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Abstract We describe in the space of binary forms of degree d the strata of forms
having a given rank. We also give a simple algorithm for determining the rank of a
given form.
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1 Introduction

Let Q be a homogeneous polynomial of degree d , in n variables, with complex coef-
ficients. We define the rank of Q (denoted rkQ) to be the smallest integer r such that
Q can be written as a sum of r d th powers of linear forms:

Q = Ld
1 + · · · + Ld

r . (1)

The terminology comes from the case of quadrics. A quadratic form Q can be written
as Q(X) = XtAX for A a symmetric matrix, and the rank of Q is the rank of the
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matrix A. That is, the rank of A is r if and only if Q is the sum of r squares of linear
forms (and not less than r).

If we let d > 3, we can state the following classical problem associated to the rank
of a form.

Waring’s Problem for forms: what is the least integer E(d,n) such that a generic
form of degree d in n variables has rank less than or equal to E(d,n)?

For binary forms, that is n = 2, the solution to this problem was known to Sylvester
([19, 20], see also [9, 10, 13–15]). He showed that E(2k−1,2) = k and that a general
form of degree d = 2k − 1 has a unique decomposition as in (1). In this case we say
that a general binary form of degree 2k − 1 has a canonical form Ld

1 + · · · + Ld
k .

In the case of even degree (d = 2k) he introduced an invariant (the determinant of
a catalecticant matrix) and showed that among the forms having this determinant
equal to zero a general one has rank k. And once again such a general form admits
a unique decomposition as in (1), that is, it has a canonical form. A general binary
form of degree d = 2k has rank k + 1 (and therefore E(2k,2) = k + 1), but there is
no canonical form: such a form can be written as the sum of k + 1 d th powers of
linear forms in an infinite number of ways ([13, 15] or formula (9)).

For n > 2 this problem remained unsolved until 1995, when Alexander and
Hirschowitz ([1]) computed the value of E(n,d) for every pair (n, d). They actu-
ally computed, for each r ≤ E(n,d), the dimension of the closure of the set of forms
having rank r .

One may generalize the definition of rank in the following way: given a form Q

we define its border rank as the least integer r such that Q may be written either as a
sum of r d th powers of linear forms or as a limit of such sums. It is clear that every
form has a border rank less than or equal to E(d,n). From this definition one can ask,
for each r ≤ E(d,n), for algebraic conditions on a form Q so that its border rank is r .

The answer to this question in the case of binary forms also follows from the
work of Sylvester. Given a binary form Q one can arrange its coefficients in a certain
catalecticant matrix. The border rank of a binary form Q is the rank of this matrix
(see [13] or Sect. 3).

Another solution, using covariants, was given by Gundelfinger ([11] or [10, 14]).
For each r such that 2r ≤ d he gave an equation Gr involving partial derivatives
of the form Q. The form G1 is the Hessian and the other forms are generalizations.
Proceeding in this way, the border rank of a form Q is the first r such that Gr(Q) = 0.
Notice that for r = 1 we get the well known fact that a binary form is the d th power
of a linear form if and only if its Hessian vanishes [15].

The border rank and the rank of a form may be different. For example the binary

form Xd−1Y has border rank 2, since it may be written as the limit (X+tY )d−(X−tY )d

2d

as t → 0. But its rank is d (see [12, p. 147], or Theorem 2). In this case we can write
Xd−1Y as the sum of d d th powers of linear forms in ∞d−1 ways, so for a form
having a rank greater than its border rank we will not get a canonical form as in (1).

However, if we admit more general expressions we can get a canonical form.
In [13] it is shown that any binary form of degree d having border rank r , with
2r − 1 ≤ d , admits a unique decomposition, thus:

Q = L
d−(μi−1)
1 P1 + · · · + L

d−(μi−1)
k Pk, (2)
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where Li are linear forms, Pi are degree μi − 1 forms and r = μ1 + · · · + μk (the
number r is also called the length of a form). In the case where all the μi ’s are equal
to one, the form Q has a rank equal to its length. Notice that the form Xd−1Y has
length two, as was expected. In this article we show that in general for every r, such
that 2r − 1 ≤ d , binary forms having length or border rank r but greater rank all have
rank equal to d − r + 2 (Theorem 2). For forms in more than two variables little is
known about the rank of a form whose border rank is not the same as its rank.

