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Abstract We consider a wide class of semilinear Hamiltonian partial differential
equations and their approximation by time splitting methods. We assume that the
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Fourier basis). We show the existence of a modified interpolated Hamiltonian equa-
tion whose exact solution coincides with the discrete flow at each time step over a
long time. While for standard splitting or implicit–explicit schemes, this long time
depends on a cut-off condition in the high frequencies (CFL condition), we show that
it can be made exponentially large with respect to the step size for a class of modified
splitting schemes.
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1 Introduction

The Hamiltonian interpolation of a symplectic map which is a perturbation of the
identity is a central problem both in the study of Hamiltonian systems and in their
discretization by numerical methods. This question actually goes back to Moser [26]
who interpreted such a map as the exact flow of a Hamiltonian system in the finite-
dimensional context. Such a result was later refined and extended by Benettin and
Giorgilli [5] to the analysis of symplectic numerical methods, and leads to the seminal
backward error analysis results of Hairer, Lubich [17] and Reich [27] for numerical
integrators applied to ordinary differential equations. These results constitute now a
cornerstone of the geometric numerical integration theory [19, 23].

In the finite-dimensional case, the situation can be described as follows: if
(p, q) �→ Ψ h(p,q) is a symplectic map from the phase space R

2d into itself, and
if this map is a perturbation of the identity, Ψ h = Id + O(h), then there exists a
Hamiltonian function Hh(p,q) such that Ψ h can be interpreted as the flow at time
t = h of the Hamiltonian system associated with Hh. If Ψ h is analytic, such results
hold up to an error that is exponentially small with respect to the small parameter h,
and for (p, q) in a compact set of the phase space. In applications to numerical anal-
ysis, the map Ψ h(p,q) � Φh

H (p,q) is a numerical approximation of the exact flow
associated with a given Hamiltonian H . As a consequence, the modified Hamiltonian
Hh, which turns out to be a perturbation of the initial Hamiltonian H , is preserved
along the numerical solution, (pn, qn) = (Ψ h)n(p0, q0), n ∈ N. More precisely, we
have

(pn, qn) = (
Ψ h

)n
(p0, q0) = (

Φnh
Hh

)
(p0, q0) + nh exp

(−1/(ch)
)

(1.1)

under the a priori assumption that the sequence (pn, qn)n∈N remains in a compact set
used to derive the analytic estimates. Here the constant c depends on the eigenvalues
of the quadratic part of the Hamiltonian H (i.e., the linear part of the associated
ODE). As a consequence the qualitative behavior of the discrete dynamics associated
with the map Ψ h over exponentially long times can be pretty well understood through
the analysis of the continuous system associated with Hh.

The extension of such results to Hamiltonian partial differential equations (PDE)
faces the principal difficulty that the Hamiltonian function involves operators with
unbounded eigenvalues making the constant c in the previous estimate blow up. The
goal of this work is to overcome this difficulty and to give Hamiltonian interpolation
results for splitting methods applied to semilinear Hamiltonian PDEs.

We consider a class of Hamiltonian PDEs associated with a Hamiltonian H that
can be split into a quadratic functional H0 associated with an unbounded linear oper-
ator having a discrete spectrum and a nonlinearity P which is a polynomial functional
and at least cubic:

H = H0 + P.

Typical examples are given by the nonlinear Schrödinger equation (NLS)

i∂tu = �u + f (u, ū) (1.2)
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or the nonlinear wave equation (NLW)

∂ttu − �u = g(u) (1.3)

set on the torus T
d . Here f and g are polynomials having a zero of order at least

three at the origin, for instance f (u, ū) = |u|2u for the cubic defocussing NLS and
g(u) = u3 for the classical NLW.

To approximate such equations, splitting methods are widely used: They consist
in decomposing the exact flow Φh

H at a small time step h as compositions of the flows
Φh

H0
and Φh

P . The Lie–Trotter splitting methods

u(nh,x) ∼ un(x) := (
Φh

H0
◦ Φh

P

)n
u0(x) or un(x) := (

Φh
P ◦ Φh

H0

)n
u0(x) (1.4)

are known to be order 1 approximation schemes in time, when the solution is smooth.
Here smooth means that the numerical solution belongs to some Sobolev space Hs ,
s > 1, uniformly in time; see [20, 22] for the linear case and [25] for the nonlinear
Schrödinger equation.

These schemes are all symplectic, preserve the L2 norm if H0 and P do, and can be
easily implemented in practice. For instance, in the cases of NLS or NLW just above,
we can diagonalize the linear part and integrate it by using the fast Fourier transform
and integrate the nonlinear part explicitly (it is an ordinary differential equation).
More generally, instead of the fast Fourier transform, pseudo spectral methods are
used if the spectrum of H0 is known and available.

The Hamiltonian interpolation problem described above can be formulated here
as follows: is it possible to find a modified energy (or modified Hamiltonian function)
Hh depending on H0, P and on the chosen stepsize, such that

Φh
P ◦ Φh

H0
� Φh

Hh
? (1.5)

Formally, this question corresponds to the classical Baker–Campbell–Hausdorff
(BCH) formula (see [2, 21]) for which the modified Hamiltonian Hh is expressed
as iterated Poisson brackets between the two Hamiltonian P and H0. Hence we ob-
serve that the validity of such representation a priori depends on the smoothness of
the discrete solution un. But this is not fair, as there is no reason for un to be, a priori,
uniformly smooth over a long time. Actually, it is well known that this assumption is
not satisfied in general and we illustrate this in Sect. 6 by numerical examples in the
case of the simulation of a solitary wave for NLS.

In this work, we establish backward error analysis results in the spirit of
[5, 17, 27] for the Lie–Trotter splitting methods. We follow a general approach
recently developed in [9] for linear PDEs. In this linear context, Debussche and
Faou proved a formula of the form (1.5) by considering smoothed schemes, namely
schemes where Φh

H0
is replaced by the midpoint approximation of the unbounded

part H0. This yields schemes of the form

Φh
P ◦ Φ1

A0
or Φ1

A0
◦ Φh

P , (1.6)

where A0 depends on h, and is an approximation of the operator hH0 when h → 0.
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In the present work we consider the context of nonlinear PDEs (P is at least cubic).
Let us focus in the introduction on the NLS equation on the torus T

d (a more general
setting is consider in Sect. 2). The quadratic part reads H0(u) = ∑

k∈Zd |k|2|ûk|2
and corresponds to the unbounded linear operator −�. We approximate hH0 by A0
defined by

A0(u) =
∑

k∈Zd

λk|ûk|2, λk = αh

(
h|k|2), (1.7)

where αh is a filter function satisfying αh(x) � x for small x. It turns out that under
such an assumption, (1.6) remains an order one approximation of the continuous
solution, provided that the numerical solution is smooth. This general setting contains
the standard splitting method (1.4) which corresponds to the choice αh(x) = x for
all x, and the midpoint approximation of the linear flow which corresponds to the
function [9] αh(x) = 2 arctan(x/2).

Our principal result can be described as follows:

We assume that, in the Fourier variables, the numerical trajectory remains bounded
in the space1 �1 (the Wiener algebra). Then we construct a Hamiltonian Hh such that

∥∥Φh
P ◦ Φ1

A0
(z) − Φh

Hh
(z)

∥∥
�1 ≤ hN+1(CN)N (1.8)

uniformly for z in a fixed ball of �1 and for some constant C depending on P . The
number N depends on a sort of regularization condition satisfied by the eigenvalues
λk of A0:

∀j = 1, . . . , r,∀(k1, . . . , kj ) |λk1 ± · · · ± λkj
| < 2π. (1.9)

If it is satisfied for some r ≥ 2, then we can take in the previous estimate

N = (r − 2)/(r0 − 2),

where r0 is the degree of the polynomial P . Actually Theorem 4.2 is more gen-
eral since estimate (1.8) is obtained in �1

s , the space of sequences (zk)k∈Zd such that∑ |k|s |zk| < ∞.
For numerical schemes associated with a filter function

αh(x) = √
h arctan

(
x/

√
h
)
, (1.10)

we can actually prove that the regularization condition (1.9) is satisfied for r � 1/
√

h.
The analytic estimate (1.8) then yields an exponentially small error at each step. The
choice (1.10) typically induces a stronger regularization in the high frequencies than
the midpoint rule, without breaking the order of approximation of the method.

For the other classical schemes (standard splitting, implicit–explicit schemes), the
regularization condition (1.9) is in general not satisfied unless a Courant–Friedrichs–
Lewy (CFL) condition is imposed [8], depending on the desired approximation level
N in (1.8) (see Sect. 5 for details and other examples).

1This implies that the numerical trajectory remains bounded in L∞(Td ) uniformly in time. This is actually
the standard assumption is the finite-dimensional case: no blow up in finite time.
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We can make precise in which sense the estimate (1.8) induces a better control of
the numerical solution. Actually, the modified Hamiltonian reads A0/h + P̃ where
P̃ is a modified polynomial. This modified energy will be close to the original energy
only if u is smooth, something that is not guaranteed by the present analysis. How-
ever, in Corollary 5.3 we prove that the preservation of this modified energy implies
the control of the H 1 norm of low modes of the numerical solution, and of the L2

norm of high modes, as in [9], over a very long time. Using this analysis, it is possible
to prove the almost global existence in H 1 of small fully discrete numerical solutions
of NLS in dimension 1. Indeed in this case the H 1 norm controls the �1 norm making
possible the use of a bootstrap argument: see [11, Chap. 6]. In a similar direction,
the existence of this modified energy allows one to prove the stability of numerical
solitons: see [4] and the numerical experiments performed in Sect. 2.

