
Found Comput Math (2011) 11:733–751
DOI 10.1007/s10208-011-9098-0

Geometric Inference for Probability Measures

Frédéric Chazal · David Cohen-Steiner ·
Quentin Mérigot

Received: 24 June 2010 / Revised: 16 February 2011 / Accepted: 28 May 2011 /
Published online: 28 July 2011
© SFoCM 2011

Abstract Data often comes in the form of a point cloud sampled from an unknown
compact subset of Euclidean space. The general goal of geometric inference is then
to recover geometric and topological features (e.g., Betti numbers, normals) of this
subset from the approximating point cloud data. It appears that the study of distance
functions allows one to address many of these questions successfully. However, one
of the main limitations of this framework is that it does not cope well with outliers or
with background noise. In this paper, we show how to extend the framework of dis-
tance functions to overcome this problem. Replacing compact subsets by measures,
we introduce a notion of distance function to a probability distribution in R

d . These
functions share many properties with classical distance functions, which make them
suitable for inference purposes. In particular, by considering appropriate level sets
of these distance functions, we show that it is possible to reconstruct offsets of sam-
pled shapes with topological guarantees even in the presence of outliers. Moreover,
in settings where empirical measures are considered, these functions can be easily
evaluated, making them of particular practical interest.
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1 Introduction

Extracting geometric and topological information from geometric data, such as three-
dimensional (3D) point clouds obtained from laser scanners, is a requirement for
many geometric processing and data analysis algorithms. The need for robust es-
timation of geometric invariants was recognized long ago in geometric processing,
and such invariants have found applications in fields as different as shape matching,
registration, and symmetry detection in 3D models, or more generally structure dis-
covery, reconstruction, and meshing, to name just a few. More recently, it has become
apparent that such geometric and topological quantities could also be used to analyze
more general data sets, e.g., those of computational structural biology and large im-
age databases. It turns out that many questions in data analysis can be naturally stated
as inferring the geometry of an unknown underlying geometric object. For example,
the number of clusters into which a point cloud can be split is related to the number of
connected components of this unknown object. Similarly, finding out the number of
parameters really needed to faithfully describe a point in the cloud—which is usually
much smaller than the dimension of the ambient space—is a matter of estimating the
dimension of the underlying set.

1.1 Inference Using Offsets and Distance Functions

One approach to geometric inference is to try to build a reconstruction of the unknown
set K and to estimate the geometric characteristics of K by those of the reconstruc-
tion. Perhaps the most obvious way to build such a reconstruction is to consider the
r-offset of the point cloud, that is, the union of balls of a suitable radius r whose
centers lie in the point cloud. It has been recently proven in [4, 21] that this simple
idea leads to a correct estimation of the topology of a smooth manifold, under as-
sumptions on the sampling and the choice of r . This result has been extended to a
general class of nonsmooth compact sets by [7]. When one is only interested in the
homology, the offset-based approach can be combined with persistent topology [14]
to correctly infer the Betti numbers of the unknown set [3, 11, 24].

An important feature of offsets of point clouds is that their topology can be com-
puted efficiently, at least when the point cloud lies in a low-dimensional ambient
space. For instance, [13] has described an algorithm that, given a point cloud C,
builds a simplicial complex, called the α-complex, that has the same topology as the
union of balls of radius α centered at points in C. This algorithm requires one to com-
pute the Delaunay triangulation of C, and is hence impractical in higher dimensions.
However, in this case efforts have been made to introduce lighter complexes [12].
For example, it has been proven that one can resort to Vietoris-Rips complexes and
the theory of topological persistence to correctly infer the Betti numbers of offsets
of C [5].
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A different way to look at offsets, which is equivalent but better suited to the
actual proof of inference results, is through the notion of a distance function. Given
a compact subset K of R

d , the distance function dK maps any point x in R
d to the

minimum distance between x and any point y in K . The r-offset of K is then nothing
but the sublevel set d−1

K ([0, r]). The most important property of the distance function
for geometric inference is its stability: if a compact set K ′, e.g., a point cloud, is a
good Hausdorff approximation of another compact set K , then the distance functions
dK ′ and dK are close to each other. This property and two other regularity properties
(to be described later) are the only requirements for proving the topological inference
result mentioned earlier.

Offset-based topological inference is now mature and has been used in different
contexts to estimate the topology and geometry of shapes sampled with a moderate
amount of noise [8, 9, 19]. However, these methods obviously fail completely in
the presence of outliers. Indeed, adding even a single data point that is far from the
original point cloud will increase by one the number of connected components of
the offsets of this point cloud, for a large range of parameters. In other words, while
the distance function is only slightly perturbed under Hausdorff noise, adding even a
single outlier can change it dramatically.

1.2 Contributions

A possible way to solve the problem of outliers for distance-based inference is then
to try to replace the usual distance function to a set K by another notion of distance
function that is robust to the addition of a certain number of outliers. To define this
certain number, one can change the way point clouds are interpreted: they are not
just purely geometric objects, but also carry a notion of mass. Formally, we replace
compact subsets of R

d by finite (probability) measures on the space; a k-manifold
will be replaced by the uniform k-dimensional measure on it, a point cloud by a finite
sum of Dirac masses, etc. The Hausdorff distance is then not meaningful any more;
instead, the distance between two probability measures will be measured through the
Wasserstein distance, which quantifies the minimal cost of transporting one measure
onto the other (cf. Sect. 2.2).

