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Abstract Motivated by questions arising in signal processing, computational com-
plexity, and other areas, we study the ranks and border ranks of symmetric tensors
using geometric methods. We provide improved lower bounds for the rank of a sym-
metric tensor (i.e., a homogeneous polynomial) obtained by considering the singu-
larities of the hypersurface defined by the polynomial. We obtain normal forms for
polynomials of border rank up to five, and compute or bound the ranks of several
classes of polynomials, including monomials, the determinant, and the permanent.

Keywords Symmetric tensor rank · Border rank · Secant varieties

Mathematics Subject Classification (2000) 15A21 · 15A69 · 14N15

1 Introduction

Let Sd
C

n denote the space of complex homogeneous polynomials of degree d in n

variables. The rank (or Waring rank) R(φ) of a polynomial φ ∈ Sd
C

n is the smallest
number r such that φ is expressible as a sum of r d-th powers, φ = xd

1 + · · · + xd
r
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with xj ∈ C
n. The border rank R(φ) of φ, is the smallest r such that φ is in the

Zariski closure of the set of polynomials of rank r in Sd
C

n, so in particular R(φ) ≥
R(φ). Although our perspective is geometric, we delay the introduction of geometric
language in order to first state our results in a manner more accessible to engineers
and complexity theorists.

Border ranks of polynomials have been studied extensively, dating at least back
to Terracini, although many questions important for applications to engineering and
algebraic complexity theory are still open. For example, in applications, one would
like to be able to explicitly compute the ranks and border ranks of polynomials. In
the case of border rank, this could be done if one had equations for the variety of
polynomials of border rank r . Some equations have been known for nearly a hundred
years: Given a polynomial φ ∈ Sd

C
n, we may polarize it and consider it as a multi-

linear form φ̃, where φ(x) = φ̃(x, . . . , x). We can then feed φ̃ s vectors, to consider
it as a linear map φs,d−s : Ss

C
n∗ → Sd−s

C
n, where φs,d−s(x1 · · ·xs)(y1 · · ·yd−s) =

φ̃(x1, . . . , xs, y1, . . . , yd−s). Then for all 1 ≤ s ≤ d ,

R(φ) ≥ rankφs,d−s . (1)

This follows immediately from, for example, the inverse systems of Macaulay [15].
See Remark 6.5 for a proof. These equations are sometimes called minors of Catalec-
ticant matrices or minors of symmetric flattenings.

One important class of polynomials in applications are the monomials. We apply
the above equations, combined with techniques from differential geometry, to prove:

Theorem 1.1 Let a0, . . . , am be non-negative integers satisfying a0 ≥ a1 + · · · + am.
Then

R
(
x

a0
0 x

a1
1 · · ·xam

m

) =
m∏

i=1

(1 + ai).

For other monomials we give upper and lower bounds on the border rank: see
Theorem 11.2.

We also use differential–geometric methods to determine normal forms for poly-
nomials of border rank at most five and estimate their ranks: see Theorems 10.2, 10.4,
10.5. For example:

Theorem 1.2 The polynomials of border rank three have the following normal forms:

normal form R

xd + yd + zd 3
xd−1y + zd d ≤ R ≤ d + 1

xd−2y2 + xd−1z d ≤ R ≤ 2d − 1

Here one must account for the additional cases where x, y, z are linearly depen-
dent, but in these cases one can normalize, e.g., z = x + y. More information is given
in Theorem 10.2.



Found Comput Math (2010) 10: 339–366 341

To obtain new bounds on rank, we use algebraic geometry, more specifically the
singularities of the hypersurface determined by a polynomial φ. Let Zeros(φ) =
{[x] ∈ PCn∗ | φ(x) = 0} ⊂ PCn∗ denote the zero set of φ. Let x1, . . . , xn be linear
coordinates on C

n∗ and define

Σs(φ) :=
{
[x] ∈ Zeros(φ)

∣∣∣∣
∂Iφ

∂xI
(x) = 0,∀|I | ≤ s

}

so Σ0(φ) = Zeros(φ) and Σ1(φ) is the set of singular points of Zeros(φ).
While the following result is quite modest, we remark that it is the first new general

lower bound on rank that we are aware of in about 100 years (since the bound (1)):

Theorem 1.3 Let φ ∈ Sd
C

n with 〈φ〉 = C
n. Let 1 ≤ s ≤ d . Use the convention that

dim∅ = −1. Then,

R(φ) ≥ rankφs,d−s + dimΣs(φ) + 1.

The right-hand side of the inequality is typically maximized at s = �d/2
, see
Sect. 3.1.