There are several other generalizations of Waring’s Problem for forms. For exam-
ple, given vector spaces V1, . . . , Vm and a tensor T ∈ V1 ⊗ · · · ⊗ Vm, we define its
rank as the least integer r such that T is written as the sum of r indecomposable
tensors v1 ⊗ · · · ⊗ vm. The same questions we asked for the rank of binary forms
can be asked in this setting, and so far no general answers have been given. For an
introduction to the tensor rank, see [4]. The case V1 = · · · = Vr = C

2 is of particular
interest in quantum computing (see [6]). For the connection between tensor rank and
algebraic complexity theory and other problems see [16]. The article [18] relates the
rank of forms with the problem of finding polynomial solutions to partial differential
equations with constant coefficients. For more generalizations of Waring’s Problem
for forms and its relation with the problem of polynomial interpolation, see [7].

The main result of this paper is the complete description of the strata of binary
forms having constant rank. Let Sd,r denote the set of degree d binary forms having
rank r , and let S◦

d,r denote the set of forms having border rank r . We show that for
each r ≥ 2 such that 2r − 1 ≤ d we have

S◦
d,r = Sd,r ∪ Sd,d−r+2. (3)

If d = 2r − 2, we get again Sylvester’s result:

S◦
d,r = Sd,r . (4)

It is clear from the definitions that the closure of Sd,r contains S◦
d,k for each k < r .

If we combine this fact with formula (3), we get, for each r ≥ 2 such that 2r − 1 ≤ d ,
the following characterization of Sd,r :

Sd,r =
(⋃

k≤r

Sd,k

)
∪

( ⋃
k≥d−r+2

Sd,k

)
. (5)

On the other hand, if r ≤ d and 2r −1 > d , from formulas (3) and (4) we know that
Sd,r ⊂ S◦

d,d−r+2. Therefore, the closure of Sd,r contains S◦
d,k for each k ≤ d − r + 1.

So we get the following characterization of Sd,r :

Sd,r =
( ⋃

k≤d−r+1

Sd,k

)
∪

(⋃
k≥r

Sd,k

)
. (6)

A close examination of formulas (5) and (6) gives us the desired description (see
Theorem 2):
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• If r ≥ 2 and 2r − 1 ≤ d ,

Sd,r = Sd,r \ Sd,d−r+2,

Sd,d−r+2 = Sd,d−r+2 \ Sd,r−1.

• If 2r − 2 = d ,

Sd,r = Sd,r \ Sd,r−1.

We show how to determine the rank of a given form Q by computing the rank of
an explicit matrix, solving a linear system of equations, and deciding if a polynomial
constructed from this solution has multiple roots. The algorithm also lets us know
the number of ways in which a rank r form can be written as in (1) using r different
linear forms.

2 Rank of a Binary Form

Let V = C
2 and let S1 = V ∗ be the vector space of linear polynomials in two variables

x, y. Let Sd be the space of homogeneous polynomials of degree d in variables x, y.
We define the rank of a binary form Q ∈ Sd as follows.

Definition 1 The rank of Q is the least integer r such that Q can be written as

Q = Ld
1 + · · · + Ld

r

where Li ∈ S1, i = 1, . . . , r .

Let C ⊂ P(Sd) be the Veronese curve, that is, the image of the map

P(S1) → P(Sd),

[L] �→ [
Ld

]
.

Then the rank of a binary form Q is the least integer r such that [Q] lies on a linear
space spanned by r elements lying on C. For instance, the forms of rank one are
exactly those lying on C; and the forms lying on a secant line to C have rank less
than or equal to 2. However, a form lying on a tangent line to C will have rank d

although it is a limit of rank two forms. Also, since the union of the tangent lines
to C is a closed surface, the limit of rank d forms has either rank one or rank d .

We will prove the following theorem:

Theorem 2 Let P(Sd) be the projective space of binary forms of degree d , C ⊂ P(Sd)

the Veronese curve of d th powers of linear forms and for each 1 ≤ r ≤ d , let Sd,r ⊂
P(Sd) be the projectivization of the set of degree d forms having rank r .

