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1 Introduction

We consider the nonlinear Schrödinger equation

iut = −�u + V ∗ u + |u|2u (1)

with periodic boundary conditions in dimension d ≥ 1, where u = u(x, t), x ∈ T
d =

R
d/2πZ

d , t ≥ 0. The linear potential V = V (x) ∈ L2(Td) acts by convolution on u.
It is assumed to be periodic with real Fourier coefficients.

Such equations have been studied by Bambusi and Grébert [3], Bourgain [4], and
Eliasson and Kuksin [7]. The presence of a convolution potential avoids resonances
among the frequencies (eigenvalues) of the linearized system. Bambusi and Grébert
transformed the equation into a normal form, which allows them to show approximate
conservation of the actions of the linear Schrödinger equation iut = −�u + V ∗ u

along solutions of (1) over long times in the case of small initial data [3, Theo-
rem 3.25]. Here, instead, we prove such a result using the alternative technique of
modulated Fourier expansions. This technique has the advantage of being transfer-
able to discretizations of the equation. Here we show that the approximate conserva-
tion of actions remains true after a spectral semi-discretization in space. Moreover, we
show that the energy and the momentum of (1) are approximately conserved along so-
lutions of the semi-discretized equation. Similar results for a full discretization of (1)
using in addition a Lie-Trotter splitting in time are shown in a separate paper [8].

The technique of modulated Fourier expansions has been used by Hairer and Lu-
bich [9] to study conservation properties of numerical methods for highly oscillatory
ordinary differential equations, see also [11, Chap. XIII]. Recently, together with
Cohen, they extended this technique to semilinear wave equations [6], their spectral
semi-discretizations in space [10], and full discretizations with trigonometric integra-
tors and the Störmer-Verlet method [5].

In Sect. 2 we state the result of approximate conservation of actions for the so-
lution of (1). For the proof of this result we study a modulated Fourier expansion in
Sect. 3 and conservation properties of this expansion in Sect. 4. In Sects. 5 and 6 we
extend the results to the standard spectral discretization in space of (1) and study the
long-time near-conservation of energy and momentum.

2 Near-Conservation of Actions for the Nonlinear Schrödinger Equation

2.1 Statement of the Result

In this section we formulate our main result for solutions of the nonlinear Schrödinger
equation (1). To motivate this result we first consider the linear Schrödinger equation
iut = −�u + V ∗ u and note that the actions

Ij

(
u, ū

) = 1

2
|uj |2

(
j ∈ Z

d
)

(2)

are exactly conserved along any solution of this equation. Here uj = Fj (u) denotes
the j th Fourier coefficient of a periodic function u = ∑

j∈Zd uj ei(j ·x), where j · x =
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j1x1 + · · · + jdxd . In fact, the linear Schrödinger equation as an equation for the
Fourier coefficients reads i(uj )t = ωjuj , where

ωj = |j |2 + Fj (V )
(
j ∈ Z

d
)

(3)

are the frequencies with |j |2 = j2
1 + · · ·+ j2

d . The frequencies behave asymptotically
like |j |2.

Our main result states that along solutions of the nonlinear equation (1) the ac-
tions (2) are approximately conserved over long times provided that the frequencies
satisfy a nonresonance condition and that the initial data is small. The smallness of
the initial data is measured in the Sobolev norm

‖u‖s =
( ∑

j∈Zd

|ωj |s |uj |2
) 1

2

for s ≥ 0. In this definition ωj is replaced by 1 in the case of ωj = 0. Because of
the asymptotics of the frequencies, the norm ‖·‖s is equivalent to the Sobolev norm
of Hs . The s-norm of the initial data is assumed to be of size ε � 1. Equivalent to
the condition of small initial data, we could require a small nonlinearity and initial
data of size 1 in the norm ‖·‖s by replacing (1) by iut = −�u + V ∗ u + ε2|u|2u.
We consider the almost-conservation of actions on time intervals of length ε−N for
natural numbers N .

For the precise statement of the nonresonance condition on the frequencies (3) of
the linear part of the equation we introduce the following notation similar to [6]. For a
sequence k = (kl)l∈Zd of integers kl and the sequence ω = (ωl)l∈Zd of frequencies (3)
we write

j (k) =
∑

l∈Zd

kl l, ‖k‖ =
∑

l∈Zd

|kl |, k · ω =
∑

l∈Zd

klωl, ωσ |k| =
∏

l∈Zd

ω
σ |kl |
l

(4)
for σ ∈ R. In our analysis we have to divide by k ·ω−ωj(k). We collect pairs (j (k),k)

with small denominator in the set of near-resonant indices

Rε = {
(j,k) : j = j (k),k �= 〈j 〉, |k · ω − ωj | < ε

1
2 ,‖k‖ ≤ 2N + 2

}
,

where 〈j 〉 = (δjl)l∈Zd with Kronecker’s delta, and impose on this set the nonreso-
nance condition

sup
(j,k)∈Rε

|ωj |s− d+1
2

|ω(s− d+1
2 )|k||

ε‖k‖+1 ≤ C0ε
2N+4 (5)

for a constant C0 (independent of ε) and a given natural number N . Here again and
in the following, whenever the absolute value of the frequencies appears, zero fre-
quencies are replaced by 1. The proof of the following theorem will be the subject of
Sects. 3 and 4.
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Theorem 1 For given N and s ≥ d + 1 there exists ε0 > 0 such that the following
holds: Under the conditions of small initial data ‖u(·,0)‖s ≤ ε ≤ ε0 and of nonreso-
nance (5), the estimate

∑

l∈Zd

|ωl |s |Il(u(·, t), ū(·, t)) − Il(u(·,0), ū(·,0))|
ε2

≤ Cε
3
2 for 0 ≤ t ≤ ε−N

holds for solutions u(x, t) of (1) with a constant C which depends on C0, d , N , s,
and V but is independent of ε and t .

This theorem slightly refines [3, Theorem 3.26]. We mention that Theorem 1 (and
also Theorem 2 below) can be extended easily to nonlinear Schrödinger equations
with nonlinearities of the form g(|u|2)|u|2u where g is analytic in a neighborhood
of 0 (the constants will then also depend on g).

The proof of Theorem 1 proceeds as follows. A modulated Fourier expansion is
chosen as an ansatz for the solution of (1). The system determining the coefficients of
this expansion (the modulation system) is solved approximatively on a time interval
of length ε−1 by an iterative procedure described in Sect. 3. Moreover, this system

possesses formal invariants, as is shown in Sect. 4, which are ε
7
2 close to the actions

and turn out to be almost-invariants (up to εN+3) along the approximate solution of
the modulation system. Repeating this procedure on time intervals of length ε−1 and
controlling the interfaces between these intervals finally yields the near-conservation
of actions on an interval of length ε−N . For a comparison with the corresponding
result [6] for nonlinear wave equations, we refer the reader to Sect. 7.

2.2 On the Nonresonance Condition

We now show that the nonresonance condition (5) is realistic in the sense that it is
fulfilled for a large set of potentials V . We do this by proving that our nonresonance
condition is implied by the one used by Bambusi and Grébert [3]. They show the
following proposition.

Proposition 1 (Bambusi and Grébert [3, Theorem 3.22]) Fix m > d
2 and R > 0. The

space
{
V (x) =

∑

j∈Zd

vj ei(j ·x) :
∣∣∣
∣
vj (1 + |j |)m

R

∣∣∣
∣ ≤ 1

2
for all j

}

endowed with the product probability measure has a subset S of measure 1 such that
for any V ∈ S the following property holds. For any r > 0 there exist γ > 0 and
α > 0 such that for any L ≥ 1,

∣∣∣
∑

j∈Zd

ωj kj

∣∣∣ ≥ γ

Lα

for any sequence k = (kl)l∈Z of integers kl fulfilling 0 �= ‖k‖ ≤ r + 2 and∑
|j |>L|kj | ≤ 2 except if k = 〈j 〉 − 〈l〉 with |j | = |l|.
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We remark that the exception in Bambusi’s and Grébert’s original version of
Proposition 1 covers those k with kj = 0 for |j | ≤ L

√
α/m and

∑
|j |=n kj = 0 for

all n > L
√

α/m. Note however that we can assume α ≥ m as becomes clear from the
proof presented in [3] and is also used there, and hence Proposition 1 as stated above
is indeed implied by [3, Theorem 3.22].

Proposition 2 Fix N . For sufficiently large s, the nonresonance condition (5) holds
for all V ∈ S , where S is the set of Proposition 1, with a constant C0 which depends
only on N and V .

Proof We use the notation of Proposition 1. Let V ∈ S , (j,k) ∈ Rε , and ‖k‖ ≤ r +1.
We write k · ω = klωl + ∑

|j |≤L,j �=l kjωj with |l| ≥ L and L ≥ 1 minimal. We have
k �= 〈l〉 since otherwise l = j (k) = j and k = 〈j 〉 contradictory to (j,k) ∈ Rε . We
also have k �= 〈j 〉 + (〈l〉 − 〈m〉) since otherwise j + (l − m) = j (k) = j , and hence
again k = 〈j 〉. Hence, k − 〈j 〉 is not an exception in Proposition 1. This proposi-

tion then yields γ
Lα ≤ |k · ω − ωj | < ε

1
2 . The statement now follows as in the proof

of [6, Lemma 1]. �

Note that the nonresonance condition of Bambusi and Grébert in Proposition 1
requires that all frequencies be nonzero. Our nonresonance condition (5) does not
impose this restriction.

