(p, h;n) will also follow directly from our
explicit calculations in Sect. 6; see Remark 39.

We concentrate on the special case where the polynomial h(x) is a power of a
linear form,

h(x) = 〈ξ, x〉M
M! .

This is not a restriction, because any polynomial can be written as a linear combi-
nation of powers of linear forms. In fact, as discussed in [6], whenever the poly-
nomial h(x) is either of fixed degree or only depends on a fixed number of variables
(possibly after a linear change of variables), then only a polynomial number of powers
of linear forms are needed, and such a decomposition can be computed in polynomial
time. We introduce the following notation for this special case.

Definition 14 Let q be as above. We define the Ehrhart quasi-polynomial
E(p, ξ,M;n) and the coefficients Em(p, ξ,M;n mod q) for m = 0, . . . ,M + d by

E(p, ξ,M;n) =
∑

x∈np∩Λ

〈ξ, x〉M
M! =

M+d∑

m=0

Em(p, ξ,M;n mod q)nm.
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Fig. 1 The example triangle t

and its dilation 6t

It will be convenient in this paper to introduce the following notation. For a posi-
tive integer q ∈ N and a real number n ∈ R, we write

n�q := q

⌊
1

q
n

⌋
∈ qZ, {n}q := (n mod q) ∈ [0, q),

which give the unique decomposition

n = n�q + {n}q .

By n� := n�1 and {n} := {n}1 we obtain the ordinary “floor” and “fractional part”
notation. Finally, �n� := −−n� is the “ceiling” notation.

Example 15 Consider the rational triangle t with vertices (0,0), ( 5
28 ,0), and ( 5

28 , 5
14 )

as shown in Fig. 1. Let us compute E(t, ξ,M;n) for this small example. Note that
the integer q such that qt is a lattice polytope is q = 28.

In what follows consider powers of the linear form ξ = x + y as weights for the
lattice points. When the power M = 0, then we obtain a constant weight, and the
quasi-polynomial E(t, ξ,0;n) counts the lattice points inside the various dilations
of t: it is given by the formula

25

784
n2 +

(
− 5

392
{5n}28 + 5

14

)
n +

(
1 + 1

784

({5n}28
)2 − 1

14
{5n}28

)
.

Indeed, when n = 1 (no dilation) there is only one lattice point, and the formula above
reduces to

1089

784
− 33

392
{5}28 + 1

784

({5}28
)2 = 1089

784
− 33

392
5 + 1

784
25 = 1.

When we dilate the same triangle six times, i.e., n = 6, we obtain four lattice points,

841

196
− 29

196
{30}28 + 1

784

({30}28
)2 = 841

196
− 29

196
· 2 + 1

784
· 4 = 4.

Next let us take M = 1; in that case the lattice point (a, b) is counted with weight
a + b. In this case the top coefficient is equal to the integral of the linear form ξ =
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x + y over t. The quasi-polynomial E(t, ξ,1;n) is given by the following formula:

125

16464
n3 +

(
− 25

5488
{5n}28 + 75

784

)
n2

+
(

5

5488

({5n}28
)2 − 15

392
{5n}28 + 25

84

)
n

+
(

− 1

16464

({5n}28
)3 + 3

784

({5n}28
)2 − 5

84
{5n}28

)
.

Again substitute n = 1 in the expression, to obtain

275

686
− 1685

16464
{5}28 + 13

2744

({5}28
)2 − 1

16464

({5}28
)3 = 0.

Note that since only the lattice point (0,0) lies within the triangle at n = 1, the quasi-
polynomial must evaluate to zero.

In practice, it is impossible to compute E(p, ξ,M;n) except when p is of small
dimension (and M relatively small). Thus we restrict our ambitions.

Let us fix a number k0. Our goal will be to compute the k0 + 1 highest degree
coefficients Em(p, ξ,M;n mod q), for m = M + d, . . . ,M + d − k0. We will be able
to give a polynomial-time algorithm to do so.

3.2 Expansion of the Generating Functions into Homogeneous Components

We will make use of the following key property of M�: A function φ(ξ) ∈ M�(V
∗)

has a unique expansion into homogeneous rational functions as follows. Consider
φ(tξ) as a meromorphic function of one variable t ∈ C, which we write as

φ(tξ) =
∑

m≥m0

tmφ[m](ξ),

where m0 is the lowest degree. We call the function φ[m] the homogeneous component
of φ of degree m. For instance, ξ1

ξ2
is homogeneous of degree 0. This example shows

that a function in M�(V
∗) which only has nonnegative degree terms need not be

analytic.
In particular, consider the generating function S(s + c,Λ)(ξ) for a simplicial

cone c. By Lemma 11,

S(s + c,Λ)(ξ) = S(s + b,Λ)(ξ)

d∏

j=1

T
(
0, 〈ξ, vj 〉

) · 1
∏d

j=1 〈ξ, vj 〉
.

This expression, where the first two factors are analytic, shows that indeed
S(s + c,Λ) ∈ M�(V

∗) and thus has a decomposition into homogeneous components,
where the lowest degree is −d .
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Lemma 16

S(s + c,Λ)(ξ) = S(s + c,Λ)[−d](ξ) + S(s + c,Λ)[−d+1](ξ) + · · · , (6)

and the lowest degree term S(s + c,Λ)[−d](ξ) is equal to I (c,Λ)(ξ), i.e., the integral
over the unshifted cone c.

Proof From the above discussion, we have S(s+c,Λ) ∈ M�(V
∗). The value at ξ = 0

of the sum over the parallelepiped is the number of lattice points of the parallelepiped,
that is, volΛ(b). This proves the last assertion. �

3.3 Sketch of the Method for Lattice Polytopes

We will now explain the key point of our method, with the simplifying assumption
that the vertices of the polytope are lattice points. We will show that the highest degree
coefficients of the weighted Ehrhart polynomial can be read out from an approxima-
tion of the generating functions of the cones at vertices. In Sect. 4 we will study this
approximation, and in Sect. 5 we will show how to efficiently compute it. Then, in
Sect. 6, we will return to the computation of Ehrhart coefficients for the general case
of rational polytopes.

Proposition 17 Let p be a lattice polytope. Then, for k ≥ 0, we have

EM+d−k(p, ξ,M) =
∑

s∈V (p)

〈ξ, s〉M+d−k

(M + d − k)!S(cs)[−d+k](ξ). (7)

The highest degree coefficient is just the integral

EM+d(p, ξ,M) =
∫

p

〈ξ, x〉M
M! dx.

Remark 18 As functions of ξ , the coefficients Em(p, ξ,M) are polynomial, homo-
geneous of degree M . However, in (7), they are expressed as linear combinations of
rational functions of ξ , whose poles cancel out.

Proof of Proposition 17 The starting point is Brion’s formula. As the vertices are
lattice points, we have

∑

x∈p∩Λ

e〈ξ,x〉 =
∑

s∈V (p)

S(s + cs)(ξ) =
∑

s∈V (p)

e〈ξ,s〉S(cs)(ξ). (8)

When p is replaced with np, the vertex s is replaced with ns, but the cone cs does not
change. We obtain

∑

x∈np∩Λ

e〈ξ,x〉 =
∑

s∈V (p)

en〈ξ,s〉S(cs)(ξ).
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We replace ξ with tξ ,
∑

x∈np∩Λ

et〈ξ,x〉 =
∑

s∈V (p)

ent〈ξ,s〉S(cs)(tξ). (9)

The decomposition into homogeneous components gives

S(cs)(tξ) = t−dI (cs)(ξ) + t−d+1S(cs)[−d+1](ξ) + · · · + tkS(cs)[k](ξ) + · · · . (10)

Hence, the tM -term on the right-hand side of (10) is equal to

M+d∑

k=0

(nt)M+d−k t−d+k 〈ξ, s〉M+d−k

(M + d − k)!S(cs)[−d+k](ξ).

