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Abstract By definition, transverse intersections are stable under infinitesimal per-
turbations. Using persistent homology, we extend this notion to a measure. Given a
space of perturbations, we assign to each homology class of the intersection its ro-
bustness, the magnitude of a perturbation in this space necessary to kill it, and then
we prove that the robustness is stable. Among the applications of this result is a sta-
ble notion of robustness for fixed points of continuous mappings and a statement of
stability for contours of smooth mappings.
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1 Introduction

The main new concept in this paper is a quantification of the classically differential
notion of transversality. This is achieved by extending persistence from filtrations of
homology groups to zigzag modules of well groups.

Motivation In hindsight, we place the starting point for the work described in this
paper at the difference between qualitative and quantitative statements and their rel-
evance in the sciences; see, e.g., the discussion in Thom’s book [12, Chaps. 1.3
and 13.8]. It appears the conscious mind thinks in qualitative terms, delegating the
quantitative details to the unconscious, if possible. In the sciences, quantitative state-
ments are a requirement for testing a hypothesis. Without such a test, the hypothesis
is not falsifiable and, by popular philosophical interpretation, not scientific [10]. The
particular field discussed in [12] is the mathematical study of singularities of smooth
mappings, which is dominated by qualitative statements. We refer to the seminal pa-
pers by Whitney [14, 15] and the book by Arnold [1] for introductions. A unifying
concept in this field is the transversality of an intersection between two spaces. Its
origins go far back in history and appear among others in the work of Poincaré about
a century ago. It took a good development toward its present form under Pontrya-
gin, Whitney, and Thom; see, e.g., [11]. In his review of Zeeman’s book [16], Smale
criticizes the unscientific aspects of the work promoted in the then popular area of
catastrophe theory, thus significantly contributing to the discussion of qualitative ver-
sus quantitative statements and to the fate of that field. At the same time, Smale points
to positive aspects and stresses the importance of the concept of transversality in the
study of singularities. In a nutshell, an intersection is transverse if it forms a non-zero
angle and is therefore stable under infinitesimal perturbations; see Sect. 2 for a formal
definition.

Results We view our work as a measure-theoretic extension of the essentially dif-
ferential concept of transversality. We extend by relaxing the requirements on the
perturbations from smooth mappings between manifolds to continuous mappings be-
tween topological spaces. At the same time, we are more tolerant to changes in the
intersection. To rationalize this tolerance, we measure intersections using real num-
bers as opposed to 0 and 1 to indicate existence. The measurements are made using
the concept of persistent homology; see [5] for the original paper. However, we have
need for modifications and use the extension of persistence from filtrations to zigzag
modules as proposed in [2]. An important property of persistence, as originally de-
fined for filtrations, is the stability of its diagrams; see [3] for the original proof. There
is no comparably general result known for zigzag modules. Our main result is a step
in this direction. Specifically, we view the following as the main contributions of this
paper:

1. The introduction of well groups that capture the tolerance of intersections to per-
turbations in a given space of allowable perturbations.

2. The proof that the diagram defined by the well groups is stable.
3. The application of these results to fixed points and periodic orbits of continuous

mappings.
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In addition, our results have ramifications in the study of the set of critical values,
the apparent contour of a smooth mapping. Specifically, the stability of the diagrams
mentioned above results in a stability result for the apparent contour of a smooth
mapping from an orientable 2-manifold to the plane [6]. The need for these stable
diagrams was indeed what triggered the development described in this paper.

Outline Section 2 provides the relevant background. Section 3 explains how we
measure robustness using well groups and zigzag modules. Section 4 proves our main
result, the stability of the diagrams defined by the modules. Section 5 discusses ap-
plications. Section 6 concludes the paper.

2 Background

We need the algebraic concept of persistent homology to extend the differential no-
tion of transversality, as explained in the introduction. In this section, we give a formal
definition of transversality, referring to [8] for a general background in differential
topology. We also introduce homology and persistent homology, referring to [9] for
a general background in classic algebraic topology and to [4] for a text in computa-
tional topology.

Transversality Let X,Y be manifolds, f : X → Y a smooth mapping, and A ⊆ Y a
smoothly embedded submanifold of the range. We assume the manifolds have finite
dimension and no boundary, writing m = dim X, n = dim Y, and k = dim A. Given a
point x ∈ X and a smooth curve γ : R → X with γ (0) = x, we call γ̇ (0) the tangent
vector of γ at x. Varying the curve while maintaining that it passes through x, we get a
set of tangent vectors called the tangent space of X at x, denoted as TxX. Composing
the curves with the mapping, f ◦ γ : R → Y, we get a subset of all smooth curves
passing through y = f (x) = f ◦ γ (0). The derivative of f at x is Df (x) : TxX →
TyY defined by mapping the tangent vector of γ at x to the tangent vector of f ◦ γ at
y. The derivative is a linear map and its image is a subspace of TyY. The dimensions
of the tangent spaces are m = dim TxX and n = dim TyY, which implies that the
dimension of the image of the derivative is dim Df (x)(TxX) ≤ min{m,n}.

We are interested in properties of f that are stable under perturbations. We call
a property infinitesimally stable if for every smooth homotopy, F : X × [0,1] → Y

with f0 = f , there is a real number δ > 0 such that ft possesses the same property
for all t < δ, where ft (x) = F(x, t) for all x ∈ X. An important example of such a
property is the following. The mapping f is transverse to A, denoted as f �∩A, if for
each x ∈ X with f (x) ∈ A, the image of the derivative of f at x together with the
tangent space of A at a = f (x) spans the tangent space of Y at a. More formally,
f �∩A if Df (x)(TxX) + TaA = TaY. It is plausible but also true that transversality is
an infinitesimally stable property.