In this article, we introduce a notion of distance function to a probability mea-
sure μ, which we denote by dμ,m0 , where m0 is a “smoothing” parameter in (0,1).
We show that this function retains all the required properties for extending offset-
based inference results to the case where the data can be corrupted by outliers.
Namely, the function dμ,m0 shares the same regularity properties as the usual dis-
tance function, and it is stable in the Wasserstein sense, meaning that if two measures
are Wasserstein-close, then their distance functions are uniformly close. The function
can also be computed efficiently for point cloud data. This opens the way to the ex-
tension of offset-based inference methods to the case where data may be corrupted
by outliers. In particular, we show that considering sublevel sets of our distance func-
tions allows for correct inference of the homotopy type of the unknown object under
fairly general assumptions. This improves the main existing previous work on the
subject [20], which assumes a much more restrictive noise model, and is limited to
the smooth case.
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2 Background: Measures and Wasserstein Distances

As explained in the Introduction, in order to account for outliers, we consider our ob-
jects as mass distributions instead of purely geometric compact sets. Because one of
the goals of this article is to give inference results, i.e., comparisons between discrete
and continuous representations, we cannot give the definitions and theorems only in
the discrete case; we must also deal with the general case of probability measures.

2.1 Measure Theory

A measure μ on the space R
d is a function that maps every (Borel) subset B of R

d to
a non-negative number μ(B), which is countably additive in the sense that whenever
(Bi) is a countable family of disjoint Borel subsets of R

d , μ(
⋃

i∈N
Bi) = ∑

i μ(Bi).
The total mass of a measure is μ(Rd). A measure with finite total mass is called
finite, while a measure with total mass one is a probability measure. The support of a
measure μ is the smallest closed set K on which the mass of μ is concentrated, i.e.,
μ(Rd \ K) = 0.

Given a set of N points C, the uniform measure on C, which we denote by μC ,
can be defined by μC(B) = 1

N
|B ∩ C|. Equivalently, it is the sum of N Dirac masses

of weight 1/N , centered at each point of C. Given a family of independent ran-
dom points X1, . . . ,XN , distributed according to a common measure μ, the uniform
probability measure carried by the point cloud CN = {X1, . . . ,XN } is known as an
empirical measure, and is simply denoted by μN . The uniform law of large numbers
asserts that, as N goes to infinity, the empirical measure converges to the underlying
measure with probability one—in a sense that will be explained in the next paragraph.

The approach we will describe in this article applies to any measure on Euclidean
space. However, to fix ideas, let us describe a family of measures with geometric
content that we have in mind when thinking of the underlying measure. We start with
the probability measure μM on a compact k-dimensional manifold M ⊆ R

d given
by the rescaled uniform measure on M . Such measures can be combined, yielding a
measure supported on a union of submanifolds of R

d with various intrinsic dimen-
sions: ν = ∑�

i=1 λiμMi
, with

∑
i λi = 1. Finally, as a simple model of noise, this

measure can be convolved with a Gaussian distribution: μ = ν ∗ N (0, σ 2). This is
the same as assuming that each sample that is drawn according to ν is known up to
an independent Gaussian error term.

The empirical measure defined by the measure μ we just described could then be
obtained by repeatedly (i) choosing a random integer i ∈ {0, . . . , �} with probabil-
ity λi , (ii) picking a random sample Xn uniformly distributed in Mi , and (iii) adding
a random Gaussian vector with zero mean and variance σ 2 to Xn.

2.2 Wasserstein Distances

The definition of the Wasserstein Wp (p ≥ 1) distance between probability measures
relies on the notion of a transport plan between measures. It is related to the theory of
optimal transportation (see, e.g., [26]). The Wasserstein distance W1 is also known
as the earth mover’s distance; it has been used in vision by [22] and in image retrieval
by [25] and others.
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A transport plan between two probability measures μ and ν on R
d is a probability

measure π on R
d × R

d such that for every A,B ⊆ R
d , π(A × R

d) = μ(A) and
π(Rd × B) = ν(B). Intuitively, π(A × B) corresponds to the amount of mass of μ

contained in A that will be transported to B by the transport plan. Given p ≥ 1, the
p-cost of such a transport plan π is given by

Cp(π) =
(∫

Rd×Rd

‖x − y‖p dπ(x, y)

)1/p

.

This cost is finite if measures μ and ν both have finite p-moments, i.e.,∫
Rd ‖x‖p dμ(x) < +∞ and

∫
Rd ‖x‖p dν(x) < +∞. The set of probability measures

on R
d with finite p-moment includes all probability measures with compact support,

such as empirical measures.

Definition 2.1 The Wasserstein distance of order p between two probability mea-
sures μ and ν on R

d with finite p-moment is the minimum p-cost Cp(π) of a trans-
port plan π between μ and ν. It is denoted by Wp(μ,ν).

As a first example, consider a reference point cloud C with N points, and define
a noisy version C′ by moving n points in C a large distance R from their original
position. The Wasserstein distance between the uniform measures μC and μ is at

most ( n
N

)
1
p R. This can be seen by considering the cost of the transport plan between

C′ and C that moves the outliers back to their original position and keeps the other
points fixed. On the other hand, the Hausdorff distance between C and C′ could be
as large as R. Hence, if the number of outliers is small, i.e., n 
 N , the Wasserstein
distance is much smaller than the Hausdorff distance.

As mentioned earlier, the question of the convergence of the empirical measure μN

to the underlying measure μ is fundamental in the measure-based inference approach
we propose. It has been a subject of study in probability and statistics for a long time.
If μ is concentrated on a compact set, then μN converges almost surely to μ in the
Wp distance. More quantitative convergence statements under different assumptions
can be given, as in [2].

If χ : R
d → R

+ defines a probability distribution with finite p-moment σp :=∫
Rd ‖x‖p χ(x)dx, the Wasserstein distance of order p between any probability mea-

sure μ and the convolved measure μ∗χ satisfies Wp(μ,μ∗χ) ≤ σ . If one considers
again the example given in the end of Sect. 2.1 of an empirical measure μN whose
samples are drawn according to a “geometric” measure ν convolved with a Gaussian
distribution N (0, σ 2), the combination of the two previous facts gives

lim
N→+∞ W2(μN,μ) ≤ σ with probability one.