The relative question of persistence of smoothness of the numerical solution has
recently seen many progresses: see [7, 10, 12–15, 18]. However, in all these works
non-resonance conditions are imposed on the stepsize and/or on the frequencies of
the original PDE. In the nonlinear case, such analysis holds only when the linear op-
erators in (1.2) or (1.3) are slightly perturbed by a smooth potential, see also [3, 16].
Here we do not need any non-resonance assumption on the original frequencies, and
the smoothing condition (1.9) is sufficient to ensure the absence of numerical reso-
nances (see [12, 13] for a similar discussion).

2 Abstract Hamiltonian Formalism

In this section we consider Hamiltonian PDEs whose linear part has a discrete spec-
trum. The solution of the PDE under study is decomposed in the eigenbasis of the
linear part:

ψ(t, x) =
∑

ξk(t)φk(x)

and we observe the PDE in the Fourier-like variables ξ = (ξk).
The main difference with the presentation in [12, 13, 16] lies in the choice of the

phase space. We consider Fourier variables ξ belonging to �1
s spaces, based on the

Wiener algebra, and not to �2
s , the classical weighted �2 spaces (Sobolev spaces).

2.1 Setting and Notations

We denote N = Z
d or N

d (depending on the concrete application) for some d ≥ 1.
For a = (a1, . . . , ad) ∈ N , we set |a|2 = max(1, a2

1 + · · · + a2
d). We consider the set

of variables (ξa, ηb) ∈ C
N × C

N equipped with the symplectic structure

i
∑

a∈N
dξa ∧ dηa. (2.1)

We define the set Z = N × {±1}. For j = (a, δ) ∈ Z , we define |j | = |a| and we
denote by j the index (a,−δ). We will identify a couple (ξ, η) ∈ C

N × C
N with
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(zj )j∈Z ∈ C
Z via the formula

j = (a, δ) ∈ Z =⇒
{

zj = ξa if δ = 1,

zj = ηa if δ = −1.

By a slight abuse of notation, we often write z = (ξ, η) to denote such an element.

Example 2.1 In the case where H0 = −� on the torus T
d , the eigenbasis is the

Fourier basis, N = Z
d and ξ is the sequence associated with a function ψ while

η is the Fourier sequence associated with a function φ via the formula

ψ(x) =
∑

a∈N
ξaeia.x and φ(x) =

∑

a∈N
ηae−ia.x .

For a given s ≥ 0, we consider the Banach space �1
s := �1

s (Z,C) made of elements
z ∈ C

Z such that

‖z‖�1
s
:=

∑

j∈Z
|j |s |zj | < ∞,

and equipped with the symplectic form (2.1). We will often write simply �1 = �1
0. We

moreover define for s > 1 the Sobolev norms

‖z‖Hs =
( ∑

j∈Z
|j |2s |zj |2

)1/2

.

For a function F of C 1(�1
s ,C), we define its gradient by

∇F(z) =
(

∂F

∂zj

)

j∈Z
, where for j = (a, δ),

∂F

∂zj

=
{

∂F
∂ξa

if δ = 1,

∂F
∂ηa

if δ = −1.

Let H(z) be a function defined on �1
s . If H is smooth enough, we can associate with

this function the Hamiltonian vector field XH (z) defined by

XH (z) = J∇H(z),

where J is the symplectic operator on �1
s induced by the symplectic form (2.1).

For two functions F and G, the Poisson Bracket is (formally) defined as

{F,G} = ∇FT J∇G = i
∑

a∈N

∂F

∂ηj

∂G

∂ξj

− ∂F

∂ξj

∂G

∂ηj

. (2.2)

We say that z ∈ �1
s is real when zj = zj for any j ∈ Z . In this case, we write

z = (ξ, ξ̄ ) for some ξ ∈ C
N . Furthermore, we say that a Hamiltonian function H is

real if H(z) is real for all real z.
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Example 2.2 Following Example 2.1, a real z corresponds to the relation φ = ψ̄ and
a typical real Hamiltonian reads H(z) = ∫

Td h(ψ(x),φ(x))dx where h is a regular
function from C

2 to C satisfying h(ζ, ζ̄ ) ∈ R for all ζ ∈ C.

Definition 2.3 For a given s ≥ 0, we denote by Hs the space of real Hamiltonians P

satisfying

P ∈ C 1(�1
s ,C

)
and XP ∈ C 1(�1

s , �
1
s

)
.

Notice that for F and G in Hs the formula (2.2) is well defined.
We will verify later (see Example 2.6) that the typical real Hamiltonians given in

Example 2.2 belong to the class Hs . Actually the proof is not totally trivial, because
the Fourier transform is not well adapted to the �1

s space.
With a given Hamiltonian function H ∈ Hs , we associate the Hamiltonian system

ż = J∇H(z)

which can be written
{

ξ̇a = −i ∂H
∂ηa

(ξ, η), a ∈ N ,

η̇a = i ∂H
∂ξa

(ξ, η), a ∈ N .
(2.3)

In this situation, we define the flow Φt
H (z) associated with the previous system (for

an interval of times t ≥ 0 depending a priori on the initial condition z). Note that if
z = (ξ, ξ̄ ) and if H is real, the flow (ξ t , ηt ) = Φt

H (z) is also real for all time t where
the flow is defined: ξ t = η̄t . When H is real, it may be useful to introduce the real
variables pa and qa given by

ξa = 1√
2
(pa + iqa) and ξ̄a = 1√

2
(pa − iqa),

the system (2.3) is then equivalent to the system

{
ṗa = − ∂H

∂qa
(q,p), a ∈ N ,

q̇a = ∂H
∂pa

(q,p), a ∈ N ,

where by a slight abuse of notation we still denote the Hamiltonian with the same
letter: H(q,p) = H(ξ, ξ̄ ).

We now describe the hypothesis needed on the Hamiltonian nonlinearity P .
Let � ≥ 2. We consider j = (j1, . . . , j�) ∈ Z �, and we set for all i = 1, . . . , �,

ji = (ai, δi) where ai ∈ N and δi ∈ {±1}. We define

j = (
j1, . . . , j �

)
with j i = (ai,−δi), i = 1, . . . , �.

We also use the notation

zj = zj1 · · · zj�
.
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We define the momentum M(j) of the multi-index j by

M(j) = a1δ1 + · · · + a�δ�. (2.4)

We then define the set of indices with zero momentum

I� = {
j = (j1, . . . , j�) ∈ Z �,with M(j) = 0

}
. (2.5)

We can now define precisely the type of polynomial nonlinearities we consider:

Definition 2.4 We say that a polynomial Hamiltonian P ∈ Pk if P is real, of de-
gree k, has a zero of order at least 2 in z = 0, if

• P contains only monomials ajzj having zero momentum, i.e. such that M(j) = 0
when aj �= 0 and thus P formally reads

P(z) =
k∑

�=2

∑

j∈I�

ajzj (2.6)

with the relation aj̄ = āj .
• The coefficients aj are bounded, i.e. satisfy

∀� = 2, . . . , k,∀j = (j1, . . . , j�) ∈ I� |aj | ≤ C.

In the following, we set

‖P ‖ =
k∑

�=2

sup
j∈I�

|aj |. (2.7)

Definition 2.5 We say that P ∈ S Pk if P ∈ Pk has coefficients aj such that aj �= 0
implies that j contains the same numbers of positive and negative indices:

�
{
i | ji = (ai,+1)

} = �
{
i | ji = (ai,−1)

}
.

In other words, P contains only monomials with the same numbers of ξi and ηi . Note
that this implies that k is even.

Example 2.6 Following Example 2.2, P(z) = ∫
Td p(ψ(x),φ(x))dx, where p is a

polynomial of degree k in C[X,Y ] satisfying p(ζ, ζ̄ ) ∈ R and having a zero of order
at least 2 at the origin, defines a Hamiltonian in Pk .

An example of a polynomial Hamiltonian in S P2k is given by P = ∫ |ψ |2k dx.

The zero momentum assumption in Definition 2.4 is crucial in order to obtain the
following proposition:

Proposition 2.7 Let k ≥ 2 and s ≥ 0; then we have Pk ⊂ Hs , and for P ∈ Pk , we
have the estimates

∣∣P(z)
∣∣ ≤ ‖P ‖

(
max

n=2,...,k
‖z‖n

�1
s

)
(2.8)
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and

∀z ∈ �1
s ,

∥∥XP (z)
∥∥

�1
s
≤ 2k(k − 1)s‖P ‖‖z‖�1

s

(
max

n=1,...,k−2
‖z‖n

�1

)
. (2.9)

Moreover, for z and y in �1
s , we have

∥∥XP (z)−XP (y)
∥∥

�1
s
≤ 4k(k − 1)s‖P ‖

(
max

n=1,...,k−2

(‖y‖n
�1
s
,‖z‖n

�1
s

))‖z−y‖�1
s
. (2.10)

Therefore, for P ∈ Pk and Q ∈ P�, we have {P,Q} ∈ Pk+�−2 and we have the esti-
mate

∥∥{P,Q}∥∥ ≤ 2k�‖P ‖‖Q‖. (2.11)

If now P ∈ S Pk and Q ∈ S Pk , then {P,Q} ∈ S Pk+�−2.

Remark 2.8 The estimate (2.9) is a sort of tame estimate. The same estimate with �1
s

replaced by �2
s is proved in [16] under the assumption of decreasing coefficients of

the polynomial P . Actually the present proof is much simpler.