3 Modulated Fourier Expansions

The analysis of the solution of (1) is done by the method of modulated Fourier ex-
pansions. We follow the lines of [6].

Throughout this section we work under the assumptions of Theorem 1. All appear-
ing constants will be denoted by C. The main point is that all these constants do not
depend on ε and the time 0 ≤ t ≤ ε−1; however, they may depend on C0 and N from
the nonresonance condition (5), the dimension d , the regularity parameter s, and the
potential V .

3.1 The Modulation System

We are looking for a function ũ(x, t) which approximates the solution u(x, t) of (1)
by a modulated Fourier expansion

ũ(x, t) =
∑

‖k‖≤K

zk
j (k)(εt)e

i(j (k)·x)e−i(k·ω)t =
∑

‖k‖≤K

zk(x, εt)e−i(k·ω)t (6)

with zk(x, εt) = zk
j (k)

(εt)ei(j (k)·x). We set zk
l (εt) = 0 for l �= j (k). In contrast to [6]

the functions zk consist of a single wave. This comes about when we insert (6) in (1)
and note that

Fj

(
zk1

zk2
zk3) =

{
zk1

j (k1)
zk2

j (k2)
zk3

j (k3)
, j = j (k),

0, else
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for k = k1 + k2 − k3 since j (k) = j (k1) + j (k2) − j (k3). If we compare the coeffi-
cients of ei(j (k)·x)e−i(k·ω)t , we thus arrive at the modulation system

iεżk
j (k) + (k · ω)zk

j (k) = ωj(k)z
k
j (k) +

∑

k1+k2−k3=k

Fj (k)

(
zk1

zk2
zk3)

. (7a)

Here, we denote by żk
j (k)

the derivative with respect to τ = εt . We choose K = 2N +2
and tacitly assume here and in the following that ‖k‖ ≤ K unless stated otherwise.
Requiring ũ(·,0) = u(·,0) further yields

∑

k

zk
j (0) = uj (0). (7b)

3.2 Results on the Modulation Functions

We will construct an approximate solution of the modulation system (7) for 0 ≤ εt =
τ ≤ 1. For measuring the size of functions z = (zk)k = (zk

j (k)
ei(j (k)·x))k we use the

norm

|||z|||s =
∥∥∥
∥
∑

k

{
zk}

∥∥∥
∥

s

=
( ∑

j∈Zd

|ωj |s
(∑

k

∣∣zk
j

∣∣
)2) 1

2

(8)

where

{v}(x) =
∑

j∈Zd

|vj |ei(j ·x)

for a periodic function v(x) = ∑
j∈Zd vj ei(j ·x). This norm yields a mixture between

the l2-based framework of [6] and a more handy l1-based framework. We use the
notation ·̂ for the scaling

ẑ = (
ẑk)

k = (∣∣ω
2s−d−1

4 |k|∣∣zk)
k

and prove the following proposition for the approximate solution.

Proposition 3 Under the conditions of Theorem 1, there exists a function

ũ(x, t) =
∑

‖k‖≤2N+2

zk
j (k)(εt)e

i(j (k)·x)e−i(k·ω)t

for x ∈ T
d and 0 ≤ εt ≤ 1 satisfying

∥∥u(·, t) − ũ(·, t)∥∥
s
≤ CεN+2. (9a)

Moreover, the following estimates hold:

• ũ is small,
∥∥ũ(·, t)∥∥

s
≤ Cε. (9b)
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• z is small,

zk
j (k) = 0 for

(
j (k),k

) ∈ Rε, |||ẑ||| d+1
2

≤ Cε,
∑

j∈Zd

|ωj |s
∣∣z〈j〉

j

∣∣2 ≤ Cε2,

∑

j∈Zd

|ωj |s
( ∑

k�=〈j〉
|zk

j |
)2

≤ Cε5,
∑

j∈Zd

|ωj | d+1
2

( ∑

k�=〈j〉

∣∣ẑk
j

∣∣
)2

≤ Cε5.

(9c)
• z is a solution of (7a) up to a small defect d = e + f with ek

j = 0 for j �= j (k) or

(j,k) ∈ Rε and f k
j = 0 for (j,k) �∈ Rε ,

|||e|||s ≤ CεN+3, |||ê||| d+1
2

≤ CεN+3. (9d)

All constants are independent of ε and 0 ≤ t ≤ ε−1 but may depend on C0, d , N , s,
and V .

The proof of this proposition will cover the remaining part of this section except
Sect. 3.9. At a first reading it might be useful to skip this highly technical part.

3.3 Iterative Solution of the Modulation System

The pairs (j, 〈j 〉) play a special role since k · ω − ωj = 0 for k = 〈j 〉. We therefore
collect those pairs (j (k),k) which are not of this form and are not near-resonant in
the set

Sε = {
(j,k) : j = j (k),k �= 〈j 〉, (j,k) �∈ Rε,‖k‖ ≤ K

}
.

The solution of the modulation system (7) is determined up to a small defect by
an iterative procedure as in [6]. We start by setting

[
z
〈j〉
j

]0 = uj (0) and
[
zk
j (k)

]0 = 0 for k �= 〈
j (k)

〉

for 0 ≤ εt = τ ≤ 1. For n ≥ 0 and 0 ≤ εt = τ ≤ 1 we set, motivated by isolating the
dominant terms in (7a),

[
zk
j

]n+1 = 1

k · ω − ωj

[
−iεżk

j +
∑

k1+k2−k3=k

Fj

(
zk1

zk2
zk3)

]n

for (j,k) ∈ Sε,

[
ż
〈j〉
j

]n+1 = −iε−1
[ ∑

k1+k2−k3=〈j〉
Fj

(
zk1

zk2
zk3)

]n

,

[
z
〈j〉
j (0)

]n+1 = uj (0) −
[ ∑

k�=〈j〉
zk
j (0)

]n

,

[
zk
j

]n+1 = 0 for (j,k) ∈ Rε.
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The notation [·]n means that the nth iterates of the variables within the brackets are
taken. In each iteration step we have initial value problems for z

〈j〉
j and algebraic

equations for the other zk
j . We stop the iteration after L = 2N +2 steps. The functions

of Proposition 3 will be z = [z]L.

3.4 Abstract Formulation of the Iteration

We set

[[k]] =
{

max( 1
2 (‖k‖ + 1),2), k �= 〈j 〉,

1
2 (‖k‖ + 1) = 1, k = 〈j 〉.

We split and scale the variables as follows:

ak
j =

{
ε−[[k]]zk

j , k = 〈j 〉,
0, k �= 〈j 〉 and bk

j =
{

0, k = 〈j 〉,
ε−[[k]]zk

j , k �= 〈j 〉,

and write a = (ak)k = (ak
j (k)

ei(j (k)·x))k, b = (bk)k = (bk
j (k)

ei(j (k)·x))k, and c = a+b.
We further define

(�c)k
j =

{
(k · ω − ωj )c

k
j , (j,k) ∈ Sε,

ε
1
2 ck

j , else

and

F(c)k
j = ε−max([[k]],2)

∑

k1+k2−k3=k

Fj

(
ε[[k1]]+[[k2]]+[[k3]]ck2

ck2
ck3)

.

The iteration in the rescaled variables becomes
[
bk
j

]n+1 = [−iε
(
�−1ḃ

)k
j

]n + [(
�−1F(c)

)k
j

]n for (j,k) ∈ Sε,

[
ȧ

〈j〉
j

]n+1 = −i
[
F(c)〈j〉

j

]n
,

[
a

〈j〉
j (0)

]n+1 = ε−1uj (0) −
[ ∑

k�=〈j〉
ε[[k]]−1bk

j (0)

]n

.

(10)

We also use a second rescaling of the variables, âk
j = |ω 2s−d−1

4 |k||ak
j , b̂k

j =
|ω 2s−d−1

4 |k||bk
j , and ĉ = â + b̂. With

F̂(ĉ)k
j = ε−max([[k]],2)

∣∣ω
2s−d−1

4 |k|∣∣

×
∑

k1+k2−k3=k

Fj

(
ε[[k1]]+[[k2]]+[[k3]]∣∣ω− 2s−d−1

4 (|k1|+|k2|+|k3|)∣∣ĉk1
ĉk2

ĉk3)

the iteration for b̂ becomes
[
b̂k
j

]n+1 = [−iε
(
�−1 ˙̂b)k

j

]n + [(
�−1F̂(ĉ)

)k
j

]n for (j,k) ∈ Sε .
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3.5 Estimating the Nonlinearity

The following lemma is crucial for estimations of the nonlinearity. It reflects the fact
that for s > d

2 the Sobolev space Hs is an algebra.