Similar bounds are also possible with convolution kernels that are not translation
invariant, such as the ones defining the noise model used in [20]. This being said, we
stress that the stability results we obtain for the distance functions introduced below
do not depend on any noise model; they just depend on the Wasserstein distance
between the two probability measures being small.
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3 Distance Function to a Probability Measure

In this section we introduce the notion of distance function to a measure that we
consider. As explained in the Introduction, there are a few constraints for such a
definition to be usable in geometric inference, which we now describe in more detail.
Let K be a compact set, and dK be the distance function to K . Then, one can prove
the following two properties:

1. dK is 1-Lipschitz. For all x, y in R
d , |dK(x) − dK(y)| ≤ ‖x − y‖.

2. d2
K is 1-semiconcave. This means that the map x ∈ R

d → d2
K(x) − ‖x‖2 is con-

cave.

A consequence of Lipschitz regularity is that the distance function is differentiable
almost everywhere; in particular, the medial axis of K , defined as the set of points
where dK is not differentiable, has zero d-volume. Semiconcavity is a stronger reg-
ularity property, because, due to Alexandrov’s theorem, it implies that the distance
function dK is not only almost C 1, but also twice differentiable almost everywhere.
The semiconcavity property plays a central role in the proof of existence of the flow of
the gradient of the distance function by [18] (Lemma 5.1), which is the main technical
tool used in the topological inference results obtained by [7]. The semiconcavity of
the squared distance function also plays a crucial role in geometric inference results
such as [9] and [19].

This motivates the definition of a distance-like function as a non-negative function
ϕ : R

d → R
+ which is 1-Lipschitz, whose square is 1-semiconcave, and which is

proper in the sense that ϕ(x) tends to infinity as x does. The following proposition
gives a characterization of distance-like functions.

Proposition 3.1 Let ϕ : R
d → R be a function whose square is 1-semiconcave. There

exists a closed subset K of R
d+1 such that ϕ2(x) = d2

K(x), where a point x in R
d is

identified with the point (x,0) in R
d+1.

Proof Since ϕ2 is 1-semiconcave, we can write ‖x‖2 − ϕ2(x) = supi∈I 〈vi, x〉 − ai

for some vectors (vi)i∈I and reals (ai)i∈I , where I indexes the set of affine functions
smaller than the l.h.s. Hence

ϕ2(x) = infi∈I‖x‖2 − 〈vi, x〉 + ai = infi∈I‖x − vi/2‖2 + (
ai − ‖vi‖2/4

)

Since ϕ2 is nonnegative, ai − ‖vi‖2/4 is also nonnegative for all i ∈ I . Letting K

be the closure of the set of points (vi/2,
√

(ai − ‖vi‖2/4) for i ∈ I concludes the
proof. �

This proposition proves in particular that a function ϕ : R
d → R whose square is

1-semiconcave and proper is automatically distance-like: the Lipschitz assumption
comes with 1-semiconcavity. It also follows from the proof that distance-like func-
tions are simply generalized power distances, with non-positive weights.
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3.1 Definition

The distance function to a compact set K at x ∈ R
d is by definition the minimum

distance between x and a point of K . Stated otherwise, the distance dK(x) is the
minimum radius r such that the ball centered at x of radius r contains at least one
point of K . A very natural idea when trying to define the distance function to a prob-
ability measure μ on R

d is to try to mimic the definition above. Given a parameter
0 ≤ m < 1, define the pseudo-distance δμ,m by

δμ,m : x ∈ R
d → inf

{
r > 0 ; μ

(
B̄(x, r)

)
> m

}
.

For instance for m = 0, the definition would coincide with the (usual) distance func-
tion to the support of the measure μ. For higher values of m, the function δμ,m is
1-Lipschitz, but lacks other features that a generalization of the usual distance func-
tion to a compact set should have. For instance, the application that maps a proba-
bility measure μ to δμ,m is not continuous in any reasonable sense. Indeed, let δx

denote the unit Dirac mass at x and με = ( 1
2 − ε)δ0 + ( 1

2 + ε)δ1. Then, for ε > 0 one
has δμε,1/2(t) = |1 − t | for t < 0 while for ε = 0, one obtains δμ0,1/2(t) = |t |. Said
otherwise, the map ε → δμε,1/2 is discontinuous at ε = 0.

In order to gain both Wasserstein-stability and regularity, we define the distance
function to μ as a L2 average of the pseudo-distances δμ,m for a range [0,m0] of
parameters m.

Definition 3.2 Let μ be a (positive) measure on the Euclidean space, and m0 be
a positive mass parameter m0 > 0 smaller than the total mass of μ. The distance
function to μ with parameter m0 is the function defined by

d2
μ,m0

: R
n → R

+, x → 1

m0

∫ m0

0
δμ,m(x)2 dm.

As an example, let C be a point cloud with N points in R
d , and let μC be the

uniform measure on it. The pseudo-distance function δμC,m evaluated at a point
x ∈ R

d is by definition equal to the distance between x and its kth nearest neighbor in
C, where k is the smallest integer larger than m |C|. Hence, the function m → δμC,m

is constant on all ranges ( k
N

, k+1
N

]. Using this fact, we obtain the following formula
for the squared distance d2

μ,m0
, where m0 = k0/ |C|:

d2
μ,m0

(x) = 1

m0

∫ m0

0
δμ,m(x)2 = 1

m0

k0∑

k=1

1

N
δμ,k/N (x)2

= 1

k0

∑

p∈NN
k0
C (x)

‖p − x‖2 ,

where NNk0
C (x) denote the k0 nearest neighbors of x in C. In this case, the pointwise

evaluation of d2
μC,k/n(x) reduces to a k-nearest neighbor query in C.
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3.2 Equivalent Formulation

In this section, we prove that the distance function to a measure dμ,m0 is in fact a real
distance to a compact set, but in an infinite-dimensional space. From this fact, we will
deduce all of the properties needed for geometric and topological inference.