Proof Assume that P is given by (2.6), and denote by Pi the homogeneous compo-
nent of degree i of P , i.e.

Pi(z) =
∑

j∈Ii

ajzj , i = 2, . . . , k.

We have for all z

∣∣Pi(z)
∣∣ ≤ ‖Pi‖‖z‖i

�1 ≤ ‖Pi‖‖z‖i
�1
s
.

The first inequality (2.8) is then a consequence of the fact that

‖P ‖ =
k∑

i=2

‖Pi‖. (2.12)

Now let j = (a, ε) ∈ Z be fixed. The derivative of a given monomial zj = zj1 · · · zji

with respect to zj vanishes except if j ⊂ j . Assume for instance that j = ji . Then
the zero momentum condition implies that M(j1, . . . , ji−1) = −εa and we can write

|j |s
∣∣
∣∣
∂Pi

∂zj

∣∣
∣∣ ≤ i‖Pi‖

∑

j∈Z i−1,M(j)=−εa

|j |s |zj1 · · · zji−1 |. (2.13)

Now in this formula, for a fixed multi-index j , the zero momentum condition implies
that

|j |s ≤ (|j1| + · · · + |ji−1|
)s ≤ (i − 1)s max

n=1,...,i−1
|jn|s . (2.14)
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Therefore, after summing over a and ε we get

∥∥XPi
(z)

∥∥
�1
s
≤ 2i(i − 1)s‖Pi‖

∑

j∈Z i−1

max
n=1,...,i−1

|jn|s |zj1 | · · · |zji−1 |

≤ 2i(i − 1)s‖Pi‖‖z‖�1 ‖z‖i−2
�1
s

(2.15)

which yields (2.9) after summing over i = 2, . . . , k.
Now for z and y in �1

s , we have, with the previous notation,

|j |s
∣∣∣∣
∂Pi

∂zj

(z) − ∂Pi

∂zj

(y)

∣∣∣∣ ≤
∑

q∈Z
|j |s

∣∣∣∣

∫ 1

0

∂Pi

∂zj ∂zq

(
ty + (1 − t)z

)
dt

∣∣∣∣|zq − yq |.

But we have for fixed j = (ε, a) and q = (δ, b) in Z , and for all u ∈ �1
s

|j |s
∣∣∣∣

∂Pi

∂zj ∂zq

(u)

∣∣∣∣ ≤ i‖Pi‖
∑

j∈Z i−2,M(j)=−εa−δb

|j |s |uj1 · · ·uji−2 |.

In the previous sum, we necessarily have M(j , j, k) = 0, and hence as before

|j |s ≤ (|j1| + · · · + |ji−2| + |q|)s ≤ (i − 1)s |q|s
i−2∏

n=1

|jn|s .

Let u(t) = ty + (1 − t)z; we have for all t ∈ [0,1] with the previous estimates

|j |s
∣∣∣∣

∫ 1

0

∂Pi

∂zj ∂zq

(
u(t)

)
dt

∣∣∣∣

≤ i(i − 1)s |q|s‖Pi‖
∫ 1

0

∑

j∈Z i−2,M(j)=−εa−δb

|j1|s
∣∣uj1(t)

∣∣ · · · |j2|s
∣∣uji−2(t)

∣∣dt.

Multiplying by (zq − yq) and summing over k and j , we obtain

∥∥ZPi
(z) − XPi

(y)
∥∥

�1
s
≤ 4i(i − 1)s‖Pi‖

(∫ 1

0

∥∥u(t)
∥∥i−2

�1
s

dt

)
‖z − y‖�1

s
.

Hence we obtain the result after summing over i, using the fact that
∥∥ty + (1 − t)z

∥∥
�1
s
≤ max

(‖y‖�1
s
,‖z‖�1

s

)
.

Assume now that P and Q are homogeneous polynomials of degrees k and �,

respectively, and with coefficients ak , k ∈ Ik and b�, � ∈ I�. It is clear that {P,Q} is a
monomial of degree k +�−2 satisfying the zero momentum condition. Furthermore,
writing

{P,Q}(z) =
∑

j∈Ik+�−2

cjzj ,
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cj is expressed as a sum of coefficients akb� for which there exists an a ∈ N and
ε ∈ {±1} such that

(a, ε) ⊂ k ∈ Ik and (a,−ε) ⊂ � ∈ I�,

and such that if for instance (a, ε) = k1 and (a,−ε) = �1, we necessarily have
(k2, . . . , kk, �2, . . . , ��) = j . Hence for a given j , the zero momentum condition on
k and on � determines the value of εa, which in turn determines the value of (ε, a)

when N = N
d and determines two possible values of (ε, a) when N = Z

d .
This proves (2.11) for monomials. If

P =
k∑

i=2

Pj and Q =
�∑

j=2

Qj,

where Pi and Qj are homogeneous polynomials of degree i and j, respectively, then
we have

{P,Q} =
k+�−2∑

n=2

∑

i+j−2=n

{Pi,Qj }.

Hence by definition of ‖P ‖ (see (2.7)) and the fact that all the polynomials {Pi,Qj }
in the sum are homogeneous of degree i +j −2, we have by the previous calculations

‖{P,Q}‖ =
k+�−2∑

n=2

∥∥
∥∥

∑

i+j−2=n

{Pi,Qj }
∥∥
∥∥

≤ 2
k+�−2∑

n=2

∑

i+j−2=n

ij‖Pi‖‖Qj‖

≤ 2k�

(
k∑

i=2

‖Pi‖
)(

�∑

j=2

‖Qj‖
)

= 2k�‖P ‖‖Q‖,

where we used (2.12) for the last equality.
The last assertion, as well as the fact that the Poisson bracket of two real Hamilto-

nian is real, follow immediately from the definition of the Poisson bracket. �

With the previous notation, we consider the following Hamiltonian functions:

H(z) = H0(z) + P(z) =
∑

a∈N
ωaIa(z) + P(z), (2.16)

where for all a ∈ N , Ia(z) = ξaηa are the actions and ωa ∈ R are the associated
frequencies. We assume

∀a ∈ N , |ωa| ≤ C|a|m (2.17)
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for some constants C > 0 and m > 0. The Hamiltonian system (2.3) then reads

{
ξ̇a = −iωaξa − i ∂P

∂ηa
(ξ, η), a ∈ N ,

η̇a = iωaηa + i ∂P
∂ξa

(ξ, η), a ∈ N .
(2.18)

2.2 Examples

2.2.1 Nonlinear Schrödinger Equation

We first consider nonlinear Schrödinger equations of the form

i∂tψ = −�ψ + ∂2g(ψ, ψ̄), x ∈ T
d , (2.19)

where g : C
2 → C is a polynomial of order r0. We assume that g(z, z̄) ∈ R, and that

g(z, z̄) = O(|z|3) is a polynomial with a zero of order at least 3 at the origin. The
corresponding Hamiltonian functional is given by

H(ψ, ψ̄) =
∫

Td

(|∇ψ |2 + g(ψ, ψ̄)
)

dx.

Let φa(x) = eia·x , a ∈ Z
d be the Fourier basis on L2(Td). With the notation

ψ =
(

1

2π

)d/2 ∑

a∈Zd

ξaφa(x) and ψ̄ =
(

1

2π

)d/2 ∑

a∈Zd

ηaφ̄a(x),

the Hamiltonian associated with (2.19) can (formally) be written

H(ξ,η) =
∑

a∈Zd

ωaξaηa +
r0∑

r=3

∑

a,b

Pabξa1 · · · ξapηb1 · · ·ηbq . (2.20)

Here ωa = |a|2 satisfying (2.17) with m = 2 are the eigenvalues of the Laplace
operator −�. As previously seen in Examples 2.1, 2.2, 2.6, the nonlinearity P =∫

Td g(ψ(x),φ(x))dx is real, satisfies the zero momentum condition and belongs to
Hs (as g is polynomial).

In this situation, working in the space �1 for ξ corresponds to working in a sub-
space of bounded functions ψ(x). Similarly the control of the �1

s norm of ξ for s ≥ 0
leads to a control of ‖∇sψ‖L∞ .

2.2.2 Nonlinear Wave Equation

As a second concrete example we consider a 1-d nonlinear wave equation

utt − uxx = g(u), x ∈ (0,π), t ∈ R, (2.21)

with Dirichlet boundary condition: u(0, t) = u(π, t) = 0 for any t . We assume that
g : R → R is polynomial of order r0 − 1 with a zero of order two at u = 0. Defining
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v = ut , (2.21) reads

∂t

(
u

v

)
=

(
v

uxx + g(u)

)
.

Furthermore, let H : H 1(0,π) × L2(0,π) �→ R be defined by

H(u,v) =
∫

S1

(
1

2
v2 + 1

2
u2

x + G(u)

)
dx, (2.22)

where G such that ∂uG = −g is a polynomial of degree r0; then (2.21) can be ex-
pressed as a Hamiltonian system

∂t

(
u

v

)
=

(
0 1

−1 0

)(−uxx + ∂uG

v

)

= J∇u,vH(u, v), (2.23)

where J = ( 0 1
−1 0

)
represents the symplectic structure and where ∇u,v = ( ∇u

∇v

)
with

∇u and ∇v denoting the L2 gradient with respect to u and v, respectively.
Let −�D be the Laplace operator with Dirichlet boundary conditions. Let A =

(−�D)1/2. We introduce the variables (p, q) given by

q := A1/2u and p := A−1/2v.