Product Spaces It is convenient to recast transversality in terms of intersections of
subspaces of X × Y, and a manifold of dimension m + n. Consider the graphs of f
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Fig. 1 The preimage of a,
consisting of four points on the
horizontal axis representing X,
is homeomorphic to the
intersection of the curve with
the horizontal line passing
through the point a ∈ Y

and of its restriction to the preimage of A,

gphf = {
(x, y) ∈ X × Y | y = f (x)

};
gphf |A = {

(x, a) ∈ X × A | a = f (x)
}
.

The intersection of interest is between gphf and X×A, two manifolds of dimensions
m and m + k embedded in X × Y. This intersection is the graph of f |A, which is
homeomorphic to the preimage of A. See Fig. 1 for an example in which m = n = 1
and k = 0. Here, TaA = 0 and transversality requires that whenever the curve, gphf ,
intersects the line, X × A, it crosses at a non-zero angle. This is the case in Fig. 1,
which implies that having a cardinality four preimage of a is an infinitesimally stable
property of f . Nevertheless, the left two intersection points are clearly more stable
than the right two intersection points, but we will need some algebra to give precise
meaning to this statement.

Homology The algebraic language of homology is a means to define and count
holes in a topological space. It is a functor that maps a space to an Abelian group and
a continuous map between spaces to a homomorphism between the corresponding
groups. There is such a functor for each dimension, p. It is convenient to combine the
homology groups of all dimensions into a single algebraic structure. Writing Hp(X)

for the p-dimensional homology group of the topological space X, we form a graded
group by taking direct sums,

H(X) =
⊕

p≥0

Hp(X).

To simplify language and notation, we will suppress dimensions and refer to H(X)

as the homology group of X. Its elements are formally written as polynomials,
α0 + α1t + α2t

2 + · · · , where αp is a p-dimensional homology class and only fi-
nitely many of the classes are non-zero. As usual, adding two polynomials is done
componentwise. The groups Hp(X) depend on a choice of a coefficient group. The
theory of persistence introduced below requires that we use field coefficients. An ex-
ample is modulo 2 arithmetic in which the field is Z2 = {0,1}. The p-dimensional

group is then a vector space, Hp(X) 
 Z
βp

2 , and its rank, the dimension of the vec-
tor space, is the p-th Betti number, βp = βp(X). Similarly, H(X) is a vector space
of dimension

∑
p≥0 βp . We say that X and Y have the same homology if there is

an isomorphism between H(X) and H(Y) whose restrictions to the components are
isomorphisms. Equivalently, βp(X) = βp(Y) for all non-negative integers p.
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Fig. 2 The three off-diagonal
points represent the births and
deaths of three generators. The
number of points in the shaded
upper left quadrant equals the
rank of the corresponding
homology group

Persistent homology Now suppose we have a finite sequence of nested spaces, X1 ⊆
X2 ⊆ · · · ⊆ X�. Writing Φi = H(Xi ) for the homology group of the i-th space, we get
a sequence of vector spaces connected from left to right by homomorphisms induced
by inclusion:

Φ : Φ1 → Φ2 → ·· · → Φ�.

We call this sequence a filtration. To study the evolution of the homology classes as
we progress from left to right in the filtration, we let ϕi,j be the composition of the
maps between Φi and Φj , for i ≤ j . We say that a class α ∈ Φi is born at Φi if it
does not belong to the image of ϕi−1,i . Furthermore, this class α dies entering Φj if
ϕi,j−1(α) does not belong to the image of ϕi−1,j−1 but ϕi,j (α) does belong to the im-
age of ϕi−1,j . We call the images of the maps ϕi,j the persistent homology groups of
the filtration and record the evolution of the homology classes in the persistence dia-
gram of the filtration, denoted as Dgm(Φ). This is a multiset of points in the extended
plane, R̄

2 = (R ∪ {−∞,∞})2. Marking an increase in rank on the horizontal, birth
axis and a drop in rank on the vertical, death axis, each point represents the birth and
the death of a generator and records where these events happen; see Fig. 2. For tech-
nical reasons that will become clear shortly, we add infinitely many copies of each
point on the diagonal to the diagram. Given an index, i, we can read off the rank of
H(Xi ) by counting the points in the half-open upper left quadrant, [−∞, i] × (i,∞],
anchored at the point (i, i) on the diagonal. More generally, the rank of the image of
ϕi,j equals the number of points in the upper left quadrant anchored at (i, j).

Stability Consider now the case in which the spaces in the sequence are sublevel
sets of a real-valued function ϕ : X → R, that is, there are values ri such that
Xi = ϕ−1(∞, ri] for each i. A homological critical value of ϕ is a value r such
that for every sufficiently small δ > 0, the homomorphism from H(ϕ−1(−∞, r − δ])
to H(ϕ−1(−∞, r +δ]) induced by inclusion is not an isomorphism. We assume that ϕ

is tame, by which we mean that each sublevel set has finite rank homology and there
are only finitely many homological critical values, denoted as r1 < r2 < · · · < r�. We
can represent the evolution of the homology classes by the finite filtration consisting
of the groups Φi = H(ϕ−1(−∞, ri]), for 1 ≤ i ≤ �, and by the persistence diagram
of that filtration, D = Dgm(Φ). Letting ψ : X → R be another tame function, we
get another filtration, Ψ , and another persistence diagram, E = Dgm(Ψ ). The bottle-
neck distance between the two is the infimum, over all bijections, μ : D → E, of the
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longest length edge in the matching,

W∞(D,E) = inf
μ

sup
a∈D

∥∥a − μ(a)
∥∥∞.