(1) For each r ≥ 2 such that d ≥ 2r − 1 we have
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Sd,r \ Sd,r−1 = Sd,r ∪ Sd,d−r+2,

Sd,r = Sd,r \ Sd,d−r+2,

Sd,d−r+2 = Sd,d−r+2 \ Sd,r−1.

(2) If 2r − 2 = d , that is, r = d − r − 2, we have

Sd,r = Sd,r \ Sd,r−1.

We will use the following alternative way of describing the Veronese curve. Con-
sider the map

P
1(C) → P(S∗

d ),

[α] �→ [
ev(α)

]
,

where ev(α) is the linear functional given by evaluation of polynomials at α ∈ C
2.

The Veronese curve is the image of this map. More precisely, let {x, y} be a basis
for S1, and {xd, xd−1y, . . . , xyd−1, yd} a basis for Sd . We consider in S∗

d the ba-
sis dual to that of Sd . Then a point in P(S1) with homogeneous coordinates [t, u]
is mapped by the first map to a point in P(Sd) with homogeneous coordinates[
td ,

(
d
1

)
td−1u, . . . ,

(
d

d−1

)
tud−1, ud

]
. On the other hand, a point in P

1(C) with ho-
mogeneous coordinates [t, u] is mapped by the second map to a point in P(S∗

d ) with
homogeneous coordinates [td , td−1u, . . . , tud−1, ud ].

Therefore, the isomorphism given by

P(S∗
d ) → P(Sd),

[Z0,Z1, . . . ,Zd−1,Zd ] �→
[
Z0,

(
d

1

)
Z1, . . . ,

(
d

d − 1

)
Zd−1,Zd

]

restricts to an isomorphism between the image of the second Veronese map and the
first one.

Using this isomorphism, we define the rank of a functional ϕ ∈ S∗
d as follows:

Definition 3 Let ϕ ∈ S∗
d be a linear functional. The rank of ϕ is the least integer r

such that ϕ can be written as

ϕ = ev(α1) + · · · + ev(αr),

where αi ∈ C
2, i = 1, . . . , r .

Notice that if ϕ = λ1ev(α1) + · · · + λrev(αr) with λi = 0 ∀i, then ϕ is the sum of
ev(α′

i ), where α′
i = ωiαi and ωd

i = λi .
Let Secr (C) denote the r-secant variety of C, that is, the variety defined as the

closure of the union of (r − 1)-planes spanned by r points in C. It is an irreducible
variety of dimension min{2r −1, d} ([12, Proposition 11.32, p. 147]). Therefore when
we refer to a secant variety we will assume that 2r − 1 ≤ d . Notice that a point in
Secr (C) will lie either on a plane spanned by r different points in C, or in a limit of
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such planes. Therefore, Secr (C) is the closure of all points having rank less than or
equal to r .

We can arrange the homogeneous coordinates [Z0,Z1, . . . ,Zd ] of a point [ϕ] ∈
P(S∗

d ) in a catalecticant matrix

Mϕ =

⎡
⎢⎢⎢⎣

Z0 Z1 . . . Zd−s

Z1 Z2 . . . Zd−s+1
...

...
...

Zs Zs+1 . . . Zd

⎤
⎥⎥⎥⎦ . (7)

It is a known fact that if r ≤ min{s, d − s}, [ϕ] ∈ Secr (C) if and only if rkMϕ ≤ r

([12, Proposition 9.7, p. 103], or [13]).
We can then give the following characterization of the secant variety Secr (C),

which will allow us to recognize which points in Secr (C) lie on secant planes to C

spanned by r different points.

Lemma 4 Let [ϕ] ∈ P(S∗
d ) and let r ≥ 2 such that d > 2r − 1. Then [ϕ] ∈ Secr (C) if

and only if ϕ(Sd−r · G) = 0 for some G ∈ Sr .

Proof Consider the bilinear form B : Sd−r × Sr → C given by B(F,G) = ϕ(F · G).
The matrix of B in a basis{

xd−r , xd−r−1y, . . . , yd−r
} {

xr , xr−1y, . . . , yr
}

is

M =

⎡
⎢⎢⎢⎣

Z0 Z1 . . . Zr

Z1 Z2 . . . Zr+1
...