Then, on Hs(0,π) × Hs(0,π) with s ≥ 1/2, the Hamiltonian (2.22) takes the form
H0 + P with

H0(q,p) = 1

2

(〈Ap,p〉L2 + 〈Aq,q〉L2

)
(2.24)

and

P(q,p) =
∫

S1
G

(
A−1/2q

)
dx. (2.25)

In this context N = N \ {0}, ωa = a, a ∈ N are the eigenvalues of A and φa = sinax,
a ∈ N , the associated eigenfunctions.

Substituting the decompositions

q(x) =
∑

a∈N
qaφa(x) and p(x) =

∑

a∈N
paφa(x)

into the Hamiltonian functional, we see that it takes the form

H =
∑

a∈N
ωa

p2
a + q2

a

2
+ P,

where P is a function of the variables qa . Using the complex coordinates

ξa = 1√
2
(qa + ipa) and ηa = 1√

2
(qa − ipa)
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the Hamiltonian function can be written in the form (2.20) with a nonlinearity de-
pending on G. In this case, the space �1 for z = (ξ, η) corresponds to functions u(x)

such that the Fourier transform û(a) = 1
π

∫ π

0 u(x) sin(ax)dx satisfies (aû(a))a∈N ∈
�1(N ) and (a−1û(a))a∈N ∈ �1(N ). This implies in particular a control of u(x) and
∂xu(x) in L∞(0,π). More generally, with a z in some �1

s space, s ∈ N, there is asso-
ciated a function u(x) such that ∂k

xu(x) ∈ L∞(0,π) for k = 0, . . . , s + 1.

2.3 Splitting Schemes

The standard Lie–Trotter splitting methods for the PDE associated with the Hamil-
tonian H0 + P consists in replacing the flow generated by H during the time h (the
small time step) by the composition of the flows generated by H0 and P during the
same time, namely

Φh
H0

◦ Φh
P and Φh

P ◦ Φh
H0

.

As explained in the introduction, it turns out that it is convenient to consider more
general splitting methods including in particular a regularization in the high modes of
the linear part. Thus we replace the operator hH0 by a more general Hamiltonian A0.
Precisely, let αh(x) be a real function, depending on the stepsize h, satisfying αh(0) =
0 and αh(x) � x for small x. We define the diagonal operator A0 by the relation

∀j = (a, δ) ∈ Z, A0zj = δαh(hωa)zj . (2.26)

For a ∈ N , we set λa = αh(hωa). We consider the splitting methods

Φh
P ◦ Φ1

A0
and Φ1

A0
◦ Φh

P , (2.27)

where Φh
P is the exact flow associated with the Hamiltonian P , and where Φ1

A0
is

defined by the relation

∀j = (a, δ) ∈ Z,
(
Φ1

A0
(z)

)
j

= exp(iδλa)zj .

We will mainly consider the cases listed in the Table 1 below.

Table 1 Splitting schemes
Method αh(x)

Splitting αh(x) = x

Splitting + CFL αh(x) = x1x<c(x)

Mid-split αh(x) = 2 arctan(x/2)

Mid-split + CFL αh(x) = 2 arctan(x/2)1x<c(x)

New scheme (I) αh(x) = hβ arctan(h−βx)

New scheme (II) αh(x) = x+x2/hβ

1+x/hβ+x2/h2β
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Let us comment on these choices. The “mid-split” cases correspond to the approx-
imation of the system

{
ξ̇a = −iωaξa, a ∈ N ,

η̇a = iωaηa, a ∈ N ,

by the midpoint rule [1, 28]. Starting from a given point (ξ0
a , η0

a) we have by definition
for the first equation

ξ1
a =

(
1 − ihωa/2

1 + ihωa/2

)
ξ0
a = exp

(−2i arctan(hωa/2)
)
ξ0
a

which is the solution at time 1 of the system

{
ξ̇a = −i2 arctan(hωa/2)ξa, a ∈ N ,

η̇a = i2 arctan(hωa/2)ηa, a ∈ N .

Thus in this case the Hamiltonian A0 is given by

A0(ξ, η) =
∑

a∈Z
2 arctan(hωa/2)ξaηa.

Note that using the relation

∀y ∈ R,
∣
∣ arctan(y) − y

∣
∣ ≤ |y|3

3
(2.28)

we obtain, for all a ∈ N ,

∣∣ exp(−ihωa) − exp
(−2i arctan(hωa/2)

)∣∣ ≤ Ch3ω3
a

for some constant C independent of a. Using the bound (2.17), we get for all z,

∥∥Φh
H0

(z) − Φ1
A0

(z)
∥∥

L2 ≤ Ch3‖z‖H 3m.

More generally, we have the following approximation result:

Lemma 2.9 Assume that the function αh(x) satisfies

∀x > 0,
∣∣αh(x) − x

∣∣ ≤ Ch−σ xγ (2.29)

for some constants C > 0, σ ≥ 0 and γ ≥ 2. Then we have

∥∥Φh
H0

(z) − Φ1
A0

(z)
∥∥

L2 ≤ Chγ−σ ‖z‖Hγm. (2.30)

Proof For a given a ∈ N , we have

∣∣αh(hω) − hωa

∣∣ ≤ Chγ−σ ω
γ
a .
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Hence owing to the fact that |eix − eiy | ≤ |x − y| for real x and y, we obtain

| exp(−ihωa) − exp(−iαh(hωa)| ≤ Chγ−σ ω
γ
a ,

and this yields the result. �

Commentary 2.10 Under the assumption that P acts on sufficiently high index
Sobolev spaces Hs , the previous result can be combined with standard convergence
analysis to show that the splitting methods (2.27) yield consistent approximation of
the exact solution Φh

H provided the initial solution is smooth enough (depending
on m). The condition γ − σ = 2 guarantees a local order 2 in (2.30) that will be of
the same order of the error made by the splitting decomposition after one step. Such
a local error propagates to a global error of order 1, which means that for a give fi-
nite time T , the error with the exact solution after n iteration with nh = T will be of
order n × h2 � h up to constants depending on T , and under the assumption that the
numerical solution remains smooth. To give more precise results would be out of the
scope of this paper, and we refer to [25] for the case of NLS.

Let us consider the function

αh(x) = hβ arctan
(
h−βx

)
(2.31)

for 1 > β ≥ 0. It satisfies (2.29) with C = 1/3, σ = 2β and γ = 3 (see (2.28)). Hence
for β = 1/2, the estimate (2.30) shows a local error of order γ − σ = 2, and hence
the splitting schemes (2.27) remains of local order 2 (though with more smoothness
required than with the midpoint approximation) which means that the error made after
one step is of order h2. Of course, when β = 1, the approximation is not consistent
(local error of order 1).

The second example

αh(x) = x + x2/hβ

1 + x/hβ + x2/h2β
(2.32)

exhibits similar properties. Note that the simple choice

αh(x) = x

1 + x/hβ
(2.33)

ensures only a local error of order h2−β (γ = 2 and σ = β in (2.30)). Hence the
corresponding splitting schemes (2.27) are of global order 1 − β (hence 1/2 in the
case where β = 1/2).

All these “new” schemes have the particularity that αh(x) � x when x is small, but
when x → ∞, we have αh(x) � hβ . Their use thus leads to a stronger regularization
effect in the high modes than the midpoint approximation, without breaking the order
of approximation for smooth functions. We will see in Sects. 3 and 4 that this property
allows us to construct a modified equation over exponentially long times for all these
schemes.
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Note that, in practice, the implementation of the schemes associated with the filter
functions (2.31) or (2.32) a priori requires the knowledge of a spectral decomposition
of H0. This will be the case for NLS on the torus, or NLW with Dirichlet boundary
conditions, where the switch from the x-space (to calculate Φh

P ) to the Fourier space
(to calculate Φ1

A0
) can be easily implemented using the fast Fourier transform.

3 Recursive Equations

In this section we explain the strategy in order to prove the existence of a modified
energy. We will see that it leads us to solve by induction a sort of homological equa-
tion in the spirit of normal form theory (see for instance [16]). For simplicity, we
consider only the splitting method Φh

P ◦ Φ1
A0

. The second Lie splitting Φ1
A0

◦ Φh
P can

be treated similarly.
We look for a real Hamiltonian function Z(t, ξ, η) such that for all t ≤ h we have

Φt
P ◦ Φ1

A0
= Φ1

Z(t) (3.1)

and such that Z(0) = A0.
For a given Hamiltonian K ∈ Hs , we denote by LK the Lie differential operator

associated with the Hamiltonian vector field XK : for a given function g acting on �1
s ,

s ≥ 0, and taking values on C or �1
s , we have

LK(g) =
∑

j∈Z
(XK)j

∂g

∂zj

.