An important result is the stability of the persistence diagram under perturbations of
the function.

Stability Theorem for Tame Functions [3] Let ϕ and ψ be tame, real-valued
functions on X. Then the bottleneck distance between their persistence diagrams is
bounded from above by ‖ϕ − ψ‖∞.

Here, ‖ϕ − ψ‖∞ = supx∈X |ϕ(x)−ψ(x)|, as usual. The original form of this result is
slightly stronger, as it restricts itself to dimension-preserving bijections. The theorem
implies that the bottleneck distance between the diagrams defined by ϕ and ψ goes
to zero as the difference between the two functions approaches zero.

3 Measuring Robustness

The main new concept in this section is the well group defined by a mapping f :
X → Y, a subspace A ⊆ Y, and a parameter r . It encodes the persistent homology of
the preimage of the subspace.

Admissible Mappings In this paper, we limit the class of mappings to those with
manageable properties. While our goal is a statement of our results in a context that
is sufficiently broad to support interesting applications, we are aware of the techni-
cal burden that comes with generality. We hope that the following class of mappings
provides a “happy medium” between the conflicting goals of generality and trans-
parency.

Definition Let X and Y be topological spaces and A a subspace of Y. A continuous
mapping f : X → Y is admissible if f −1(A) has a finite rank homology group.

Requiring that the preimage of A has finite rank homology is strictly weaker than
demanding tameness of the well function defined next.

Perturbations and Well Groups We are interested in how we explore the neigh-
borhood of f −1(A) as we perturb f . For this purpose, we introduce a subspace
P = P (f ) of C(X,Y), the space of continuous mappings from X to Y. For example,
P may be the space of continuous mappings h homotopic to f ; that is, there exists
a continuous mapping H : X × [0,1] → Y with H(x,0) = f (x) and H(x,1) = h(x)

for all x ∈ X. We assume a metric on P , writing ‖f − h‖P for the distance between
two mappings f,h ∈ P . For example, we could construct one by assuming a met-
ric on Y, lifting it to define the distance between mappings in C(X,Y), and taking
‖f − h‖P to be the infimum length of all curves of mappings that connect f and h

within P . We call h an r-perturbation of f if ‖f − h‖P ≤ r .
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Table 1 The ranks of the
homology and well groups
defined for the mapping f and
the submanifold A = {a} in
Fig. 1

(0, r3) (r3, r2) (r2, r1) (r1,∞)

F(r) 4 3 2 1

U(r) 4 2 2 0

We use these definitions to introduce the well function fA : X → R of f and A by
setting fA(x) to the infimum value of r for which there is an r-perturbation h ∈ P
such that h(x) ∈ A. The level set of fA at a value r is the preimage of that value:
f −1

A
(r). The sublevel set for the same value r is the union of the level sets at val-

ues at most r : Xr = f −1
A

[0, r]. Note that h−1
A

(0) = h−1(A) is contained in Xr for
every r-perturbation h ∈ P . This inclusion induces a homomorphism between the
corresponding homology groups:

jh : H
(
h−1

A
(0)

) → F(r),

where we simplify notation by writing F(r) for H(f −1
A

[0, r]). The image of this map,
denoted by im jh, is a subgroup of F(r). The intersection of subgroups is again a
subgroup.

Definition Given a metric space of perturbations, P = P (f ), the well group of Xr

is the subgroup U(r) ⊆ F(r) obtained by intersecting the images, im jh, over all r-
perturbations h of f in P .

A different space of perturbations gives different well groups and therefore a different
interpretation of their meaning.

Example To illustrate the definitions, let us consider again the example in Fig. 1 of
the mapping from the real line to itself. The preimage of A = {a} is a set of four
points separated by three critical points of f . From left to right, the values of f at
these critical points are a + r1, a − r2, a + r3. Correspondingly, the well function,
fa : R → R, has three homological critical values, namely r1 > r2 > r3. Setting P =
P (f ) to the set of all continuous mappings h : R → R and measuring distance by
‖f − h‖P = supx |f (x) − h(x)|, we have a well group U(r) for each radius r ≥ 0.
Table 1 shows the ranks of F(r) and U(r) for values of r in the interior of the four
intervals delimited by the homological critical values. Starting with r = 0, we have
four points, each forming a component represented by a class in the homology group
and in the well group of the sublevel set of fa . Therefore, both groups are the same
and have rank 4; see the first column in Table 1. Growing r turns the points into
intervals, but leaves the groups the same until r passes r3, the smallest of the three
homological critical values. The two right intervals merge into one, so the rank of the
homology group drops to 3. We can find an r-perturbation, r > r3, whose level set at
a consists of the left two points of f −1(a), but the right two points have disappeared.
Indeed, the level set of every r-perturbation, for r > r3, has a non-empty intersection
with the first two, but can have empty intersection with the merged interval on the
right. Hence, the left two intervals have a representation in the well group, the merged
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interval does not, and the rank of the well group is 2; see the second column in
Table 1. The next change happens when r passes r2. The middle interval merges with
the merged interval on the right. The rank of the homology group drops to 2, while
the rank of the well group remains unchanged at 2; see the third column in Table 1.
Finally, when r passes r1, the remaining two intervals merge into one, so the rank of
the homology group drops to 1. We can find an r-perturbation, r > r1, whose level set
at a is empty, so the rank of the well group drops to 0; see the last column in Table 1.