...
...

Zd−r Zd−r+1 . . . Zd

⎤
⎥⎥⎥⎦ ,

where the Zi = ϕ(xd−iyi) denote the homogeneous coordinates of [ϕ]. Since d >

2r − 1, we have r ≤ d − r . We know that [ϕ] ∈ Secr (C) if and only if the rank M is
less than or equal to r . But the rank of M is less than or equal to r if and only if there
is a polynomial G ∈ Sr such that ϕ(Sd−r · G) = 0. �

In the following lemma we give a necessary and sufficient condition for the rank
of ϕ to be less than or equal to a given integer r . We shall denote by Δr the discrimi-
nant hypersurface in the affine space Sr , defined as the locus of degree r polynomials
with multiple roots in P

1(C). It is a well known fact that Δr is an irreducible hyper-
surface defined by a homogeneous polynomial of degree 2r − 2. Therefore, Δr is not
a hyperplane.

Lemma 5 Let ϕ ∈ S∗
d . Then rk(ϕ) ≤ r if and only if the set

W = {
G ∈ Sr : ϕ(Sd−r · G) = 0

}
is not contained in Δr .

In particular, every ϕ has rank less than or equal to d .
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Proof Let ϕ ∈ S∗
d such that rk(ϕ) ≤ r . Then we can write ϕ = ∑r

i=1 ev(αi),

where [α1], . . . , [αr ] ∈ P
1(C) are r different points. The polynomial G with roots

[α1], . . . , [αr ] lies on W and therefore W is not contained in Δr .
Now let us consider a polynomial G ∈ W \ Δr , and let [α1] = [t1, u1], . . . , [αr ] =

[tr , ur ] ∈ P
1(C) be the roots of G. We will show that ϕ = ∑r

i=1 λiev(αi) by proving
that {ϕ, ev(α1), . . . , ev(αr)} is a linearly dependent set. Consider the (r +1)× (d +1)

matrix having as its rows the coordinates of these functionals in the basis dual to
{xd, xd−1y, . . . , xyd−1, yd}:

⎡
⎢⎢⎢⎣

ϕ(xd) ϕ(xd−1y) . . . ϕ(yd)

td1 td−1
1 u1 . . . ud

1
...

...
. . .

...

tdr td−1
r ur . . . ud

r

⎤
⎥⎥⎥⎦ .

We claim that this matrix does not have maximal rank. Let us consider the maximal
minor obtained by choosing r +1 columns in this matrix. Using the linearity of ϕ, this
minor can be expressed as ϕ(F ), where F ∈ Sd is a polynomial having [α1], . . . , [αr ]
as roots in P

1(C). Thus, ϕ(F ) = ϕ(F ′ · G) = 0.
When r = d , W is the kernel of ϕ, which is a hyperplane. Therefore W ⊂ Δd , and

then ϕ is a linear combination of d elements in C. �

Notice that we proved that if we fix a polynomial G ∈ Sr with r different roots
[α1], . . . , [αr ], then the plane spanned in P(S∗

d ) by [ev(α1)], . . . , [ev(αr)] can be char-
acterized as

〈[
ev(α1)

]
, . . . ,

[
ev(αr)

]〉 = {[ϕ] ∈ P(S∗
d ) : ϕ(Sd−r · G) = 0

}
.

If we let G ∈ Sr have multiple roots, the expression on the right still makes sense,
and it defines a linear variety of dimension r − 1 if r ≤ d , that is a limit of (r − 1)-
planes spanned by r different points in C. We will denote by ΛG the linear variety
on the right side of the equation for G ∈ Sr an arbitrary polynomial. For example, if
G has only one root [α] with multiplicity r , the space ΛG is the (r − 1)-osculating
plane to C at the point [ev(α)], since we can obtain ΛG as a limit of ΛG(t), for G(t)

polynomials with simple roots. Notice that with this notation we can redefine Secr (C)

as the reduced union of the planes ΛG as G ranges over Sr . The following lemma
lets us conclude that if G has roots [α1], . . . , [αk] with multiplicities m1, . . . ,mk ,
respectively, then ΛG is the linear span of the (mi − 1)-osculating planes to C at the
points [ev(αi)].

