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1 Introduction

The mathematical description of many applications from mechanics, elasticity theory,
molecular dynamics, and quantum mechanics leads to nonlinear evolution equations
of second order in time. Examples are

— the equation that appears in the description of vibrating membranes (see [1],
[8, p. 165], [13, pp. 38ff., 62ff., 222ff.], [14]) for some p > 2

e + |ug|P 72U, — Au = f; (1
— the equation (see [16, p. 298], [18, pp. 928ff.])
u — V- (Y (x, 1, Vg ) Vi) — Au= f, )

where ¥ only is a sufficiently smooth, strictly monotonically increasing function
with m < < M for some m, M > 0,

— the equation (see [9, 14] as well as [3, pp. 298ff.], [8, p. 238], [13, p. 4] for the
non-viscous case) for some p > 2

g — V- (|Vuz|p_2Vut) — Au+c(u,Vu) = f &)

with an appropriate function c, including viscous regularisations of the Klein—
Gordon equation with c¢(u, Vi) = |u|¥u (y > 0) or of the sine-Gordon equation
with c(u, Vu) = sinu, both appearing in relativistic quantum mechanics and quan-
tum field theory.

Similar equations arise in elasticity theory and material sciences (see [16, pp. 98ff.]).
Further examples can be found, e.g., in [4, 11, 12].

The functional analytic formulation of all these problems leads to the initial value
problem

u' +Au' +Bu=f in(0,7), u(0)=ug, u (0)=nuy. “4)

The operator A is supposed to be the Nemytskii operator corresponding to a fam-
ily of nonlinear hemicontinuous operators A(t) : W — W* (¢t € [0, T]) that fulfil a
certain growth condition. Moreover, A(t) + »I : W — W* (I denotes the identity) is
assumed to be coercive and monotone for some sz > 0, uniformly in ¢ € [0, T]. Here,
W is a real, reflexive, separable Banach space that is dense and continuously embed-
ded in a Hilbert space H. If »r # 0 then W is assumed to be compactly embedded
in H.

It would also be possible to incorporate a strongly continuous perturbation of A
similarly as is done in [5—7] for first-order equations. In order to keep the presentation
brief, we do not consider this more general case here.

The operator B is the Nemytskii operator corresponding to a family of operators
B(t) = Bo+ C(t), where By : V — V* acting on a Gelfand triple V € H C V* with
the same Hilbert space H as above, is assumed to be independent of time as well
as linear, bounded, symmetric, and strongly positive. The operators C(t) : V — W*
are supposed to fulfil a certain growth condition and to be Holder-type continuous on

@ Springer



Found Comput Math (2010) 10: 171-190 173

bounded subsets. If C () # 0 then W is assumed to be compactly embedded in H.
Note that the assumptions on By force V to be a Hilbert space.

The foregoing structural assumptions are general enough to cover many interesting
applications.

For linear evolution equations of second order, a full theory of existence and
uniqueness is given in [8]. Results on the existence, uniqueness, and regularity of
solutions to (4) as well as on the convergence of the Galerkin method can be found
in [10, Kap. 7] and [18, Chap. 33] for the case V = W. Results allowing more in-
volved nonlinearities of the first- and zero-order terms relying upon V # W (with
V N W being dense in V as well as in W) can be found in [3, Chap. V], [14], and
[16, pp. 296ff., 342ff.]. See also [9] for a special class of problems of the form (4)
and [1, 13] for particular examples.

The evolution problem (4) shall be approximated in time by means of the scheme

2 un+l —u" u't — un—l un—H —u"
( - ) + A(ty) — + B(tpu" = f",
Tn+1 + Tn Tn+1 Tn Tn+1
n=1,2,...,N—1, 5)

on a sequence of variable time grids

I:0=ty<t1j<---<ty=T, ty=th—thb_1(n=1,2,...,NeN). (6)

For given approximations u® & ug, v° &~ vg, {f"} & f, this yields approximations

u" ~ u(t,). Note that, in the case A = 0, the scheme (5) is known as the leap-frog
scheme, which falls into the class of Newmark schemes and can be interpreted as a
partitioned Runge—Kutta method (here as the Stérmer—Verlet method).

Although also of interest, an analysis of other numerical methods (in particular,
methods of higher order) applied to the above class of doubly nonlinear evolution
equations of second order is not yet available. A main difficulty will be, as always, to
derive appropriate a priori estimates based upon the stability of the numerical method.
Nevertheless, without additional regularity of the exact solution, there is no need for
higher-order methods.

Error estimates for a full discretisation combining a finite element method with
the Newmark scheme can be found for the linear case in [15, Chap. 8]. To our best
knowledge, the only reference for studying the convergence of time discretisations
of (4) in the nonlinear case is [4]. The authors also deal with the scheme (5), but on
an equidistant time grid and under more restrictive assumptions on the data of the
problem. The convergence result in [4] applies to the special case V = W with A be-
ing a time-independent maximal monotone operator and B being time-independent,
linear, bounded, symmetric, and (up to some shift) strongly positive. The weak con-
vergence results in [4] are somewhat better than the results obtained here, which is
due to the stronger assumptions on the initial data and right-hand side (leading to a
more regular exact solution). Besides, there is an existence result proven in [2] via a
time discretisation for a special class of semilinear equations of the type (4).