A measure ν will be called a submeasure of another measure μ if for every Borel
subset B of R

d , ν(B) ≤ μ(B). This is the same as requiring μ − ν to be a measure.
The set of all submeasures of a given measure is denoted by Sub(μ), while the set of
submeasures of μ with a prescribed total mass m0 is denoted by Subm0(μ).

Proposition 3.3 For any measure μ on R
d , the distance function to μ at x is the

solution of the following optimal transportation problem:

dμ,m0(x) = min
{
m

−1/2
0 W2(m0δx, ν);ν ∈ Subm0(μ)

}
. (1)

Then, for any measure μx,m0 that realizes the above minimum, one has

dμ,m0(x) =
(

1

m
1/2
0

∫

Rd

‖x − h‖2 dμx,m0(h)

)1/2

.

In other words, the distance dμ,m0 evaluated at a point x ∈ R
d is the minimal

Wasserstein distance between the Dirac mass m0δx and the set of submeasures of μ

with total mass m0:

dμ,m0(x) = 1√
m0

distW2

(
m0δx,Subm0(μ)

)
. (2)

The set of minimizers in the above expression corresponds to the “orthogonal”
projections, or nearest neighbors, of the Dirac mass m0δx on the set of submeasures
Subm0(μ). As we will see in the proof of the proposition, these are submeasures
μx,m0 of total mass m0 whose support is contained in the closed ball B̄(x, δμ,m(x)),
and whose restriction to the open ball B(x, δμ,m(x)) coincides with μ. Denote these
measures by Rμ,m0(x).

In order to prove Proposition 3.3, we need a few definitions from probability the-
ory. The cumulative distribution function Fν : R

+ → R of a measure ν on R
+ is

the nondecreasing function defined by Fν(t) = ν([0, t)). Its generalized inverse, de-
noted by F−1

ν and defined by F−1
ν : m → inf{t ∈ R ; Fν(t) > m}, is left-continuous.

Notice that if μ, ν are two measures on R
+, then ν is a submeasure of μ only if

Fν(t) ≤ Fμ(t) for all t > 0.

Proof Let us first remark that if ν is any measure of total mass m0, there is only one
transport plan between ν and the Dirac mass m0δx , which maps any point of R

d to x.
Hence, the Wasserstein distance between ν and m0δx is given by

W2
2(m0δx, ν) =

∫

Rd

‖h − x‖2 dν(h).
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Let dx : R
d → R denote the distance function to the point x, and let νx be the pushfor-

ward of ν by the distance function to x, i.e., for any subset I of R, νx(I ) = ν(d−1
x (I )).

Using the change-of-variable formula and the definition of the cumulative distribution
function gives us

∫

Rd

‖h − x‖2 dν(h) =
∫

R+
t2 dνx(t) =

∫ m0

0
F−1

νx
(m)2 dm.

If ν is a submeasure of μ, then by the remark above, Fνx (t) ≤ Fμx (t) for all t > 0.
From this, one deduces that F−1

νx
(m) ≥ F−1

μx
(m). This gives

W2
2(m0δx, ν) =

∫

Rd

‖h − x‖2 dν(h) ≥
∫ m0

0
F−1

μx
(m)2 dm

=
∫ m0

0
δμ,m(x)2 dm = m0 d2

μ,m0
(x). (3)

The second equality holds because Fμx (t) = μ(B(x, t)), and thus F−1
μx

(m) =
δμ,m(x). This proves that dμ,m0(x) is smaller than the right-hand side of (1).

To conclude the proof, we study the cases of equality in (3). Such a case hap-
pens when for almost every m ≤ m0, F−1

νx
(m) = F−1

μx
(m). Since these functions are

increasing and left-continuous, equality must in fact hold for every such m. By the
definition of the pushforward, this implies that ν(B̄(x, δμ,m0(x))) = m0; i.e., all the
mass of ν is contained in the closed ball B̄(x, δμ,m0(x)) and μ̃(B(x, δμ,m0(x))) =
μ(B(x, δμ,m0(x))). Because ν is a submeasure of μ, this can be true iff ν belongs in
the set Rμ,m0(x) described before the proof.

To finish the proof, we should remark that the set of minimizers Rμ,m0(x) always
contains a measure μx,m0 . The only difficulty is when the boundary of the ball carries
too much mass. In this case, we uniformly rescale the mass contained in the bounding
sphere so that the measure μx,m0 has total mass m0. More precisely, we let

μx,m0 = μ|B(x,δμ,m0 (x)) + (
m0 − μ

(
B

(
x, δμ,m0(x)

))) μ|∂B(x,δμ,m0 (x))

μ(∂B(x, δμ,m0(x)))
. �

3.3 Stability of the Distance Function to a Measure

The goal of this section is to prove that the notion of distance function to a measure
that we defined earlier is stable under change of the measure. This follows rather
easily from the characterization of dμ,m0 given by Proposition 3.3.

Proposition 3.4 Let μ and μ′ be two probability measures on R
d . Then,

dH
(
Subm0(μ),Subm0

(
μ′)) ≤ W2

(
μ,μ′).

Proof Let ε be the Wasserstein distance of order 2 between μ and μ′, and π be a
corresponding optimal transport plan, i.e., a transport plan between μ and μ′ such
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that
∫

Rd×Rd ‖x − y‖2 dπ(x, y) = ε2. Then, given a submeasure ν of μ, one can find
a submeasure π ′ of π that transports ν to a submeasure ν′ of μ′. Then,

W2
(
ν, ν′)2 ≤

∫

Rd×Rd

‖x − y‖2 dπ ′(x, y) ≤ ε2.

This shows that dist(ν,Subm0(μ
′)) ≤ ε for every submeasure ν ∈ Subm0(μ). The

same holds by exchanging the roles of μ and μ′, thus proving the bound on the
Hausdorff distance. �

Theorem 3.5 (Distance Function Stability) If μ and μ′ are two probability measures
on R

d and m0 > 0, then
∥
∥dμ,m0 − dμ′,m0

∥
∥∞ ≤ 1√

m0
W2(μ,μ′).