Terminal Critical Values Recall that we assume that the mapping f : X → Y is ad-
missible. The initial homology group, F(0) = H(f −1

A
(0)), therefore has finite rank,

and because U(0) ⊆ F(0), the initial well group has finite rank. For convenience, we
permit negative parameter values by stipulating F(r) = F(0) and U(r) = U(0) when-
ever r ≤ 0. Imagine that we grow the sublevel set by gradually increasing r to infinity.
Since the admissibility of f does not imply the tameness of the well function, this
leaves open the possibility that fA has infinitely many homological critical values.
We call a radius, r , a terminal critical value of fA if for every sufficiently small
δ > 0 the homomorphism from F(r − δ) to F(r + δ) applied to U(r − δ) does not
give U(r + δ). In contrast to the homological critical values, there can only be a finite
number of terminal critical values. To see this, we note that the set of perturbations
that define the well groups grows with increasing r . It follows that the well groups
cannot increase in rank. To state this relationship between well groups more formally,
we write f(r, s) : F(r) → F(s) for the homomorphism induced by inclusion.

Shrinking Wellness Lemma For each choice of radii r ≤ s, the image of the well
group at r contains the well group at s, that is, U(s) ⊆ f(r, s)(U(r)).

The only way the well group can change is by lowering its rank. Since we start with a
finite rank, there can only be finitely many terminal critical values, which we denote
as u1 < u2 < · · · < ul . To this sequence, we add u0 = −∞ on the left and ul+1 = ∞
on the right. We choose an interleaved sequence

u0 < r0 < u1 < · · · < ul < rl < ul+1

and index the homology and the well groups accordingly, writing Fi = F(ri) and
Ui = U(ri), for all i. To these sequences, we add F−1 = U−1 = 0 on the left and
Fl+1 = Ul+1 = 0 on the right. Furthermore, we write fi,j : Fi → Fj instead of f(ri , rj )
for all feasible choices of i ≤ j .

Well Module In contrast to the homology groups, the well groups of the sublevel
sets do not form a filtration. Instead, they form a special kind of zigzag module. By the
definition of terminal critical values, the rank of Ui exceeds the rank of Ui+1. The rank
of the image, fi,i+1(Ui ), is somewhere between these two ranks. We call a difference
between Ui and its image a conventional death, in which a class maps to zero, and a
difference between the image and Ui+1 an unconventional death, in which the image
of a class lies outside the next well group. We capture both cases by inserting a new
group between the contiguous well groups; see Fig. 3. To this end, we consider the
restriction of fi,i+1 to Ui and in particular its kernel, Ki = Ui ∩ kerfi,i+1, which we
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Fig. 3 Connecting two
consecutive well groups to the
quotient group introduced
between them. The class α dies
a conventional death, and the
class β dies an unconventional
death

refer to as the vanishing subgroup of Ui . Using this subgroup, we construct Qi =
Ui/Ki . The forward map, ai : Ui → Qi , is defined by mapping a class ξ to ξ + Ki .
It is clearly surjective. The backward map, bi : Ui+1 → Qi , is defined by mapping a
class η to ξ + Ki , where ξ belongs to f−1

i,i+1(η). This map is clearly injective. Instead
of a filtration, in which all maps go from left to right, we get a sequence, in which
the maps alternate between going forward and backward. As indicated below, every
other group in the sequence is a subgroup of the corresponding homology group:

Qi−1
bi−1← Ui

ai→ Qi
bi← Ui+1

ai+1→ Qi+1
↓ ↓

→ Fi → Fi+1 → .

We call this sequence the well module of fA, denoted as U. We remark that U is a
special case of a zigzag module as introduced in [2]. It is special because all forward
maps are surjective and all backward maps are injective. Equivalently, there are no
births other than at the start, when we go from U−1 to U0.

Left Filtration Perhaps surprisingly, the evolution of the homology classes can still
be fully described by pairing births with deaths, just as for a filtration. To shed light
on this construction, we follow [2] and turn a zigzag module into a filtration. In our
case, all births happen at U0, so this transformation is easier than for general zigzag
modules. Write u0,i : U0 → Fi for the restriction of f0,i to the initial well group.
By the Shrinking Wellness Lemma, the image of this map contains the i-th well
group, that is, Ui ⊆ u0,i (U0). We consider the preimages of the well groups in U0

together with the preimages of their vanishing subgroups, Ai = u−1
0,i (Ki ) and Bi =

u−1
0,i (Ui ); see Fig. 4. We note that Ai/Ai−1 
 ker ai and Bi/Bi+1 
 cok bi . In words,

the first quotient represents the homology classes that die a conventional death, going
from Ui to Ui+1, and the second quotient represents the homology classes that die an
unconventional death in the same transition. As illustrated in Fig. 4, the preimages
form a nested sequence of subgroups of U0. Together with the inclusion maps, this
gives the left filtration of the zigzag module,

0 → A0 → ·· · → Al = Bl → ·· · → B0 = U0.

We can recover the well groups with Ui 
 Bi/Ai−1. Recall that Ul+1 = 0, which
implies Kl = Ul . It follows that the middle two groups in the left filtration, Al and Bl ,
are indeed equal.
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Fig. 4 The left filtration
decomposes U0 into the
preimages of the well groups
and the preimages of their
vanishing subgroups

Compatible Bases A useful property of the left filtration is the existence of compat-
ible bases of all its groups. By this we mean a basis of U0 that contains a basis for
each Ai and each Bi . Specifically, we rewrite U0 as a direct sum of kernels of forward
maps and cokernels of backward maps:

U0 
 ker a0 ⊕ · · · ⊕ ker al ⊕ cok bl−1 ⊕ · · · ⊕ cok b0.