In this paper, we show weak convergence of piecewise polynomial prolongations
of the time-discrete solutions to (5) towards the weak solution to (4) whenever the
maximum time steps of the sequence of variable time grids tend to zero. Moreover,
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the deviation of the time grids from an equidistant time grid cannot be too large in

the sense that
1 Tn—1 -2
max —max|{0, — — —=
n=3,4,.,N\ Ty Tn Tn—1

N
Z (th — fn—l)z
Tn + Tn—1

n=2

is bounded, and

tends to zero when considering a sequence of time grids (6). This is, e.g., fulfilled if
Tot1 =T (1 + cr,,”s) for some ¢, ¢ > 0. This, however, seems to be in accordance
with the observations in [17] made for the test equation y” + w?y =0 (w > 0).

Our analysis requires the continuous embedding of W in V, which implies that
the operator A dominates the operator By in the sense that there are constants c; > 0,
¢» >0suchthatforallve W, re[0, T],

(A()v,v) = c1{Bov, v) — ¢2,

where (-, -) denotes the dual pairing.

The demonstration of the convergence of the time discretisation is, indeed, an al-
ternative proof for the existence of a weak solution. Our aim is, however, to rigorously
justify a widely used numerical approximation of the problem under consideration.
We are not going to prove any error estimates or convergence rates, as those require
higher-order regularity of the exact solution (which is unknown in the generic case
and cannot be derived from, e.g., the regularity results given in [10]). We should
emphasise that, under the rather weak assumptions on the problem data and the gov-
erning operators, one cannot expect “more” than a weak solution and, therefore, our
weak convergence results are optimal.

In the general situation we consider here, existence cannot be implied from the
results known from the respective literature [9, 10, 14, 16, 18] and seems to be new,
too.

If W is not continuously embedded in V, a lack of stability of the time discretisa-
tion method appears in the sense that the necessary a priori estimates are not at hand.
This might be circumvented, however, by employing an inverse inequality based on a
suitable spatial discretisation and coupling then the time step size and the spatial dis-
cretisation parameter. A corresponding analysis will be the topic of further research.

The paper is organised as follows: in Sect. 2, we introduce some necessary notation
and precisely state the main assumptions on the operators appearing in the evolution
equation. The numerical scheme for the time discretisation is analysed in Sect. 3.
In particular, we provide a priori estimates of the time discrete solution. The main
convergence result is formulated and proven in Sect. 4.

2 Time Continuous Problem and Notation

Let (W, |- I) be a real, reflexive, separable Banach space that is dense and contin-
uously embedded in the Hilbert space (V, | - ||), and let (V, || - ||) be dense and con-
tinuously embedded in the Hilbert space (H, (-, -), | - |). By identifying the dual H*
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with H, we come to the scale of spaces with dense and continuous embeddings
WCVCHCV CW*,

We always denote the standard dual norm by the subscript *, and the dual pairing is
denoted by (-, -). Note that V € H C V* as well as W € H € W* form a Gelfand
triple.

The space of Bochner integrable (for r = co Bochner measurable and essentially
bounded) abstract functions mapping [0, 7] into a Banach space X is denoted by
L"(0,T; X) (r €[1, oo]) and equipped with the standard norm || - ||z (0,7, x). More-
over, we denote by C" ([0, T']; X) (r e N, cl= C) the space of uniformly continuous
functions mapping [0, T'] into X with uniformly continuous time derivatives up to
order r.

In what follows, we always assume p € [2, co) and set p* = p/(p — 1). The dual
pairing between L” (0, T; V) and (LP(0,T; V))* = LP°(0,T; V*) is given by

T
o= [ @)y

The same applies to the case when V is replaced by W. Moreover, we have
(L'(0, T; H))* = L>(0, T; H) with the dual pairing

T
(fov) = /0 (F.v(0)) dr.

We also use the Banach space
W={veLlO,T;W):v' e (L0, T; W)},
1olw = lvlleer:wy + [ oo, 7wy

with v’ denoting the distributional time derivative. The space W is continuously em-

beddedin C([0, T]; H). If W BN H then, by virtue of the Lions—Aubin compactness
theorem, ‘W is compactly embedded in L" (0, T; H) for any r € [1, 00). The scales
LP,T; W) C L*0,T; H) C (LP(0,T: W))* and L?>(0,T;V) C L*(0,T;: H) C
(LZ(O, T; V))* also form Gelfand triples.

The structural properties we always assume for A and B read as follows.