Lemma 6 Let F ∈ Sk , G ∈ Sl , P the least common multiple of F and G, and H their
greatest common divisor. Then

(1) If degP ≥ d + 1, then 〈ΛF ,ΛG〉 = P(S∗
d ).

(2) If degP ≤ d , then 〈ΛF ,ΛG〉 = ΛP .
(3) If degP ≤ d + 1, then ΛF ∩ ΛG = ΛH .
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Proof The first two statements are evident if F and G have simple roots, since any
d + 1 points in the Veronese curve are in general position. The general case is a limit
of this particular case.

For the third statement we use the first two to deduce that dim〈ΛF ,ΛG〉 =
degP − 1. We also know that

dim〈ΛF ,ΛG〉 = dimΛF + dimΛG − dim(ΛF ∩ ΛG),

and therefore dim(ΛF ∩ ΛG) = degF + degG − degP − 1 = degH − 1. On the
other hand

ΛF ∩ ΛG ⊃ ΛH ,

and dimΛH = degH − 1. Therefore, ΛH = ΛF ∩ ΛG. �

In the next proposition we show a lower bound for the increase of rank when
passing to a limit position.

Proposition 7 Let r ≥ 2 be an integer such that d ≥ 2r − 1. If [ϕ] ∈ Secr (C) and its
rank is greater than r , then rkϕ ≥ d − r + 2.

Proof We know by Lemma 4 that ϕ satisfies the condition

ϕ(Sd−r · G) = 0

for some G ∈ Sr . And since rkϕ > r , G has multiple roots (Lemma 5).
Assume that rkϕ ≤ d − r + 1, that is, we can write

ϕ =
d−r+1∑
j=1

λj ev(αj ).

Let F ∈ Sd−r+1 such that its roots are [α1], . . . , [αd−r+1].
We have [ϕ] ∈ ΛF ∩ ΛG, and since degF + degG = d + 1 by Lemma 6 we have

[ϕ] ∈ ΛH , where H is the greatest common divisor of F and G. Since F has simple
roots and since G has at most r −1 different roots, we have degH ≤ r −1. Therefore,
[ϕ] ∈ Secr−1(C), which is a contradiction.

Then we must have rk(ϕ) ≥ d − r + 2. �

In order to prove the converse we will need the following lemma.

Lemma 8 Let W � Sk be a subspace of codimension l without common zeroes. Then
if m ≥ l, Sm · W = Sk+m.

Proof We will use the fact that if V � Sr has no common zeroes, then

dimS1 · V ≥ dim(V ) + 2, (8)

which is proved in [12, Lemma 9.8, p. 103].
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Assume that Sm · W � Sk+m. Then Sr · W is a proper subspace of Sk+r for each
1 ≤ r ≤ m, and therefore, by applying m times (8) we have dimW +2m ≤ k+m, that
is, dimW ≤ k − m. But we know that dimW = k + 1 − l, and therefore m ≤ l − 1,

which is a contradiction. �

Now we prove the converse of Proposition 7.

Proposition 9 Let r ≥ 2, such that d ≥ 2r −1, and let [ϕ] ∈ P(S∗
d ), such that rk(ϕ) ≥

d − r + 2. Then [ϕ] ∈ Secr (C).

Proof Consider the bilinear form B : Sr−1 × Sd−r+1 → C given by B(F,G) =
ϕ(F · G). We know that if the rank of the matrix of B is less than or equal to r − 1,
then [ϕ] ∈ Secr−1(C). Therefore, we can assume that the rank of the matrix of B is r

and then the subspace W = {G ∈ Sd−r+1 : ϕ(Sr−1 ·G) = 0} has dimension d −2r +2.
Since rkϕ ≥ d − r + 2, all polynomials in W will have multiple roots. Therefore, by
Bertini’s theorem, W has common zeroes, and one of them is a common zero for all
polynomials in W . Let H be the polynomial having as roots the common zeroes of
W , counted with multiplicity. Let n be the degree of H , and let W ′ ⊂ Sd−r+1−n be
the subspace without common zeroes, such that W = H ·W ′. Since dimW = dimW ′,
we have

d − 2r + 2 = dimW ′ ≤ dimSd−r+1−n = d − r + 2 − n.