Using this equation in (9), we have

∑

x∈np∩Λ

〈ξ, x〉M
M! =

∑

s∈V (p)

nM+d 〈ξ, s〉M+d

(M + d)! I (cs)(ξ)

+ nM+d−1 〈ξ, s〉M+d−1

(M + d − 1)!S(cs)[−d+1](ξ) + · · · + S(cs)[M](ξ).

(11)

From this relation, we read immediately that
∑

x∈np∩Λ
〈ξ,x〉M

M! is a polynomial func-

tion of n of degree M + d , and that the coefficient of nM+d−k is given by (7). The
highest degree coefficient is given by

EM+d(p, ξ,M) =
∑

s∈V (p)

〈ξ, s〉M+d

(M + d)! I (cs)(ξ).

Applying Brion’s formula for the integral, this is equal to the term of ξ -degree M in

I (p)(ξ), which is indeed the integral
∫
p

〈ξ,x〉M
M! dx. �

From Proposition 17, we draw an important consequence: In order to compute
the k0 + 1 highest degree terms of the weighted Ehrhart polynomial for the weight

h(x) = 〈ξ,x〉M
M! , we only need the k0 + 1 lowest degree homogeneous terms of the

meromorphic function S(cs)(ξ), for every vertex s of p. We compute such an approx-
imation in Sect. 4; it also turns out to be sufficient in the general case of a rational
polytope.

3.4 Intermediate Generating Functions

To obtain the approximation, we study generating functions which interpolate be-
tween the integral I (p,Λ) and the discrete sum S(p,Λ). This trend of ideas was
first discussed by Barvinok in [11]. Let L be a rational subspace of V . To any poly-
hedron p we associate a meromorphic function SL(p,Λ)(ξ) ∈ M(V ∗), which is,
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roughly speaking, obtained by slicing p along affine subspaces parallel to L through
lattice points, and adding the integrals of e〈ξ,x〉 along the slices. Recall that the quo-
tient space V/L is endowed with the projected lattice ΛV/L.

Proposition 19 Let L ⊆ V be a rational subspace. There exists a unique valuation
SL(·,Λ) which to every rational polyhedron p ⊂ V associates a meromorphic func-
tion with rational coefficients SL(p,Λ) ∈ M(V ∗) so that the following properties
hold:

(i) If p contains a line, then SL(p,Λ) = 0.
(ii)

SL(p,Λ)(ξ) =
∑

x∈ΛV/L

∫

p∩(x+L)

e〈ξ,y〉 dy, (12)

for every ξ ∈ V ∗ such that the above sum converges.
(iii) For every point s ∈ Λ, we have

SL(s + p,Λ)(ξ) = e〈ξ,s〉SL(p,Λ)(ξ).

We call the function SL(p,Λ) an intermediate generating function. The proof is
entirely analogous to the case L = {0}, see Theorem 3.1 in [13], and we omit it.

For L = {0}, we recover the valuation S. For L = V , we have SV (p,Λ) = I (p,Λ).
In particular, if p is not full dimensional, then SV (p,Λ) = 0.

If p is compact, the meromorphic function SL(p,Λ)(ξ) is actually regular at ξ = 0,
and its value for ξ = 0 is the Q-valued valuation EL⊥(p) considered by Barvinok
[11].

Remark 20 The function SL(p,Λ) is actually an element of M�(V
∗), just like the

functions S(p,Λ) and I (p,Λ). This follows from an interesting decomposition that
allows us to write SL as a combination of terms using S and I for certain cones. This
and other properties of the valuation SL(·,Λ) will be discussed in a forthcoming
article [4].

4 Approximation of the Generating Function of a Simplicial Affine Cone

Let c ⊂ V be a simplicial cone with integral generators vj , j = 1, . . . , d , and let
s ∈ VQ. Let k0 ≤ d . In this section we will obtain an expression for the k0 + 1 lowest
degree homogeneous terms of the meromorphic function S(s + c)(ξ). Recall that if c

is unimodular, the function S(s + c)(ξ) has a “short” expression,

S(s + c)(ξ) = e〈ξ,s̄〉
d∏

j=1

1

1 − e〈ξ,vj 〉 ,

where vi , i = 1, . . . , d are the primitive integral generators of the edges and s̄ is the
unique lattice point in the corresponding parallelepiped s +b. This is a particular case
of Lemma 8.
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When c is not unimodular, it is hard to compute the first k0 terms of the Laurent
expansion of the function S(s + c)(ξ), if k0 is part of the input as well as the dimen-
sion d . In contrast, if k0 is fixed, we will obtain an expression for the terms of degree
≤ −d + k0 which only involves a discrete summation over cones in dimension ≤ k0

and determinants. For example, the lowest degree term is |det(vj )|∏j
−1

〈ξ,vj 〉 .

4.1 Patching Functions

For constructing the approximation, we will use a patching function. For I ⊆
{1, . . . , d}, we denote by LI the linear span of the vectors vi , i ∈ I and by L⊥

I ⊆ V ∗
the orthogonal subspace. We denote by I c the complement of I in {1, . . . , d}.

Definition 21 We denote by J d
≥d0

the set of subsets I ⊆ {1, . . . , d} of cardinality

|I | ≥ d0. A function I �→ λ(I) on J d
≥d0

is called a patching function if it satisfies the
following condition:

[ ⋃

I∈J d≥d0

L⊥
I =

∑

I∈J d≥d0

λ(I)

]
L⊥

I , (13)

where [·] denotes the indicator function of a set.

Remark 22 The family of subspaces LI , |I | ≥ d0 is closed under sum, and the family
of orthogonals L⊥

I is closed under intersection. The value λ(I) plays the same role
as the Möbius function μ(L) for L⊥

I that Barvinok [11, Sect. 7] computes algorith-
mically for a certain family of subspaces L by walking the poset. From this relation
to Möbius functions, it follows that patching functions do exist. The precise relation
between Barvinok’s construction and the construction of the present paper will be
studied in the forthcoming paper [5].

We will compute a canonical patching function below, in Proposition 29.
Let us first state some interesting properties.

Lemma 23 Let I �→ λ(I) be a function on J d
≥d0

. The following conditions are equiv-
alent:

(i) λ is a patching function.
(ii)

∑
I∈J d≥d0

,I⊆I0
λ(I) = 1 for every I0 ∈ J d

≥d0
.

(iii) For 1 ≤ i ≤ d , let Fi(z) ∈ C[[z]] be a formal power series (in one variable) with
constant term equal to 1. Then

∏

1≤i≤d

Fi(zi) ≡
∑

I∈J d≥d0

λ(I)
∏

i∈I c

Fi(zi)

mod terms of z-degree ≥ d − d0 + 1. (14)
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(iv) Let zI c = ∑
i∈I c zi . Then

ez1+···+zd ≡
∑

I∈J d≥d0

λ(I)ezIc mod terms of z-degree ≥ d − d0 + 1. (15)

Proof Let I0 ∈ J d
≥d0

. Then there exists ξ ∈ L⊥
I0

such that ξ ∈ L⊥
I if and only if L⊥

I0
⊆

L⊥
I , i.e., if and only if I ⊆ I0. Thus (i) ⇔ (ii).