Assumption A {A(?)};¢[0,7] is a family of hemicontinuous operators A(¢) : W — W*
such that for all v € W the mapping ¢t — A(¢t)v : [0, T] — W* is continuous for
almost all ¢t € [0, T]. There is a constant sc > 0 such that A(t) + s : W — W* is
monotone for all ¢ € [0, T']. For a suitable p € [2, 00), there are constants (£ 4, 84 > 0,
A >0suchthatforallt €[0,T]andv e W

((A@) + zD)v,v) = pallvll” =2, [[A@v0][, < Ba(1 +ll0llP~").

With {A(#)}se0,7], We associate the Nemytskii operator A that is defined by
(Av)(t) := A(t)v(t) (t € [0, T]) for a function v : [0, T] — W. Under Assumption A,
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the Nemytskii operator A maps L? (0, T; W) into its dual and is hemicontinuous and
bounded. Moreover, A + s : LP(0, T; W) — (L?(0, T; W))* is monotone and co-
ercive.

Assumption B {B()},c[0,7] is a family of operators B(¢#) = By + C(t), where
By : V — V* is linear, bounded, symmetric, and strongly positive: There are con-
stants i pg, Bp > 0 such that for all v € V

(Bov, v) > ugllvll®,  [1Bovll« < Ballvl.

Moreover, C(¢t) (t € [0, T]) maps V into W*, and for all v € V, the mapping
t— C(t)v:[0,T] — W™ is continuous for almost all ¢ € [0, T']. There is a con-
stant B¢ > 0 and a monotonically increasing function « : RS — Rg such that for all
tel0,T]and v, w eV

llcawll, = Be(t+1oI*r=07r),

l[cv —Ccowll, < a(max(lvll, lwl)) v — w| D77,

As for {A(1)}se0,7], We associate with {B(#)};c[0,7) the Nemytskii operator B.
Under Assumption B, the Nemytskii operator corresponding to By maps L2(0, T; V)
into its dual and is linear, bounded, symmetric, and strongly positive, whereas
the Nemytskii operator C corresponding to {C(f)};cf0,77 maps L%, T: V) into
(LP(0,T; W))* and is bounded and continuous.

Remember that we require W N H if 30 or if C(r) # 0. It is, however, not

necessary to have V < H.

Under Assumptions A and B and with C(¢) = 0, problem (4) possesses for
any ug € V, v9p € H, f € (LP(0,T; W))* a unique solution u € Gl([O, T]; H)N
C([0, T]; V) with u” € W such that the evolution equation holds in (L? (0, T; W))*.
This is a consequence of [14, Theorem 2.1]. In the case W = V with C(¢) # 0, exis-
tence of a solution follows from [16, Theorem 11.20(ii) on p. 346], see also [9] for C
being a potential operator. Uniqueness can be achieved under additional assumptions
on the operators A(¢) and C(¢) (¢ € [0, T]).

3 Time Discrete Problem and a Priori Estimates
In this section, we consider an arbitrary but fixed time grid (6). We set 1,41,2 1=

(th + Tut1)/2, tar1/2 = th + Tut1/2, and denote by 141 = typ1 /T m=1,2, ...,
N — 1) the ratio of adjacent step sizes. Moreover, we set

Tmax .= Max T,, Fmax .= Max ry, Fmin = min  ry,
=1,2,...,.N n=2,3,...,.N n=2,3,...,.N
1 1 Yn
¥Yp = max| 0, — — , Cy = ax —
n  TFp—i n=34,...N Ty
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Writing (4) as a first-order system

—u'(t) +v(t) =0,
V(1) + At)v(t) + B(Hu(t) = f(1),

and applying the explicit and implicit Euler scheme to the first (backward in time)
and second (forward in time) equation, respectively, gives

1 con+l _ 0 n__ _ _
Tn+l(u u)y+v" =0, n=0,1,...,N—1,
s V=V AV + B = ", n=1.2,... N~ 1,

with given initial approximations u° ~ ug and v° = (u' — u®)/7; ~ vo. Inserting the
first into the second equation leads to the scheme (5), which is formally of first order.
Representing now u” by {v"},

n—1 n—1
u" =uO+Z(uj+1 —u’) =u0+er+1vj =LV, n=0,1,....,N, (7)
=0 =0

we find
1
(v" = ") + A(ta)V" + BoLv" + C(ty)u" = f",
Tn+1/2
n=12,..,N-1, ®)

which will be the starting point for our analysis. Here, L is a nonlocal operator acting
on grid functions. Sometimes, our analysis is also based on another representation
using B(t,)u" = BoLv" + C(t,)u" = B(t,) Lv".