Therefore, n ≤ r .
The codimension of W ′ in Sd−r+1−n is r − n. Since n ≥ 2, we have r − 1 ≥

codimW ′; therefore, we can use Lemma 8 to conclude that Sr−1 · W ′ = Sd−n. Now

0 = ϕ(Sr−1 · W) = ϕ(Sr−1 · W ′ · H) = ϕ(Sd−n · H),

that is, [ϕ] ∈ Secn(C). Since n ≤ r , [ϕ] ∈ Secr (C), as we wanted. �

We define now a subvariety of Secr (C) that will contain the points in Secr (C) with
rank greater than r . In Proposition 5 we proved that rkϕ ≤ r if and only if [ϕ] ∈ ΛG

for G with no multiple roots. Let Secr,2(C) be the reduced union of linear subspaces
of the form ΛG with G ∈ Sr a polynomial with multiple roots. Alternatively, we can
define Secr,2(C) as the closure of linear subspaces spanned by r − 2 points in C and
a tangent line to C, since every linear subspace of the form ΛG for some G with
multiple roots is a limit of those. Notice that if [ϕ] ∈ Secr (C) is such that its rank is
greater than r , then it must belong to a plane of the form ΛG for some G ∈ Sr , and G

must have multiple roots, since otherwise rkϕ ≤ r . Finally, notice that if r = 2, then
Secr,2(C) is the tangential surface of C.

In the following proposition we calculate the dimension of Secr,2(C).

Proposition 10 If 2r − 2 ≤ d , then Secr,2(C) is an irreducible variety of dimension
2r − 2.

Proof We consider the following correspondence:

Σ = {([ϕ], [G]) ∈ P(S∗
d ) × P(Δr) : ϕ(Sd−r · G) = 0

} ⊂ P(S∗
d ) × P(Δr),
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where P(Δr) denotes the discriminant hypersurface in P(Sr). The fibers of the second
projection are linear spaces of dimension r − 1, and therefore Σ is an irreducible va-
riety of dimension 2r −2. The image of the first projection is Secr,2(C), and therefore
is irreducible.

If 2r ≤ d +1 and [ϕ] ∈ ΛG ∩ΛF , then [ϕ] ∈ ΛH , where H is the greatest common
divisor of F and G. Therefore, [ϕ] ∈ Secr−1(C). Since Secr−1(C) is a proper closed
subset in Secr,2(C), we can consider the open subset U = Secr,2(C) \ Secr−1(C) and
therefore the first projection is one to one over U . This shows that dim Secr,2(C) =
2r − 2 if 2r ≤ d + 1.

If 2r − 2 = d , then Secr−1(C) is an hypersurface. Since Secr−1(C) � Secr,2(C),
we must have Secr,2(C) = P(S∗

d ), that is, dim Secr,2(C) = 2r − 2. �

Theorem 2 will be a consequence of the following theorem:

Theorem 11 Let C ⊂ P(S∗
d ) be the Veronese curve.

(1) For each r ≥ 2 such that d ≥ 2r − 1 we have

Secr (C) \ Secr−1(C) = {[ϕ] : rkϕ = r
} ∪ {[ϕ] : rkϕ = d − r + 2

}
,{[ϕ] : rkϕ = r

} = Secr (C) \ Secr,2(C),{[ϕ] : rkϕ = d − r + 2
} = Secr,2(C) \ Secr−1(C).

(2) If d = 2r − 2 we have

{[ϕ] : rkϕ = r
} = P(S∗

d ) \ Secr (C).

Proof of Theorem 2 First we assume that we are working with the Veronese curve
C ⊂ P(Sd) that consists of d th powers of linear forms. Then we can identify the
subset {[ϕ] : rkϕ = k} with Sd,k .

Therefore, we only have to show that for r such that 2r − 1 ≤ d we have Sd,r =
Secr (C) and that Sd,d−r+2 = Secr,2(C). Theorem 11 shows that Sd,r and Sd,d−r+2
are open dense subsets of Secr (C) and Secr,2(C), respectively.