Lemma 1 We have for s > d
2

‖v̄‖s ≤ C‖v‖s, ‖vw‖s ≤ C‖v‖s‖w‖s , and
∥∥∥∥
∑

k,l

{
ckd l}

∥∥∥∥
s

≤ C

∥∥∥∥
∑

k

{
ck}

∥∥∥∥
s

∥∥∥∥
∑

l

{
d l}

∥∥∥∥
s

(11)

with a constant C which depends on d , s, and V but is independent of ε.

Proof The first inequality is clear from the asymptotics of the frequencies. Using the
Cauchy–Schwarz inequality we get

‖vw‖2
s ≤

∑

j∈Zd

|ωj |s
( ∑

k+l=j

|vk||wl |
)2

≤
∑

j∈Zd

( ∑

k+l=j

|ωk|s |vk|2|ωl |s |wl |2
)( ∑

k+l=j

|ωj |s
|ωkωl |s

)
.

The term
∑

k+l=j

|ωj |s
|ωkωl |s can be bounded independently of j by C

∑
0�=k∈Zd

1
|k|2s ,

where C depends on V . We replace the Euclidean norm |·| in the latter series by the
equivalent 1-norm |k|1 = |k1| + · · · + |kd | (the constant then will also depend on d).
By counting the vectors k ∈ Z

d with 1-norm equal to a given number n, we see that
this series converges for 2s > d , cf. [2, Proof of Theorem 4 in Sect. 24]. This gives
the second estimate of (11). For the third estimate we just notice that

∥∥∥∥
∑

k,l

{
ckd l}

∥∥∥∥

2

s

=
∑

j∈Zd

|ωj |s
(∑

k,l

∣∣Fj

(
ckd l)∣∣

)2

≤
∑

j∈Zd

|ωj |s
( ∑

k+l=j

∑

k

∣∣ck
k

∣∣
∑

l

∣∣d l
l

∣∣
)2

=
∥
∥∥∥
∑

k,l

{
ck}{

d l}
∥
∥∥∥

2

s

.
�

The second estimate of Lemma 1 is well known, see for example [1, Theorem
5.23]. The proof presented here does not make use of the Sobolev embedding theorem
as in [1]. However, the proof presented here is in essence well known.
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Now, we can study the nonlinearity.

Lemma 2 We have
∣∣∣∣∣∣�−1c

∣∣∣∣∣∣
s
≤ ε− 1

2 |||c|||s , (12a)
∣∣∣∣∣∣F(c)

∣∣∣∣∣∣
s
≤ Cε|||c|||3s , (12b)

∣∣∣∣∣∣F(c) − F(c̃)
∣∣∣∣∣∣

s
≤ Cε|||c − c̃|||s max

(|||c|||s , |||c̃|||s
)2 (12c)

with a constant C which depends on d , s, and V but is independent of ε. The same
estimates hold for ĉ, ˆ̃c, F̂, and ||| · ||| d+1

2
instead of c, c̃, F, and ||| · |||s , respectively.

Proof The estimate (12a) follows from the definition of the set Rε of near-resonant
indices. For the proof of (12b) we first note that for k1 + k2 − k3 = k

[[
k1]] + [[

k2]] + [[
k3]] ≥ max

([[k]],2
) + 1 (13)

since [[k1]] + [[k2]] + [[k3]] ≥ 1
2 (‖k1‖ + ‖k2‖ + ‖k3‖ + 3) ≥ 1

2 (‖k‖ + 1) + 1 and
[[k1]] + [[k2]] + [[k3]] ≥ 3. Using this estimate we get

∣∣∣∣∣∣F(c)
∣∣∣∣∣∣2

s

=
∑

j∈Zd

|ωj |s
(∑

k

ε−max([[k]],2)

∣∣∣∣
∑

k1+k2−k3=k

Fj

(
ε[[k1]]+[[k2]]+[[k3]]ck1

ck2
ck3)

∣∣∣∣

)2

≤ ε2
∑

j∈Zd

|ωj |s
( ∑

k1,k2,k3

∣∣∣∣Fj

(
ck1

ck2
ck3)

∣∣∣∣

)2

= ε2
∥∥∥∥

∑

k1,k2,k3

{
ck1

ck2
ck3}

∥∥∥∥

2

s

.

Using (11) from Lemma 1 we obtain (12b). The same calculation is true for c, F, and
||| · |||s replaced by ĉ, F̂, and ||| · ||| d+1

2
, respectively.

For the last inequality (12c) we note that

a1 · · ·an − b1 · · ·bn =
n∑

j=1

2−j (a1 + b1) · · · (aj−1 + bj−1)(aj − bj )

× (aj+1 · · ·an + bj+1 · · ·bn)

(used for n = 3). A calculation as above thus yields the result on |||F(c) − F(c̃)|||s and
|||F̂(ĉ) − F̂( ˆ̃c)||| d+1

2
. �

3.6 Size of the Iterated Modulation Functions

We have

∣∣∣∣∣∣[a(0)
]n+1∣∣∣∣∣∣

s
=

( ∑

j∈Zd

|ωj |s
∣∣[a〈j〉

j (0)
]n+1∣∣2

) 1
2 ≤ ε−1

∥∥u(0)
∥∥

s
+ ε

∣∣∣∣∣∣[b(0)
]n∣∣∣∣∣∣

s
.
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Using Lemma 2 we get for 0 ≤ εt = τ ≤ 1 and � ≥ 0

∣∣∣∣∣∣[b(�)
]n+1∣∣∣∣∣∣

s
≤ ε

1
2
∣∣∣∣∣∣[b(�+1)

]n∣∣∣∣∣∣
s
+ ε− 1

2
∣∣∣∣∣∣F

([c]n)(�)∣∣∣∣∣∣
s
,

∣∣∣∣∣∣[a]n+1
∣∣∣∣∣∣

s
≤ ∣∣∣∣∣∣[a(0)

]n+1∣∣∣∣∣∣
s
+ sup

0≤τ≤1

∣∣∣∣∣∣[ȧ(τ )
]n+1∣∣∣∣∣∣

s
,

∣∣∣∣∣∣[a(�+1)
]n+1∣∣∣∣∣∣

s
≤ ∣∣∣∣∣∣F

([c]n)(�+1)∣∣∣∣∣∣
s

where (�) denotes the �th derivative with respect to τ = εt . With

αn = max
�=0,...,1+2L−n

sup
0≤τ≤1

∣∣∣∣∣∣[a(�)(τ )
]n∣∣∣∣∣∣

s
,

βn = max
�=0,...,1+2L−n

sup
0≤τ≤1

∣∣∣∣∣∣[b(�)(τ )
]n∣∣∣∣∣∣

s

this implies for n = 0, . . . ,L−1, using again Lemma 2 and the smallness of the initial

data, αn+1 ≤ 1 + εβn +Cε(αn +βn)
3 and βn+1 ≤ ε

1
2 βn +Cε

1
2 (αn +βn)

3, where the
constants depend on d , L, n, s, and V but not on ε. The dependence on n is due
to the estimates of derivatives of F with the product rule. Using α0 = |||[a(0)]0|||s =
ε−1‖u(0)‖s ≤ 1 and β0 = 0 we get for n = 0, . . . ,L

αn ≤ C, βn ≤ Cε
1
2 (14)

with a constant C which depends on d , L, n, s, and V but not on ε. With
these estimates we now prove the estimate (9b) of Proposition 3 for ũ = [ũ]L =∑

k[zk]Le−i(k·ω)t ,

‖ũ‖2
s =

∑

j∈Zd

|ωj |s
∣∣
∣∣
∑

k

[
zk
j (εt)

]Le−i(k·ω)t

∣∣
∣∣

2

≤ ε2
∑

j∈Zd

|ωj |s
(∑

k

∣∣[ck
j (εt)

]L∣∣
)2

= ε2
∣∣∣∣∣∣[c]L∣∣∣∣∣∣2

s
.

We now turn to the size of the variables â and b̂ in the second rescaling and set

α̂n = max
�=0,...,1+2L−n

sup
0≤τ≤1

∣∣∣∣∣∣[â(�)(τ )
]n∣∣∣∣∣∣

d+1
2

,

β̂n = max
�=0,...,1+2L−n

sup
0≤τ≤1

∣∣∣∣∣∣[b̂(�)(τ )
]n∣∣∣∣∣∣

d+1
2

.

The relation |||â||| d+1
2

= |||a|||s yields α̂n = αn. For β̂n we get the same estimate as for
βn, and so for n = 0, . . . ,L

α̂n ≤ C, β̂n ≤ Cε
1
2 (15)

with a constant C which depends on d , L, n, s, and V but not on ε. Together with (14)
this yields for z = [z]L the estimates (9c) of Proposition 3.
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3.7 Defect of the Iterated Modulation Functions

After n steps the defect in the modulation system (7a) is (with j = j (k))

[
dk
j

]n =
[

iεżk
j + (k · ω − ωj )z

k
j −

∑

k1+k2−k3=k

Fj

(
zk1

zk2
zk3)

]n

.