Theorem 1 Ler Assumptions A and B be fulfilled and let u°,0° € V and
{f”},i\:ll C V*. If tmax < 1/« then there is a unique solution {u"}f:/:1 C V to (5) with
WS S W 0" = @ —u) [T0),

Moreover, let Tmax < 1/ max(2se, ﬂBC%V(_)V/MA) (cwesvy denotes the constant
from the continuous embedding W < V). Then the following a priori estimates hold

true forn=1,2,...,N — 1:

n n
T RIS S Rl g Y
j=1 =1

n
sc(||u°||2+|v°|2+r%||v°||2+Zr,,~+1/2|||ff|||f +T) —: M,
j=I

where ¢ >0 is a function in 1/rmin, 'max, ¢y, and 1/(1—max(2s¢, B C%VL) v/HA)Tmax)
that is bounded on bounded subsets, and

- 1
Z Tj+1/2
j=1

Tj+1/2
where M' > 0 is a function in M that is bounded on bounded subsets.

<M,

(o7 = i)

*
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Proof In view of (8), the scheme (5) can be written as

1
— V" + AV = —V" + P~ Bt LV, n=1,2,...,N—1.
Th+1/2 Tn+1/2

This equation can be solved step by step: The right-hand side is in W*. In par-
ticular, for given u® € V and {v/}” ! € V, we have with (7) that Lv"* € V and
thus B(t,)Lv" € W*. The theorem of Browder-Minty now provides the existence
of v* € W C V. The uniqueness follows since the operator appearlng in each step is
strictly monotone, which follows from 7,41/2 < 1/¢. Once {v"} 01 is known, the
solution {u"}N | can be calculated from (7).

We now come to the first a priori estimate. We test (8) with v". Since

(a—b)a:%(az—bz—}—(a—b)z), a,beR, 9)
we have
< 1 (vn_vn—l) vn>= 1 (|vn|2_|vn—l|2+|vn_vn—l|2).
Tut1)2 ’ 2Tn41/2

Because of the coercivity condition on A(#,) + »I, we find

(A" ) = a7 2= el
The third term on the left-hand side in (8) is more involved. By Assumption B,
the mapping (v, w) — (Bov, w), V x V — R, defines an inner product in V, and the

norm | - || = (Bo-, -)'/? induced by this inner product is equivalent to the original
norm || - || such that

1/2 1/2
i1l < vl < B3 21l veV.

We, therefore, find with (7) and

(a—b)b—l(a —b*—(a—b)?), abeR,

that
0 n,v = oLv", Lv — Lv
(B Lv n> (B L. L n+1 L n)
Tn+1
2 2 5
L = e — e - )

1
= 5o (o™ I = 120" 5 ==l 1)-
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For the remaining term with C, we obtain from Young’s inequality, together with
the corresponding growth condition,

(@ o) < lcau || 1ol < ellcau |2+ S )l
n M n
< (U Ju7) + S I )17

with some generic positive constant ¢ (that is independent of the time grid).
For the right-hand side in (8), we employ Young’s inequality and find

v = L = elllr)

*
P

Putting together the foregoing estimates, multiplying by 27,,1/2, summing up,
and taking into account (7) gives

n n
)+ 3 o o T P > i)
j=1 j=1

n

1 1 2 1 1 1 in2
eI I P CEbevd | L

+1 = rj+1

1 1 - -
<o (1 2 )l e el e
j=1

n n n
+ 25yt P g ptia o |+ e Y i el
j=1 j=1 J=1

Some elementary calculations together with the continuous embedding W < V, the
inequality

[/l < 851’ I” < ol vV I < Bacive v (0 + 1717,

the condition 8p C%VQ v Tmax < M4, and a discrete Gronwall argument, which requires
27Tmax < 1, yields

n n
v =0 el + a1
Jj=1 j=I1
n
sc<|v°|2 ot [0+ [+ Yl + T>,
j=1

where ¢>0is a function in 1/7min, 7max, ¢y, and 1/(1—max (2, ,BBC%V_)V/MA)‘CmaX)
that is bounded on bounded subsets. This proves the first estimate asserted.
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From (8), the growth condition for A and C, the boundedness of By, and the
inequality (remember p* < 2 since p > 2 as well as V* — W*)

llBau 12 < el o’ 17” + I ||27) - with

10w (|2 < | Bow |7 < <c(1+ ]! ]7).

leapu 12 < B2 (14 Ju? P717) <1t Jul ),

we immediately arrive at

Zml/z (v —v/7)

p*

Tj+1/2 *

n n n
= mmpllAep I + e mmpllBape 17 +¢ 3 il I

j=1 j=1 j=1
n ) n ) 2 n ) "
<cy (L II17) +e Yo g (L[0! 1) + e D il A1
j=1 j=1 j=1
This proves, together with the first estimate, the second estimate. O

4 Convergence of the Sequence of Time Discrete Solutions

Here and in the sequel, we often emphasise the dependence of a quantity g on the
time grid I by writing g(I).