On the other hand if d = 2r − 2 we have to show that Sd,r = P(S∗
d ). Using Theo-

rem 11 again, we see that Sd,r is an open subset of P(S∗
d ). �

Now we will prove Theorem 11.

Proof of Theorem 11 First assume 2r − 1 ≤ d . Before we prove the three statements
in Theorem 11 let us prove that, if [ϕ] ∈ Secr (C) \ Secr−1(C), then there is a unique
plane ΛG such that [ϕ] ∈ ΛG. If [ϕ] ∈ ΛG ∩ ΛF , then [ϕ] ∈ ΛH , where H is the
greatest common divisor of F and G. Therefore [ϕ] ∈ Secr−1(C).

• The first statement follows from the following:

Secr (C) = {[ϕ] : rkϕ ≤ r
} ∪ {[ϕ] : rkϕ ≥ d − r + 2

}
,

so this is what we will prove.
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Let ϕ ∈ S∗
d such that [ϕ] ∈ Secr (C). Assume that rkϕ > r . Then Proposition 7

shows that rkϕ ≥ d − r + 2, as we wanted.
Now if rkϕ ≤ r , then clearly [ϕ] ∈ Secr (C). If on the other hand rkϕ ≥

d − r + 2, then [ϕ] ∈ Secr (C) by Proposition 9.
• Now we prove the second statement. Let [ϕ] ∈ P(S∗

d ), such that rkϕ = r . We know
that [ϕ] ∈ ΛG for some G ∈ Sr with no multiple roots and therefore [ϕ] ∈ Secr (C).
If [ϕ] ∈ Secr,2(C), then [ϕ] ∈ ΛF for some F ∈ Sr with multiple roots. But then
[ϕ] ∈ Secr−1(C), which is a contradiction, since there are no r rank points in
Secr−1(C). Therefore, [ϕ] ∈ Secr (C) \ Secr,2(C).

Conversely, if [ϕ] ∈ Secr (C) \ Secr,2(C), then [ϕ] ∈ ΛG for some G ∈ Sr with
no multiple roots since [ϕ] ∈ Secr,2(C). Therefore rkϕ ≤ r . On the other hand,
since Secr−1(C) ⊂ Secr,2(C), rkϕ ≥ r , and therefore rkϕ = r .

• Finally, we prove the third statement. Let [ϕ] ∈ P(S∗
d ) such that rkϕ = d−r+2. By

Proposition 9, we have [ϕ] ∈ Secr (C)\Secr−1(C). Therefore there is a polynomial
G ∈ Sr such that [ϕ] ∈ ΛG. If G has no multiple roots, then rkϕ ≤ r . Since r <

d − r + 2, g must have multiple roots, and therefore [ϕ] ∈ Secr,2(C).
Conversely, if [ϕ] ∈ Secr,2(C) \ Secr−1(C), we know that rkϕ = r or rkϕ =

d −r +2. On the other hand we know that [ϕ] ∈ ΛG for some G ∈ Sr with multiple
roots. If rkϕ = r , then [ϕ] ∈ ΛF for some F ∈ Sr with no multiple roots. But this
means that [ϕ] ∈ Secr−1(C), which is a contradiction. Therefore, rkϕ = d − r +2.

If d = 2r − 2, then Secr,2(C) = Secr (C) = P(S∗
d ). But we know that Secr−1(C)

contains all points [ϕ] such that rkϕ > r or rkϕ < r . Therefore, all points in
Secr (C) \ Secr−1(C) have rank r . �

3 Computing the Rank

Next we show how to determine the rank of a binary form Q ∈ Sd . Firstly we find the
integer r such that Q ∈ Sd,r \ Sd,r−1, that is, we compute its length or border rank.
Indeed, if Q = Z0x

d + (
d
1

)
Z1x

d−1y + · · · + (
d

d−1

)
Zd−1xyd−1 + Zdyd, then r is the

rank of one of these two matrices:
⎡
⎢⎢⎢⎣

Z0 Z1 . . . Zl

Z1 Z2 . . . Zl+1
...