This has to be considered for ‖k‖ ≤ 3K where we set [zk]n = 0 for ‖k‖ > K and
all n. We decompose the defect in (7a) as dk

j = ek
j +f k

j + gk
j with ek

j = 0 for (j,k) �∈
Sε and k �= 〈j 〉, f k

j = 0 for (j,k) �∈ Rε and gk
j = 0 for ‖k‖ ≤ K . The defect in

equation (7b) for the initial condition reads

[
d̃

〈j〉
j

]n = uj (0) −
[∑

k

zk
j (0)

]n

.

To estimate f we make use of the nonresonance condition (5). With Lemma 2 and
the estimates (15) we get for n = 0, . . . ,L

∣∣∣∣∣∣[f]n∣∣∣∣∣∣2
s
=

∑

j∈Zd

|ωj |s
( ∑

k:(j,k)∈Rε

∣∣[f k
j

]n∣∣
)2

=
∑

j∈Zd

|ωj |s
( ∑

k:(j,k)∈Rε

εmax([[k]],2)
∣∣[F(c)k

j

]n∣∣
)2

=
∑

j∈Zd

|ωj | d+1
2

( ∑

k:(j,k)∈Rε

|ωj | 2s−d−1
4 εmax([[k]],2)

|ω 2s−d−1
4 |k||

∣∣[F̂ (ĉ)k
j

]n∣∣
)2

≤ ∣∣∣∣∣∣[F̂(ĉ)
]n∣∣∣∣∣∣2

d+1
2

sup
(j,k)∈Rε

( |ωj | 2s−d−1
4

|ω 2s−d−1
4 |k||

ε[[k]]
)2

≤ (
CεN+3)2 (16)

with a constant which depends on C0, d , N , n, s, and V but not on ε. With the same
arguments as in the proof of Lemma 2, we obtain for g using in addition (14)

∥∥∥∥
∑

K<‖k‖≤3K

{[
gk]n}

∥∥∥∥
s

=
∥∥∥∥

∑

K<‖k‖≤3K

ε[[k]]
{
ε−[[k]] ∑

k1+k2−k3=k

ε[[k1]]+[[k2]]+[[k3]]ck1
ck2

ck3

}∥∥∥∥
s

≤ Cε
1
2 (K+2)ε = CεN+3 (17)

with a constant which depends on d , N , n, s, and V but not on ε.
The remainder of this subsection is devoted to the analysis of e,

[
ek
j

]n =
{

ε[[k]]([(�b)k
j ]n − [(�b)k

j ]n+1), (j,k) ∈ Sε,

iε
3
2 ([(�ȧ)k

j ]n − [(�ȧ)k
j ]n+1), k = 〈j 〉.
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We have

�
([b]n − [b]n+1)k

j
= −iε

([ḃ]n−1 − [ḃ]n)k
j

+ (
F
([c]n−1) − F

([c]n))k
j

for (j,k) ∈ Sε,
(
�

([
a(0)

]n − [
a(0)

]n+1))〈j〉
j

= ε
1
2

∑

k�=〈j〉
ε[[k]]−1([bk

j (0)
]n−1 − [

bk
j (0)

]n)
,

�
([

ȧ
]n − [ȧ]n+1)〈j〉

j
= −iε

1
2
(
F
([c]n−1) − F

([c]n))〈j〉
j

.

In particular, we have with Lemma 2

∣∣∣∣∣∣�
([

a(0)
]n − [

a(0)
]n+1)∣∣∣∣∣∣

s
≤ ε

∣∣∣∣∣∣�
([

b(0)
]n−1 − [

b(0)
]n)∣∣∣∣∣∣

s
.

As in the analysis of the size of the modulation functions, we set

ηn = max
�=0,...,2L−n

sup
0≤τ≤1

∣∣∣∣∣∣�
([

a(�)(τ )
]n − [

a(�)(τ )
]n+1)∣∣∣∣∣∣

s
,

μn = max
�=0,...,2L−n

sup
0≤τ≤1

∣∣∣∣∣∣�
([

b(�)(τ )
]n − [

b(�)(τ )
]n+1)∣∣∣∣∣∣

s
.

By Lemma 2 and (14) we have ηn+1 ≤ εμn + Cε(ηn + μn) and μn+1 ≤ ε
1
2 μn +

Cε
1
2 (ηn + μn) for n = 0, . . . ,L − 1. We remark that we gain a factor of ε

1
2 in each

iteration step, whereas in [6, Sect. 3.11] the variables had to be rescaled once more to
gain a positive power of ε. The reason is that the nonlinearity in (1) is cubic and not

only quadratic as in [6]. Using (14) we get for the initial values η0 ≤ ε
1
2 (α0 + α1) ≤

Cε
1
2 and μ0 ≤ |||�([b(0)]1)|||s ≤ |||F([c(0)]0)|||s ≤ Cε. Similar estimates are true for

the second rescaling with

η̂n = max
�=0,...,2L−n

sup
0≤τ≤1

∣∣∣∣∣∣�
([

â(�)(τ )
]n − [

â(�)(τ )
]n+1)∣∣∣∣∣∣

d+1
2

,

μ̂n = max
�=0,...,2L−n

sup
0≤τ≤1

∣∣∣∣∣∣�
([

b̂(�)(τ )
]n − [

b̂(�)(τ )
]n+1)∣∣∣∣∣∣

d+1
2

.

(Note that η̂n = ηn.) We have thus proven that for n = 0, . . . ,L

ηn,μn, η̂n, μ̂n ≤ Cε
n+1

2 (18)

with a constant C which depends on d , L, n, s, and V but not on ε. Hence, with

Lemma 2 |||[e]n|||s ≤ Cε
n+4

2 and |||[ê]n||| d+1
2

≤ Cε
n+4

2 , which yields together with (16)
the estimates (9d) of Proposition 3.
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For the defect d̃ in the initial conditions we get using the iteration for [z〈j〉
j (0)]n,

Lemma 2, and (18)

∣∣∣∣∣∣[d̃
]n∣∣∣∣∣∣2

s
=

∑

j∈Zd

|ωj |s
∣∣∣∣uj (0) −

∑

k

[
zk
j (0)

]n
∣∣∣∣

2

=
∑

j∈Zd

|ωj |s
∣∣∣∣
∑

k�=〈j〉

([
zk
j (0)

]n−1 − [
zk
j (0)

]n)
∣∣∣∣

2

≤ ∣∣∣∣∣∣�−1([e(0)
]n−1)∣∣∣∣∣∣2

s
≤ (

Cε− 1
2 ε

n+3
2

)2 (19)

for n = 1, . . . ,L.

3.8 Error

We now turn to the proof of the estimate (9a) of Proposition 3. We write ũ = [ũ]L =∑
k[zk]Le−i(k·ω)t and z = [z]L, and estimate the error ũ − u, where u is the exact

solution of the nonlinear Schrödinger equation (1).

3.8.1 Size of the Solution

We first determine the size of the solution u of (1). This solution satisfies

(uj )t = −iωjuj − iFj

(|u|2u)

and the variation-of-constants formula yields

uj (t) = e−iωj tuj (0) −
∫ t

0
e−iωj (t−θ)iFj

(|u(·, θ)|2u(·, θ)
)

dθ.

While ‖u(·, t)‖s ≤ 2ε we have using Lemma 1

∥∥u(·, t)∥∥
s
≤ ∥∥u(·,0)

∥∥
s
+

∫ t

0
C2

∥∥u(·, θ)
∥∥3

s
dθ ≤ ∥∥u(·,0)

∥∥
s
+

∫ t

0
4C2ε2

∥∥u(·, θ)
∥∥

s
dθ.

The Gronwall inequality yields ‖u(·, t)‖s ≤ ‖u(·,0)‖se4C2ε2t . So we have for ε ≤
log(2)/(4C2)

‖u(·, t)‖s ≤ 2ε for 0 ≤ t ≤ ε−1. (20)

3.8.2 Error on [0, ε−1]

In t = 0 we have by (19)
∥∥ũ(·,0) − u(·,0)

∥∥
s
≤ ∣∣∣∣∣∣[d̃]L∣∣∣∣∣∣

s
≤ CεN+2 (21)

with a constant which depends on d , N , s, and V but not on ε.
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On [0, ε−1] we have

(ũj − uj )t + iωj

(
ũj − uj

) + iFj

(|ũ|2ũ − |u|2u)

= −i
∑

‖k‖≤3K

[
dk
j

]L
e−i(k·ω)tei(j ·x) =: δj .

The variation-of-constants formula yields

ũj (t) − uj (t)

= e−iωj t
(
ũj (0) − uj (0)

)

−
∫ t

0
e−iωj (t−θ)

(
iFj

(∣∣ũ(·, θ)
∣∣2

ũ(·, θ) − ∣∣u(·, θ)
∣∣2

u(·, θ)
) − δj (·, θ)

)
dθ.

The integrand is estimated for 0 ≤ t ≤ ε−1 with (16), (17), (18), and

2
∥∥|ũ|2ũ − |u|2u∥∥

s
≤ ∥∥(ũ − u)ũ2

∥∥
s
+ ∥∥(ũ − u)u2

∥∥
s
+ ∥∥|ũ + u|2(ũ − u)

∥∥
s

≤ Cε2‖ũ − u‖s

by Lemma 1, (20), and the inequality (9b). We thus obtain

∥∥ũ(·, t) − u(·, t)∥∥
s
≤ ∥∥ũ(·,0) − u(·,0)

∥∥
s
+

∫ t

0
Cε2

∥∥ũ(·, θ) − u(·, θ)
∥∥

s
dθ + tCεN+3

with a constant which depends on C0, d , N , s, and V but not on ε. Together with (21)
and the Gronwall inequality this yields the estimate (9a) in Proposition 3, completing
the proof of this proposition.