We start by introducing piecewise constant and linear prolongations of the numer-
ical solution: For the solution {u"}n —o {v”},]:/;()l to (5) corresponding to a time grid I,
let

fort € [0, 1121,
n fOI'te(tn—l/ZatrH-l/Z](n=1’2""’N_1)’
fort e (ty—1/2, tn];

ur(t) :

fort € [0, t12],
fort e (tnfl/z, thy12] (n= 1,2,...,N—1),
fort € (ty—1/2,tn1;

=

vr(e) :

SO < O o 8 ©

W forre [0, 7121,

X vn+t t’1+1/2( n_ n—l)
vp(t) == Tn+1/2

fort e (tn—l/Z, tn+l/2] n=12,...,N—1),
Nl forre (n-1/2:tN].

Note that vy is piecewise linear and continuous, and thus differentiable in the weak
sense.
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For simplicity only, we henceforth restrict ourselves to the case A(¢)0 = 0,
C(t)0=0 (¢t € [0, T]). This is possible without loss of generality since, otherwise,
we can replace f(¢) by f(t) — A(#)0 — C(¢)0 (¢t € [0, T]). Note that then L =0 in
Assumption A.

For the right-hand side, we employ the natural restriction

1 Int1/2
fh= / f@)de,
In

Tn+1/2 ~12

which is well defined for f € LP" (0, T; W*) = (LP(0, T; W))*. We also define

0 fort € [0, 1,21,

fﬂ(t) = fn forte(’n—l/Zstn—H/Z] (n=1927"'7N_1)1
0 forte(tn_1/2,tN];
A(t) fort € [0, #12],
Ar(t) ;=1 A(t,) fort € (th_12, ths12l (0 =1,2,...,N = 1),

A(ty—1) forte(tn_12,tN];

C(11) fort € [0, 11 2],
CH(t) = C(tn) fort € (tn—1/2ytn+l/2] (n = 1721 sy N - 1)7
C(ty—1) forte(tn—1/2,tN].

For w € LZ(O, T; V), we introduce the operator K via
t
(Kw)(t) :=/ w(s)ds.
0

Obviously, K maps LZ(O, T, V) into itself and is linear and bounded.
Moreover, we set

-1 1 al n~— tn— 2
o —Ztn 1/2( ) :EZ%

In the sequel, we consider a sequence {I;}¢cn of time grids (6). The crucial as-
sumptions are as follows.

Assumption I {I;},cy is a sequence of time grids (6) with

-1
Tmax(Ig) = 0 as £ — oo, sup Tmax (Ie) < (max(Z% ,BBCWHV[,LA )) ,
£eN
inf rmin(e) > 0, Sup rmax (Ig) < 00, sup ¢y (Iy) < oo,
teN LeN teN

o(ly) >0 asf— oo.

@ Springer



182 Found Comput Math (2010) 10: 171-190

Assumption IC The initial values for (5) satisfy
[’} cv, u®M) —up inVast— oo,

{vo(]Ig)} cw, UO(Hg) —vp in H as{— oo, sup tmax(]lg)|||v0(]lg)”|p < Q.
teN

Theorem 2 Let Assumptions A, B, I, and IC be fulfilled, and let ug € V, v € H, and
fe (PO, T; WY)*. If £ 0 or C(t) # 0 assume that W is compactly embedded
in H. Then there is a subsequence, denoted by (', such that the piecewise constant
prolongations uy,, converge weakly* in L>°(0,T; V) towards an exact solution u €
C([0, T]; V) to (4). Moreover, the piecewise constant prolongations vy v as well as the
piecewise linear prolongations vy, converge weakly in L? (0, T; W) and weakly* in
L*®(0,T; H) towards u’ € W, and f)ﬁe, converges weakly in (LP (0, T; W))* towards
u’ e (LP(0,T; W))*.

If W is compactly embedded in H, then uj,,, vy, and {1, also converge strongly
in L"(0,T; H) for any r € [1, 00) towards u and u’, respectively.

If a solution to (4) is unique, then convergence takes place for the whole sequence.

The proof of the main theorem uses the following lemma.

Lemma 1 Under the assumptions of Theorem 2, there is a subsequence, denoted
by U, and there are elements

weC([0,T;V), veW withu=uy+Kv,

such that
* . o0 . . p .
ug, —~u in L>0,T;V), vp, =V in L0, T; W),
* . 00 . A . p .
vp, =V inL>™0,T; H), Up, =V in L0, T; W),
b, Sv n LOO T H), 8, —~v in (L7, T: W))",

Ky, X Kv in L0, T; W) as t — co.
Moreover, for any r € [1, 00),
uo+ Kvy, —ug, >0 inL"(0,T;V)as{— oo. (10)
If W is compactly embedded in H, then for any r € [1, 00),
uo—i—KvI[@,—)u in G([O, T];H), ug, —>u inL"(0,T; H),

v, > v inL"(0,T: H), O, > v inL"(0,T: H)as{ — oo.