Let us prove that (ii) ⇒ (iii). We write Fi(zi) = 1 + zigi(zi). We have
∏

1≤i≤d

(
1 + zigi(zi)

) =
∑

K⊆{1,...,d}

∏

i∈K

zigi(zi). (16)

Consider a monomial z
k1
1 · · · zkd

d of total degree k1 + · · · + kd ≤ d − d0. Let us denote

its coefficient in the product
∏

i∈K zigi(zi) by αK . Let K0 be the set of indices such
that ki �= 0. Then |K0| ≤ d − d0. Moreover, on the right-hand side of (16), our mono-
mial appears only in the terms where K ⊆ K0. Therefore the coefficient of z

k1
1 · · · zkd

d

in
∏

1≤i≤d Fi(zi) is equal to
∑

K⊆K0
αK . Furthermore, the coefficient of z

k1
1 · · · zkd

d

on the right-hand side of (14) is equal to
∑

I∈J d≥d0

λ(I)
∑

K⊆K0∩I c

αK =
∑

K⊆K0

αK

∑

I∈J d≥d0
K⊆I c

λ(I).

By condition (ii) we have
∑

I∈J d≥d0
K⊆I c

λ(I) = 1 for every K ⊆ K0.

Thus we have proved that (ii) ⇒ (iii). Next, (iv) is a particular case of (iii), so it
remains only to prove that (iv) implies (ii).

By expanding the exponentials in condition (iv), we obtain

(z1 + · · · + zd)d−d0 =
∑

I∈J d≥d0

λ(I)

(∑

i∈I c

zi

)d−d0

.

Condition (ii) follows easily from this relation. �

4.2 Formula for Intermediate Sums

In preparation for the approximation theorem, we need some notation and an expres-
sion for intermediate sums SL(s + c,Λ)(ξ).

We have V = LI ⊕ LI c . For x ∈ V we denote the components by

x = xI + xI c .



Found Comput Math (2012) 12:435–469 451

Fig. 2 The projected
lattice Λ{1}

Thus we identify the quotient V/LI with LI c , and we denote the projected lattice by
ΛI c ⊂ LI c . Note that LI c ∩ Λ ⊆ ΛI c , but the inclusion is strict in general.

Example 24 Let v1 = (1,0), v2 = (1,2), I = {2}. The projected lattice ΛI c on LI c =
Rv1 is Z

v1
2 . See Fig. 2.

We denote by cI the cone generated by the vectors vj , for j ∈ I and by bI the
parallelepiped bI = ∑

i∈I [0,1[vi . Similarly, we denote by cI c the cone generated
by the vectors vj , for j ∈ I c and bI c = ∑

i∈I c[0,1[vi . The projection of the cone c

on V/LI = LI c identifies with cI c . Note that the generators vi , i ∈ I c, may be non-
primitive for the projected lattice ΛI c , even if they are primitive for Λ, as we see in
the previous example. We write s = sI + sI c .

We first show that the intermediate generating function SLI (s + c,Λ) decomposes
as a product.

The function S(sI c + cI c,ΛI c)(ξ) is a meromorphic function on the space (LI c)∗.
The integral I (sI + cI ,LI ∩ Λ)(ξ) is a meromorphic function on the space (LI )

∗.
We consider both as functions on V ∗ through the decomposition V = LI ⊕ LI c .

Proposition 25 The intermediate sum for the full cone s + c breaks up into the prod-
uct

SLI (s + c,Λ)(ξ) = S(sI c + cI c,ΛI c)(ξ) I (sI + cI ,LI ∩ Λ)(ξ). (17)

Proof The projection of the cone s + c into LI c is the cone sI c + cI c . For each xI c ∈
(sI c + cI c) ∩ ΛI c , the slice (s + c) ∩ (xI c + LI ) is the cone xI c + sI + cI . Let us
compute the integral on the slice,

∫

(s+c)∩(xIc+LI )

e〈ξ,y〉 dmLI ∩Λ(y). (18)

We write y = xI c + sI + ∑
j∈I yj vj . Then

dmLI ∩Λ(y) = volLI ∩Λ(bI )
∏

j∈I

dyj .
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Hence (18) is equal to

e〈ξ,xIc 〉e〈ξ,sI 〉 volLI ∩Λ(bI )(−1)|I | ∏

j∈I

1

〈ξ, vj 〉 .

We observe that only the first factor, e〈ξ,xIc 〉, depends on xI c . The sum of these factors
over all xI c ∈ (sI c + cI c) ∩ ΛI c gives S(sI c + cI c ,ΛI c)(ξ), and using formula (1) for
the integral, we obtain (17). �

4.3 Approximation Theorem

We can now state and prove the approximation theorem.

Theorem 26 (Approximation by a patched generating function) Let c ⊂ V be a ra-
tional simplicial cone with edge generators v1, . . . , vd . Let s ∈ VQ. Let I �→ λ(I) be
a patching function on J d

≥d0
. For I ∈ J d

≥d0
let LI be the linear span of {vi}i∈I . Then

we have

S(s + c,Λ)(ξ) ≡ Aλ(s + c,Λ)(ξ) :=
∑

I∈J d≥d0

λ(I)SLI (s + c,Λ)(ξ)

mod terms of ξ -degree ≥ −d0 + 1. (19)

We call the function Aλ(s + c,Λ)(ξ) on the right-hand side of (19) the patched
generating function of s + c (with respect to λ).

Proof of Theorem 26 We write the vertex as s = ∑
i sivi . Let a = ∑

i aivi ∈ V . We
apply (14) to the functions

Fi(zi) = e(ai−si )zi
−zi

1 − ezi
,

and we substitute zi = 〈ξ, vi〉. We obtain

e〈ξ,a−s〉
d∏

i=1

−〈ξ, vi〉
1 − e〈ξ,vi 〉 ≡

∑

I∈J d≥d0

λ(I)e〈ξ,aIc −sIc 〉 ∏

i∈I c

−〈ξ, vi〉
1 − e〈ξ,vi 〉

mod terms of ξ -degree ≥ d − d0 + 1.

We multiply both sides first by e〈ξ,s〉; because this is analytic in ξ and thus of nonneg-
ative ξ -degree, the identity modulo terms of high ξ -degree still holds true. Then we
multiply by 1/

∏d
i=1(−〈ξ, vi〉), which is homogeneous of degree −d in ξ . We obtain

e〈ξ,a〉
d∏

i=1

1

1 − e〈ξ,vi 〉 ≡
∑

I∈J d≥d0

λ(I)e〈ξ,aIc 〉 ∏

i∈I c

1

1 − e〈ξ,vi 〉 e〈ξ,sI 〉 ∏

i∈I

−1

〈ξ, vi〉

mod terms of ξ -degree ≥ −d0 + 1. (20)
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Now, we sum up equalities (20) when a runs over the set (s +b)∩Λ of integral points
in the fundamental parallelepiped s + b of the affine cone s + c. On the left-hand side
we obtain

∑

a∈(s+b)∩Λ

e〈ξ,a〉
d∏

i=1

1

1 − e〈ξ,vi 〉 .