...
...

Zl Zl+1 . . . Zd

⎤
⎥⎥⎥⎦ or

⎡
⎢⎢⎢⎣

Z0 Z1 . . . Zl

Z1 Z2 . . . Zl+1
...

...
...

Zl+1 Zl+2 . . . Zd

⎤
⎥⎥⎥⎦ ,

on wether d = 2l or d = 2l + 1.
Let us assume first that 2r −2 = d . Then we have r < d − r +2. We have to decide

if rkQ = r or rkQ = d − r + 2. The matrix M

M =

⎡
⎢⎢⎢⎣

Z0 Z1 . . . Zr

Z1 Z2 . . . Zr+1
...

...
...

Zd−r−2 Zd−r+1 . . . Zd

⎤
⎥⎥⎥⎦
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also has rank r . Therefore, the linear system

M ·

⎛
⎜⎜⎜⎜⎜⎝

g0
g1
...

gr−1
gr

⎞
⎟⎟⎟⎟⎟⎠

= 0

has a unique solution up to nonzero scalars. Let G ∈ Sr be the polynomial G =
g0x

r + g1x
r−1y + · · · + gry

r . Then rkQ = r if and only if G has no multiple roots.
Indeed, if G has r distinct roots [t1, u1], . . . , [tr , ur ] ∈ P

1(C), then Q is a linear com-
bination of the d th powers of the linear forms L1 = t1x + u1y, . . . ,Lr = trx + ury.
Notice that we also proved that if rkQ = r , and 2r − 1 ≤ d , there is a unique way to
write Q as a sum of r d th powers of linear forms. This way of getting a canonical
form is the same as the one Sylvester used.

If G has multiple roots, then rkQ = d − r + 2. In order to compute the number of
ways in which we can write Q as a sum of d − r + 2 d th powers of linear forms we
will consider the matrix

N =

⎡
⎢⎢⎢⎣

Z0 Z1 . . . Zd−r+2
Z1 Z2 . . . Zd−r+3
...

...
...

Zr−2 Zr−1 . . . Zd

⎤
⎥⎥⎥⎦ .

Then Q is a linear combination of the d th power of the forms Li = tix + uiy, i =
1, . . . , d − r + 2 if and only if the coefficients of the polynomial H having [ui, ti] as
roots verifies

N ·

⎛
⎜⎜⎜⎜⎜⎝

h0
h1
...

hd−r+1
hd−r+2

⎞
⎟⎟⎟⎟⎟⎠

= 0.

The rank of N is r − 1 and therefore the projective space P(S) of solutions of the
linear system associated to N is d − 2r + 3. So H must lie in P(S) \ P(Δd−r+2)

which is an open set of dimension d − 2r + 3. Then we can write Q as a sum of
d − r + 2 d th powers of linear forms in ∞d−2r+3 different ways.

It remains to analyze the case l+1 = r . In this case, we know that rkQ = l+1 = r .
We consider the matrix

N =

⎡
⎢⎢⎢⎣

Z0 Z1 . . . Zr

Z1 Z2 . . . Zr+1
...

...
...

Zr−2 Zr−3 . . . Zd

⎤
⎥⎥⎥⎦ .

The rank of N is r − 1, and therefore the projective subspace of polynomials [G] ∈
P(Sr) such that N · [G] = 0 is a line in P(Sr ). Since we know that rkQ = r , this line
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is not contained in P(Δr), and therefore Q can be written as a sum of r d th powers
of linear forms in ∞1 ways. This shows that a general binary form of even degree
has no canonical form.

We can summarize the previous discussion in the following way. Let σ(r) be the
number of ways in which a rank r binary form of degree d can be written as a sum of
r d th powers of linear forms. Then

σ(r) =
{

1 if 2r − 1 ≤ d,

∞2r−1−d if 2r − 1 > d.
(9)

This article is a substantial revision of our ArXiv posting arxiv:math/0112311v1
[math.AG] of 2001. Since this article was submitted, various generalizations of the
main result appeared. In [2, 5, 8] Waring’s Problem of binary forms over the real field
is treated. In [3] and [17] there are generalizations of the Waring Problem for forms
in three or more variables.
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