Proof A direct consequence of the a priori estimates in Theorem 1 is the bounded-
ness of {ur,} in L*°(0, T; V), and of {vg,} and {vy,} in LP(0, T; W) as well as in
L*°(0,T; H), as a straightforward calculation of the corresponding norms shows.
Moreover, {ﬁﬁ@} is bounded in (L? (0, T; W))*.
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By standard arguments, we thus have a subsequence, denoted by ¢’, and elements
uel®0,T;V),veLPO,T; W)yNL>®,T; H), D € W such that

ur, ~u inL®0O,T;V),  w,—v inLP0,T;W),

A S . - N .
v, — v in L0, T; H), v, =~V in LP0,T; W),
br, =0 inLOO, T H), O, =~ in (L7, T; W))".

We now prove v = 0. From the definition of the piecewise prolongations, we im-
mediately find

N 2
” v, — VI, ||L2(0,T;H)

Np)—1
Sfmax(ﬂe)(|vo(]1£)|2+ 3 |v"(He)—v”_1(He)|2+|vN_1(]Iz)|2>, (11)

n=1
but in view of the a priori estimates from Theorem 1, the right-hand side tends to zero
as £ — oo. This shows, by density, the coincidence of the weak limits v and 0.
For proving

KUHZ’ A Kv in LOO(O, T; W)= (LI(O, T, W*))*,

let g € L'(0, T; W*) be arbitrary. Then
T 1
(g. Kvr, — Kv) =/O <g(t),/0 (vr, (s) — v(S))dS>dt

T pt
=/ / {g@), v1, (s) = v(s))ds dr.
0J0

A change of the integration variables yields

T T
(g,KvnK,—Kv>=/0/ (). v, () — v(s))dr ds
T

T
=/ </ g(t)dt,vﬂl,(S)—v(S)>ds
0 K

= (G, U]Iz/ - v)'
Since
T
G(s) ::/ g(t)dr e LOO(O, T; W*)
N

and since
v, v in L0, T; W),

the right-hand side in the foregoing identity tends to zero.
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With (7) and Holder’s inequality, we find (without writing out the dependence on
I, for a moment)

2
||I/£0 + KU]I - u]I"LZ(O,T;V)

12 N-1 Iny1/2
2
:/ luoll~dr + E /
0 n=l Y

-1/2
T
+/
IN-1/2

N—1 2
< ctmaxluol® + ¢ lug — u®|* + C<Z ITj41/2 = T |0 ||>
=1

2
dt

n—1

uo + Z?/+1/2vj +(t =ty V" —u"
j=1

2
dt

N-1

wo+ Yy Tjtijv’
j=1

N-1 N-1

et 2 Tt 20" I erau o1+ etmax Y- w7
n=1 j=1

2

’

where
N—1 ' 2 N—1 -
<Z 1Tjt1/2 — Tjgl v/ ||) <o Z 12|07 |
j=1 j=1

In view of the embedding of W in V and since p > 2, we also have [v/|? <
c(1 + [|v/[|?). The a priori estimates of Theorem 1 together with the assumptions
on the sequence of time grids (in particular, on the deviation from an equidistant
grid) and on the initial values now yield the strong convergence of {uo + Kvy, — uy,}
towards zero in L2(0, T; V). Since {v,} is bounded in L?(0, T; W) — L?(0,T; V),
{Kvy,} is bounded in L>°(0, T'; V). Since also {ug,} is bounded in L>°(0, T'; V), we
thus obtain the strong convergence in L" (0, T'; V) for any r € [1, 00), as is claimed
in (10).

We now show u = ug + Kv. However, this is a direct consequence of what was
shown before:

uo+ Kv—u=uo+ Kv— Kvy, + Kvy, —ur, +ur, —u—0 ian(O,T;V).

Since ug € V and Kv € C([0, T]; V), we also find u € C([0, T']; V).

If W is compactly embedded in H, the Lions—Aubin theorem immediately allows
us to conclude from the boundedness of {1} in ‘W with the strong convergence of
a subsequence of {ir,} € L>°(0,T; H) in L”(0,T; H) and thus in L"(0, T; H) for
any r € [1, 0o). By density, the limit can only be v. Because of (11) and the a priori
estimates from Theorem 1, we already know that {07, — vr,} converges strongly to-
wards zero in L>(0, T; H). Hence, {ur {,} C L*(0, T; H) converges strongly towards
vin L2(0, T; H) and thus in L" (0, T'; H) for any r € [1, 00).
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It is then straightforward to show Kvy, — Kv =u —ug in C([0, T]; H). This
together with (10) implies the strong convergence uy, — u in L"(0, T; H) for any
r €[l, 00). d

Proof of Theorem 2 For readability, we omit the subscripts £ and ¢'.
The numerical scheme (8) can be written as

Oy + Aqvr + BoKvp + Crup = fi + Bo(Kvp — ur). (12)

This equation holds in (L? (0, T; W))*.