By Lemma 9, this is precisely S(s + c,Λ)(ξ). On the right-hand side, for each I , we
have a sum over a ∈ (s + b) ∩ Λ of the function

e〈ξ,aIc 〉 ∏

i∈I c

1

1 − e〈ξ,vi 〉 e〈ξ,sI 〉 ∏

i∈I

−1

〈ξ, vi〉 ,

which depends only on the projection aI c of a in the decomposition a = aI + aI c ∈
LI ⊕LI c . When a runs over (s+b)∩Λ, its projection aI c runs over (sI c +bI c)∩ΛI c .
Let us show that the fibers have the same number of points, equal to volLI ∩Λ(bI ). For
a given aI c ∈ (sI c + bI c) ∩ ΛI c , let us compute the fiber

{y ∈ (s + b) ∩ Λ : yI c = aI c}.
Fix a point aI + aI c in this fiber. Then y = aI c + yI lies in the fiber if and only if
yI − aI ∈ (sI − aI + bI ) ∩ Λ. By Lemma 8(ii), the cardinality of the fiber is equal to
volLI ∩Λ(bI ). Thus we obtain

S(s + c)(ξ)

≡
∑

I∈J d≥d0

λ(I)S(sI c + bI c)(ξ)
∏

i∈I c

1

1 − e〈ξ,vi 〉 e〈ξ,sI 〉 volLI ∩Λ(bI )
∏

i∈I

−1

〈ξ, vi〉

mod terms of ξ -degree ≥ −d0 + 1. (21)

By Proposition 25 and Lemmas 7 and 9, the term corresponding to an I ∈ J d
≥d0

on
the right-hand side of (21) is precisely

SLI (s + c,Λ)(ξ) = S(sI c + cI c ,ΛI c)(ξ) I (sI + cI ,LI ∩ Λ)(ξ),

which completes the proof. �

Remark 27 For d0 = 0, we obtain the poset J d
≥0 of all subsets of {1, . . . , d}. The

unique patching function on J d
≥0 is given by λ(∅) = 1 and λ(I) = 0 for all I �= ∅.

Then the approximation is trivial, i.e., S(s + c,Λ)(ξ) = Aλ(s + c,Λ)(ξ).

Example 28 Let c be the first quadrant in R
2, and d0 = 1. Thus J 2≥1 consists

of three subsets, {1}, {2}, and {1,2}. A patching function is given by λ({i}) = 1
and λ({1,2}) = −1. We consider the affine cone s + c with s = (− 1

2 ,− 1
2 ). Let

ξ = (ξ1, ξ2). We have

I (si + c{i})(ξ) = −e−ξi/2

ξi

, I (s + c)(ξ) = e−ξ1/2−ξ2/2

ξ1ξ2
,
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S(si + c{i})(ξ) = 1

1 − eξi
, S(s + c)(ξ) = 1

(1 − eξ1)(1 − eξ2)
.

The approximation theorem claims that

1

(1 − eξ1)(1 − eξ2)
≡ 1

1 − eξ2
· −e−ξ1/2

ξ1
+ 1

1 − eξ1
· −e−ξ2/2

ξ2
− e−ξ1/2−ξ2/2

ξ1ξ2

mod terms of ξ -degree ≥ 0.

Indeed, the difference between the two sides is equal to

(
1

1 − eξ1
+ e−ξ1/2

ξ1

)(
1

1 − eξ2
+ e−ξ2/2

ξ2

)

which is analytic near 0.

4.4 An Explicit Patching Function

Next we compute an explicit patching function on J d
≥d0

. It is related to the Möbius

function of the poset J d
≥d0

, so we call it the Möbius patching function and denote it by

λMöbius. We will denote the corresponding patched generating function AλMöbius(s +
c,Λ) by A≥d0(s + c,Λ).

Proposition 29 For I ∈ J d
≥d0

, let

λMöbius(I ) = (−1)|I |−d0

(|I | − 1

d0 − 1

)
.

Then λMöbius is a patching function on J d
≥d0

.

Proof We prove that λMöbius satisfies condition (iv) of Lemma 23. The trick is to
write ez = 1 + t (ez − 1)|t=1. Thus

ez1+···+zd =
d∏

i=1

ezi =
d∏

i=1

(
1 + t

(
ezi − 1

))∣∣∣∣
t=1

.

Let us consider P(t) := ∏d
i=1(1 + t (ezi − 1)) = ∑d

q=0 Cq(z)tq as a polynomial in
the indeterminate t . As ezi − 1 is a sum of terms of zi -degree > 0, we have

ez1+···+zd ≡
k0∑

q=0

Cq(z) mod terms of z-degree ≥ k0 + 1. (22)

Next, we write

P(t) =
d∏

i=1

(
1 + t

(
ezi − 1

)) =
d∏

i=1

(
(1 − t) + tezi

)
.



Found Comput Math (2012) 12:435–469 455

By expanding the product, we obtain

Cq(z) =
∑

|K|≤q

(−1)q−|K|
(

d − |K|
q − |K|

)
ezK .

Summing up these coefficients for 0 ≤ q ≤ k0 = d − d0, we obtain

k0∑

q=0

Cq(z) =
∑

|K|≤k0

(
k0∑

q=|K|
(−1)q−|K|

(
d − |K|
q − |K|

))
ezK .

By substituting K = I c and d − q = m, we obtain

k0∑

q=0

Cq(z) =
∑

|I |≥d0

f
(|I |)ezIc ,

with

f (j) =
j∑

m=d0

(−1)j−m

(
j

j − m

)
=

j∑

m=d0

(−1)j−m

(
j

m

)
.

The truncated binomial sum f (j) is easy to compute, using the recursion relation(
j
m

) = (
j−1
m−1

) + (
j−1
m

)
. We obtain

f (j) = (−1)j−d0

(
j − 1

d0 − 1

)
.

Thus, λMöbius(I ) = f (|I |) satisfies condition (ii) for a patching function. �

Remark 30 Proposition 29 can also be deduced from results in [16].

5 Computation of the Patched Generating Function

In this section, we show that if k0 = d − d0 is fixed, the patched generating func-
tion A≥d0(s + c,Λ) can be efficiently computed for a simplicial cone s + c. This will
be a consequence of Barvinok’s polynomial-time decomposition of cones in fixed di-
mension [10, 12]. We exhibit the dependence of the patched generating function on
the vertex s explicitly as a “step function” in two useful ways, using the “ceiling”
function �·� and the “fractional part” function {·}, respectively.

We start with the following result.

Theorem 31 (Short formula for SLI (s + c,Z
d)(ξ) for varying s) Fix a nonnegative

integer k0. There exists a polynomial-time algorithm for the following problem. Given
the following input:

(I1) a number d in unary encoding,
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(I2) a simplicial cone c = c(v1, . . . , vd) ⊂ R
d , represented by the vectors v1, . . . , vd ∈

Z
d in binary encoding,

(I3) a subspace LI = lin(vi : i ∈ I ) ⊆ R
d of codimension k0, represented by an index

set I ⊆ {1, . . . , d} of cardinality d0 = d − k0,

compute the following output in binary encoding:

(O1) a finite set Γ ,
(O2) for every γ in Γ , integers α(γ ), rational vectors η

(γ )

i and w
(γ )

i for i = 1, . . . , d ,

where η
(γ )

i ∈ Z
d for i ∈ I c

such that for every s ∈ Q
d , we have the following equality of meromorphic functions

of ξ :

SLI
(
s + c,Z

d
)
(ξ)

=
∑

γ∈Γ

α(γ )
∏

i∈I c

T
(⌈〈

η
(γ )

i , s
〉⌉

,
〈
ξ,w

(γ )

i

〉)

·
∏

i∈I

exp
(〈
η

(γ )

i , s
〉〈
ξ,w

(γ )

i

〉) · 1
∏d

i=1〈ξ,w
(γ )

i 〉
(23a)

= e〈ξ,s〉 ∑

γ∈Γ

α(γ )
∏

i∈I c

T
({−〈

η
(γ )

i , s
〉}

,
〈
ξ,w

(γ )

i

〉) · 1
∏d

i=1〈ξ,w
(γ )

i 〉
. (23b)

Of course, for I = ∅ we have L = {0}, and so we recover formulas for S(s +
c,Z

d)(ξ). If we set I = {1, . . . , d}, then L = R
d , and we get formulas for I (s + c,

Z
d)(ξ).