Denoting by z(t) the flow generated by XK starting from z ∈ �1
s , i.e. z(t) = Φt

K(z),
we have (if K is in Hs )

z(k)(t) = Lk
K [I ](z(t)), for all k ∈ N,

where I defines the identity vector field: I (z)j = zj . Thus we can write, at least
formally,

Φ1
K = exp(LK)[I ]. (3.2)

Differentiating the exponential map we calculate as in [19, Sect. III.4.1]

d

dt
Φ1

Z(t) = XQ(t) ◦ Φ1
Z(t),

where the differential operator associated with Q(t) is given by

LQ(t) =
∑

k≥0

1

(k + 1)!Adk
LZ(t)

(LZ′t))

with

AdLA
(LH ) = [LA, LH ]

being the commutator of two vector fields.
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As the vector fields are Hamiltonian, we have

[LA, LH ] = L{A,H },

where

adK(G) = {K,G}.
Hence we obtain the formal series equation for Q:

Q(t) =
∑

k≥0

1

(k + 1)!adk
Z(t)Z

′(t), (3.3)

where Z′(t) denotes the derivative with respect to t of the Hamiltonian function Z(t).
Therefore taking the derivative of (3.1), we obtain

XP ◦ Φt
P ◦ Φ1

A0
= XQ(t) ◦ Φ1

Z(t)

and hence the equation to be satisfied by Z(t) reads

∑

k≥0

1

(k + 1)!adk
Z(t)Z

′(t) = P. (3.4)

Notice that the series
∑

k≥0
1

(k+1)!z
k = ez−1

z
is invertible in the open disc |z| < 2π

with inverse given by
∑

k≥0
Bk

k! z
k where Bk are the Bernoulli numbers. So formally,

(3.4) is equivalent to the formal series equation (see also [9], Eqn. (3.1))

Z′(t) =
∑

k≥0

Bk

k! adk
Z(t)P . (3.5)

Substituting an Ansatz expansion Z(t) = ∑
�≥0 t�Z� into this equation, we get

Z0 = A0 and for n ≥ 0

(n + 1)Zn+1 =
∑

k≥0

Bk

k!
∑

�1+···+�k=n

adZ�1
· · · adZ�k

P . (3.6)

Commentary 3.1 The analysis made to obtain this recursive equation is formal. To
obtain our main result, we will verify that the series we manipulate are in fact con-
vergent series in Hs uniformly on balls of �1

s that contain the different flows involved
in the formulas (see in particular Lemma 4.3 below).

For instance, (3.2) holds true as soon as z(t) remains in a ball Bs
M :=

{z ∈ �1
s | ‖z‖�1

s
≤ M} for 0 ≤ t ≤ 1, and the series

∑ Lk
K [I ](z)

k! is uniformly conver-
gent on Bs

M . Notice that this in turn implies that t �→ z(t) is analytic on the complex
disc of radius 1.

Commentary 3.2 In the case of Strang splitting methods of the form

Φ
h/2
P ◦ Φ1

A0
◦ Φ

h/2
P
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we can apply the same strategy and look for a Hamiltonian Z(t) satisfying, for all
t ≤ h,

Φ1
Z(t) = Φ

t/2
P ◦ Φ1

A0
◦ Φ

t/2
P

and this yields equations similar to (3.6). We do not give the details here, as the
analysis will be very similar.

The key lemma in order to prove that the previous series converge (and thus to jus-
tify the previous formal analysis) is the following one (whose proof is straightforward
calculus):

Lemma 3.3 Assume that

Q(z) =
∑

j∈Z
ajzj

is a polynomial. Then

adZ0(Q) =
∑

j∈Z
iΛ(j)ajzj ,

where for a multi-index j = (j1, . . . , jr ) with for i = 1, . . . , r , ji = (ai, δi) ∈ N ×
{±1}, we denote

Λ(j) = δ1λa1 + · · · + δrλar .

Hence we see that if |Λ(j)| < 2π we will be able to define at least the first term
Z1 by summing the series in k in the formula (3.6).

4 Analytic Estimates

We assume in this section that αh and h satisfy the following condition: there exist r

and a constant δ < 2π such that

∀n ≤ r,∀j ∈ In

∣∣Λ(j)
∣∣ ≤ 2π − δ. (4.1)

Using Lemma 3.3, this condition implies that for any polynomial Q ∈ Pr , we have
the estimate

∥∥adZ0Q
∥∥ ≤ (2π − δ)‖Q‖ (4.2)

as, for homogeneous polynomials, the degree of adZ0Q is the same as the degree
of Q.

Theorem 4.1 Let r0 ≥ 3. Assume that P ∈ Pr0 and that the condition (4.1) is fulfilled
for some constants δ and r . Then for n ≤ N := r−2

r0−2 we can define polynomials Zn ∈
Pn(r0−2)+2 satisfying (3.6) up to the order n, and satisfying the estimates ‖Z1‖ ≤ c

and for 2 ≤ n ≤ N ,

‖Zn‖ ≤ c(Cn)n−2 (4.3)
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for some constants c and C depending only on ‖P ‖, r0 and δ. If, moreover, P ∈ S Pr0

then Zn ∈ S Pn(r0−2)+2.

Proof Let

P(z) =
r0∑

�=2

∑

j∈I�

ajzj .

First we prove the existence of the Zk for k ≤ N . Equation (3.6) for n = 0 reads

Z1 =
∑

k≥0

Bk

k! adk
Z0

P.

The previous lemma and the condition (4.1) show that Z1 exists and is given by

Z1 =
r0∑

�=2

∑

j∈I�

iΛ(j)

exp(iΛ(j)) − 1
aj zj .

Furthermore, we deduce immediately that Z1 is real and satisfies ‖Z1‖ ≤ cδ‖P ‖ for
some constant cδ .

Assume now that the Zk are constructed for 0 ≤ k ≤ n, n ≥ 1 and are such that Zk

is a polynomial of degree k(r0 − 2) + 2. Formally, Zn+1 is defined as a series

Zn+1 = 1

n + 1

∑

k≥0

Bk

k! Ak,

where

Ak =
∑

�1+···+�k=n

adZ�1
· · · adZ�k

P .

Let us prove that this series converges absolutely. In the previous sum, we separate
the number of indices j for which �j = 0. For them, we can use (4.2). Only for the
other indices, we will use the estimates of Proposition 2.7 by taking into account
that the right-hand side is a sum of terms that are all real polynomials of degree
(�1 +· · ·+�k)(r0 −2)+r0 = (n+1)(r0 −2)+2 ≤ (n+1)r0 and hence the inequality
of Proposition 2.7 is only used with polynomials of order less than (n + 1)r0. Thus
we write for k ≥ n

‖Ak‖ := ‖
∑

�1+···+�k=n

adZ�1
· · · adZ�k

P ‖

≤
n∑

i=1

k! (2π − δ)k−i

(k − i)! i!
∑

�1+···+�i=n|�j >0

(n + 1)i−12i r2i
0 �1‖Z�1‖ · · ·�i‖Z�i

‖‖P ‖

≤ (2π − δ)k−nkn

n∑

i=1

∑

�1+···+�i=n|�j >0

(n + 1)i−12i r2i
0 �1‖Z�1‖ · · ·�i‖Z�i

‖‖P ‖,

and thus
∑

k≥0
Bk

k! Ak converges and Zn+1 is well defined up to n + 1 ≤ N .
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Further, as the right-hand side of (3.6) is a sum of terms that are all real polynomi-
als of degree (n+1)(r0 −2)+2, Zn+1 is a polynomial of degree (n+1)(r0 −2)+2.

Now we have to prove the estimate (4.2). Following the previous calculation we
get

(n + 1)‖Zn+1‖ ≤
n∑

i=1

∑

�1+···+�i=n|�j >0

∑

k≥i

Bk

i! (k − i)! (2π − δ)k−i (n + 1)i−12i r2i
0

× �1‖Z�1‖ · · ·�i‖Z�i
‖‖P ‖.

On the other hand, the entire series f (z) := ∑
k≥1

Bk

k! z
k defines an analytic function

on the disc |z| < 2π . Thus its ith derivative
∑

k≥i
Bk

(k−i)!z
k−i also defines an analytic

function on the same disc and, by Cauchy estimates, there exists a constant Cδ =
sup|z|≤2π−δ/2 |f (x)| such that

∑

k≥i

Bk

(k − i)! (2π − δ)k−i ≤ Cδi!
(

2

δ

)i

.

We then define for n ≥ 1

ζn = nr0‖Zn‖.
These numbers satisfy the estimates, for n ≥ 0,

ζn+1 ≤ δ0
nr0cδ‖P ‖ + Cδr0‖P ‖

n∑

i=1

∑

�1+···+�i=n|�j >0

(n + 1)i−1(4δ−1r0
)i

ζ�1· · · ζ�i
.

Let us fix N ≥ 1. We have for n = 0, . . . ,N

4δ−1r0(N + 1)ζn+1

≤ 4δ−1r0(N + 1)δ0
nr0cδ‖P ‖

+ Cδ4δ−1r2
0 ‖P ‖

n∑

i=1

∑

�1+···+�i=n|�j >0

(N + 1)i
(
4δ−1r0

)i
ζ�1· · · ζ�i

.

Let βj , j = 0, . . . ,N be the sequence satisfying

βn+1 = δ0
nC1 + C2

n∑

i=1

∑

�1+···+�i=n|�j >0

β�1· · ·β�i
(4.4)

where

C1 = 4(N + 1)r2
0 cδ δ−1‖P ‖ and C2 = 4Cδ

δ
r2

0‖P ‖.
By induction, we see that for all n = 0, . . . ,N ,

(N + 1)
4r0

δ
ζn ≤ βn.
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Multiplying (4.4) by tn+1 and summing over n ≥ 0 we see that the formal series
β(t) = ∑

j≥1 tj βj satisfies the relation

β(t) = tC1 + tC2

(
1

1 − β(t)
− 1

)
.

This yields
(
1 − β(t)

)(
β(t) − tC1

) = tC2β(t)

or equivalently

β(t)2 − β(t)
(
1 + t (C1 − C2)

) + tC1 = 0.

The discriminant of this equation is

(
1 + t (C1 − C2)

)2 − 4tC1 = 1 − 2t (C1 + C2) + t2(C1 − C2)
2

and hence, for t ≤ 1/2(C1 + C2), we find, using β(0) = 0,

2β = 1 + t (C1 − C2) − (
1 − 2t (C1 + C2) + t2(C1 − C2)

2)1/2
.