3.9 Interface Between Modulated Fourier Expansions

So far, we have constructed an approximate solution z = [z]L of the modulation sys-
tem (7) for 0 ≤ εt ≤ 1. With the same method we can construct an approximate so-
lution z̃ of the modulation system (7) for 1 ≤ εt ≤ 2 taking u(·, ε−1) as initial value.
Hence, equation (7b) becomes

∑

k

z̃k
j (1)e−i(k·ω)ε−1 = uj

(
ε−1).

The following proposition bounds the difference of z(1) and z̃(1). Recall that ẑ and ˆ̃z
are defined by the rescaling of Sect. 3.4.

Proposition 4 Assume ‖u(·, ε−1)‖s ≤ ε. Under the conditions of Theorem 1, we have

∣∣∣∣∣∣ẑ(1) − ˆ̃z(1)
∣∣∣∣∣∣

d+1
2

≤ CεN+2

with constants depending on d , N , s, and V but not on ε.



156 Found Comput Math (2010) 10: 141–169

Proof As in the previous sections we use the notation ã, b̃, ˆ̃a, and ˆ̃b, cf. Sect. 3.4.
The iteration for ã

〈j〉
j (1) reads

[
ã

〈j〉
j (1)

]n+1 = ε−1uj

(
ε−1)eiωj ε−1 −

[ ∑

k�=〈j〉
ε[[k]]−1b̃k

j (1)e−i(k·ω−ωj )ε−1
]n

.

This yields
∣∣∣∣∣∣a(1) − [

ã(1)
]n+1∣∣∣∣∣∣

s

≤
( ∑

j∈Zd

|ωj |s
∣∣∣∣
∑

k�=〈j〉
ε[[k]]−1([b̃k

j (1)
]n − bk

j (1)
)
ei(ωj −k·ω)ε−1

∣∣∣∣

2) 1
2

+
( ∑

j∈Zd

|ωj |s
∣∣∣∣a

〈j〉
j (1) +

∑

k�=〈j〉
ε[[k]]−1bk

j (1)ei(ωj −k·ω)ε−1

− ε−1uj

(
ε−1)eiωj ε−1

∣∣∣∣

2) 1
2

≤ ε
∣∣∣∣∣∣[b̃(1)

]n − b(1)
∣∣∣∣∣∣

s
+ ε−1

∥∥ũ
(·, ε−1) − u

(·, ε−1)∥∥
s
.

In addition we have
(
b(1) − [

b̃(1)
]n+1)k

j
= (

�−1�
(
b(1) − [

b(1)
]L+1))k

j
− iε

(
�−1(ḃ(1) − [ ˙̃b(1)

]n))k
j

+ (
�−1(F

(
c(1)

) − F
([

c̃(1)
]n)))k

j
for (j,k) ∈ Sε,

(
ȧ(1) − [ ˙̃a(1)

]n+1)〈j〉
j

= (
ȧ(1) − [

ȧ(1)
]L+1)〈j〉

j
− i

(
F
(
c(1)

) − F
([

c̃(1)
]n))〈j〉

j
.

For

ρn = max
�=0,...,1+(L−n)

∣∣∣∣∣∣a(�)(1) − [
ã(�)(1)

]n∣∣∣∣∣∣
s
,

ξn = max
�=0,...,1+(L−n)

∣∣∣∣∣∣b(�)(1) − [
b̃(�)(1)

]n∣∣∣∣∣∣
s

we note ρ0 ≤ αL + ε−1‖u(ε−1)‖s ≤ C and ξ0 ≤ βL ≤ Cε
1
2 . For n = 0, . . . ,L − 1 we

have with Lemma 2, (14), and (9a) ρn+1 ≤ εξn +Cε−1εN+2 + ε− 1
2 ηL +Cε(ρn + ξn)

and ξn+1 ≤ ε− 1
2 μL +Cε

1
2 ξn +Cε

1
2 (ρn + ξn), and thus ρn, ξn ≤ C(εN+1 + ε

L
2 + ε

n
2 )

by (18) with a constant which depends on d , L, n, s, and V but not on ε. The same
procedure can be done for the second rescaling. This proves the estimates of the
proposition. �

4 Conservation Properties

The modulation system (7a) has invariants close to the actions, as we discuss now.
Let z be the functions of Proposition 3.
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4.1 Almost-Invariants of the Modulation System

Let

U(z) =
∑

k1+k2−k3−k4=0

1

(2π)d

∫

Td

zk1
zk2

zk3
zk4 dx.

The transformation zk �→ ei(k·μ)θ zk for real sequences μ = (μl)l∈Zd and θ ∈ R leaves
U invariant since the sum is over k1 + k2 − k3 − k4 = 0. Hence, we have

0 = d

dθ

∣∣∣
∣
θ=0

U
((

ei(k·μ)θ zk)
k

) =
∑

k

1

(2π)d

∫

Td

2i(k · μ)zk
∑

k2−k3−k4=−k

zk2
zk3

zk4 dx

+
∑

k

1

(2π)d

∫

Td

2(−i)(k · μ)zk
∑

k1+k2−k3=k

zk1
zk2

zk3 dx

= −4 Re

(∑

k

i(k · μ)
∑

j∈Zd

zk
j Fj

( ∑

k1+k2−k3=k

zk1
zk2

zk3

))
,

and with (7a) and 2 Re(zk
j εżk

j ) = d
dt

|zk
j |2 we obtain

0 = 2
d

dt

∑

k

(k · μ)
∣∣zk

j (k)

∣∣2 + 4 Re

(∑

k

i(k · μ)zk
j (k)

dk
j (k)

)
.

Hence,

Iμ

(
z(·, εt)) = 1

2

∑

k

(k · μ)
∣
∣zk

j (k)(εt)
∣
∣2 (22)

is an almost-invariant of the modulation system (7a). To quantify the term “almost”
we need the following lemma.

Lemma 3 Let z and r = p + q with zk
j = pk

j = 0 for j �= j (k) or (j,k) ∈ Rε and

qk
j = 0 for (j,k) �∈ Rε . The following estimate holds for s ≥ d + 1 with a constant C

which depends only on d , K , s, and V :
∑

l∈Zd

|ωl |s
∑

k

|kl |
∣∣zk

j (k)

∣∣∣∣rk
j (k)

∣∣ ≤ C|||ẑ||| d+1
2

|||p̂||| d+1
2

.

In addition we have for q = 0
∑

l∈Zd

|ωl |s
∣∣I〈l〉(z) − I〈l〉(r)

∣∣ ≤ C|||ẑ − p̂||| d+1
2

|||ẑ + p̂||| d+1
2

.

Proof Since zk
j = 0 for (j,k) ∈ Rε we have

∑

l∈Zd

|ωl |s
∑

k

|kl |
∣∣zk

j (k)

∣∣∣∣rk
j (k)

∣∣ =
∑

k=〈j〉 or (j,k)∈Sε

|ωj | d+1
2

∑
l∈Zd |kl ||ωl |s

|ω(s− d+1
2 )|k|||ωj | d+1

2

∣∣ẑk
j

∣∣∣∣p̂k
j

∣∣,
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where Sε = {(j,k) : j = j (k),k �= 〈j 〉, (j,k) �∈ Rε,‖k‖ ≤ K}. We now bound

sup
k=〈j〉 or (j,k)∈Sε

∑
l∈Zd |kl ||ωl |s

|ω(s− d+1
2 )|k|||ωj | d+1

2

. (23)

For k = 〈j 〉 the fraction is 1. Let now (j,k) = (j (k),k) ∈ Sε . We have for the nu-
merator in (23)

∑
l∈Zd |kl ||ωl |s ≤ C|ωL|s if L is the index of largest norm |·| with

kL �= 0. The constant C depends only on K , s, and V .
For the estimation of the denominator in (23) we consider two cases. For k

with |kL| > 1 or kl �= 0 for l �= L with |l| > 1
2K

|L| we have |ω(s− d+1
2 )|k|| ≥

C|ωL|s− d+1
2 |ωL| d+1

2 because s ≥ d + 1 for a constant which depends on d , K , s,
and V . For the other k we have

∣∣j (k)
∣∣ =

∣∣∣∣
∑

l∈Zd

kl l

∣∣∣∣ =
∣∣∣∣kLL +

∑

|l|≤ 1
2K

|L|
kll

∣∣∣∣ ≥ |L| − K − 1

2K
|L| > 1

2
|L|,

and hence |ω(s− d+1
2 )|k|||ωj | d+1

2 ≥ C|ωL|s− d+1
2 |ωL| d+1

2 with a constant which depends
on d , s, and V . Thus, (23) is bounded by a constant depending on d , K , s, and V .