For example, applying Theorem 1.3 to the determinant and permanent polynomi-
als (see Sect. 9) yields

Corollary 1.4

R(detn) ≥
(

n

�n/2

)2

+ n2 − (�n/2
 + 1
)2

,

R(permn) ≥
(

n

�n/2

)2

+ n
(
n − �n/2
 − 1

)
.

Gurvits [8] had previously observed R(detn) ≥ (
n

�n/2

)2 and R(permn) ≥ (

n
�n/2


)2

by using (1).
We expect that further study of singularities will produce significantly stronger

general lower bounds for rank, including bounds that involve the degree as well as
the number of variables.

As a consequence of our study of rank in a more general geometric context, we
prove

Corollary 1.5 Given φ ∈ Sd
C

n, R(φ) ≤ (
n+d−1

d

) − n + 1,

which is a corollary of Proposition 5.1. (The bound R(φ) ≤ (
n+d−1

d

)
is trivial, as we

explain in Sect. 5.)

Remark 1.6 Schinzel studies similar questions for polynomials over arbitrary fields
in [20, 21]. Since he is concerned with not-necessarily homogeneous polynomials,
the nature of the results are slightly different than the results here. The set of repre-
sentations of a polynomial as a sum of powers is studied geometrically in [16] and
[18].
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1.1 Overview

We begin in Sect. 2 by phrasing the problems in geometric language. We then review
standard facts about rank and border rank in Sect. 3. In Sect. 4 we give an exposi-
tion of a theorem of Comas and Seiguer [4], which completely describes the possible
ranks of homogeneous polynomials in two variables. We then discuss ranks for arbi-
trary varieties and prove Proposition 5.1, which gives an upper bound for rank valid
for an arbitrary variety in Sect. 5. Applying Proposition 5.1 to polynomials yields
Corollary 1.5 above. In Sect. 6 we prove Theorem 1.3. We then study some specific
cubic polynomials in an arbitrary number of variables in Sect. 7. In Sect. 8 we give
a presentation of the possible ranks, border ranks and normal forms of degree three
polynomials in three variables that slightly refines the presentation in [5]. This is fol-
lowed by a brief discussion of bounds on rank and border rank for determinants and
permanents in Sect. 9. In Sect. 10 we return to a general study of limiting secant
planes and use this to classify polynomials of border ranks up to five. We conclude
with a study of the ranks and border ranks of monomials in Sect. 11.

2 Geometric Definitions

Definitions of rank and border rank in a more general context are as follows: Let
V = C

n denote a complex vector space and let PV denote the associated projective
space. For a subset Z ⊂ PV , we let 〈Z〉 ⊆ V denote its linear span. For a variety
X ⊂ PV , define

σ 0
r (X) =

{ ⋃

x1,...,xr∈X

P〈x1, . . . , xr 〉
}

⊂ PV,

(2)

σr(X) =
{ ⋃

x1,...,xr∈X

P〈x1, . . . , xr 〉
}

⊂ PV,

where the overline denotes the Zariski closure. These are respectively the points that
lie on some secant P

r−1 to X and the Zariski closure of the set of such points, called
the variety of secant Pr−1’s to X. For p ∈ PV , define the X-rank of p, RX(p) :=
{min r | p ∈ σ 0

r (X)} and the X-border rank of p, RX(p) := {min r | p ∈ σr(X)}. In
geometry, it is more natural to study border rank than rank, because by definition the
set of points of border rank at most r is an algebraic variety. Let SdW denote the space
of homogeneous polynomials of degree d on W ∗ and let vd(PW) ⊂ P(SdW) denote
the Veronese variety, the (projectivization of the) set of d-th powers. Then, comparing
with the definitions of Sect. 1, R(φ) = Rvd(PW)([φ]) and R(φ) = Rvd(PW)([φ]). Ad-
vantages of the more general definitions include that it is often easier to prove state-
ments in the context of an arbitrary variety, and that one can simultaneously study
the ranks of polynomials and tensors (as well as other related objects). We also let
τ(X) ⊂ PV denote the variety of embedded tangent P

1’s to X, called the tangential
variety of X, and note that τ(X) ⊆ σ2(X).



Found Comput Math (2010) 10: 339–366 343

At first glance, the set of polynomials (respectively points in PV ) of a given rank
(respectively X-rank) appears to lack interesting geometric structure — it can have
components of varying dimensions and fail to be a closed projective variety. One
principle of this paper is that among polynomials of a given border rank, say r0, the
polynomials having rank greater than r0 can be distinguished by their singularities.
For a hypersurface X ⊂ PV and x ∈ X, define multx(X) to be the order of vanishing
of the defining equation for X at x.

Consider the following stratification of PSdW . Let

vd(PW ∗)k∨ := P
{
φ ∈ SdW | ∃[p] ∈ Zeros(φ), mult[p]

(
Zeros(φ)

) ≥ k + 1
}
.