Proof The following sequence of equalities and inequalities, which follows from
Propositions 3.3 and 3.4, proves the theorem:.

dμ,m0(x) = 1√
m0

distW2

(
m0δx,Subm0(μ)

)

≤ 1√
m0

(
dH

(
Subm0(μ),Subm0

(
μ′)) + distW2

(
m0δx,Subm0

(
μ′)))

≤ 1√
m0

W2
(
μ,μ′) + dμ′,m0(x). �

3.4 The Distance to a Measure is Distance-Like

The subdifferential of a function f : Ω ⊆ R
d → R at a point x is the set of vectors v

of R
d , denoted by ∂xf , such that for all small enough vector h, f (x + h) ≥ f (x) +

〈h|v〉. This gives a characterization of convexity: a function f : R
d → R is convex if

and only if its subdifferential ∂xf is nonempty for every point x. If this is the case,
then f admits a derivative at a point x if and only if the subdifferential ∂xf is a
singleton, in which case the gradient ∇xf coincides with its unique element.

Proposition 3.6 The function vμ,m0 : x ∈ R
d → ‖x‖2 − d2

μ,m0
is convex, and its sub-

differential at a point x ∈ R
d is given by

∂xvμ,m0 =
{

2x − 2

m0

∫

h∈Rd

(x − h)dμx,m0(h) ; μx,m0 ∈ Rμ,m0(x)

}

.

Proof For any two points x and y of R
d , let μx,m0 and μy,m0 be in Rμ,m0(x) and

Rμ,m0(y), respectively. From Proposition 3.3 we have the following sequence of
equalities and inequalities:

d2
μ,m0

(y) = 1

m0

∫

h∈Rd

‖y − h‖2 dμy,m0(h)

≤ 1

m0

∫

h∈Rd

‖y − h‖2 dμx,m0(h)
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≤ 1

m0

∫

h∈Rd

‖x − h‖2 + 2〈x − h|y − x〉 + ‖y − x‖2 dμx,m0(h)

≤ d2
μ,m0

(x) + ‖y − x‖2 + 〈v|y − x〉,
where v is the vector defined by

v = 2

m0

∫

h∈Rd

[x − h]dμx,m0(h).

The inequality can be rewritten as
(‖y‖2 − d2

μ,m0
(y)

) − (‖x‖2 − d2
μ,m0

(x)
) ≥ 〈2x − v|y − x〉

which shows that the vector (2x−v) belongs to the subdifferential of v at x. It follows
from the above-mentioned characterization of convex functions that vμ,m0 is convex.

We now turn to the proof of the converse inclusion. This proof is slightly more
technical, but is not really needed for the remainder of the article. First, let

Dμ,m0(x) :=
{

2x − 2

m0

∫

h∈Rd

(x − h)dμx,m0(h) ; μx,m0 ∈ Rμ,m0(x)

}

.

The sets Dμ,m0 and ∂xvμ,m0 are both convex, and we have shown that Dμ,m0 is con-
tained in ∂xvμ,m0 . By Theorem 2.5.1 in [10], the subdifferential ∂xvμ,m0 can be ob-
tained as the convex hull of the set of limits of gradients ∇xnvμ,m0 , where (xn) is any
sequence of points converging to x at which vμ,m0 is differentiable. To sum up, we
only need to prove that every such limit also belongs to the set Dμ,m0(x). Let (xn)

be a sequence of points at which vμ,m0 is differentiable, and let μn be the unique
element in Rμ,m0(xn). Necessarily,

∇xnvμ,m0 = 2xn − 2/m0

∫

h

(xn − h)dμn(h),

where μn is in Rμ,m0(xn). Since every μn is a submeasure of μ, by compactness one
can extract a subsequence of n such that μn weakly converges to a measure μ∞. This
measure belongs to Rμ,m0(x), and hence the vector

D = 2x − 2/m0

∫

h

(x − h)dμ∞(h)

is in the set Dμ,m0(x). Moreover, the weak convergence of μn to μ∞ implies that the
sequence ∇xnvμ,m0 converges to D. This concludes the proof of this inclusion. �

Corollary 3.7 The function d2
μ,m0

is 1-semiconcave. Moreover:

(i) d2
μ,m0

is differentiable at a point x ∈ R
d if and only if the support of the restric-

tion of μ to the sphere ∂B(x, δμ,m0(x)) contains at most one point.
(ii) d2

μ,m0
is differentiable almost everywhere in R

d , with gradient defined by

∇xd2
μ,m0

= 2

m0

∫

h∈Rd

[x − h]dμx,m0(h)
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where μx,m0 is the only measure in Rμ,m0(x).
(iii) The function x ∈ R

d → dμ,m0(x) is 1-Lipschitz.

Proof For (i), it is enough to remark that Rμ,m0(x) is a singleton iff the support
of μ|∂B(x,δμ,m0 (x)) is at most a single point. (ii) This follows from the fact that a
convex function is differentiable at almost every point at which its gradient is the
only element of the subdifferential at that point. (iii) The gradient of the distance
function dμ,m0 can be written as

∇xdμ,m0 = ∇xd2
μ,m0

2dμ,m0

= 1√
m0

∫
h∈Rd [x − h]dμx,m0(h)

(
∫
h∈Rd ‖x − h‖2 dμx,m0(h))1/2

.