The growth condition for A shows that A maps subsets bounded in L” (0, T; W)
into subsets bounded in (L”(0,T; W))*. Therefore, {Arvr} is bounded in
(LP(0,T; W))*, and by standard arguments we have a subsequence and an element
a € (LP(0, T; W))* such that

Ar—a in (LP(0, T; W)™ (13)

With respect to By, we observe that By is a linear and bounded mapping of
L2(0,T; V) into L%(0, T; V*). Since {vr} is bounded in L?(0, T; W) and thus in
L2(0, T;V) and since K : LZ(O, T;V) —> LZ(O, T; V) is bounded, also {ByK vy}
is bounded in (L2(0, T; V))*. Hence, there is a subsequence and an element b €
(L%(0, T; V))* such that

BoKvi—b in (L*(0,T; V)" (14)

For the term Cyuy, we observe the following. In view of the continuity of C = C ()
with respect to ¢ (see Assumption B), we have

llciu@ — cou®]|, -0

for almost all ¢t € (0, T'). Moreover, the growth condition for C(¢) (¢ € [0, T']) leads
to

l[Cru) — coum||” < e(1+ lu)?),

and the right-hand side is integrable. Lebesgue’s theorem on the dominated conver-
gence now yields the strong convergence

Cru— Cu in (LP(0,T; W))".

From the Holder-type continuity of C(¢) (¢t € [0, T]) (see Assumption B), we find
with Holder’s inequality

| Crur — Crull (e, 7:w))*
1 *
< a(max(llutll oo, 7: vy lullLo©,7:v))) lur — MHL/IIZO,T;H)'

This, together with the first a priori estimate in Theorem 1 and the strong convergence
result in Lemma 1, shows that Cyuy — Cru — 0in (L? (0, T'; W))*. We thus have

Crur — Cu  in (LP (0, T; W))™. (15)
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For the right-hand side in (12), we observe the following. By standard arguments,
we obtain

fi— f in(LPO,T; W))". (16)

Again, since By : L2(0, T;V)— L2(0, T; V*) is linear and bounded, we con-
clude from (10) that

Bo(Kvr —ur) — —Boug in L*(0, T; V*). (17)
Finally, we derive from (12) in the limit
vV 4+a+b+Cu=f—Boug in(LP0,T;W))". (18)
It remains to show that v € ‘W fulfils the initial condition and that a + b =
Av + BgpKv.
With 97(0) = v° and Assumption IC, we have

1(0) = vo in H. (19)

With 07(T) = vV ~! and the first a priori estimate in Theorem 1, we can choose the
subsequence such that

du(T) —& inH (20)

for some & € H. Since U] € W, we can employ integration by parts, which yields for
allwe W and g € cl(o, 7D by inserting (18) and (12)

(v(T), w)e(T) — (v(0), w)e(0)

T
2/0 ((v'@), wlo @) + (v(1), w)g' (1)) dr
T
:/(; ((f(f) — Boug —a(t) — b(t) — C(t)u(t), w)(p(t) +(U([), w>¢/(t)) dr

T
2/0 ((f @) = fi@) + by() + Ar(D)vr(t) + BoK vi(r) + Cr(1)ur (1)

— Bo(K vy — un)(r) = Bouo — a(r) = b(1) — C(0)u(t), w)e()
+ (v(@®), w)e' (1)) dt

T
= /0 (f®) = fi@) + Ar)vi(t) — a(t) + BoKvi(t) — b(t) + Cr(t)ux(t)

— C(Ou(t) — Bo(uo + Kvi — up)(t), w)e(t)
+ (v(@) — (1), whe' (1)) dr + (5(T), w)p(T) — (91(0), w)(0).

Taking the limit on the right-hand side, we obtain
(v(T), w)e(T) = (v(0), w)(0) = (£, w)p(T) — (vo, w)¢(0).
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Choosing ¢(T) = 0 and ¢(0) = 0, respectively, we find
v(0)=v9g and v(T)=¢& 20

in H since W > w is dense in H.

In what follows, we wish to employ the monotonicity of A(t) + sl : W — W*
(t €10, T]) and thus of A+ [ as a mapping of L? (0, T; W) into (L? (0, T; W))* as
well as the positivity of the linear operator ByK . Indeed, the linear operator By K is
positive as a mapping of L2(0, T; V) into L(0, T; V*) and thus also as a mapping of
LP(0,T; W) C L*0, T; V) into (L?(0, T; W))*: Since the linear operator By : V —
V* defines an inner product on V and since (Kw)' = w for all w € L%(0,T; V), we
find with integration by parts

T T
(BoKw,u))=/0 (Bo(Kw)(t),w(t)>dt=/O (Bo(Kw) (1), (Kw)' (1)) dt
1
= 5((Bo(Kw)(T), (Kw)(T)) — (Bo(Kw)(0), (Kw)(0))) > 0.

In the last step, we have employed the facts that By : V — V* is positive and that
(Kw)(0) =0.
For s =0, we can now proceed similarly as in the proof of [6, Theorem 4.2]. For
arbitrary w € L?(0, T; W), we find
((Ar+ BoK)vr, vr) > ((Ar + BoK)v, vy)
—((Ar + BoK)v1 — (A1 + BoK)w, vp — w)
= ((A1 + BoK)vr, w)+ ((Ar + BoK)w, vp — w).