Remark 32 Consider the term corresponding to γ ∈ Γ in (23a) or (23b). As will
follow from the proof, the vector w

(γ )

i for i ∈ I is just the original vector vi , and

the collection w
(γ )

i , i = 1, . . . , d , forms a basis of R
d . Furthermore, the vectors w

(γ )

i ,

with i ∈ I c, are in LI c and form a basis of the projected lattice. The vectors η
(γ )

i ,

i = 1, . . . , d , are the dual (biorthogonal) vectors to the elements w
(γ )

j , j = 1, . . . , d ,

i.e., 〈η(γ )

i ,w
(γ )

j 〉 = δi,j . Thus we only need to compute the integers α(γ ) and the

elements w
(γ )

i , where i ∈ I c.

Remark 33 Consider the term corresponding to γ ∈ Γ in (23b). As the vectors
w

(γ )

i , i ∈ I c, form a basis of the projected lattice, we may identify V/(LI + Λ) to
⊕

i∈I c [0,1[w(γ )

i . Define

s(γ ) =
∑

i∈I c

{−〈
η

(γ )

i , s
〉}

w
(γ )

i .

As the η
(γ )

i for i ∈ I c are integer vectors, and 〈η(γ )

i , vj 〉 = 0 if j ∈ I , we can think
of s �→ s(γ ) as a linear map on the torus V/(Λ + LI ) with integer coefficients. The
point s + s(γ ) is in

⊕
i∈I c Zw

(γ )

i ⊕ ⊕
i∈I Rvi , and formula (23b) also reads
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SLI
(
s + c,Z

d
)
(ξ) =

∑

γ∈Γ

α(γ )e〈ξ,s+s(γ )〉 1
∏

i∈I c(1 − e〈ξ,w
(γ )
i 〉)

1
∏

i∈I 〈ξ, vi〉
. (24)

Now we prove the theorem.

Proof of Theorem 31 Let us describe the algorithm along with the proof. Let Λ = Z
d .

By Proposition 25,

SLI (s + c,Λ)(ξ) = S(sI c + cI c,ΛI c)(ξ) I (sI + cI ,LI ∩ Λ)(ξ). (25)

We first discuss I (sI + cI ,LI ∩ Λ). We have

I (sI + cI ,LI ∩ Λ)(ξ) = e〈ξ,sI 〉 volLI ∩Λ(bI )
∏

j∈I

−1

〈ξ, vj 〉 . (26)

Using linear functionals ηi ∈ Q
d , i ∈ I (the coordinate functions with respect to the

basis vi ), write sI = ∑
i∈I 〈ηi, s〉vi . The ηi can be read off in polynomial time from

the inverse of the matrix whose columns are v1, . . . , vd . Then e〈ξ,sI 〉 takes the form

e〈ξ,sI 〉 =
∏

i∈I

exp
(〈ηi, s〉〈ξ, vi〉

)
. (27)

Now, to handle the factor S(sI c +cI c,ΛI c), note that cI c ⊂ LI c is a k0-dimensional
cone. By using a Hermite normal form computation, which is polynomial time [29],
we can compute a linear change of variables which replaces the projected lattice ΛI c

on LI c by Z
k0 . Then, using Barvinok’s decomposition [10], we decompose it into a

family of cones which are unimodular,

[cI c] ≡
∑

m∈M

εm

[
c
(m)
I c

]
(modulo cones containing lines), (28)

where εm ∈ {±1}. As k0 is fixed, this decomposition can be done with a polynomial-
time algorithm. Of course, this step is crucial with respect to the efficiency of the
whole algorithm.

Again changing notation, we now denote by c = c({wi}i∈I c) one of these uni-

modular cones c
(m)
I c ⊂ LI c , with primitive generators wi , and also write ε = εm. We

remark that the vectors wi , i ∈ I c, generate the projected lattice on LI c . Using linear
functionals ηi ∈ Q

d , i ∈ I c, write sI c = ∑
i∈I c〈ηi, s〉wi . Actually, we have ηi ∈ Z

d .
By letting wi = vi for the other indices i ∈ I , we can write

s =
∑

i∈I

〈ηi, s〉vi +
∑

i∈I c

〈ηi, s〉wi =
d∑

i=1

〈ηi, s〉wi. (29)

Let s′
I c be the unique lattice point in the fundamental parallelepiped of the cone

sI c + c. We have

s′
I c =

∑

i∈I c

⌈〈ηi, s〉
⌉
wi. (30)
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Using this, we obtain the generating function from Lemma 9 as

S(sI c + c)(ξ) = e〈ξ,s′
Ic 〉

∏
i∈I c(1 − e〈ξ,wi 〉)

.

Thus finally, using (26) we have the meromorphic function

ε volLI ∩Λ(bI )(−1)|I | · e〈ξ,s′
Ic 〉

∏
i∈I c(1 − e〈ξ,wi 〉)

· e〈ξ,sI 〉
∏

j∈I 〈ξ, vj 〉 . (31)

Then (31) is now written as

α
∏

i∈I c

T
(⌈〈ηi, s〉

⌉
, 〈ξ,wi〉

) ·
∏

i∈I

exp
(〈ηi, s〉〈ξ, vi〉

) · 1
∏d

i=1〈ξ,wi〉
, (32)

where α collects the multiplicative constants in (31). Collecting these terms gives the
desired short formula (23a).

To derive the second form, we note that �〈ηi, s〉� = 〈ηi, s〉 + {−〈ηi, s〉}, so we can
write

T
(⌈〈ηi, s〉

⌉
, 〈ξ,wi〉

) = T
({−〈ηi, s〉

}
, 〈ξ,wi〉

)
exp

(〈ηi, s〉〈ξ,wi〉
)
. (33)

Thus the term (32) can be written as

α
∏

i∈I c

T
({−〈ηi, s〉

}
, 〈ξ,wi〉

) · e〈ξ,s〉 · 1
∏d

i=1〈ξ,wi〉
, (34)

using (29). Collecting these terms gives the short formula (23b). �

Example 34 Let us give a short example of the output of our algorithm. Consider the
three-dimensional cone with rays given by the vectors (1,1,1), (1,−1,0), (1,1,0).
This cone is not unimodular. We consider the affine cone s + c. Our algorithm de-
scribed in Theorem 31 computes any intermediate generating function SL(s + c,Z

3)

when L is a linear span of a face of c. For L = {0} (indexed by the empty set I ), we
obtain the meromorphic function S(s + c,Z

3)(ξ) (the discrete generating function of
the cone s + c). Here S(s + c,Z

3)(ξ) depends on s = (s1, s2, s3) and ξ = (ξ1, ξ2, ξ3)

and is given by

exp(s1ξ1 + s2ξ2 + s3ξ3)

·
(

−T ({−s3 + s2},−ξ1 − ξ2)T ({−s1 + s2}, ξ1)T ({−s3}, ξ1 + ξ2 + ξ3)

(−ξ1 − ξ2)ξ1(ξ1 + ξ2 + ξ3)

+ T ({−s3 + s2}, ξ1 − ξ2)T ({2 s3 − s2 − s1}, ξ1)T ({−s3}, ξ1 + ξ2 + ξ3)

(ξ1 − ξ2)ξ1(ξ1 + ξ2 + ξ3)

)
.