Using the Cauchy–Schwarz inequality, we find the bound
∥
∥∇xdμ,m0

∥
∥ ≤ 1, which

proves the statement. �

4 Applications to Geometric Inference

Reconstruction from point clouds with outliers was the main motivation for introduc-
ing the distance function to a measure. In this section, we adapt the reconstruction
theorem introduced by [7] to our setting. The original version of the theorem states
that a regular enough compact set K can be faithfully reconstructed from another
close enough compact set C. More precisely, for a suitable choice of r , the offsets
Cr and Kη have the same homotopy type for any small enough positive η. The reg-
ularity assumption on K is expressed as a lower bound on its μ-reach, which is a
generalization of the classical notion of reach [15]. In particular, smooth submani-
folds, convex sets, and polyhedra always have positive μ-reach for suitable μ; hence,
the reconstruction theorem may be applied to such sets. In this section, we show that
the reconstruction results of [7] can be easily generalized to compare the sublevel sets
of two uniformly close distance-like functions. It is also possible to adapt most of the
topological and geometric inference results of [6, 8, 9] in a similar way.

4.1 Extending the Sampling Theory for Compact Sets

In this section we extend the sampling theory of [7] for compact sets to distance-like
functions. We do not include all the results of the paper, but only those that are needed
for the reconstruction theorem (Theorem 4.6). We refer the interested reader to the
original paper for more details.

Let ϕ : R
d → R be a distance-like function. The 1-semiconcavity of ϕ2 allows

us to define a notion of gradient vector field ∇xϕ for ϕ, defined everywhere and
satisfying ‖∇xϕ‖ ≤ 1. Although not continuous, the vector field ∇ϕ is sufficiently
regular to be integrated in a continuous locally Lipschitz flow [23] Φt : R

d → R
d .

The flow Φt integrates the gradient ∇ϕ in the sense that for every x ∈ R
d , the curve

γ : t → Φt(x) is right-differentiable, and for every t > 0, dγ
dε

|t− = ∇γ (t)ϕ. Moreover,
if γ : [a, b] → R

d is an arc-length parameterization of such a curve, we have

ϕ
(
γ (b)

) = ϕ
(
γ (a)

) +
∫ b

a

∥
∥∇γ (t)ϕ

∥
∥ dt.
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Definition 4.1 Let ϕ be a distance-like function. Following the notation for offset of
compact sets, we will denote by ϕr = ϕ−1([0, r]) the r-sublevel set of ϕ:

(i) A point x ∈ R
d will be called α-critical (with α ∈ [0,1]) if the inequality ϕ2(x +

h) ≤ ϕ2(x) + 2α ‖h‖ϕ(x) + ‖h‖2 is true for all h ∈ R
d . A 0-critical point is

simply called a critical point. It follows from the 1-semiconcavity of ϕ2 that
‖∇xϕ‖ is the infimum of the α ≥ 0 such that x is α-critical.

(ii) The weak feature size of ϕ at r is the maximum r ′ > 0 such that ϕ does not
have any critical value between r and r + r ′. We denote it by wfsϕ(r). For any
0 < α < 1, the α-reach of ϕ is the maximum r such that ϕ−1((0, r]) does not
contain any α-critical point. Obviously, the α-reach is always a lower bound for
the weak feature size, with r = 0.

The proof of the reconstruction theorem in [7] relies on two important observa-
tions. The first one is a consequence of a distance-like version of Grove’s isotopy
lemma [17, Proposition 1.8], which asserts that the topology of the sublevel sets of ϕ

can only change when one passes critical values. As in [3, Theorem 3], one deduces
that the offsets of two uniformly close distance-like functions with large weak feature
size have the same homotopy type.

Proposition 4.2 (Isotopy Lemma) Let ϕ be a distance-like function and r1 < r2 be
two positive numbers such that ϕ has no critical points in the subset ϕ−1([r1, r2]).
Then all the sublevel sets ϕ−1([0, r]) are isotopic for r ∈ [r1, r2].

Proposition 4.3 Let ϕ and ψ be two distance-like functions, such that
‖ϕ − ψ‖∞ ≤ ε. Suppose also that wfsϕ(r) > 2ε and wfsψ(r) > 2ε. Then, for ev-
ery 0 < η ≤ 2ε, ϕr+η and ψr+η have the same homotopy type.

Proof Let δ > 0 be such that wfsϕ(r) > 2ε + δ and wfsψ(r) > 2ε + δ. Since
‖ϕ − ψ‖∞ ≤ ε, we have the following commutative diagram where each map is an
inclusion.

ϕr+δ
a0

d0
ϕr+δ+ε

d1

a1

ϕr+δ+2ε

ψr+δ

c0

b0

ψr+δ+ε

c1

b1

ψr+δ+2ε

It follows from the isotopy lemma, Proposition 4.2, that the inclusions a0, a1, b0,
and b1 are homotopy equivalences. Let s0, s1, r0, and r1 be homotopic inverses of
a0, a1, b0, and b1, respectively. Now a straightforward computation shows that c1 is
a homotopy equivalence with homotopic inverse r1 ◦ d1 ◦ s1:
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c1 ◦ r1 ◦ d1 ◦ s1 ∼= c1 ◦ (r1 ◦ b1) ◦ d0 ◦ s0 ◦ s1

∼= (c1 ◦ d0) ◦ s0 ◦ s1

∼= a1 ◦ a0 ◦ s0 ◦ s1 ∼= idϕr+δ+2ε

Similarly, we get r1 ◦ d1 ◦ s1 ◦ c1 ∼= idψr+δ+ε proving Proposition 4.3. �

The second key observation made in [7] is that the critical points of a distance
function are stable in a certain sense under small Hausdorff perturbations. This result
remains true for uniform approximation by distance-like functions:

Proposition 4.4 Let ϕ and ψ be two distance-like functions with ‖ϕ − ψ‖∞ ≤ ε. For
any α-critical point x of ϕ, there exists an α′-critical point x′ of ψ with

∥
∥x − x′∥∥ ≤

2
√

εϕ(x) and α′ ≤ α + 2
√

ε/ϕ(x).