Then

PSdW = vd(PW ∗)0
∨ ⊃ vd(PW ∗)∨ = vd(PW ∗)1

∨ ⊃ · · · ⊃ vd(PW ∗)d∨ = ∅.

Among polynomials of a given border rank, we expect the deeper they lie in this
stratification, the higher their rank will be. (The analogous stratification of PV ∗ can
be defined for arbitrary varieties X ⊂ PV . It begins with PV ∗ and the next stratum
is X∨.) A first step in this direction is Theorem 1.3. We expect the general study of
points whose X-rank is greater than their X-border rank will be closely related to
stratifications of dual varieties.

3 Review of Known Facts About Rank and Border Rank of Polynomials

3.1 The Alexander–Hirschowitz Theorem

The expected dimension of σr(X
n) ⊂ P

N is min{r(n + 1) − 1,N}, and if σr(X) fails
to have this expected dimension it is called degenerate. Alexander and Hirschowitz
[1], building on work of Terracini, showed that the varieties σr(vd(PW)) are all of the
expected dimensions with a short, well understood, list of exceptions, thus the rank
and border rank of a generic polynomial of degree d in n variables is known for all
d,n. (Note that it is essential to be working over an algebraically closed field to talk
about a generic polynomial.) See [2] for an excellent exposition of the Alexander–
Hirschowitz theorem.

3.2 Subspace Varieties

Given φ ∈ SdW , define the span of φ to be 〈φ〉 = {α ∈ W ∗ | α φ = 0}⊥ ⊂ W , where
α φ = ∂φ/∂α is the partial derivative of φ by α. Then dim〈φ〉 is the minimal number
of variables needed to express φ in some coordinate system and φ ∈ Sd〈φ〉. If 〈φ〉 �=
W then the vanishing set Zeros(φ) ⊂ PW ∗ is a cone over {[α] | α φ = 0}.

For φ ∈ SdW ,

Rvd(PW)(φ) = Rvd(P〈φ〉)(φ), (3)

Rvd(PW)(φ) = Rvd(P〈φ〉)(φ), (4)

see, e.g., [12] or [14, Proposition 3.1].
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Define the subspace variety

Subk = P
{
φ ∈ SdW | dim〈φ〉 ≤ k

}
.

Defining equations of Subk are given by the (k + 1) × (k + 1) minors of φ1,d−1 (see,
e.g., [23, Sect. 7.2]), so in particular

σk

(
vd(PW)

) ⊆ Subk, (5)

i.e., [φ] ∈ σr(vd(PW)) implies dim〈φ〉 ≤ r . We will often work by induction and
assume 〈φ〉 = W . In particular, we often restrict attention to σr(vd(PW)) for r ≥
dimW .

3.3 Specialization

If X ⊂ PV is a variety and we consider the image of the cone X̂ ⊂ V under
a projection πU : V → (V/U) where U ⊂ V is a subspace, then for p ∈ PV ,
RπU (X)(πU (p)) ≤ RX(p) and similarly for border rank. To see this, if p = q1 +· · ·+
qr , then πU(p) = πU(q1) + · · · + πU(qr) because πU is a linear map. In particular,
given a polynomial in n + m variables, φ(x1, . . . , xn, y1, . . . , ym), if we set the yi to
be linear combinations of the xj , then

Rvd(PCn)

(
φ
(
x, y(x)

)) ≤ Rvd(PCn+m)

(
φ(x, y)

)
. (6)

3.4 Symmetric Flattenings (Catalecticant Matrices)

For r < 1
n

(
n+d−1

n−1

)
, some equations for σr(vd(PW)) are known, but not enough to

generate the ideal in most cases. The main known equations come from symmetric
flattenings, also known as catalecticant matrices, as described in (1). Other equa-
tions are discussed in [17], and there is recent work describing general methods for
obtaining further equations, see [13]. Here are the symmetric flattenings:

For φ ∈ SdW , define the contracted maps

φs,d−s : SsW ∗ × Sd−sW ∗ → C. (7)

Then we may consider the left and right kernels Lkerφs,d−s ⊆ SsW ∗, Rkerφs,d−s ⊆
Sd−sW ∗. We will abuse notation and identify φs,d−s with the associated map
Sd−sW ∗ → SsW . We restrict attention to φs,d−s for 1 ≤ s ≤ �d/2
 to avoid redun-
dancies.

Remark 3.1 The sequence {rankφs,d−s : 1 ≤ s ≤ � d
2 
} may decrease, as observed by

Stanley [22, Example 4.3]. For instance, let

φ = x1x
3
11 + x2x

2
11x12 + x3x

2
11x13 + x4x11x

2
12 + x5x11x12x13

+ x6x11x
2
13 + x7x

3
12 + x8x

2
12x13 + x9x12x

2
13 + x10x

3
13.