If L = Rv1 is the subspace of dimension 1 generated by the edge v1 = (1,1,1) of
the cone c (so that L is indexed by the subset I = {1} of {1,2,3}), the intermediate
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generating function SL(s + c,Z
3) is given by

exp(s1ξ1 + s2ξ2 + s3ξ3)

(
−T ({−s3 + s2},−ξ1 − ξ2)T ({−s1 + s2}, ξ1)

(−ξ1 − ξ2)ξ1(−ξ1 − ξ2 − ξ3)

+ T ({−s3 + s2}, ξ1 − ξ2)T ({2 s3 − s2 − s1}, ξ1)

(ξ1 − ξ2)ξ1(−ξ1 − ξ2 − ξ3)

)
.

Remark 35 When k0 = d − d0 is fixed, the set J d
≥d0

has a polynomially bounded

cardinality, and it can be enumerated by using a straightforward algorithm along with
the evaluation of the patching function λMöbius. Thus we can also compute A≥d0(s +
c,Λ)(ξ) in the same form (23a) or (23b) in polynomial time.

6 Computation of Ehrhart Quasi-polynomials

We now apply the approximation of the generating functions of the cones at ver-
tices to the computation of the highest coefficients for a weighted Ehrhart quasi-
polynomial. We first discuss the case when the weight is a power of a linear form.

Theorem 36 Let p be a simple rational polytope, and let V (p) denote the set of its
vertices. For each vertex s ∈ V (p), let cs be the tangent cone of s, and let qs ∈ N be a
positive integer such that qs s ∈ Λ. Fix a linear form � ∈ V ∗ and M a nonnegative in-
teger. Fix 0 ≤ k0 ≤ d and let d0 = max{d −k0,0}. Then the Ehrhart quasi-polynomial

E(p, �,M;n) =
∑

x∈np∩Λ

〈�, x〉M
M!

coincides in degree ≥ M + d − k0 with the following quasi-polynomial:

k0∑

k=0

∑

s∈V (p)

(n�qs

)M+d−k 〈ξ, s〉M+d−k

(M + d − k)! A≥d0

({n}qs s + cs ,Λ
)
[−d+k](ξ), (35a)

evaluated at ξ = �, which can also be written as

k0∑

k=0

nM+d−k
∑

s∈V (p)

〈ξ, s〉M+d−k

(M + d − k)!
(
e−〈ξ,{n}qs s〉A≥d0

({n}qs s + cs ,Λ
)
(ξ)

)
[−d+k],

(35b)
evaluated at ξ = �.

In the following, we will use the second form (35b).

Remark 37 The sum (35) depends polynomially on �. However, for an individual
vertex s, the functions

ξ �→ 〈ξ, s〉M+d−k

(M + d − k)! A≥d0

({n}qs s + cs ,Λ
)
[−d+k](ξ)
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and

ξ �→ 〈ξ, s〉M+d−k

(M + d − k)!
(
e−〈ξ,{n}qs s〉A≥d0

({n}qs s + cs ,Λ
)
(ξ)

)
[−d+k]

are meromorphic functions, which are not defined if ξ is singular. Thus in the algo-
rithm we use a deformation procedure; i.e., we evaluate the function at ξ = � + ε�′
for a suitable rational perturbation vector �′ and then compute the limit for ε → 0.

Proof of Theorem 36 The sum
∑

x∈np∩Λ
〈ξ,x〉M

M! is the term of ξ -degree M in

S(np)(ξ) =
∑

s∈V (p)

S(ns + cs)(ξ).

Fix a vertex s. We write n = n�qs + {n}qs . As n�qs s is a lattice point, we have

S(ns + cs)(ξ) = en�qs 〈ξ,s〉S
({n}qs s + cs

)
(ξ). (36)

Consider S(ns + cs)[M](ξ) as a quasi-polynomial in n. By (36), it coincides in degree
≥ M + d − k0 with

k0∑

k=0

(n�qs

)M+d−k 〈ξ, s〉M+d−k

(M + d − k)! S
({n}qs s + cs

)
[−d+k](ξ).

Now, for 0 ≤ k ≤ k0, we have

S
({n}qs s + cs

)
[−d+k](ξ) = A≥d0

({n}qs s + cs
)
[−d+k](ξ).

By specializing on ξ = �, we obtain the claim in the form of (35a).
To obtain the second claim in the form of (35b), we write

S(ns + cs)(ξ) = en〈ξ,s〉(e−〈ξ,s〉{n}qs S
({n}qs s + cs

)
(ξ)

)
. (37)

Again, by expanding, we obtain that the quasi-polynomial S(ns +cs)[M](ξ) coincides
in degree ≥ M + d − k0 with

k0∑

k=0

nM+d−k 〈ξ, s〉M+d−k

(M + d − k)!
(
e−〈ξ,s〉{n}qs S

({n}qs s + cs
)
(ξ)

)
[−d+k].

Since e−〈ξ,s〉{n}qs is analytic in ξ , we have for 0 ≤ k ≤ k0 that

(
e−〈ξ,s〉{n}qs S

({n}qs s + cs
)
(ξ)

)
[−d+k]

= (
e−〈ξ,s〉{n}qs A≥d0

({n}qs s + cs
)
(ξ)

)
[−d+k]. (38)

Again, by specializing on ξ = �, we obtain the claim in the form of (35b). �
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We now derive the coefficient functions Em of the weighted Ehrhart quasi-
polynomial as short closed formulas that are step polynomials (cf. [34]). To be pre-
cise, we define a step polynomial in n as a finite sum of functions of the form

f
(
(ζ1n) mod q1, . . . , (ζkn) mod qk

)
,

where f is a polynomial and ζ1, . . . , ζk ∈ Z, q1, . . . , qk ∈ N. These can then be eval-
uated efficiently, providing a corollary (Theorem 43) in the same form as Barvinok’s
theorem in [11].

Theorem 38 For every fixed number k0 ∈ N, there exists a polynomial-time algo-
rithm for the following problem.
Input:

(I1) a number d ∈ N in unary encoding, with d ≥ k0,
(I2) a finite index set V ,
(I3) a simple polytope p, given by its vertices, rational vectors sj ∈ Q

d for j ∈ V in
binary encoding,

(I4) a rational vector � ∈ Q
d in binary encoding,

(I5) a number M ∈ N in unary encoding.

Output, in binary encoding,

(O1) an index set Γ ,
(O2) polynomials f γ,m ∈ Q[r1, . . . , rk0 ] and integer numbers ζ

γ,m

i ∈ Z, q
γ,m

i ∈ N

for γ ∈ Γ and m = M + d − k0, . . . ,M + d and i = 1, . . . , k0,

such that the Ehrhart quasi-polynomial

E(p, �,M;n) =
∑

x∈np∩Λ

〈�, x〉M
M! =

M+d∑

m=0

Em

(
p, �,M; {n}q

)
nm

agrees in n-degree ≥ M + d − k0 with the quasi-polynomial

∑

γ∈Γ

M+d∑

m=M+d−k0

f γ,m
({

ζ
γ,m

1 n
}
q

γ,m

1
, . . . ,

{
ζ

γ,m

k0
n
}
q

γ,m
k0

)
nm.