Proof The proof is very similar to the one of [7]. Let ρ > 0 and let γ be an integral
curve of the flow defined by ∇ψ , starting at x and parameterized by arc length. If
γ reaches a critical point of ψ before length ρ, we are done. Assume that this is
not the case. Then, with y = γ (ρ), one has ψ(y) − ψ(x) = ∫ ρ

0

∥
∥∇γ (t)ψ

∥
∥ dt . As a

consequence, there exists a point p(ρ) on the integral curve such that
∥
∥∇p(ρ)ϕ

∥
∥ ≤

1
ρ
(ϕ(y) − ϕ(x)).

Now, by the assumption on the uniform distance between ϕ and ψ , ψ(y) ≤
ϕ(y) + ε and ψ(x) ≥ ϕ(x) − ε. Using the fact that x is α-critical, one obtains:

ϕ(y)2 ≤ ϕ(x)2 + 2α ‖x − y‖ϕ(x) + ‖x − y‖2 i.e.

ϕ(y) ≤ ϕ(x)

(

1 + 2α
‖x − y‖

ϕ(x)
+ ‖x − y‖2

ϕ(x)2

)1/2

≤ ϕ(x) + α ‖x − y‖ + 1

2

‖x − y‖2

ϕ(x)
.

By combining, we get
∥
∥∇p(ρ)ϕ

∥
∥ ≤ α+ 2ε

ρ
+ 1

2
ρ

ϕ(x)
. The minimum of this upper bound

is α + 2
√

ε/ϕ(x) and is attained for ρ = 2
√

εϕ(x). This concludes the proof. �

Corollary 4.5 Let ϕ and ψ be two ε-close distance-like functions, and suppose
that reachα(ϕ) ≥ R for some α > 0. Then, ψ has no critical value in the interval
]4ε/α2,R − 3ε[.

Proof Assume that there exists a critical point x of ψ such that ψ(x) belongs to the
range [4ε/α2,R′]. Then, there would exist an α′-critical point y of ϕ at distance at
most D of x. By the previous proposition,

α′ ≤ 2
√

ε/ψ(x) ≤ 2
√

ε/(4ε/α2) = α and D ≤ 2
√

εR′.

Hence, using the fact that x is a critical point for ψ ,

ϕ(y) ≤ ψ(y) + ε ≤ (
ψ2(x) + ‖x − y‖2)1/2 + ε ≤ R′(1 + D2/R′2)1/2 + ε

≤ R′ + 3ε.
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This last term is less than R if R′ < R − 3ε. With these values, one gets the desired
contradiction. �

Theorem 4.6 (Reconstruction) Let ϕ,ψ be two ε-close distance-like functions, with
reachα(ϕ) ≥ R for some positive α. Then, for any r ∈ [4ε/α2,R − 3ε], and for 0 <

η < R, the sublevel sets ψr and ϕη are homotopy equivalent, as soon as

ε ≤ R

5 + 4/α2
.

Proof By the isotopy lemma, all the sublevel sets ψr have the same homotopy type,
for r in the given range. Let us choose r = 4ε/α2. We have

wfsϕ(r) ≥ R − 4ε/α2 and wfsψ(r) ≥ R − 3ε − 4ε/α2.

By Proposition 4.3, the sublevel sets ϕr and ψr have the same homotopy type as soon
as the uniform distance ε between ϕ and ψ is smaller than 1

2 wfsϕ(r) and 1
2 wfsψ(r).

This is true, provided that 2ε ≤ R − ε(3 + 4/α2). The theorem follows. �

Remark that in Definition 4.1 above the notion of α-reach could be made depen-
dent on a parameter r ; i.e., the (r,α)-reach of ϕ could be defined as the maximum r ′
such that the set ϕ−1((r, r + r ′]) does not contain any α-critical value. A reconstruc-
tion theorem similar to Theorem 4.6 would still hold under the weaker condition that
the (r,α)-reach of ϕ is positive.

4.2 Distance to a Measure vs. Distance to Its Support

In this section, we compare the distance functions dμ,m0 to a measure μ and the
distance function to its support S, and study the convergence properties as the mass
parameter m0 converges to zero. A first obvious remark is that the pseudo-distance
δμ,m0 (and hence the distance dμ,m0 ) is always larger than the regular distance func-
tion dS . Thus, to obtain a convergence result of dμ,m0 to dS as m0 goes to zero, it
is necessary to upper bound dμ,m0 by dS + o(m0). It turns out that the convergence
speed of dμ,m0 to dS depends on the way the mass of μ contained within any ball
B(p, r) centered at a point p of the support decreases with r . Let us state the follow-
ing definitions:

(i) We say that a nondecreasing positive function f : R
+ → R

+ is a uniform lower
bound on the growth of μ if, for every point p in the support of μ and every
ε > 0, μ(B(p, ε)) ≥ f (ε).

(ii) The measure μ has dimension at most k if there is a constant C(μ) such that
f (ε) = C(μ)εk is a uniform lower bound on the growth of μ, for ε small enough.

Lemma 4.7 Let μ be a probability measure and f be a uniform lower bound on the
growth of μ. Then

∥
∥dμ,m0 − dS

∥
∥∞ < ε as soon as m0 < f (ε).
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Proof Let ε and m0 be such that m0 < f (ε) and let x be a point in R
d , and p

a projection of x on S, i.e., a point p such that ‖x − p‖ = dS(x). By assump-
tion, μ(B(x,dS(x) + ε)) ≥ μ(B(p, ε)) ≥ m0. Hence, δμ,m0(x) ≤ dS(x) + ε. The
function m → δμ,m(x) being nondecreasing, we get m0d2

S(x) ≤ ∫ m0
0 δ2

μ,m(x)dm ≤
m0(dS(x) + ε)2. Taking the square root of this expression proves the lemma. �

Corollary 4.8

(i) If the support S of μ is compact, then dS is the uniform limit of dμ,m0 as m0
converges to 0.

(ii) If the measure μ has dimension at most k > 0, then

∥
∥dμ,m0 − dS

∥
∥ ≤ C(μ)−1/km

1/k

0 .