Then rankφ1,3 = 13 but rankφ2,2 = 12. On the other hand, Stanley showed that if
dimW ≤ 3 and φ ∈ SdW , then rankφs,d−s is nondecreasing in 1 ≤ s ≤ � d

2 
 [22,
Theorem 4.2].
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Remark 3.2 When dimW = 2, for any value of s such that s, d − s ≥ r + 1, one
obtains a set of generators for I (σr(vd(PW)) by the r + 1 by r + 1 minors of the
s, d − s symmetric flattening. This was known by Sylvester; see also [10]. Also when
r = 2, taking s = 1 and s = 2 is enough to obtain generators of I (σ2(vd(PW))),
see [11]. The hypersurface σ3(v3(P

2)) is given by a degree four equation called the
Aronhold invariant, which does not arise as a symmetric flattening (see [17]). Very
few other cases are understood.

3.5 A Classical Lower Bound for Rank

The following is a symmetric analog of a result that is well known for tensors, e.g.,
[3, Proposition 14.45].

Proposition 3.3 R(φ) is at least the minimal number of elements of vs(PW) needed
to span (a space containing) P(φs,d−s(S

d−sW ∗)).

Proof If φ = ηd
1 + · · · + ηd

r , then φs,d−s(S
d−sW ∗) ⊆ 〈ηs

1, . . . , η
s
r 〉. �

3.6 Spaces of Polynomials Where the Possible Ranks and Border Ranks Are Known

The only cases are as follows. (i) S2Cn for all n. Here rank and border rank coincide
with the rank of the corresponding symmetric matrix, and there is a normal form for
elements of rank r , namely x2

1 + · · · + x2
r . (ii) Sd

C
2 where the possible ranks and

border ranks are known: see Theorem 4.1. However there are no normal forms in
general. (iii) S3

C
3 where the possible ranks and border ranks were determined in [5].

We also explicitly describe which normal forms have which ranks in Sect. 7. The
normal forms date back to [24].

4 The Theorem of Comas and Seiguer

Theorem 4.1 (Comas–Seiguer, [4]) Consider vd(P1) ⊂ Pd , and recall that
σ� d+1

2 
(vd(P1)) = P
d . Let r ≤ � d+1

2 
. Then

σr

(
vd

(
P

1)) = {[φ] : R(φ) ≤ r
} ∪ {[φ] : R(φ) ≥ d − r + 2

}
.

By Proposition 5.1, R(φ) ≤ d for all φ. Hence the above statement is equivalent
to the following:

σr

(
vd

(
P

1)) \ σr−1
(
vd

(
P

1)) = {[φ] : R(φ) = r
} ∪ {[φ] : R(φ) = d − r + 2

}
.

Throughout this section we write W = C
2.

Lemma 4.2 Let φ ∈ Sd(W). Let 1 ≤ r ≤ d − 1. Then R(φ) > r if and only if
P Lkerφr,d−r ⊂ vr(PW)∨.
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Recall that for any W , vr(PW)
∨

is the set of singular hypersurfaces of degree r in
PW ∗; for W = C

2 this is the set of polynomials on P
1 with a multiple root.

Proof First say R(φ) ≤ r and write φ = wd
1 + · · · + wd

r . Then Lkerφr,d−r contains
the polynomial with distinct roots w1, . . . ,wr . Conversely, say 0 �= P ∈ Lkerφr,d−r

has distinct roots w1, . . . ,wr . It will be sufficient to show φ ∧wd
1 ∧ · · · ∧wd

r = 0. We
show φ ∧wd

1 ∧ · · ·∧wd
r (p1, . . . , pr+1) = 0 for all p1, . . . , pr+1 ∈ SdW ∗ to finish the

proof. Rewrite this as

φ(p1)m1 −φ(p2)m2 +· · ·+(−1)rφ(pr+1)mr+1 = φ(m1p1 +· · ·+(−1)rmr+1pr+1),

where mj = wd
1 ∧ · · · ∧wd

r (p1, . . . , p̂j , . . . , pr+1) ∈ C (considering SdW as the dual
vector space to SdW ∗). Now for each j ,

wd
j

(
m1p1 + · · · + (−1)rmr+1pr+1

)

=
r+1∑

i=1

wd
j

(
(−1)i−1mipi

)

=
r+1∑

i=1

(−1)2(i−1)wd
j ∧ wd

1 ∧ · · · ∧ wd
r (p1, . . . , pr+1)

= 0.