Remark 39 For d ≤ k0, the algorithm actually computes the complete Ehrhart quasi-
polynomial, i.e., the coefficient functions Em(p, �,M; {n}q) for m = 0, . . . ,M + d .
However, the key point of our method is to handle the case where d > k0; then the
non-trivial efficiently computable approximations come into play.

Remark 40 The specific form of the quasi-polynomial given by the theorem gives a
more precise period qi for the individual terms, rather than a period qs that is de-
termined by the vertex. The qi will always be divisors of qs . Due to the projections
into lattices in small dimension ≤ k0, these periods can be much smaller than qs . In
particular, the highest degree coefficient EM+d , of course, is a constant.
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We will use the following lemma.

Lemma 41 (Lemma 4 of [6]) For every fixed number D ∈ N, there exists a
polynomial-time algorithm for the following problem.
Input: a number M in unary encoding, a sequence of k polynomials Pj ∈
Q[X1, . . . ,XD] of total degree at most M , in dense monomial representation.
Output: the product P1 · · ·Pk truncated at degree M .

We can now prove the theorem.

Proof of Theorem 38 Because the polytope p is simple, we can use the primal–dual
algorithm by Bremner, Fukuda, and Marzetta [17, Corollary 1] to compute the in-
equality description (H-description) from the given V-description in polynomial time.
From the double description, we can compute in polynomial time the description of
the tangent cones csj for j ∈ V by the primitive vectors vsj ,1, . . . , vsj ,d ∈ Z

d such that
csj = c(vsj ,1, . . . , vsj ,d ).

We now use formula (35b) of Theorem 36, which gives (with d0 = d − k0)

Em

(
p, ξ,M; {n}q

)

=
∑

s∈V (p)

〈ξ, s〉m
m!

(
e−〈ξ,{n}qs s〉A≥d0

({n}qs s + cs ,Λ
)
(ξ)

)
[−d+k] (39)

for m = M + d − k, when m ≥ M + d − k0. We compute this separately for each
k = 0, . . . , k0, that is, m = M + d − k0, . . . ,M + d . Let s + cs be one of these cones.
By the algorithm of Theorem 31 and Remark 35, we compute the data describing the
parametric short formula (23b) for A≥d0({n}qs s + cs ,Λ)(ξ). We then consider one of
the summands of

〈ξ, s〉m
m!

(
e−〈ξ,{n}qs s〉A≥d0

({n}qs s + cs ,Λ
)
(ξ)

)
[−d+k]

at a time. Here e−〈ξ,{n}qs s〉 and the term e〈ξ,{n}qs s〉 from (23b) cancel, and thus each
summand takes the form

( 〈ξ, s〉M+d−k

(M + d − k)!
)(∏

i∈I c

T
(
τi(n), 〈ξ,wi〉

))

[k]

(
1

∏d
i=1〈ξ,wi〉

)
, (40)

where

τi(n) := {−〈ηi, s〉{n}qs

}
for i ∈ I c. (41)

Let qi ∈ N be the smallest positive integer such that qi〈−ηi, s〉 ∈ Z. Then qi is a
divisor of the number qs associated with the vertex s, because ηi ∈ Z

d . Then

τi(n) = 1

qi

{
ζi{n}qs

}
qi

with ζi = qi〈−ηi, s〉 ∈ Z.
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Since qi is a divisor of qs , this simplifies to

τi(n) = 1

qi

{ζin}qi
, (42)

where ζi can be reduced modulo qi as well because n is assumed to be an integer. We
now treat ri := {ζin}qi

∈ N as symbolic variables.
In order to evaluate (40) at ξ = �, we note the following. The first factor is holo-

morphic in ξ and homogeneous of ξ -degree m = M + d − k, the second factor is
holomorphic in ξ and homogeneous of degree k, and the third factor is homogeneous
of ξ -degree −d . If 〈�,wi〉 = 0 for some i, we cannot just substitute ξ = � in the for-
mula. Instead we use a perturbation. In polynomial time, we can compute a rational
vector �′ ∈ Q

d such that 〈�′,wi〉 �= 0 for all vectors wi with 〈�,wi〉 = 0. It is impor-
tant that we choose the same vector once and for all computations with all cones and
summands.

We then set ξ = t (� + ε�′), where t and ε are treated as symbolic variables. Here
the exponent of the variable t keeps track of the ξ -degrees. We then perform compu-
tations with truncated series in Q[ri : i ∈ I c][t±1, ε±1]. We note that this is a polyno-
mial ring in a constant number of variables only, because |I c| is bounded above by the
constant k0. Thus Lemma 41 gives us a polynomial-time algorithm for multiplying
the series. Then (40) can be written as

〈� + ε�′, s〉m
m! ·

(∏

i∈I c

T
(
τi(n),

〈
t (�+ ε�′),wi

〉))

[k]
· 1
∏d

i=1〈� + ε�′,wi〉
· tM−k, (43)

where the subscript [k] now means to take the term of t-degree k. In the end we are
interested in the coefficient of the term tMε0.

Expanding the factors of (43) gives the following contributions, all of which can
be written down in polynomial time. First of all, the rational terms 〈� + ε�′,wi〉−1

give the following contribution. If 〈�,wi〉 = 0, we simply get

1

〈� + ε�′,wi〉 = 1

〈�′,wi〉ε
−1. (44)

If 〈�,wi〉 �= 0, we get the geometric series in ε,

1

〈� + ε�′,wi〉 = 1

〈�,wi〉
∞∑

u=0

(
−〈�′,wi〉

〈�,wi〉
)u

εu.

The first and second terms in (43) are holomorphic; thus the only negative degrees
in ε come from the rational terms (44). Let U be the number of vectors wi that are
orthogonal to �; then ε−U is the lowest negative degree. Note that U ≤ d . Since we
wish to find the term of ε-degree 0, we can truncate all series after ε-degree U :

1

〈� + ε�′,wi〉 = 1

〈�,wi〉
U∑

u=0

(
−〈�′,wi〉

〈�,wi〉
)u

εu + oε

(
εU

)
. (45)
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We expand the first factor of (43) as follows:

〈� + ε�′, s〉m
m! =

min{m,U}∑

u=0

(
m

u

)
〈�, s〉m−u〈�′, s〉uεu + oε

(
εU

)
. (46)

Now we consider the holomorphic terms

T
(
τi(n),

〈
t (� + ε�′),wi

〉)

= −
∞∑

j=0

1

j !Bj (τi)
〈
t (� + ε�′),wi

〉j

= −
k0∑

j=0

1

j !Bj

(
1

qi

ri

)(min{j,U}∑

u=0

(
j

u

)
〈�,wi〉j−u〈�′,wi〉uεu

)
tj

+ ot

(
tk0

) + oε

(
εU

)
. (47)

The Bernoulli polynomials Bj (τi) of degree j ≤ k0 that appear in this formula can
be efficiently expanded in polynomial time using recursion formulas. We remark that
the variables ri appear with a degree that is at most that of t . Using Lemma 41, we
multiply the truncated series (47) for i ∈ I c in Q[ri : i ∈ I c][t][ε], truncating in each
step after tk0 and εU . We thus obtain the second factor of (43),

(∏

i∈I c

T
(
τi(n),

〈
t (� + ε�′),wi

〉))

[k]
for all k = 0, . . . , k0, (48)

as a truncated series in Q[ri : i ∈ I c][ε].
Then we multiply the truncated series (44), (45), (48), and (46) in polynomial time,

truncating in each step after εU , using Lemma 41. In the end, we read out the coef-
ficient of ε0 as a polynomial in Q[ri : i ∈ I c]. Then we substitute for ri . Collecting
these terms gives the formula for the Ehrhart coefficient Em(p, ξ,M; {n}q). �

Example 42 Let us give a short example of the output of our algorithm for
Em(p, �,M, {n}q), when p is the simplex in R

5 with vertices:

(0,0,0,0,0), ( 1
2 ,0,0,0,0), (0, 1

2 ,0,0,0), (0,0, 1
2 ,0,0), (0,0,0, 1

6 ,0),

(0,0,0,0, 1
6 ).