Proof (i) If S is compact, there exists a sequence x1, x2, . . . of points in S such that,
for any ε > 0, S ⊆ ⋃n

i=1 B(xi, ε/2) for some n = n(ε). By definition of the support
of a measure, η(ε) = mini=1···n μ(B(xi, ε/2)) is positive. Now, for any point x ∈ S,
there is an xi such that ‖x − xi‖ ≤ ε/2. Hence, B(xi, ε/2) ⊆ B(x, ε), which means
that μ(B(x, ε)) ≥ η(ε). (ii) This follows straightforwardly from the lemma. �

For example, the uniform probability measure on a k-dimensional compact sub-
manifold S has dimension at most k. The following proposition gives a more precise
convergence speed estimate based on curvature.

Proposition 4.9 Let S be a smooth k-dimensional submanifold of R
d whose curva-

ture radii are lower bounded by R, and let μ be the uniform probability measure
on S. Then

∥
∥dS − dμ,m0

∥
∥ ≤ C(S)−1/km

1/k

0

for m0 small enough and C(S) = (2/π)kβk/Hk(S) where βk is the volume of the unit
ball in R

k .

Notice in particular that the convergence speed of dμ,m0 to dS depends only on
the intrinsic dimension k of the submanifold S, and not on the ambient dimension d .
In order to prove this result, we make use of the Günther-Bishop theorem (cf. [16,
Sect. 3.101]).

Theorem 4.10 (Günther–Bishop) If the sectional curvatures of a Riemannian mani-
fold M do not exceed δ, then for every x ∈ M , Hk(BM(x, r)) ≥ βk,δ(r) where βk,δ(r)

is the volume of a ball of radius r in the simply connected k-dimensional manifold
with constant sectional curvature δ, provided that r is smaller than the minimum of
the injectivity radius of M and π/

√
δ.

Proof of Proposition 4.9 Since the intrinsic ball BS(x, ε) is always included
in the Euclidean ball B(x, ε) ∩ S, the mass μ(B(x, ε)) is always larger than
Hk(BS(x, ε))/Hk(S). Remarking that the sectional curvature of M is upper bounded
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by 1/R2, the Günther-Bishop theorem implies that, for any ε smaller than the injec-
tivity radius of S and πR,

μ
(
B(x, ε)

) ≥ βk,1/R2(ε)

Hk(S)
.

Hence, μ has dimension at most k. Moreover, by comparing the volume of an intrinsic
ball of the unit sphere and the volume of its orthogonal projection on the tangent space
to its center, one has

βk,1/R2(ε) = Rkβk,1(ε/R) ≥ Rk
[
sin(ε/R)

]k
βk,

where βk is the volume of the k-dimensional unit ball. Using sin(α) ≥ 2
π
α gives the

announced value for C(S). �

4.3 Shape Reconstruction from Noisy Data

The previous results lead to shape reconstruction theorems from noisy data with out-
liers. To fit in our framework, we consider shapes that are defined as supports of
probability measures. Let μ be a probability measure of dimension at most k > 0
with compact support K ⊂ R

d and let dK : R
d → R+ be the (Euclidean) distance

function to K . If μ′ is another probability measure (e.g., the empirical measure given
by a point cloud sampled according to μ), one has

∥
∥dK − dμ′,m0

∥
∥∞ ≤ ‖dK − dμ,m0‖∞ + ‖dμ,m0 − dμ′,m0‖∞ (4)

≤ C(μ)−1/km
1/k

0 + 1√
m0

W2
(
μ,μ′). (5)

This inequality ensuring the closeness of dμ′,m0 to the distance function dK for the
sup-norm follows immediately from the stability theorem, Theorem 3.5, and Corol-
lary 4.8. As expected, the choice of m0 is a trade-off: a small m0 leads to better
approximation of the distance function to the support, while a large m0 makes the dis-
tance functions to measures more stable. Equation (4) leads to the following corollary
of Theorem 4.6.

Corollary 4.11 Let μ be a measure and K its support. Suppose that μ has dimension
at most k and that reachα(dK) ≥ R for some R > 0. Let μ′ be another measure, and
let ε be an upper bound on the uniform distance between dK and dμ′,m0 . Then, for any
r ∈ [4ε/α2,R − 3ε], the r-sublevel sets of dμ′,m0 and the offsets Kη , for 0 < η < R,
are homotopy equivalent, as soon as

W2(μ,μ′) ≤ R
√

m0

5 + 4/α2
− C(μ)−1/km

1/k+1/2
0 .

Figure 1 illustrates the reconstruction Theorem 4.6 on a sampled mechanical part
with 10% of outliers. In this case μ′ is the normalized sum of the Dirac measures
centered on the data points, and the (unknown) measure μ is the uniform measure on
the mechanical part.
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Fig. 1 Left: a point cloud sampled on a mechanical part to which 10% of outliers (uniformly sampled
in a box enclosing the model) have been added. Right: the reconstruction of an isosurface of the distance
function dμC,m0 to the uniform probability measure on this point cloud

5 Discussion

We have extended the notion of distance function to a compact subset of R
d to the

case of measures, and showed that this permits one to reconstruct sampled shapes
with the correct homotopy type even in the presence of outliers. It also seems very
likely that a similar statement showing that the sublevel sets of dμ,m0 are isotopic to
the offsets of K can be proved, using the same sketch of proof as in [8]. Moreover,
in the case of point clouds/empirical measures (finite sums of Dirac measures), the
computation of the distance function to a measure (and its gradient) at a given point
becomes a computation of nearest neighbors, making it easy to use in practice. How-
ever, we note that in the important case where the unknown shape is a submanifold,
our reconstructions are clearly not homeomorphic since they do not have the correct
dimension. Is there a way to combine our framework with the classical techniques de-
veloped for homeomorphic surface reconstruction (see, e.g., [1]) to make them robust
to outliers while retaining their guarantees?
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