Hence, now considering the pj as polynomials of degree d on W ,
(
m1p1 + · · · + (−1)rmr+1pr+1

)
(wi) = 0

for each i. But then (m1p1 + · · · + (−1)rmr+1pr+1) = PQ for some Q ∈ Sd−rW ∗
and φ(PQ) = 0 because P ∈ Lkerφr,d−r . �

As mentioned above, the generators of the ideal of σr(vd(P1)) can be obtained
from the (r + 1) × (r + 1) minors of φs,d−s . Thus (see [6] for more details):

Lemma 4.3 For φ ∈ Sd
C

2 and 1 ≤ r ≤ �d/2
 the following are equivalent.

(1) [φ] ∈ σr(vd(P1)),
(2) rankφs,d−s ≤ r for s = �d/2
,
(3) rankφr,d−r ≤ r ,
(4) Lkerφr,d−r �= {0}.

Lemma 4.4 Let r ≤ � d+1
2 
. If φ = ηd

1 +· · ·+ηd
k , k ≤ d − r +1, and P ∈ Lkerφr,d−r ,

then P(ηi) = 0 for each 1 ≤ i ≤ k.

Proof For 1 ≤ i ≤ k let Mi ∈ W ∗ annihilate ηi . In particular, Mi(ηj ) �= 0 if j �= i,
because the [ηj ] are distinct: ηj is not a multiple of ηi . Let L ∈ W ∗ not vanish at
any ηi . For each i, let

gi = PM1 · · · M̂i · · ·MkL
d−r+1−k,
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so deggi = d . Since P ∈ Lkerφr,d−r we get φ(gi) = 0. On the other hand, ηd
j (gi) = 0

for j �= i, so

ηd
i (gi) = 0 = P(ηi)M1(ηi) · · · M̂i(ηi) · · ·Mk(ηi)L(ηi)

d−r+1−k.

All the factors on the right are nonzero except possibly P(ηi). Thus P(ηi) = 0. �

Proof of Theorem 4.1 Suppose [φ] ∈ σr(vd(P1)) and R(φ) ≤ d − r + 1. Write
φ = ηd

1 + · · · + ηd
k for some k ≤ d − r + 1 and the [ηi] distinct. [φ] ∈ σr(vd(P1))

implies rankφr,d−r ≤ r , so dim Lkerφr,d−r ≥ 1. Therefore there is some nonzero
P ∈ Lkerφr,d−r . Every [ηi] is a zero of P , but degP = r so P has at most r roots.
So in fact k ≤ r . This shows the inclusion ⊆ in the statement of the theorem.

We must show {[φ] : R(φ) ≥ d − r + 2} ⊆ σr(vd(P1)). For r = 1, the first set is
empty, since each polynomial φ has rank at most d by Proposition 5.1. So suppose
r > 1, R(φ) ≥ d − r + 2, and [φ] /∈ σr−1(vd(P1)). Then codim Rkerφr−1,d−r+1 = r

by Lemma 4.3, and P Rkerφr−1,d−r+1 ⊂ vr(PW)∨ by Lemma 4.2 (applied to
Rkerφr−1,d−r+1 = Lkerφd−r+1,r−1). This means every polynomial P ∈
Rkerφr−1,d−r+1 has a singularity (multiple root in P

1). By Bertini’s theorem, there
is a basepoint of the linear system (a common divisor of all the polynomials in
Rkerφr−1,d−r+1). Let F be the greatest common divisor. Say degF = f . Let
M = {P/F | P ∈ Rkerφr−1,d−r+1}. Every P/F ∈ M has degree d − r + 1 − f .
So PM ⊂ PSd−r+1−f W ∗, which has dimension d − r + 1 − f . Also dim PM =
dim P Rkerφr−1,d−r+1 = d − 2r + 1. Therefore d − 2r + 1 ≤ d − r + 1 − f , so
f ≤ r .

Since the polynomials in M have no common roots, (Sr−f W ∗).M = Sd−2f +1W ∗
(see, e.g., [9], Lemma 9.8). Thus

Sr−1W ∗.Rkerφr−1,d−r+1 = Sf −1W ∗.Sr−f W ∗.M.F = Sd−f W ∗.F.

So if Q ∈ Sd−f W ∗, then FQ = GP for some G ∈ Sr−1W ∗ and P ∈ Rkerφr−1,d−r+1,
so φ(FQ) = φ(GP) = 0. Thus 0 �= F ∈ Lkerφf,d−f , so [φ] ∈ σf (vd(P1)). And fi-
nally σf (vd(P1)) ⊂ σr(vd(P1)), since f ≤ r . �

Corollary 4.5 If a, b > 0 then R(xayb) = max(a + 1, b + 1).