The Cauchy–Schwarz inequality now yields the first estimate of the lemma. For
the proof of the second estimate we just remark that

∑

l∈Zd

|ωl |s
∣∣I〈l〉(z) − I〈l〉(r)

∣∣ ≤
∑

l∈Zd

|ωl |s
∑

k

|kl |
∣∣∣∣zk

j (k)

∣∣2 − ∣∣rk
j (k)

∣∣2∣∣

and ||zk
j |2 − |rk

j |2| ≤ |zk
j − rk

j ||zk
j + rk

j |. �

Using Lemma 3 and Proposition 3 we obtain the following proposition concerning
the conservation of I〈l〉 from (22).

Proposition 5 We have for 0 ≤ t ≤ ε−1

∑

l∈Zd

|ωl |s
∣∣∣∣

d

dt
I〈l〉

(
z(·, εt))

∣∣∣∣ ≤ CεN+3

with a constant C which depends on C0, d , N , s, and V but not on ε and t .

4.2 Relationship Between Almost-Invariants and Actions

Proposition 6 We have for 0 ≤ t ≤ ε−1

∑

l∈Zd

|ωl |s
∣∣I〈l〉

(
z(·, εt)) − Il

(
u(·, t), u(·, t))∣∣ ≤ Cε

7
2

with a constant C which depends on C0, d , N , s, and V but not on ε and t .
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Proof On the one hand we have using Lemma 3 and Proposition 3

∑

l∈Zd

|ωl |s
∣
∣∣∣I〈l〉(z) − 1

2

∣∣z〈l〉
l

∣∣2
∣
∣∣∣ = 1

2

∑

l∈Zd

|ωl |s
∣
∣∣∣
∑

k�=〈l〉
kl

∣∣zk
j (k)

∣∣2
∣
∣∣∣ ≤ Cε5

where zk
j is evaluated at εt . On the other hand we have using the Cauchy–Schwarz

inequality

∑

l∈Zd

|ωl |s
∣∣∣∣|ul |2 − ∣∣z〈l〉

l

∣∣2
∣∣∣∣

≤
(

‖u − ũ‖s +
(∑

l∈Zd

|ωl |s
( ∑

k�=〈l〉
|zk

l |
)2) 1

2
)(

‖u‖s +
(∑

l∈Zd

|ωl |s
∣∣z〈l〉

l

∣∣2
) 1

2
)

since
∣∣|ul |2 − |z〈l〉

l |2∣∣ ≤ ∣∣ul − z
〈l〉
l e−iωlt

∣∣∣∣ul + z
〈l〉
l e−iωlt

∣∣

≤ (|ul − ũl | +
∣
∣ũl − z

〈l〉
l e−iωlt

∣
∣)(|ul | +

∣
∣z〈l〉

l

∣
∣).

With Proposition 3 this can be bounded by Cε
7
2 . This yields the inequality stated in

the proposition. �

4.3 From Short to Long Time Intervals

By now we have proven Theorem 1 on the short time interval [0, ε−1]. The extension
to long time intervals [0, ε−N ] as stated in the theorem can be done as in [6, Sect. 4.5]:

On intervals [mε−1, (m + 1)ε−1] for integers m we consider the approximate so-
lution of the modulation system given by Proposition 3 with initial data u(·,mε−1).
On each of these intervals we have conservation of I〈l〉 up to εN+3 by Proposition 5
(by “conservation” we mean conservation in the sense of this lemma and Theorem 1).
The difference of I〈l〉 at the interfaces of these intervals is estimated by εN+3 using
the second estimate of Lemma 3 and Propositions 3 and 4. Hence, I〈l〉 is conserved
up to ε4 on an interval of length ε−N which consists of ε−N+1 intervals of length
ε−1. By Proposition 6 this implies the conservation of the actions Il on this interval

up to ε
7
2 . This lemma also guarantees that the initial data u(·,mε−1) remains of size ε

on the considered short intervals for ε small enough since ‖u‖2
s = ∑

l |ωl |s2Il(u, ū).
This concludes the proof of Theorem 1.

5 Near-Conservation of Actions, Energy, and Momentum
for the Semi-Discretized Nonlinear Schrödinger Equation

We now consider a spectral semi-discretization in space of the nonlinear Schrödinger
equation (1) and study the actions (2) along solutions of the semi-discretized equa-
tion. Similar results could be obtained for a semi-discretization in space with finite
differences.
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5.1 Spectral Semi-Discretization in Space

The semi-discretization in space is done by a spectral collocation method. As an
ansatz for the solution u of the nonlinear Schrödinger equation (1) we choose the
trigonometric polynomial

uM(x, t) =
∑

j∈M
qj (t)e

i(j ·x),

where M = {−M, . . . ,M −1}d . We require this ansatz to fulfill (1) in the collocation
points

xk = π

M
k, k ∈ M.

With uM(xk, t)k∈M = F2M(qj (t))j∈M, where F2M denotes the d-dimensional dis-
crete Fourier transform, we arrive at the system of ordinary differential equations

i
duM

dt
(xk, t)k∈M = F2M�F−1

2MuM(xk, t)k∈M + (∣∣uM(xk, t)
∣
∣2

uM(xk, t)
)
k∈M, (24)

where � = diag((ωl)l∈M) is the diagonal matrix with the frequencies ωl , l ∈ M,
on its diagonal. The initial value is uM(xk,0)k∈M = u(xk,0)k∈M. We note that the
semi-discretized system (24) is a finite dimensional complex Hamiltonian system
with Hamiltonian HM(uM(xk, t)k∈M, uM(xk, t)k∈M) = HM(uM,uM),

HM

(
uM,uM

) = 1

2
uM(xk, t)

T

k∈MF2M�F−1
2MuM(xk, t)k∈M + 1

4

∑

k∈M

∣∣uM(xk)
∣∣4

= 1

2(2π)d

∫

[−π,π]d

(∣∣∇uM
∣∣2 + (

V ∗ uM
)
uM + 1

2
Q

(∣∣uM
∣∣4)

)
dx.

(25)
Here, we use the notation Q(v) for the trigonometric interpolation of a periodic func-
tion v = ∑

j∈Zd vj ei(j ·x) in the collocation points, i.e.,

Q(v) =
∑

j∈M

(∑

l∈Zd

vj+2Ml

)
ei(j ·x).

The semi-discretized equation (24) can be rewritten as

i
duM

dt
= −�uM + V ∗ uM + Q

(∣∣uM
∣∣2

uM
)

(26)

with initial value

uM(·,0) = Q
(
u(·,0)

)
.
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5.2 Statement of the Result

The nonlinear Schrödinger equation (1) is an infinite dimensional complex Hamil-
tonian system with Hamiltonian or total energy

H(u, ū) = 1

2(2π)d

∫

[−π,π]d

(
|∇u|2 + (V ∗ u)ū + 1

2
|u|4

)
dx. (27)

Along solutions of (1) this Hamiltonian as well as the momentum

K(u, ū) = i
1

(2π)d

∫

[−π,π]d
(u∇ū − ū∇u)dx (28)

are exactly conserved. However, they are not exact invariants of the semi-discretized
system (24). We now formulate our main result for this semi-discretized system
which states that energy, momentum, and all actions (2) are approximately conserved
along solutions of the semi-discretized system over long times.

We use notation similar to that of Sect. 2, (4), but now k = (kl)l∈M and ω =
(ωl)l∈M are finite sequences and

j (k) =
∑

l∈M
kll mod 2M ∈ M.

Here, mod2M denotes the reduction modulo 2M of each component, where the rep-
resentative is chosen in M. The set of near-resonant indices now consists of pairs
(j (k),k) with a finite sequence k = (kl)l∈M of integers,

Rε,M = {
(j,k) : j = j (k),k �= 〈j 〉, |k · ω − ωj | < ε

1
2 ,‖k‖ ≤ 2N + 2

}
,

and the nonresonance condition reads

sup
(j,k)∈Rε,M

|ωj |s− d+1
2

|ω(s− d+1
2 )|k||

ε‖k‖+1 ≤ C0ε
2N+4 (29)

for a constant C0 (independent of ε) and a given natural number N . Note that Propo-
sition 2 is also true for the nonresonance condition (29), with the same proof. In
particular, the semi-discretization in space does not introduce numerical resonances.

The following theorem corresponds to Theorem 1.

Theorem 2 For given N and s ≥ d + 1 there exists ε0 > 0 such that the following
holds: Under the conditions of small initial data ‖uM(·,0)‖s ≤ ε ≤ ε0 and of nonres-
onance (29), the estimates

∑

l∈M
|ωl |s |Il(u

M(·, t), uM(·, t)) − Il(u
M(·,0), uM(·,0))|

ε2
≤ Cε

3
2 for 0 ≤ t ≤ ε−N ,

|H(uM(·, t), uM(·, t)) − H(uM(·,0), uM(·,0))|
ε2

≤ Cε2M−s for 0 ≤ t ≤ ε−N ,



162 Found Comput Math (2010) 10: 141–169

d∑

r=1

|Kr(u
M(·, t), uM(·, t)) − Kr(u

M(·,0), uM(·,0))|
ε2

≤ C min
(
ε

3
2 , tε2M−(s− d+1

2 )
)

for 0 ≤ t ≤ ε−N

hold for solutions uM(x, t) of (26) with a constant C which depends on C0, d , N , s,
and V but is independent of ε, M , and t .