Reading this decomposition from left to right, we encounter the Ai and the Bi in the
sequence in which they occur in the left filtration. Choosing a basis for each kernel
and each cokernel, we thus get compatible bases for all groups in the left filtration.
We call this the left filtration basis of U0. It is unique up to choosing bases for the
kernels and cokernels.

Consider now a homology class α in U0 and its representation as a sum of basis
vectors. We write α(ai ) for the projection of α to the preimage of the kernel of the
i-th forward map, which is obtained by removing all vectors that do not belong to the
basis of ker ai . Similarly, we write α(bi ) for the projection of α to the preimage of
cok bi . Letting j be the minimum index such that α(ai ) = α(bi ) = 0 for all i ≥ j , we
say that α falls ill at Uj .

Well Diagrams Constructing the birth-death pairs that describe the well module
is now easy. All classes are born at U0; however, to distinguish the changes in the
well group from those in the homology group, we say that all the classes get well
at U0. They fall ill later, and once they fall ill, they do not get well any more. The
drop in rank from Ui−1 to Ui is μi = rank(ker ai−1) + rank(cok bi−1). We thus have
μi copies of the point (0, ui) in the diagram. There is no information in the first
coordinates, which are all zero. We thus define the well diagram as the multiset of
points ui with multiplicities μi , denoting it as Dgm(U). For technical reasons that
will become obvious in the next section, we add infinitely many copies of 0 to this
diagram. Hence, each point in Dgm(U) is either 0, a positive real number, or ∞, and
the diagram itself is a multiset of points on the extended line, R̄ = R ∪ {±∞}. It has
infinitely many points at 0 and a finite number of non-zero points.

As suggested by the heading of this section, we think of each point in the diagram
as a measure of how resilient a homology class of f −1(A) is against perturbations
in P . At each well group Ui , an entire set of homology classes falls ill, and we call ui

the robustness of each class α in this set, denoting it as 
(α) = ui .
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4 Proving Stability

We are interested in relating the distance between mappings to the distance between
their well diagrams, both defined using a common perturbation space P . After quan-
tifying these distances, we connect parallel well modules to form new modules, and
we finally prove that the well diagram is stable.

Distance Between Functions Let f,g : X → Y be two admissible mappings be-
tween topological spaces, A ⊆ Y a subspace, and P a metric space of perturbations
that contains both f and g. Using A, we get the two well functions: fA, gA : X → R.
The distance between them is the supremum difference between corresponding val-
ues:

‖fA − gA‖∞ = sup
x∈X

∣∣fA(x) − gA(x)
∣∣.

The distance between the two well functions is related to the distance, ‖f − g‖P ,
between the two mappings f and g in P . Specifically, the distance between the well
functions cannot exceed the distance between the mappings.

Distance Lemma Assuming the preceding notation, we have ‖fA − gA‖∞ ≤
‖f − g‖P .

Proof Fix a point x ∈ X and let r = fA(x). By construction of fA, there ex-
ists an r-perturbation h of f in P with x ∈ h−1(A). By the triangle inequality,
‖g − h‖P ≤ ‖f − g‖P +r . Hence, gA(x) ≤ r+‖f − g‖P . Thus, | fA(x)−gA(x) |≤
‖f − g‖P . �

Distance Between Diagrams Let G(r) be the homology group and V(r) ⊆ G(r) the
well group of g−1

A
[0, r]. As for f , we insert quotients between contiguous well groups

and connect them with forward and backward maps to form a well module, denoted
as V. The corresponding well diagram, Dgm(V), is again a multiset of points in R̄,
consisting of infinitely many copies of 0 and finitely many non-zero points. Recall
that the bottleneck distance between the diagrams of f and g is the length of the
longest edge in the minimizing matching. Because our diagrams are one dimensional,
the bottleneck distance is easy to compute. To describe the algorithm, we order the
positive points in both diagrams, obtaining

0 ≤ u1 ≤ u2 ≤ · · · ≤ uM ;
0 ≤ v1 ≤ v2 ≤ · · · ≤ vM,

where we add zeros to make sure we have two sequences of the same length. The
inversion-free matching pairs ui with vi for all i. We prove that this matching gives
the bottleneck distance.

Matching Lemma Assuming the preceding notation, the bottleneck distance be-
tween Dgm(U) and Dgm(V) is equal to max1≤i≤M |ui − vi |.
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Proof For a given matching, we consider the vector of absolute differences, which
we sort largest first. Comparing two such vectors lexicographically, we now prove
that the inversion-free matching gives the minimum vector. This implies the claimed
equality,

W∞
(
Dgm(U),Dgm(V)

) = max
1≤i≤M

|ui − vi |.