Proof Assume a ≤ b. The symmetric flattening (xayb)a,b has rank a + 1 (the image
is spanned by xay0, xa−1y1, . . . , x0ya); it follows that R(xayb) ≥ a + 1. Similarly,
(xayb)a+1,b−1 has rank a + 1 as well. Therefore R(xayb) = a + 1, so R(xayb) is
either b + 1 or a + 1.

Let {α,β} be a dual basis to {x, y}. If a < b then P Lker(xayb)a+1,b−1 =
{[αa+1]} ⊂ va+1(PW)∨. Therefore R(xayb) > a + 1. If a = b then R(xayb) =
a + 1 = b + 1. �

In particular, R(xn−1y) = n.
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5 Maximum Rank of Arbitrary Varieties

For any variety X ⊂ PV = P
N that is not contained in a hyperplane, a priori the

maximum X-rank of any point is N + 1 as we may take a basis of V consisting of
elements of X. This maximum occurs if, e.g., X is a collection of N + 1 points.

Proposition 5.1 Let X ⊂ P
N = PV be an irreducible variety of dimension n not

contained in a hyperplane. Then for all p ∈ PV , RX(p) ≤ N + 1 − n.

Proof If p ∈ X then RX(p) = 1 ≤ N + 1 − n. Henceforth we consider only p /∈ X.
Let Hp be the set of hyperplanes containing p.

We proceed by induction on the dimension of X. If dimX = 1, for a general M ∈
Hp , M intersects X transversely by Bertini’s theorem. We claim M is spanned by
M ∩ X. Otherwise, if M ′ is any other hyperplane containing M ∩ X, say M and M ′
are defined by linear forms L and L′, respectively. Then L′/L defines a meromorphic
function on X with no poles, since each zero of L is simple and is also a zero of L′.
So L′/L is actually a holomorphic function on X, and since X is projective, L′/L
must be constant. This shows M = M ′. Therefore M ∩ X indeed spans M .

As noted above, by taking a basis for M of points of M ∩ X, we get

RX(p) ≤ RM∩X(p) ≤ dimM + 1,

where dimM + 1 = N + 1 − n since n = 1 and dimM = N − 1.
For the inductive step, define Hp as above. For general M ∈ Hp , M ∩ X spans

M by the same argument, and is also irreducible if dimX = n > 1; see [7, p. 174].
Note that dimM ∩ X = n − 1 and dimM = N − 1. Thus by induction, RM∩X(p) ≤
(N −1)+1− (n−1) = N +1−n. Since M ∩X ⊂ X we have RX(p) ≤ RM∩X(p) ≤
N + 1 − n. �

In particular:

Corollary 5.2 Given φ ∈ Sd
C

n, R(φ) ≤ (
n+d−1

d

) − n + 1.

Corollary 5.3 Let C ⊂ P
N = PV be a smooth curve not contained in a hyperplane.

Then the maximum C-rank of any p ∈ PV is at most N .

We may refine the above discussion to ask, what is the maximum X-rank of a
point lying on a given secant variety of X, that is, with a bounded X-border rank?
For any X, essentially by definition, {x ∈ σ2(X) | RX(x) > 2} ⊆ τ(X)\X. The rank
of a point on τ(X) can already be the maximum, as well as being arbitrarily large.
Both these occur for X a rational normal curve of degree d (see Sect. 4) where the
rank of a point on τ(X) is the maximum d .

6 Proof and Variants of Theorem 1.3

For φ ∈ SdW and s ≥ 0, let

Σs(φ) = Σs := {[α] ∈ Zeros(φ) | mult[α](φ) ≥ s + 1
} ⊂ PW ∗.

This definition agrees with our coordinate definition in Sect. 1.
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Remark 6.1 Note that for φ ∈ SdW , Σd = ∅ and Σd−1 = P〈φ〉⊥. In particular, Σd−1
is empty if and only if 〈φ〉 = W .

Remark 6.2 The stratification mentioned in the introduction is identified as

vd(PW ∗)k∨ = P
{
φ | Σk−1(φ) �= ∅}

.

It is natural to refine this stratification by the geometry of Σk−1, for example by

vd(PW ∗)k,a
∨ := P

{
φ | dimΣk−1(φ) ≥ a

}
.

Proposition 6.3

vd−s(Σs) = P Rkerφs,d−s ∩ vd−s(PW ∗).

That is, [α] ∈ Σs if and only if [αd−s] ∈ P Rkerφs,d−s .

Proof For all α ∈ W ∗ and w1, . . . ,ws ∈ W ∗,

φ̃(w1, . . . ,ws,α, . . . , α) =
(

∂sφ

∂w1 · · · ∂ws

)
(α).