The proof of this theorem is given in the following section.

6 Modulated Fourier Expansions for the Semi-Discretized Equation

The proof of the near-conservation of actions in Theorem 2 is a modification of the
proof of Theorem 1 given in Sects. 3 and 4. We mainly state the differences.

6.1 The Modulation System and Its Approximate Solution

The ansatz for uM is chosen again as a modulated Fourier expansion

ũ(x, t) =
∑

‖k‖≤K

zk
j (k)(εt)e

i(j (k)·x)e−i(k·ω)t =
∑

‖k‖≤K

zk(x, εt)e−i(k·ω)t (30)

with zk(x, εt) = zk
j (k)

(εt)ei(j (k)·x) and K = 2N + 2. Now and in the following, k =
(kl)l∈M is a finite sequence of integers kl with ‖k‖ ≤ K . For the derivation of the
modulation system we proceed similarly as in Sect. 3. We insert (30) in (26) and note
that for k = k1 + k2 − k3 we have

Fj

(
Q

(
zk1

zk2
zk3)) =

{
zk1

j (k1)
zk2

j (k2)
zk3

j (k3)
, j = j (k),

0, else

since j (k) ≡ j (k1) + j (k2) − j (k3) (mod 2M) and j (k) ∈ M. Comparing the coef-
ficients of ei(j (k)·x)e−i(k·ω)t gives

iεżk
j (k) + (k · ω)zk

j (k) = ωj(k)z
k
j (k) +

∑

k1+k2−k3=k

Fj (k)

(
Q

(
zk1

zk2
zk3))

. (31a)

The only difference in comparison with the continuous modulation system (7a) is the
presence of Q. For the initial condition we obtain

∑

k

zk
j (0) = uM

j (0). (31b)

For this modulation system we have an approximate solution z as in Proposition 3
with the same estimates and constants independent of ε, M , and 0 ≤ t ≤ ε−1 (and u

replaced by uM and j ∈ Z
d replaced by j ∈ M). To see this, we only have to ensure

that the presence of Q in (31a) does not affect the estimates of the nonlinearity. This
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is done by the first inequality of the following lemma, which is similar to [10, Lemma
4.2] (but here in arbitrary spatial dimension).

Lemma 4 For s > d
2 and s′ ≥ 0 we have

∥∥∥∥
∑

k

{
Q

(
ck)}

∥∥∥∥
s

≤ C

∥∥∥∥
∑

k

{
ck}

∥∥∥∥
s

and
∥∥Q(v) − v

∥∥
s′ ≤ CM−(s−s′)‖v‖s

with a constant C which depends on d , s, and V but not on ε and M .

Proof Recall from Lemma 1 that
∑

k∈Zd
1

|ωk |s converges for s > d
2 . This implies that

M2s
∑

0�=l∈Zd

1

|ωj+2Ml |s ≤ C (32)

for a constant C which depends on d , s, and V but not on ε, j , and M .
We have

∥∥
∥∥
∑

k

{
Q

(
ck)}

∥∥
∥∥

2

s

≤
∑

j∈M
|ωj |s

(∑

l∈Zd

∑

k

∣
∣ck

j+2Ml

∣
∣
)2

=
∥∥
∥∥
∑

k

Q
({

ck})
∥∥
∥∥

2

s

.

As in the proof of [10, Lemma 4.2] we have with the Cauchy–Schwarz inequality

‖Qv‖2
s ≤

∑

j∈M

(∑

l∈Zd

|ωj |s
|ωj+2Ml |s

) ∑

l∈Zd

|ωj+2Ml |s |vj+2Ml |2.

The term
∑

l∈Zd
|ωj |s

|ωj+2Ml |s can be estimated independently of j with (32), concluding
the proof of the first estimate of the lemma.

As in the proof of [10, Lemma 4.2] we further have

∥∥Q(v) − v
∥∥2

s′ ≤
∑

j �∈M
|ωj |−(s−s′)|ωj |s |vj |2

+
∑

j∈M

( ∑

0�=l∈Zd

|ωj |s′

|ωj+2Ml |s
)( ∑

0�=l∈Zd

|ωj+2Ml |s |vj+2Ml |2
)

.

With (32) this can be estimated by CM−2(s−s′)‖v‖2. �

6.2 Near-Conservation of Actions

Let

U(z) =
∑

k1+k2−k3−k4=0

1

(2π)d

∫

Td

Q
(
zk1

zk2
zk3

zk4)dx.
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Using 1
(2π)d

∫
Td Q(v̄)dx = 1

(2π)d

∫
Td Q(v)dx and Q(vw) = Q(Q(v)Q(w)) we get

for finite real sequences μ = (μl)l∈M

0 = d

dθ

∣∣∣∣
θ=0

U
((

ei(k·μ)θ zk)
k

)

=
∑

k

1

(2π)d

∫

Td

2i(k · μ)Q
(

zk
∑

k2−k3−k4=−k

zk2
zk3

zk4

)
dx

+
∑

k

1

(2π)d

∫

Td

2(−i)(k · μ)Q
(

zk
∑

k1+k2−k3=k

zk1
zk2

zk3

)
dx

= −4 Re
(∑

k

i(k · μ)
∑

j∈M
zk
j Fj

(
Q

( ∑

k1+k2−k3=k

zk1
zk2

zk3

)))
,

and with (31a) and 2 Re(zk
j εżk

j ) = d
dt

|zk
j |2 we obtain

0 = 2
d

dt

∑

k

(k · μ)
∣∣zk

j (k)

∣∣2 + 4 Re

(∑

k

i(k · μ)zk
j (k)

dk
j (k)

)
.

Hence,

Iμ

(
z(·, εt)) = 1

2

∑

k

(k · μ)
∣
∣zk

j (k)(εt)
∣
∣2

is an almost-invariant of the modulation system (31a).
For the estimation of

∑
l∈M|ωl |s | d

dt
I〈l〉(·, εt)| we need Lemma 3 for the semi-

discrete setting. In the proof of this lemma we concluded |j (k)| > 1
2 |L| from

|∑l∈Zd kl l| > 1
2 |L|. However, this conclusion is no longer true (recall j (k) =∑

l∈Zd kl l mod 2M). We therefore adapt this part of the proof of Lemma 3.

Adapted proof of Lemma 3 We need to (re)bound

sup
(j,k)∈Sε,M

∑
l∈M|kl ||ωl |s

|ω(s− d+1
2 )|k|||ωj | d+1

2

,

where Sε,M = {(j,k) : j �= j (k),k �= 〈j 〉, (j,k) �∈ Rε,M,‖k‖ ≤ K}. For this purpose
let again (j,k) = (j (k),k) ∈ Sε,M . Let |·|max be the maximum norm on R

d which is
equivalent to the Euclidean norm |·|,

|l|2 ≤ d|l|2max ≤ d|l|2. (33)

Using this and the asymptotics of the frequencies we have
∑

l∈M|kl ||ωl |s ≤ C|ωL|s
if L ∈ M is the index of largest norm |·|max with kL �= 0. The constant C depends
only on d , K , s, and V .

For |kL| > 1 or kl �= 0 for l �= L with |l|max > 1
2K

|L|max we have using s ≥ d + 1

and (33) |ω(s− d+1
2 )|k|| ≥ C|ωL|s− d+1

2 |ωL| d+1
2 for a constant which depends on d , K ,
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s, and V . For the other k we have

3

2
|L|max > |L|max + K − 1

2K
|L|max ≥

∣∣∣∣kLL +
∑

|l|≤ 1
2K

|L|
kll

∣∣∣∣
max

=
∣∣∣∣
∑

l∈Zd

kl l

∣∣∣∣
max

>
1

2
|L|max.

From this we can conclude that |j (k)|max ≥ 1
2 |L|max. Hence, we get with (33)

|ω(s− d+1
2 )|k|||ωj | d+1

2 ≥ C|ωL|s− d+1
2 |ωL| d+1

2 with a constant which depends on d , s,
and V . �

So, Lemma 3 is true in the semi-discretized situation with constants independent
of M . Now, the approximate conservation of actions along solutions of the semi-
discretized equation can be shown as in Sect. 4.

6.3 Near-Conservation of Energy

The conservation of actions as stated in Theorem 2 implies

∣∣∥∥uM(·, t)∥∥2 − ∥∥uM(·,0)
∥∥2∣∣ ≤ Cε

7
2 ,

and hence,
∥∥uM(·, t)∥∥

s
≤ 2ε (34)

for times 0 ≤ t ≤ ε−N provided that ε is sufficiently small. This spatial regularity
and the Hamiltonian structure of the semi-discrete system are the main tools to prove
the long-time near-conservation of energy and momentum with the arguments of [10,
Sect. 6].

We have from (25) and (27)

H
(
uM(·, t), uM(·, t)) − HM

(
uM(·, t), uM(·, t))

= 1

4(2π)d

∫

[−π,π]d
(∣∣uM(·, t)∣∣4 − Q

(∣∣uM(·, t)∣∣4))dx.