We consider the linear form � on R
5 given by the scalar product with (1,1,1,1,1).

If M = 0, the coefficients of Em(p, �,M = 0; {n}q) are just the coefficients of the
unweighted Ehrhart quasi-polynomial S(np,1). We obtain

S(np,1) = 1

34560
n5 +

(
5

3456
− 1

6912
{n}2

)
n4

+
(

139

5184
− 5

864
{n}2 + 1

3456

({n}2
)2

)
n3 + · · · .
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Now if M = 1, all integral points (x1, x2, x3, x4, x5) are weighted with the function
h(x) = x1 + x2 + x3 + x4 + x5, and we obtain

S(np, h) = 11

1244160
n6 +

( 19

41472
− 11

207360
{n}2

)
n5

+
( 553

62208
− 95

41472
{n}2 + 11

82944
({n}2)

2
)
n4 + · · · .

We remark that although q = 6 is the smallest integer such that qp is a lattice poly-
tope, only periodic functions of n mod 2 enter in the top three Ehrhart coefficients.
This indeed conforms to the known periodicity properties of the Ehrhart coefficients.

As a corollary, simply by evaluating the step polynomials, we obtain the following
result, which directly extends the complexity result from Barvinok’s paper to the
weighted case.

Theorem 43 (Evaluation of the Ehrhart coefficients for a given dilation class {n}q )
For every fixed number k0 ∈ N, there exists a polynomial-time algorithm for the
following problem.
Input:

(I1) a number d ∈ N in unary encoding, with d ≥ k0,
(I2) a finite index set V ,
(I3) a simple polytope p, given by its vertices, rational vectors sj ∈ Q

d for j ∈ V in
binary encoding,

(I4) a rational vector � ∈ Q
d in binary encoding,

(I5) a number M ∈ N in unary encoding,
(I6) a number n in binary encoding.

Output, in binary encoding,

(O1) a positive integer q ∈ N such that qp is a lattice polytope and
(O2) the numbers Em(p, �,M; {n}q) for m = M + d − k0, . . . ,M + d .

Remark 44 A direct algorithm for computing Em(p, �,M; {n}q) for just one dilation
class {n}q could, of course, use the values ri = {ζin}qi

∈ Z rather than symbolic
variables ri and would therefore only need to do calculations with truncated series in
the two-variable ring Q[t±1, ε±1].

Via the decomposition of polynomials into powers of linear forms, which is, as
discussed in [6], polynomial-time under suitable hypotheses, we obtain the following
corollary.

Corollary 45 For every fixed number k0 ∈ N, there exist polynomial-time algorithms
for the following problems.
Input:

(I1) a number d ∈ N in unary encoding, with d ≥ k0,
(I2) a simple rational polytope p ⊂ R

d , given by its vertices in binary encoding,
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Table 1 Computation times for
Ehrhart polynomials of random
lattice simplices. “Full” refers to
the computation of the full
Ehrhart polynomials using LattE
macchiato. “Top 3” refers to the
computation of the highest three
Ehrhart coefficients using the
new algorithm, setting k0 = 2

Dimension Average runtime (CPU seconds)

Full (LattE macchiato) Top 3
(new code)Dual Primal Primal1000

3 0.16 0.10 0.04 1.12

4 28.00 4.68 0.28 4.31

5 317.5 5.8 13.4

6 198.0 37.4

7 103

8 294

9 393

10 1179

11 1681

(I3) a number M in unary encoding,
(I4) a polynomial h of degree ≤ M which is given either as

(a) a power of a linear form, or
(b) a sparse polynomial where each monomial only depends on a fixed number

of variables, or
(c) a sparse polynomial of fixed total degree,

(I5) a number n in binary encoding.

Output, in binary encoding,

(O1) a positive integer q ∈ N such that qp is a lattice polytope and
(O2) the numbers Em(p, h; {n}q) for m = M + d − k0, . . . ,M + d .

7 Experiments

We implemented the algorithms in Maple, for the unweighted case and assuming
the input to be lattice simplices of full dimension (in this case the quasi-polynomial
becomes a polynomial). This assumption was made for simplicity of output in the
calculation and because available software to verify the results (e.g., LattE mac-
chiato [31]) cannot compute with weights. In addition, the problem of computing
Ehrhart polynomials for lattice simplices has already received attention from many
researchers, and it is non-trivial (see e.g., the references in [21]). After checking sim-
ple low-dimensional examples by hand, we set up automatic scripts for generating
random tests. The simplices generated had vertex coordinates drawn uniformly at
random from {−99, . . . ,99}. We timed the speed of the procedure to compute the top
three Ehrhart coefficients (that is, k0 = 2) in 50 random simplices per dimension and
recorded the average time of computation. We compared this with the computation
of the full Ehrhart polynomials using the state-of-the-art algorithms implemented in
LattE macchiato [31]; see Table 1.

In the table, Dual refers to an implementation of Barvinok’s decomposition of the
duals of the tangent cones into unimodular cones, as implemented first in LattE [24],
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and which is still the default method in LattE macchiato.1 Primal refers to a pri-
mal variant of Barvinok’s decomposition described in [30]; it is more efficient for
these examples because the determinants of the dual cones are much larger.2 Our
implementation of the new algorithm in Maple also uses a primal variant of Barvi-
nok’s decomposition to unimodular cones, which was introduced in [20]. Thus the
new code should be compared to the runtimes listed in column Primal. Finally, Pri-
mal1000 refers to a variant in which Barvinok’s decomposition is stopped when a cone
has a determinant at most 1000; then the points in the fundamental parallelepipeds
are enumerated.3

All computations were stopped if unfinished after 30 minutes. Thus, the table ends
at dimension 11 because all randomly generated examples we tried in dimension 12
took more than 30 minutes of calculation. The computation times are given in CPU
seconds on a computer with AMD Opteron 880 processors running at 2.4 GHz.

In conclusion, the experiments indicate that the algorithms presented here can dra-
matically improve the computation of full Ehrhart polynomials. The fact that, for very
low dimensions, the implementation is slower than LattE macchiato is explained by
the choice of Maple as an implementation language. Maple is an interpreted system,
which is much slower than C++, the implementation language of LattE macchiato.
We expect that the speedups of Primal1000 compared to Primal, which were first
documented in [30], will also be obtained in a refined implementation of our new
algorithms.

The implementation is available at [3].
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