Now αd−s ∈ Rkerφs,d−s if and only if the left hand side vanishes for all w1, . . . ,ws ,
and mult[α]φ ≥ s + 1 if and only if the right hand side vanishes for all w1, . . . ,ws . �

Lemma 6.4 Let φ ∈ SdW . Suppose we have an expression φ = ηd
1 + · · · + ηd

r . Let
L := P{p ∈ Sd−sW ∗ | p(ηi) = 0,1 ≤ i ≤ r}. Then

(1) L ⊂ P Rkerφs,d−s .
(2) codimL ≤ r .
(3) If 〈φ〉 = W , then L ∩ vd−s(PW ∗) = ∅.

Proof For the first statement, for p ∈ Sd−sW ∗ and any q ∈ SsW ∗,

φs,d−s(q)(p) = q(η1)p(η1) + · · · + q(ηr)p(ηr).

If [p] ∈ L then each p(ηi) = 0, so φs,d−s(q)(p) = 0 for all q . Therefore p ∈
Rkerφs,d−s .

The second statement is well known. Since each point [ηi] imposes a single linear
condition on the coefficients of p, L is the common zero locus of a system of r linear
equations. Therefore codimL ≤ r .

If 〈φ〉 = W , then W = 〈φ〉 ⊆ 〈η1, . . . , ηr 〉 ⊆ W , so the ηi span W . Therefore the
points [ηi] in PW do not lie on any hyperplane. If L ∩ vd−s(PW ∗) �= ∅, say [αd−s] ∈
L, then the linear form α vanishes at each [ηi], so the [ηi] lie on the hyperplane
defined by α, a contradiction. �

Proof of Theorem 1.3 Suppose φ = ηd
1 + · · · + ηd

r . Consider the linear series L =
P{p ∈ Sd−sW ∗ | p(ηi) = 0,1 ≤ i ≤ r} as in Lemma 6.4. Then L is contained in
P Rkerφs,d−s so

r ≥ codimL ≥ codim P Rkerφs,d−s = rankφs,d−s .
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Remark 6.5 Note that taking r = R(φ) proves (1), a priori just dealing with rank, but
in fact also for border rank by the definition of Zariski closure.

Now since P Rkerφs,d−s is a projective space, if

dimL + dimΣs ≥ dim P Rkerφs,d−s

we would have L ∩ (vd−s(PW ∗) ∩ P Rkerφs,d−s) �= ∅. But by Lemma 6.4 this inter-
section is empty. Therefore

dimL + dimΣs < dim P Rkerφs,d−s .

Taking codimensions in PSd−sW ∗, we may rewrite this as

codimL − dimΣs > codim P Rkerφs,d−s = rankφs,d−s .

Taking r = R(φ) yields R(φ) ≥ codimL > rankφs,d−s + dimΣs . �

Remark 6.6 If φ ∈ SdW with 〈φ〉 = W and R(φ) = n = dimW , then the above theo-
rem implies Σ1 = ∅. Note that this is easy to see directly: Writing φ = ηd

1 + · · ·+ ηd
n ,

we must have 〈η1, . . . , ηn〉 = 〈φ〉 = W , so in fact the ηi are a basis for W . Then the
singular set of Zeros(φ) is the common zero locus of the derivatives ηd−1

i in PW ,
which is empty.

Remark 6.7 The assumption that 〈φ〉 = W is equivalent to Lkerφ1,d−1 = {0}, i.e.,
that Zeros(φ) is not a cone over a variety in a lower-dimension subspace. It would
be interesting to have a geometric characterization of the condition Lkerφk,d−k = {0}
for k > 1.

Corollary 6.8 Let n = dimW and φ ∈ Sd(W) with 〈φ〉 = W . If φ is reducible, then
R(φ) ≥ 2n − 2. If φ has a repeated factor, then R(φ) ≥ 2n − 1.

Proof We have rankφ1,d−1 = dimW = n. If φ = χψ factors, then Σ1(φ) includes
the intersection {χ = ψ = 0}, which has codimension 2 in PW ∼= P

n−1. Therefore
R(φ) ≥ n + n − 3 + 1 = 2n − 2.

If φ has a repeated factor, say φ is divisible by ψ2, then Σ1 includes the hypersur-
face {ψ = 0}, which has codimension 1. So R(φ) ≥ n + n − 2 + 1 = 2n − 1. �

In the following sections we apply Theorem 1.3 to several classes of polynomials.
Before proceeding we note the following extension.

Proposition 6.9 Let

Σh,s(φ) =
⋃

β1,...,βh∈W ∗\{0}
Σs

(
∂hφ/∂β1 · · · ∂βh

)
.