We verify that for t ≤ 1/2(C1 − C2) we have

2β ≤ 3

2
.

By analytic estimate, we obtain for all n ≥ 0

βn = β(n)(0)

n! ≤ 3

2

(
2(C1 − C2)

)n
.

For n = N , this yields

βN ≤ (
CN‖P ‖)N

for some constant C depending on r0 and δ. We deduce the claimed result from the
expression of ζN . �

For s ≥ 0, we define

Bs
M = {

z ∈ �1
s | ‖z‖�1

s
≤ M

}
,

and we will use the notation BM = B0
M .

Theorem 4.2 Let r0 ≥ 3, s ≥ 0 and M ≥ 1 be fixed. We assume that P ∈ Pr0 and that
the condition (4.1) is fulfilled for some constants δ and r ≥ r0 and we denote by N

the largest integer smaller than r−2
r0−2 . Then there exist constants c0 and C depending

on r0, s, δ, ‖P ‖ and M such that, for all hN ≤ c0, there exists a real Hamiltonian
polynomial Hh ∈ PN(r0−2)+2 such that, for all z ∈ Bs

M , we have

∥∥Φh
P ◦ Φ1

A0
(z) − Φh

Hh
(z)

∥∥
�1
s
≤ hN+1(CN)N . (4.5)
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Moreover, assuming that

P(z) =
r0∑

�=1

∑

j∈I�

ajzj

for z ∈ Bs
M we have

∣∣Hh(z) − H
(1)
h (z)

∣∣ ≤ Ch (4.6)

where

H
(1)
h (z) =

∑

a∈N

1

h
αh(hωa)ξaηa +

r0∑

�=1

∑

j∈I�

iΛ(j)

exp(iΛ(j)) − 1
aj zj . (4.7)

If finally, P ∈ S Pr0 , then Hh ∈ S PN(r0−2)+2.

Proof We define the real Hamiltonian Hh = Zh(h)
h

, where

Zh(t) =
N∑

j=0

tjZj ,

and where, for j = 0, . . . ,N , the polynomials Zj are defined in Theorem 4.1. Notice
that N depends on r and thus on h via the condition (4.1).

By definition, Zh(t)(z) is a polynomial of order N(r0 − 2) + 2 ≤ Nr0 and using
Theorem 4.1 we get

∥∥Zh(t)
∥∥ ≤ c1

(

1 +
N∑

j=2

(Ctj)j−2

)

< ∞

for some constant c1 depending on δ and ‖P ‖. Thus Zh ∈ PN(r0−2)+2 (and in
S PN(r0−2)+2 if P ∈ S Pr0 ).

We will use the fact that for all s, there exists a constant cs such that, for all j ≥ 1,

j s ≤ (cs)
j . (4.8)

Now, as for all j , Zj is a polynomial of order j (r0 −2)+2 ≤ jr0 with a zero of order
at least 2 in the origin, we have, using Proposition 2.7 and Theorem 4.1, for z ∈ Bs

9M

and j ≥ 1

∥∥XZj
(z)

∥∥
�1 ≤ 2c(jr0)

s+1(Cj)j−1
(

sup
k=1,...,jr0−1

‖z‖k
�1

)
≤ M

(
2Ccsr

s+1
0 cj (9M)r0

)j
,

where the constants c and C are given by estimate (4.3). On the other hand we have,
using Lemma 3.3 and (4.1),

∥∥XZ0(z)
∥∥

�1 ≤ 2π‖z‖�1 ≤ 2πM.
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Hence, for t ≤ (4NCcsr
s+1
0 c)−1(9M)−r0 we have

∥
∥XZh(t)(z)

∥
∥

�1 ≤ 2πM +M

N∑

j=1

(
t2Ccsr

s+1
0 cN(9M)r0

)j
< (2π +1)M < 8M. (4.9)

Therefore by a classical bootstrap argument, the time 1 flow Φ1
Zh(t) maps Bs

M into

Bs
9M provided that t ≤ (4NCcsr

s+1
0 c)−1(9M)−r0 .

On the other hand, Φ1
A0

is an isometry of �1
s and hence maps Bs

M into itself;
while using again Proposition 2.7, we see that Φt

P maps Bs
M into Bs

9M as long as
t ≤ (4rs+1

0 ‖P ‖M(r0−1))−1. We then define

T ≡ T
(
N,M, r0, s, δ,‖P ‖)

:= min
{(

4rs+1
0 ‖P ‖M(r0−1)

)−1
,
(
4NCcsr

s+1
0 c

)−1
(9M)−r0

}
(4.10)

and we assume in the sequel that 0 ≤ t ≤ T in such a way that all the flows remain in
the ball B9M .

Let u(t) = Φt
P ◦Φ1

A0
(z)−Φ1

Zh(t)(z) and denote by Qh(t) the Hamiltonian defined
by

Qh(t) =
∑

k≥0

1

(k + 1)!adk
Zh(t)Z

′
h(t).

Lemma 4.3 For t ≤ T given in (4.10), the Hamiltonian Qh(t) ∈ Hs and satisfies for
z ∈ Bs

M

d

dt
Φ1

Zh(t)(z) = XQh(t) ◦ Φ1
Zh(t)(z). (4.11)

We postpone the proof of this lemma to the end of this section.
Using this result, as u(0) = 0, we get for t ≤ T given in (4.10)

∥∥u(t)
∥∥

�1
s
≤

∫ t

0

∥∥XP

(
Φs

P ◦ Φ1
A0

(z)
) − XQh(s)

(
Φ1

Zh(s)(z)
)∥∥

�1
s

ds

≤
∫ t

0

∥∥XP

(
Φ1

Zh(s)(z)
) − XQh(s)

(
Φ1

Zh(s)(z)
)∥∥

�1
s

ds

+
∫ t

0

∥∥XP

(
Φs

P ◦ Φ1
A0

(z)
) − XP

(
Φ1

Zh(s)(z)
)∥∥

�1
s

ds.

Therefore for t ≤ T

∥∥u(t)
∥∥

�1
s
≤

∫ t

0
sup

z∈B9M

∥∥XP (z) − XQh(s)(z)
∥∥

�1
s

ds + LP

∫ t

0
‖u(s)‖�1

s
ds (4.12)

where, using (2.10) in Proposition 2.7, we can take

LP = 4rs+1
0 ‖P ‖(9M)r0−2.

So it remains to estimate supz∈B9M
‖XP (z) − XQh(t)(z)‖�1

s
for z ∈ B9M and t ≤ T .
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Now by the definition of Qh(t) and using Lemma 4.3 we have

Z′
h(t) =

∞∑

k=0

Bk

k! adk
Zh(t)Qh(t),

where the right-hand side actually defines a convergent series by the argument used
in the proof of Theorem 4.1. By construction (cf. Sect. 3), we have

∞∑

k=0

Bk

k! adk
Zh(t)

(
Qh(t) − P

) = O
(
tN

)

in the sense of the Hamiltonian in the space Hs . Taking the inverse of the series, we
see

Qh(t) − P =
∑

n≥N

Kn, (4.13)

where we have the explicit expressions

Kn =
∑

�+m=n| m<N

(m + 1)
∑

k≥0

1

(k + 1)!
∑

�1+···+�k=�|�j ≤N

adZ�1
· · · adZ�k

Zm+1. (4.14)

Estimates similar to the one in the proof of Theorem 4.1 lead to

‖Kn‖ ≤
∑

�+m=n|m<N

(m + 1)

�∑

i=0

2i r2i
0 (n + 1)i

∑

k≥i

(2π − δ)(k−i)

i! (k − i)!

×
∑

�1+···+�i=�|0<�j ≤N

�1‖Z�1‖ · · ·�i−1‖Z�i−1‖�i‖Z�i
‖‖Zm+1‖

and hence, after summing over k,

‖Kn‖ ≤ C1

∑

�+m=n |m<N

(m + 1)

�∑

i=0

2i r2i
0 (n + 1)i

i!

×
∑

�1+···+�i=�|0<�j ≤N

�1‖Z�1‖ · · ·�i−1‖Z�i−1‖�i‖Z�i
‖‖Zm+1‖

for some constant C1 depending on δ. Using the estimates in Theorem 4.1, we have
for �j > 0 and �j ≤ N ,

�j‖Z�j
‖ ≤ c(C�j )

�j −1 ≤ c(CN)�j −1.



406 Found Comput Math (2011) 11:381–415

Using, moreover, ‖Zm+1‖ ≤ c(CN)m, and as the number of integers �1, . . . , �i

strictly positive such that �1 + · · · + �i = � is bounded by 22�, we obtain

‖Kn‖ ≤ cC1

∑

�+m=n m<N

(m + 1)

�∑

i=0

(2c)ir2i
0 (n + 1)i

i!

×
∑

�1+···+�i=�|0<�j ≤N

(CN)�1+···+�i+m−i

≤ cC1(CN)n
∑

�+m=n

22�

�∑

i=0

(2c)ir2i
0 (n + 1)i+1

i! .

Therefore, there exists a constant D depending on r0 and ‖P ‖ such that

∀n ≥ N ‖Kn‖ ≤ (DN)n.