To prove minimality, we consider a matching that has at least one inversion, that is,
pairs (ui, vt ) and (uj , vs) with i < j and s < t . If ui = uj or vs = vt , then switching
to the pairs (ui, vs) and (uj , vt ) preserves the sorted vector of absolute differences.
Otherwise, the new vector is lexicographically smaller than the old vector. Indeed, the
minimum of the four points is ui or vs and the maximum is uj or vt . If the minimum
and the maximum are from opposite diagrams, then they delimit the largest of the four
absolute differences, and this largest difference belongs to the old vector. Otherwise,
both absolute differences shrink when we switch the pairs. Repeatedly removing in-
versions as described eventually leads to the inversion-free matching, which shows
that it minimizes the vector and its largest entry is the bottleneck distance. �

Bridges The main tool in the proof of stability is the concept of a short bridge be-
tween parallel filtrations. The length of these bridges relates to the distance between
the functions defining the filtrations. Let ε = ‖f − g‖P . By the Distance Lemma,
we have ‖fA − gA‖∞ ≤ ε, which implies that the sublevel set of gA for radius r is
contained in the sublevel set of fA for radius r + ε. Hence, there is a homomorphism
Br : G(r) → F(r + ε), which we call the bridge from G to F at radius r . We use the
bridge to connect the initial segment of G to the terminal segment of F. The endpoints
of the bridge satisfy the property expressed in the Shrinking Wellness Lemma.

Bridge Lemma Let Br : G(r) → F(r + ε) be the bridge at r , where ε = ‖f − g‖P
and f,g ∈ P . Then U(r + ε) ⊆ Br (V(r)).

Proof Let α be a homology class in U(r + ε). By definition of the well group, α

belongs to the image of H(h−1(A)) in F(r + ε) for every (r + ε)-perturbation h of f

in P . This includes all r-perturbations of g. It follows that the preimage of α in G(r)

belongs to the well group, that is, B−1
r (α) ∈ V(r). �

Everything we said about bridges is of course symmetric in F and G. In other
words, f −1

A
[0, r] ⊆ g−1

A
[0, r + ε] and there is a bridge from F(r) to G(r + ε) for

every r ≥ 0.

New Modules We use the Bridge Lemma to construct new zigzag modules from the
well modules of f and g. Specifically, we use Br to connect the initial segment of V,
from V(0) to V(r), to the terminal segment of U, from U(r +ε) to U(∞). To complete
the module, we insert Q(r) = V(r)/(V(r) ∩ ker Br ) between V(r) and U(r + ε). The
forward map, from V(r) to Q(r), is surjective, and the backward map, from U(r + ε)

to Q(r), is injective; see Fig. 5. The new zigzag module is thus of the same type as
the well modules, implying that it has a left filtration basis that gives rise to a family
of compatible bases for the groups in the left filtration.



Found Comput Math (2011) 11: 345–361 357

Fig. 5 The zigzag module
obtained by connecting an initial
segment of V to a terminal
segment of U

Fig. 6 The four curves
represent four filtrations as well
as the four zigzag modules. The
middle two are constructed from
the outer two by adding bridges
connecting the dots

A particular construction starts with the filtrations F(0) → ·· · → F(∞) and
G(0) → ·· · → G(∞) and adds B0 : G(0) → F(ε). Following the bridge from G to
F at 0, we get a new filtration and a new zigzag module, denoting the latter as W;
see Fig. 6. The decomposition of W(0) = V(0) by the left filtration of W is similar
to the decomposition of U(0) by the left filtration of U; see Fig. 4. Letting i be the
index such that ui ≤ ε < ui+1, we have U(ε) = Ui . The classes in Ai−1 and in U0/Bi

die before we reach F(ε). The remaining classes form U(ε) 
 Bi/Ai−1. Correspond-
ingly, there are homology classes in W(0) that die before we reach F(ε), namely the
ones in the kernel of the forward map, from W(0) to Q(0), and in the preimage of
the cokernel of the backward map, from U(ε) to Q(0). The remaining classes form
W(ε) 
 B−1

0 (U(ε))/(W(0) ∩ ker B0). The two quotient groups, U(ε) and W(ε), are
decomposed in parallel so that choosing a basis for U(ε) gives one for W(ε). This
will be useful shortly.

Main Result We are now ready to state and prove the stability of the well diagram.

Stability Theorem for Well Diagrams Let f and g be admissible mappings be-
tween topological spaces X and Y, let A be a subspace of Y, and let P be a metric
space of perturbations containing both f and g. Then W∞(Dgm(U),Dgm(V)) ≤
‖f − g‖P for the well modules U and V of f and g.

Proof We construct a bijection from Dgm(U) to Dgm(V) such that the difference
between matched points is at most ε = ‖f − g‖P . Specifically, we match each point
u ≤ ε in Dgm(U) with a copy of 0 in Dgm(V), and we use the parallel bases of U(ε)

and W(ε) for the rest, where W is the zigzag module obtained by adding the bridge
from G to F at radius 0, as described above.

Let α belong to the left filtration basis of U(0) such that its image belongs to the
basis of U(ε). Let r be the value at which α falls ill, and note that r > ε. By the Bridge
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Lemma, there is a β in the left filtration basis of V(0) = W(0) such that the images of
α and β in W(ε) = U(ε) coincide. We now construct yet another zigzag module, by
adding a first bridge from G(r − ε − δ) to F(r − δ) and a second bridge from F(r + δ)

back to G(r + ε + δ), where δ > 0 is sufficiently small that there is no death in the
interval [r − δ, r + δ], except possibly at r . We denote the resulting module by X; see
Fig. 6. We note that all maps between groups are induced by inclusions so that the
diagram formed by the filtrations and the bridges between them commutes.