We thus obtain from (12)

0 = (01 + (A1 + BoK)vr + Crug — fi — Bo(Kvp — uy), vy)
> (0f, vi) + ((A1 + BoK)vr, w) + (A1 + BoK)w, vp — w)
+ (Crur, vr) — { f1. v1) — (Bo(Kv1 — up), vy). (22)

For the first term on the right-hand side of (22), we observe with (9)

N-1 In+1/2 [/ i n—1 N-1
~ v —v _
(vﬁ,vg): E / <7,v”)dt= E (v"—v" 1,v")
n=1 th—1/2 Tn+l/2 n=1

1 12 1 2 1 N 2 1 N 2
= SV = S0 = S [ = SO
With (19), (20), (21), we thus find by integration by parts
lim inf(d, vy) > %|U(T)|2 - %|v(0)|2 = (v, v). (23)
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Because of Assumption A, we have for almost all ¢ € (0, T')
Ar(Hw@) — A(w@) — 0 in W*

On the other hand, we find from the growth condition that for almost all t € (0, T)

lAarow® - A0wo || < c(1+ [wo]]”).
and the right-hand side is integrable. Hence, Lebesgue’s theorem shows that
Arw — Aw — 0 in (L7 (0, T; W))".

With (13), (14), (15), (17), (16), (23), and the weak convergence of {vy} towards v,
we now obtain from (22) and (18)

0> (v, v)+ (a+b,w)+ ((A+ BoK)w, v — w)+ (Cu, v) — (f, v) + (Boug, v)
=—(a+b,v—w)+((A+ BoK)w,v — w),

which yields
{@a+b,v—w)>((A+BoK)w,v—w).

With w =v +sz (z € LP(0,T; W)) and s — 0+, the hemicontinuity of A and the
continuity of ByK prove a +b = (A + BoK)v in (LP (0, T; W))*.

For s # 0, we only have that Ay + »/ + BoK : L?(0,T; W) — (LP(0,T; W))*
is monotone and coercive. We thus may replace Ay by Ay + 51 on the left-hand side
of (12) and have to “correct” this by considering the term scvy on the right-hand side
of (12). In view of Lemma 1, this term, however, converges strongly in LP°(0,T; H)
and thus in L?" (0, T; W*) = (LP(0, T; W))* towards »v.

Finally, we have that v € ‘W fulfils the initial condition v(0) = vg and the equation

v + Av+ Bo(uo + Kv) + Cu= f in (LP(0, T; W))".

As was already shown in Lemma 1, we have u = ug + Kv and thus u’ = (Kv) = v €
W. This shows u(0) = ug, u’(0) = vy as well as

W'+ Au' + Bou+Cu=f in(LP(0,T; W))".

So, u is a solution to the original problem (4).
By contradiction, we can show that not only a subsequence but the whole sequence
converges towards u and v, respectively, if a solution to (4) is unique. O

Remark 1 Assumption IC on the sequence { vO(Iy)}gen can always be fulfilled for
vo € H since W is dense in H. Assumption Il on o and ¢y, i.e., on the ratios of adja-
cent step sizes, is obviously fulfilled for an equidistant partition but also for variable
time grids that are a perturbation of an equidistant partition.
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Remark 2 Theorem 2 applies to the weak formulation of (2) and (3) in a bounded
Lipschitz domain © € R?, supplemented by initial and, e.g., homogeneous Dirichlet
boundary conditions, with the function spaces V = H(} (Q), H= LZ(Q), the operator
By : V — V* defined via

(Bov, w) = / Vu(x) - Vw(x)dx,
Q

and

for Q) with p=2, W = HO1 (), A(t) : W — W* (¢t € [0, T]) defined via

(A(t)v,w):/ 1/f(x,t,|Vv(x)|)Vv(x)~Vw(x)dx,
Q

see also [18, pp. 928ff.] for more details on the weak formulation of (2);
for 3) with p>2, W = W(;’p(Q), A(l)=A: W — W* defined via

(Av, w) =/ [Vo(0)|? 7 Vo(x) - Vw(x) dx,
Q
C(t)=C:V — W* defined via
(Cv,w) = / c(v(x), Vv(x))w(x)dx,
Q

see also [14, pp. 88ff.] for more details on the weak formulation of (3) and a
discussion of appropriate boundary conditions (in the case ¢ = 0). The require-
ments on the operator C in Assumption B are fulfilled if, e.g., c(x, Vu) = sinu or
c(u,Vu) = [ulYu withy <1 — % (this rather restrictive assumption ensures that
the second time derivative of u is indeed in the dual of the space in which u’ is),
but more complicated semilinearities would also be allowed.

Equation (1) does not fit into our framework, since in this example W = L? () is
not embedded in V = Hj ().
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