As Kn is a polynomial of order at most r0n, we deduce from the previous estimate
and Proposition 2.7 that, for z ∈ Bs

9M ,

∥
∥XKn(z)

∥
∥

�1
s
≤ 2(nr0)

s+1(DN)n(9M)nr0 ≤ (
2csr

s+1
0 DN(9M)r0

)n
,

where the constant cs is defined in (4.8). Hence the series
∑

n≥0 tnXKn(z) con-

verges for t ≤ (4csr
s+1
0 DN(9M)r0)−1. Furthermore, again for z ∈ Bs

9M and t ≤
(4csr

s+1
0 DN(9M)r0)−1, we get, using (4.13) and the previous bound,

∥∥XQh(t)(z) − XP (z)
∥∥

�1
s
≤

∑

n≥N

tn
∥∥XKn(z)

∥∥
�1
s
≤ (N + 1)tN (BN)N

for some constant B depending on ‖P ‖, s, δ and r0.
Let us set

c0(M, r0, δ, s,‖P ‖) := min
{(

4rs+1
0 | ‖P ‖M(r0−1)

)−1
,
(
4Ccsr

s+1
0 c

)−1
(9M)−r0 ,

(
4csr

s+1
0 D(9M)r0

)−1}
.

For t ≤ c0(M, r0, δ, s,‖P ‖)N−1, inserting the last estimate in (4.12) we get

∥
∥u(t)

∥
∥

�1
s
≤ tN+1(BN)N + LP

∫ t

0

∥
∥u(s)

∥
∥

�1
s
ds,

and this leads to
∥∥u(t)

∥∥
�1
s
≤ tN+1(B̃N

)N

for some constant B̃ depending on r0, δ, s, ‖P ‖ and M . This implies (4.5) defining
Hh = Zh(h)/h for h ≤ c0(M, r0, δ, s,‖P ‖)N−1.
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The second assertion of the theorem is just a calculus defining

H
(1)
h = 1

h
Z0 + Z1.

Using the previous bounds and the first inequality in Proposition 2.7, we then calcu-
late that for z ∈ Bs

M

∥∥Hh(z) − H
(1)
h (z)

∥∥
�1
s
≤

N∑

j=2

hj−1‖Zj(z)‖�1
s

≤ hcM2r0

N∑

j=2

hj−2(CjMr0)j−2

≤ hcM2r0

N∑

j=2

(
j

2N

)j−2

≤ 2hM2r0

by definition of c0(M, r0, δ, s,‖P ‖). �

Proof of Lemma 4.3 With the previous notations, we have

Qh(t) =
∑

n≥0

tnKn,

where Kn is given by (4.14) and the bounds obtained show that Qh(t)(z) and
XQh(t)(z) are well defined on B9M . Now let us consider the flow Φ1

Zh(t)
. As pre-

viously mentioned, it acts from Bs
M to Bs

9M . Now we can write formally

Φ1
Zh(t)(z) =

∑

k≥0

1

k! (LZh(t))
k

=
∑

n≥0

tn
∑

k≥0

1

k!
∑

�1+···+�k=n|�i≤N

LZ�1
◦ · · · ◦ LZ�l

[I ](z)

=
∑

n≥0

tnΨn(z). (4.15)

We are going to show that this series converges uniformly for z ∈ Bs
M and t ≤ T .

Let K be a fixed polynomial of degree k, and G(z) = (Gj (z))j∈Z a function
acting on �1

s , and taking values in �1
s , such that the entries Gj(z) are all polynomials

of degree �. By definition, we have

(LK ◦ G)j =
∑

i∈Z
(XK)i

∂Gj

∂zi

= {K,Gj }.

Now using the relation (2.11) of Proposition 2.7, we see that (LK ◦ G)j is a polyno-
mial of degree k + � − 2 and of norm smaller that 2k�‖K‖‖Gj‖. Now if K = Z0,
this bound can be refined in ‖(LZ0 ◦ G)j‖ ≤ (2π − δ)‖Gj‖ using (4.2).
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For a given z ∈ Bs
M , the j th component of LZ�1

◦ · · · ◦ LZ�l
(I )(z) is a polynomial

of order n(r0 − 2) + 2 and involves terms of momentum M(j) = −εa if j = (a, ε)

(see (2.13)). Hence summing over j , and separating as before the indices m for which
�m = 0 in the sum, we obtain for a given n and z ∈ Bs

M ,

∥
∥Ψn(z)

∥
∥

�1
s
≤ 2(nr0)

s+1Mr0n

×
n∑

i=1

∑

k≥i

∑

�1+···+�i=n|�n≤N

(2π − δ)k−i

(k − i)!i!
(
2nr2

0

)i
�1‖Z�1‖ · · ·�i‖Z�i

‖

and we conclude as before that this series is convergent for t ≤ T given in (4.10) with
K depending on r0, M , ‖P ‖, s and δ.

Now writing down the same argument for the series (in k ≥ 0 and tn, n ≥ 0)
defining d

dt
Φ1

Zh(t) and XQh(t) ◦ Φ1
Zh(t), we see that this series is again convergent,

which justifies the relation (4.11). �

5 Applications

In this section we analyze the consequences of the analytic estimates obtained in the
previous section. We first show that, for the “new schemes” in Table 1, we obtain
exponential estimates. We then show that for general splitting schemes, we obtain
results under an additional CFL condition.

5.1 Exponential Estimates

We consider the following splitting scheme Φh
P ◦ Φ1

A0
where the operator A0 is asso-

ciated with a function αh(x) (see (2.26)) satisfying

∀x ∈ R
∣∣αh(x)

∣∣ ≤ γ hβ (5.1)

for some β ∈ (0,1) and some γ > 0. Examples of such methods, preserving the
global order 1 approximation property for smooth functions, are given in Table 1. For
such a scheme, we obtain an exponentially close modified energy.

Theorem 5.1 Let r0 ≥ 3 s ≥ 0 and M ≥ 1 be fixed. Assume that P ∈ Pr0 and that αh

satisfies the condition (5.1) for some constants γ and β . Then there exists a constant
h0 depending on r0, ‖P ‖, s, M and γ such that for all h ≤ h0, there exists a real
polynomial Hamiltonian Hh such that, for all z ∈ Bs

M , we have

∥∥Φh
P ◦ Φ1

A0
(z) − Φh

Hh
(z)

∥∥
�1
s
≤ h exp

(−(h0/h)β
)
. (5.2)

Proof The hypothesis (5.1) implies that the eigenvalues λa of the operator A0 are
bounded by γ hβ . Hence for a multi-index j = (j1, . . . , jr ) we have

∣∣Λ(j)
∣∣ ≤ rγ hβ
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and the condition |Λ(j)| ≤ π will be satisfied as long as r ≤ (π/γ )h−β . Taking
r1 such that r1 ≤ (π/γ )h−β < r1 + 1 and defining N = (r1 − 1)/(r0 − 1), we get
b1h

−β ≤ N ≤ b2h
−β for some positive constants b1 and b2, depending on γ and r0.

Now the estimate (4.5) in Theorem 4.2 for this N yields

∥∥Φh
P ◦ Φ1

A0
(z) − Φh

Hh
(z)

∥∥
�1
s
≤ hN+1(CN)N ≤ h

(
Cb2h

1−β
)N

,

as long as hN ≤ c0. Thus defining h0 = min{(c0b
−1
1 )1/(1−β), (eCb2)

−1/(1−β), b
1/β

1 },
we have for 0 < h ≤ h0

∥∥Φh
P ◦ Φ1

A0
(z) − Φh

Hh
(z)

∥∥
�1
s
≤ he−N ≤ he−b1h

−β ≤ h exp
(−(h0/h)β

)
. �

The dynamical consequences for the associated numerical scheme are given in the
following corollaries. We first assume that the numerical solution remains a priori in
�1 only over an arbitrarily long time.

Corollary 5.2 Under the hypothesis of the previous Theorem, let z0 = (ξ0, ξ̄0) ∈ �1

and the sequence zn be defined by

zn+1 = Φh
P ◦ Φ1

A0
(zn), n ≥ 0. (5.3)

Assume that, for all n, the numerical solution zn remains in a ball BM of �1 for a
given M > 0. Then there exist constants h0 and c such that for all h ≤ h0, there exists
a polynomial Hamiltonian Hh such that

Hh

(
zn

) = Hh

(
z0) + O

(
exp

(−ch−β
))

for nh ≤ exp(ch−β). Moreover, with the Hamiltonian H
(1)
h defined in (4.7) we have

H
(1)
h

(
zn

) = H
(1)
h

(
z0) + O(h) (5.4)

over exponentially long times nh ≤ exp(ch−β).

This means that the modified energy remains exponentially close to its initial value
during exponentially long times. Or more practically (since H

(1)
h is explicit) the first

modified energy is almost conserved during exponentially long times.

Proof As all the Hamiltonian functions considered are real, we have for all n, zn =
(ξn, ξ̄ n), i.e. zn is real. Hence for all n, Hh(z

n) ∈ R. Note, moreover, that we can
always assume that M ≥ 1.

We use the notations of the previous theorems and we notice that Hh(z) is a con-
served quantity by the flow generated by Hh. Therefore, we have

Hh

(
zn+1) − Hh

(
zn

) = Hh

(
Φh

P ◦ Φ1
A0

(
zn

)) − Hh

(
Φh

Hh

(
zn

))

and hence
∣∣Hh

(
zn+1) − Hh

(
zn

)∣∣ ≤
(

sup
z∈B2M

∥∥∇Hh(z)
∥∥

�∞
)∥∥Φh

P ◦ Φ1
A0

(
zn

) − Φh
Hh

(
zn

)∥∥
�1 .
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Now using (4.9) and (5.2) we obtain for all n

∣∣Hh

(
zn+1) − Hh

(
zn

)∣∣ ≤ 4πMh exp
(−(h0/h)β

)

and hence
∣∣Hh

(
zn

) − Hh

(
z0)∣∣ ≤ (nh) exp

(−2ch−β
)

for some constant c, provided h0 is small enough. This implies the result. The second
estimate is then a clear consequence of (4.6). �

The preservation of the Hamiltonian H
(1)
h over a long time induces, for zn =

(ξn, ηn),
∑

a∈N

1

h
αh(hωa)ξ

n
a ηn

a

to be bounded over a long time, provided z0 is smooth. For the functions αh given in
Table 1, this yields Hm/2 bounds for low modes, while the L2 norm of high modes
remains small (see [9, Corollary 2.4] for similar results in the linear case). We detail
here the result in the specific situation where αh(x) is given by (1.10).