By construction, the image of β in F(r −δ) is non-zero and belongs to U(r −δ). By
contrast, the image of β in F(r + δ) is either zero or lies outside U(r + δ). Applying
the Bridge Lemma going backward along the first bridge, we note that the image of
β ∈ W(0) = X(0) in G(r − ε − δ) is non-zero and belongs to V(r − ε − δ). Applying
the Bridge Lemma going forward along the second bridge, we note that the image of
β in G(r +ε+δ) is either zero or lies outside V(r +ε+δ). Since we can choose δ > 0
as small as we like, this implies that β falls ill somewhere in the interval [r −ε, r +ε].
In the matching, this radius is paired with r , the radius at which α falls ill in U. The
absolute difference between the two radii is at most ε, as required. �

5 Applications

In this section, we use the stability of the transversality measure to derive stability
results for fixed points, periodic orbits, and apparent contours. All three problems
can be recast in terms of intersections between topological spaces and are therefore
amenable to the tools developed in this paper.

Fixed Points A fixed point of a continuous mapping from a topological space to
itself is a point that is its own image. Assuming that this space is the m-dimensional
Euclidean space and b is the mapping, we introduce a mapping f : R

m → R
m defined

by f (x) = x − b(x). A fixed point of b is a root of f , that is, f (x) = 0. Writing
X = Y = R

m and A = {0}, the origin of R
m, we get the setting studied in this paper.

Each fixed point x of b corresponds to a class in the 0-dimensional homology group
of f −1(0). Letting 
(x) be the maximum robustness of all the fixed points of f , every
perturbation of magnitude less than 
(x) has at least one root, and correspondingly,
the perturbation of b has at least one fixed point. This implication suffices to give a
new proof of a classic topological result on fixed points; see [9]. Let B

m be the closed
unit ball in R

m.

Brouwer’s Fixed Point Theorem Every continuous mapping b : B
m → B

m has a
fixed point.

Proof Extend b to a mapping from R
m to R

m by defining b(x) equal to its value at
x/‖x‖2 whenever x �∈ B

m. Let f : R
m → R

m be defined by f (x) = x − b(x) and
let g : R

m → R
m be the identity, defined by g(x) = x. We may assume that f is

admissible, else the homology group of f −1(0) has infinite rank and f has infinitely
many roots. The other mapping, g, is clearly admissible, with a single root at x = 0.
Letting P be the space of all continuous mappings from R

m to R
m, and measuring the
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distance between f and g by taking the supremum of the Euclidean distance between
corresponding image points, we get

‖f − g‖P = sup
x∈Rm

∥∥f (x) − g(x)
∥∥

2 = sup
x∈Rm

∥∥b(x)
∥∥

2,

which is at most 1. Letting g0(x) be the Euclidean distance of the point g(x) from
the origin in R

m, we write Gr = g−1
0 [0, r] and note that the top-dimensional relative

homology group, Hm(Rm,R
m − Gr), is isomorphic to Z2. Letting h : R → R be an

r-perturbation of the identity mapping, g, we write H0 = h−1(0). With this, we get
the following maps between relative homology groups:

Hm(Rm,R
m − Gr)

g

∼=

Hm(Rm,R
m − H0)

h

Hm(Rm,R
m − {0}),

where the unlabeled homomorphism is induced by inclusion of spaces, and the other
two are induced by the mappings g and h. The straight line homotopy taking g to
h keeps each point in R

m − Gr in R
m − H0, for the entire length of the homotopy.

This means that the triangle commutes and therefore H0 cannot be empty. Thus the
well diagram of the identity consists of a single, non-zero point at plus infinity. The
Stability Theorem for Well Diagrams implies that the well diagram of f also has a
point at plus infinity. But this implies that f has a root and, equivalently, that b has a
fixed point. �

The above reduction of fixed points to an intersection setting uses the difference
between two points, an operation not available if the mapping b : M → M is defined
on a general metric space. In this case, we can use the correspondence between the
fixed points of b and the intersection points between the graph of b and the diagonal
in M × M. To apply the results of this paper, we set X = M, Y = M × M, and
A = {(x′, x′) | x′ ∈ M}. Furthermore, we define the distance between two points x =
(x′, x′′) and y = (y′, y′′) in M × M equal to

‖x − y‖Y =
{∞ if x′ �= y′;

‖x′′ − y′′‖M if x′ = y′.

We restrict P to those mappings h : M → M×M that arise as graphs of a continuous
mapping from M to itself. It is not difficult to see that this setting gives the same
robustness values for the case M = R

m discussed above.

Periodic Orbits We generalize the above setting by allowing for fixed points of
iterations of the mapping. Letting M be a metric space and f : M → M a mapping,
we write f j : M → M for the j -fold composition of f with itself. A sequence

Fj (x) = (
x,f (x), f 2(x), . . . , f j−1(x)

)
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is an order-j periodic orbit of f if f j (x) = f ◦ f j−1(x) = x. It is straightforward to
see the following relationship between f and its j -fold composite.

Orbit Lemma A point x ∈ M is a fixed point of f j iff Fj (x) is an order-j periodic
orbit of f .

We can therefore use the methods of this paper to measure the robustness of x, that is,
to determine how much f j needs to be perturbed to remove the fixed point. However,
it is more interesting to measure how much f needs to be perturbed to remove the
periodic orbit. This is different because not every mapping can be written as the
j -fold composite of another mapping. This motivates us to introduce P as the space
of perturbations of f j that are j -fold composites of perturbations h of f . Using this
space P , we intersect the images of the homomorphisms induced by the hj . With this
setup, we construct the well diagram of f j and interpret the resulting values as the
robustness of the order-j periodic orbits of f .