As in [10, Sect. 6.2] the right-hand side can be bounded using Lemma 4 with s′ = 0
by

CM−s
∥∥∣∣uM(·, t)∣∣4∥∥

s
≤ CM−sε4

for 0 ≤ t ≤ ε−N by (34). This implies the long-time near-conservation of energy as
stated in Theorem 2 since the Hamiltonian HM is exactly conserved along solutions
uM of (24).
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6.4 Near-Conservation of Momentum

Let v(x, t) be the exact solution of (1) with initial value v(·,0) = uM(·,0). Along
this solution the momentum (28), whose r th component is

Kr(u, ū) = i
1

(2π)d

∫

[−π,π]d

(
u

dū

dxr

− ū
du

dxr

)
dx = 2

∑

j∈Zd

jr |uj |2,

is exactly conserved. With the arguments from Sect. 3.8 we get ‖v(·, t)‖s ≤ Cε for
0 ≤ t ≤ ε−1. For the difference v − uM we have

i
(
vj − uM

j

)
t
= ωj

(
vj − uM

j

) + Fj

(
Q

(|v|2v − ∣∣uM
∣∣2

uM
))

+ Fj

(|v|2v − Q
(|v|2v))

. (35)

With the second inequality of Lemma 4 with s′ = d+1
2 and Lemma 1 the last term is

bounded by ‖|v|2v − Q(|v|2v)‖ d+1
2

≤ CM−(s− d+1
2 )ε3. The arguments from Sect. 3.8

applied to (35) yield

∥∥v(·, t) − uM(·, t)∥∥ d+1
2

≤ Ctε3M−(s− d+1
2 )

for 0 ≤ t ≤ ε−1. This implies, using in addition Proposition 3,

∣∣Kr

(
uM(·, t), uM(·, t)) − Kr

(
v(·, t), v̄(·, t))∣∣ ≤ Ctε4M−(s− d+1

2 )

for 0 ≤ t ≤ ε−1. The extension to long time intervals can be done as in [10, Sect. 6.1],
which yields

∣∣Kr

(
uM(·, t), uM(·, t)) − Kr

(
uM(·,0), uM(·,0)

)∣∣ ≤ Ctε4M−(s− d+1
2 )

for 0 ≤ t ≤ ε−N . On the other hand we have, using the conservation of actions,

∣∣Kr

(
uM(·, t), uM(·, t)) − Kr

(
uM(·,0), uM(·,0)

)∣∣

≤ 2
∑

j∈M
|jr |

∣∣Ij

(
uM(·, t), uM(·, t)) − Ij

(
uM(·,0), uM(·,0)

)∣∣ ≤ Cε
7
2

for 0 ≤ t ≤ ε−N and r = 1, . . . , d since |jr | ≤ C|ωj |s . This concludes the proof of
Theorem 2.

7 Conclusion and Comparison

In this paper the long-time near-conservation of actions has been shown for the non-
linear Schrödinger equation (1) and its spectral semi-discretization (24) in the weakly
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nonlinear setting of small initial data, over time scales far beyond a linear perturba-
tion analysis. The implied spatial regularity allowed us to show the long-time near-
conservation of energy and momentum for the semi-discretized system. These re-
sults must be compared with [6, Theorem 1] and [10, Theorems 3.1, 3.2, 3.3], where
the corresponding quantities of semilinear wave equations and their spectral semi-
discretizations are studied.

The method of proof presented in this paper is the same as in [6] and [10]: A mod-
ulated Fourier expansion of the solution of (1) or its semi-discretization (24) is estab-
lished, and the coefficients of this expansion are determined up to a small defect on
a time interval of length ε−1 (Sects. 3 and 6.1). The system determining these coef-
ficients has invariants which are conserved up to εN+3 on a time interval of length
ε−1 and which are close to the actions (Sects. 4 and 6.2). The result for the long time
interval of length ε−N is obtained by patching together the short time intervals.

However, there are some remarkable differences between the semilinear wave
equation and the nonlinear Schrödinger equation, which we collect in the following.

A major difference lies in the validity for arbitrary spatial dimension of Theorems
1 and 2 for the nonlinear Schrödinger equation (so far, the results for semilinear
wave equations have only been established for the one dimensional problem). This
is due to the fact that the frequencies of the Schrödinger equation have a milder
behavior than those of the wave equation in arbitrary dimension, cf. [3] where a
theorem similar to Theorem 1 is shown by transforming (1) to a normal form. To
make use of this fact in the context of modulated Fourier expansions, it is essential to
observe that it suffices to consider modulation functions consisting of a single wave,
cf. Proposition 2. In fact, this property ensures that terms of the modulated Fourier
expansion evolving in time with similar frequencies, for instance ωm and ωl with
m �= l but |m|2 = |l|2, consist of different Fourier modes j (〈m〉) = m �= l = j (〈l〉)
and hence can be distinguished. This is used in the proof of Proposition 2.

Another difference in the statements of the results is that the actions divided by

ε2 are conserved up to ε
3
2 for the nonlinear Schrödinger equation (instead of ε for

the semilinear wave equation). This is explained by the cubic (instead of quadratic)
nonlinearity in (1). For this reason, one could even expect a conservation up to ε2,
but it is not clear how to achieve ε2. Note however that in the near-conservation of
energy and momentum divided by ε2 along solutions of the semi-discretized equation
we get a factor ε2 as expected, since these proofs only rely on the spatial regularity

established by the conservation of actions. In [6], the enhancement from ε
1
2 to ε in

the conservation of actions is derived by bounding the denominator |ω2
j − (k · ω)2|

from below independently of ε for (among others) k = ±〈k〉 ± 〈l〉 and j = k + l,
cf. (30) and the proof of Theorem 4 in [6]. Here, we should accomplish this for
k = ±〈k〉 ± 〈l〉 ± 〈m〉 due to the cubic nonlinearity, but this is not true. However, the

conservation of the actions in Theorems 1 and 2 can be enhanced to ε2− 1
m for any

integer m ≥ 2 with a new definition of the set of near-resonant indices

R̃ε = {
(j,k) : j = j (k),k �= 〈j 〉, |k · ω − ωj | < ε

1
m ,‖k‖ ≤ 2N + 2

}
.

Then we get βn ≤ Cε1− 1
m instead of βn ≤ Cε

1
2 in Sect. 3.6, and this yields ε4− 1

m

instead of ε
7
2 in Proposition 6.
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Due to the cubic nonlinearity a linear perturbation analysis allows estimates over
times ε2. This suggests that we consider the time scale τ = ε2t instead of τ = εt for
the coefficients zk

j of the modulated Fourier expansion. However, this time scale leads
to difficulties in the estimations of the defect in Sect. 3.7 since a result corresponding
to [6, (22)] is not true for the cubic nonlinearity. The usage of the time scale εt in
combination with the cubic nonlinearity even simplifies the estimation of the defect
in the modulation functions in comparison with [6, Sect. 3.11]: Yet another rescaling
of the variables as in the estimation of the defect in [6] is no longer necessary.

The technical differences arising in the analysis of the modulation functions are
mainly caused by a different structure of the wave and the Schrödinger equation.
While the wave equation is a second order partial differential equation with asymp-
totically linear frequencies, the Schrödinger equation is of first order with asymp-
totically quadratic frequencies. This leads to different linear parts in the modulation
systems. For the nonlinear Schrödinger equation, this linear part is (k ·ω−ωj(k))z

k
j (k)

(7a), whereas it reads

(
(k · ω)2 − ω2

j

)
zk
j = (|k · ω| + ωj

)(|k · ω| − ωj

)
zk
j

for the semilinear wave equation (equation (15) in [6]). Hence, in the case of the wave
equation (|k · ω| + ωj )b

k
j can be estimated and not only bk

j as for the Schrödinger
equation.

The first consequence is that in the proof of Lemma 3 we no longer have the factor
|k ·ω|+1 in the denominator of (23), but the absence of this term can be compensated
by our knowledge that the modulation functions consist of single waves.

The second more fundamental consequence is that we need to use a different
norm for the analysis of the modulation functions. Our mixture between the l2- and
l1-frameworks described by (8) replaces the l2-framework of [6], where the norm

(∑

j

ω2s
j

∑

k

∣∣zk
j

∣∣2
) 1

2

is used instead. With this norm from [6] another rescaling of the variables is needed
for the estimation of the nonlinearity; namely ck = ω|k|ε−[[k]]zk with a slightly dif-
ferent definition of [[k]] due to the quadratic nonlinearity, cf. [6, Sect. 3.5] (recall
that we scaled the variables by introducing ck = ε−[[k]]zk). This rescaling introduces
a factor (ωj − k · ω) before bk

j in the modulation system for the initial values in [6]
(to be more precise, it is responsible for the ωj in this factor), cf. [6, Sect. 3.6]. This
is no problem since (|k · ω| + ωj )b

k
j can be estimated. In the case of the nonlinear

Schrödinger equation a factor ωj would appear before bk
j in the formula (10) for

a
〈j〉
j (0), which we cannot handle by this argument. For this reason we choose the

norm (8). A further advantage of this norm is that it simplifies many estimations in
the analysis of the modulation functions.
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