Corollary 5.3 Let r0 ≥ 3, P ∈ Pr0 and αh(x) = √
h arctan(x/

√
h). We assume that

there exists a constant b ≥ 1 such that

∀a ∈ N 1

b
|a|m ≤ ωa ≤ b|a|m. (5.5)

Let zn be the sequence defined by (5.3). We assume that z0 = (ξ0, ξ̄0) ∈ Hm/2 and
that the sequence zn remains bounded in �1. Then there exist constants C, α and β

such that
∑

|j |<αh−1/2m

|j |m∣∣zn
j

∣∣2 + 1√
h

∑

|j |≥αh−1/2m

∣∣zn
j

∣∣2 ≤ C

over exponentially long times nh ≤ exp(ch−β).

Proof The almost conservation of the Hamiltonian H
(1)
h (cf. (5.4)) shows that, for all

n such that nh ≤ exp(ch−β), we have

∑

a∈N

1√
h

arctan
(√

hωa

)∣∣ξn
a

∣∣2

≤ ∣∣P (1)
h

(
z0) − P

(1)
h

(
zn

)∣∣ +
∑

a∈N

1√
h

arctan
(√

hωa

)∣∣ξ0
a

∣∣2 + Ch

for some constant C, where P
(1)
h (z) is the nonlinear Hamiltonian of (4.7). As zn

remains bounded in �1, we see that |P (1)
h (z0)−P

(1)
h (zn)| is uniformly bounded. Now
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we have for all a

1√
h

arctan
(√

hωa

) ≤ ωa

and we deduce, using (5.5),

∑

a∈N

1√
h

arctan
(√

hωa

)∣∣ξ0
a

∣
∣2 ≤ C‖z‖Hm/2 .

Hence we have
∑

a∈N

1√
h

arctan
(√

hωa

)∣∣ξn
a

∣∣2 ≤ C

for some constant C depending on M and ‖z‖Hm/2 . We conclude by using

x > 1 =⇒ arctanx > arctan(1) and x ≤ 1 =⇒ arctanx >
x

2

and the bounds (5.5) on ωa . �

5.2 Results Under a CFL Condition

We now consider cases where αh does not depend on h and thus does not satisfy
(5.1). We focus on schemes such that

αh(x) = β(x)1x<c(x) (5.6)

i.e. schemes associated with a filter function β and a CFL condition with CFL num-
ber c. We mainly have in mind the two applications (see Table 1)

β(x) = x and β(x) = 2 arctan(x/2)

corresponding to standard and implicit–explicit splitting schemes. Now, for such a
scheme and for all multi-indices j = (j1, . . . , jr ), we have at most

∣∣Λ(j)
∣∣ ≤ rβ(c).

Hence if we define

cr = β−1
(

2π

r

)
,

the condition (4.1) will be satisfied for some δ if c < cr . Now considering a fixed
order of approximation N , the construction of the modified energy of Theorem 4.2
can be performed up to r = (r0 − 2)N + 2. The following result is then an easy
consequence of Theorem 4.2.

Theorem 5.4 Let r0 ≥ 3, N , s ≥ 0 and M > 0 be fixed. Assume that P ∈ Pr0 and
that αh is of the form (5.6) for some constants c. Assume that

c < β−1
(

2π

(r0 − 2)N + 2

)
;
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then there exist constants h0 and CN such that for all h ≤ h0, there exists a real
polynomial Hamiltonian Hh such that, for all z ∈ Bs

M , we have

∥∥Φh
P ◦ Φ1

A0
(z) − Φh

Hh
(z)

∥∥
�1
s
≤ CNhN+1. (5.7)

If moreover P ∈ S Pr0 , and if for all a ∈ N , ωa ≥ 0, then the same results holds under
the condition

c < β−1
(

4π

(r0 − 2)N + 2

)
. (5.8)

Proof The former part of the theorem is a consequence of the previous estimates.
The latter assertion comes from the fact that all the λa are positive. Hence for a
given r and a given monomial of S Pr associated with a symmetric multi-index j =
(j1, . . . , jr/2, k1, . . . , kr/2) with ji = (ai,+1) and ki = (bi,−1), ai and bi ∈ N , we
have

λ(j) = λa1 + · · · + λar/2 − λb1 − · · · − λbr/2 ≤ rβ(c)

2

and this yields the bound (5.8) for r < (r0 − 2)N + 2. �

This result implies the preservation of the Hamiltonian over long times of order
h−N , as in Corollary 5.2. Similarly, Corollary 5.3 extends to the case of the mid-split
scheme (i.e. the case β(x) = 2 arctan(x/2)) leading to Hm/2 control of the frequen-
cies smaller than crh

−1/m, over long times of order h−N , namely

∑

|j |<crh−1/m

|j |m∣∣zn
j

∣∣2 ≤ C

for n ≤ h−N . As the proof is completely similar, we do not give the details here.
Note, however, that the high frequency cut-off does not give a control of the L2 for
high modes unless considering a fully discrete system where the high modes are by
definition not present (see [11, Chap. 6]).

In Table 2, we give the expression of the CFL constant c in (5.8) required to obtain
a given precision of order hN+1 in the estimate (5.7) in the two cases where β(x) = x

and β(x) = 2 arctan(x/2) and in the special case of the cubic nonlinear Schrödinger
equation for which the nonlinearity belongs to S P4. In this situation, we have r0 = 4.
The required CFL number c is then calculated using the formula (5.8).

6 Numerical Example

The goal of this last section is to illustrate the link between the features of the nu-
merical integrator (CFL number, use of an implicit solver) and the preservation of the
energy and regularity of the solution. In particular, we show that the preservation of
the regularity of the numerical solution over long times depends on the CFL number
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Table 2 CFL conditions for
cubic NLS hN+1 β(x) = x β(x) = 2 arctan(x/2)

h2 3.14 ∞
h3 2.10 3.46

h4 1.57 2.00

h5 1.27 1.45

h6 1.05 1.15

h7 0.90 0.96

h8 0.80 0.83

h9 0.70 0.73

h10 0.63 0.65

or the type of the integrator (explicit, implicit), making in general the a priori mathe-
matical assumption irrelevant that the numerical solution remains smooth over a long
time.

We consider the cubic nonlinear Schrödinger equation

i∂tu(t, x) = −∂xxu(t, x) − ∣∣u(t, x)
∣∣2

u(t, x), u(t, x) = u0(x)

set on the real line, x ∈ R. Here, we aim at approximating the particular ground state
solution

u(t, x) =
√

2eit

cosh(x)
,

for which long time stability results can be proved (see for instance [6] and the ref-
erences therein). We introduce a large window [−π/L,π/L] where L is a small
parameter, and we use a Fourier pseudospectral collocation method (see for instance
[24] and the reference therein). In this scaled situation the CFL number is given by

cfl = hL2
(

K

2

)2

.

We take K = 256, L = 0.11 and h = 0.1 (cfl = 19.8), h = 0.05 (cfl = 9.9) and h =
0.01 (cfl = 1.9). As time integrator, we consider splitting schemes of the form (1.6).
We first consider the case where A0 in (1.7) is associated with the eigenvalues λk =
hk2L−2, k = −K/2, . . . ,K/2 − 1 (standard explicit splitting method). In Fig. 1, we
plot the evolution of the discrete approximation of the energy

H(u, ū) =
∫

R

∣∣∂xu(x)
∣∣2 − 1

2

∣∣u(x)
∣∣4 dx

along the numerical solution, with respect to the time. We see that in the two cases
cfl = 19.8 and cfl = 9.9, there is a serious drift, while in the case cfl = 1.9, we observe
a good preservation of the energy.

In Fig. 2, we plot the absolute value of the numerical solution |un(x)| at time t =
nh. In the case where cfl = 19.8 we observe a deterioration at time t = 300 where the
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Fig. 1 Evolution of the energy
for the Strang splitting with
cfl = 19.8 (blue), 9.9 (red) and
1.9 (green)

Fig. 2 |un(x)| for the Strang splitting with cfl = 19.8 at time t = 300 (left) and cfl = 1.9 at time t = 10,000
(right)

smoothness of the initial solution seems to be lost. The right figure is obtained with
a CFL number cfl = 1.9 and we observe that the numerical solution is particularly
stable. The profile of the solution is almost the same as for the initial solution. This
picture is drawn at time t = 10,000.

We then repeat the same experiments for implicit–explicit integrator, where
A0 corresponds to the midpoint rule applied to the free Schrödinger equation:
λk = 2 arctan(hk2L−2/2) [9]. In this situation, the energy is well preserved, inde-
pendently of the CFL condition, and the shape of the soliton is stable for a very long
time.

Hence we see that for the classical explicit splitting method, the preservation of the
energy relies on the use of a CFL condition, as expected from the analysis developed
in the previous sections. Moreover, we see that we cannot a priori assume that the
solution remains smooth for all time independently of the space discretization. For the
existence and stability of the numerical soliton with the help of the modified energy
constructed in this paper, we refer to a forthcoming paper [4].
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