Apparent Contours As mentioned in the introduction, [6] reduces the stability of
the contour of a mapping to the stability of well diagrams, the main result of this
paper. We briefly review the reduction. Let M be a compact, orientable 2-manifold
and f : M → R

2 a smooth mapping. The derivative of f at a point x is a linear map
from the tangent space to R

2. The point x is critical if the derivative at x is not surjec-
tive, and the apparent contour of f is the set of images of critical points. Beyond the
smoothness of f , we assume that the well functions it defines are admissible. Specif-
ically, for each a ∈ R

2, the function fa : M → R is defined by mapping every point
x to fa(x) = ‖f (x) − a‖2 and we assume that f −1

a (0) consists of a finite number of
points.

To study the apparent contour, we consider the entire 2-parameter family of well
functions. Fixing a value a ∈ R

2, the sublevel sets of fa form a filtration of homology
groups and a zigzag module of well groups. Each point in the preimage of a falls
ill at a particular radius interpreted as the robustness of that point. The main result
of this paper implies that this measure is stable, that is, W∞(Dgm(U),Dgm(V)) ≤
‖fa − ga‖∞, where U and V are the well modules defined by the mappings f,g :
M → R and the value a ∈ R

2. As shown in [6], this implies that the apparent contours
of f and of g are close. The sense in which they are close is interesting in its own
right, and we refer to that paper for details.

6 Discussion

The main contribution of this paper is the definition of a robustness measure for the
homology of the intersection between topological spaces, and a proof that this mea-
sure is stable. While robustness and persistence are related, there are also differences
between these notions. For example, robustness adapts to a given metric space of
perturbations, and this extra degree of freedom is sometimes essential, such as for
a meaningful analysis of periodic orbits. The results in this paper raise a number of
questions and invite extensions in several directions.
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• Fixed points of mappings play an important role in game theory [13]. Can the
results of this paper be used to gain insight into the nature of fixed points as they
arise in different games? What are contexts in which the robustness of a fixed point
is relevant to the understanding of the dynamics of a game?

• The three applications sketched in Sect. 5 barely scratch the surface of the possi-
ble. An interesting direction for further research is mappings from lower to higher
dimensions. For example, the boundary of a computer-aided design model is the
image of a mapping from a 2-manifold to R

3. Can our results be used to detect
and remove accidental self-intersections, a problem of significant economic im-
portance [7]?

• Except for a few special settings, we have no algorithms for computing well dia-
grams. The main obstacle is the possibly infinite set of perturbations that appears
in the definition of well groups. However, since the groups that arise for admissi-
ble mappings are finite, only a finite number of perturbations are relevant. Can we
approach the algorithmic question from this direction?

References

1. V.I. Arnold, Catastrophe Theory, 3rd edn. (Springer, Berlin, 1992).
2. G. Carlsson, V. de Silva, Zigzag persistence, Found. Comput. Math. 10, 367–405 (2010).
3. D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams, Discrete Comput.

Geom. 37, 103–120 (2007).
4. H. Edelsbrunner, J. Harer, Computational Topology. An Introduction (Am. Math. Soc., Providence,

2010).
5. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete

Comput. Geom. 28, 511–533 (2002).
6. H. Edelsbrunner, D. Morozov, A. Patel, The stability of the apparent contour of an orientable 2-

manifold, in Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Ap-
plications, ed. by V. Pascucci, X. Tricoche, H. Hagen, J. Tierny (Springer, Heidelberg, 2011).

7. H. Gu, T.R. Chase, D.C. Cheney, T. Bailey, D. Johnson, Identifying correcting, and avoiding errors
in computer-aided design models which affect interoperability, J. Comput. Inf. Sci. Eng. 1, 156–166
(2001).

8. V. Guillemin, A. Pollack, Differential Topology (Prentice Hall, Englewood Cliffs, 1974).
9. A. Hatcher, Algebraic Topology (Cambridge Univ. Press, Cambridge, 2002).

10. K. Popper, The Logic of Scientific Discovery (Basic Books, New York, 1959).
11. S. Smale, Book review on Catastrophe Theory: Selected Papers by E.C. Zeeman, Bull. Am. Math.

Soc. 84, 1360–1468 (1978).
12. R. Thom, Structural Stability and Morphogenesis: An Outline of a General Theory of Models

(Addison–Wesley, Reading, 1989). Translated from the French by D.H. Fowler.
13. A. von Schemde, B. von Stengel, Strategic characterization of the index of an equilibrium, in Sympos.

Algor. Game Theory. Lecture Notes Comput. Sci., vol. 4997 (Springer, Berlin, 2008), pp. 242–254.
14. H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, Ann. Math. 45, 220–246

(1944).
15. H. Whitney, On singularities of mappings of Euclidean space. I. Mappings of the plane to the plane,

Ann. Math. 62, 374–410 (1955).
16. E.C. Zeeman (ed.), Catastrophe Theory: Selected Papers, 1972–1977 (Addison–Wesley, Reading,

1977). London, England, 1978.


	Quantifying Transversality by Measuring the Robustness of Intersections
	Abstract
	Introduction
	Motivation
	Results
	Outline

	Background
	Transversality
	Product Spaces
	Homology
	Persistent homology
	Stability

	Measuring Robustness
	Admissible Mappings
	Perturbations and Well Groups
	Terminal Critical Values
	Well Module
	Left Filtration
	Compatible Bases
	Well Diagrams

	Proving Stability
	Distance Between Functions
	Distance Between Diagrams
	Bridges
	New Modules
	Main Result

	Applications
	Fixed Points
	Periodic Orbits
	Apparent Contours

	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