If Lkerφh+1,d−h−1 = {0} then for each s,

R(φ) ≥ rankφs,d−s + dimΣh,s + 1.
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Theorem 1.3 is the case h = 0.
Note that for 0 ≤ j ≤ k ≤ d , if Lkerφk,d−k = 0 then Lkerφj,d−j = 0. Also note

that Σs+1(φ) ⊆ Σs(∂φ/∂β) for every β �= 0.

Proof Let φ = ηd
1 + · · · + ηd

r and let L ⊂ PSd−s(W ∗) be the set of hypersurfaces
of degree d − s containing each [ηi]. As before, L is a linear subspace contained in
P Rkerφs,d−s . Suppose α,β1, . . . , βh ∈ W ∗ \ {0} are such that [αd−s−hβ1 · · ·βh] ∈ L.
Then αβ1 · · ·βh ∈ Lkerφh+1,d−h−1 = {0}, a contradiction. Thus L is disjoint from the
set of points of the form [αd−s−hβ1 · · ·βh].

Now, αd−s−hβ1 · · ·βh ∈ Rkerφs,d−s if and only if αd−s−h ∈ Rker(∂hφ/∂β1 · · ·
∂βh)s,d−s−h, and by Proposition 6.3 this is equivalent to [α] ∈ Σs(∂

hφ/∂β1 · · · ∂βh).
Therefore

{[
αd−s−hβ1 · · ·βh

] | ∀α,β1, . . . , βh ∈ W ∗ \ {0}} ∩ P Rkerφs,d−s
∼= Σh,s .

We saw above that L is disjoint from the left hand side. Counting dimensions in
P Rkerφs,d−s , we get

dimL + dimΣh,s < dim P Rkerφs,d−s .

Taking codimensions in PSd−sW ∗ yields the inequality

r ≥ dimL > codimP Rkerφs,d−s + dimΣh,s,

where rankφs,d−s = codim P Rkerφs,d−s . �

One step in the proof above generalizes slightly: With L as in the proof, if [D] ∈
PL and D factors as D = α

a1
1 · · ·αak

k , then α1 · · ·αk ∈ Lkerφk,d−k . This idea already
appeared in the proof of Theorem 1.3 in the case D = αs .

7 Ranks and Border Ranks of Some Cubic Polynomials

Proposition 7.1 Consider φ = x1y1z1 + · · · + xmymzm ∈ S3W , where W = C3m.
Then R(φ) = 4m = 4

3 dimW and R(φ) = 3m = dimW .

Proof We have 〈φ〉 = W , so rankφ1,2 = dimW = 3m, and Σ1 contains the set
{x1 = y1 = x2 = y2 = · · · = xm = ym = 0}. Thus Σ1 has dimension at least m − 1.
So R(φ) ≥ 4m by Theorem 1.3. On the other hand, each xiyizi has rank 4 by Theo-
rem 8.1, so R(φ) ≤ 4m.

Since R(xyz) = 3, we have R(φ) ≤ 3m. On the other hand, one simply computes
the matrix of φ1,2 and observes that it is a block matrix with rank at least 3m. There-
fore R(φ) = 3m. �

Proposition 7.2 Let C
m+1 with m > 1 have linear coordinates x, y1, . . . , ym. Then,

(1) R(x(y2
1 + · · · + y2

m)) = 2m.
(2) R(x(y2

1 + · · · + y2
m) + x3) = 2m.
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Proof Write φ = x(y2
1 + · · · + y2

m) ∈ S3W = S3
C

m+1. Then R(φ) ≥ 2m by Corol-
lary 6.8.

Let a1, . . . , am be nonzero complex numbers with
∑

ai = 0. Write

φ = xy2
1 + · · · + xy2

m

= (
xy2

1 − a1x
3) + · · · + (

xy2
m − amx3)

= x
(
y1 + a

1/2
1 x

)(
y1 − a

1/2
1 x

) + · · · + x
(
ym + a

1/2
m x

)(
ym − a

1/2
m x

)
.

Each x(yj − a
1/2
j x)(yj + a

1/2
j x) has rank 2 by Theorem 4.1. Thus φ is the sum of m

terms which each have rank 2, so R(φ) ≤ 2m.
The second statement follows by the same argument (with

∑
ai = −1). �

We have the bounds

m + 1 = rankφ1,2 ≤ R(φ) ≤ R(φ) = 2m.

It would be interesting to know the border rank of x(y2
1 + · · ·+ y2

m) and x(y2
1 + · · ·+

y2
m) + x3.

Remark 7.3 In particular, x(y2
1 +y2

2 +y2
3) has rank exactly 6, which is strictly greater

than the generic rank 5 of cubic forms in four variables. (See Proposition 6.3 of [6]
and the remark following it.)

More generally,

Proposition 7.4 Let φ = x2u + y2v + xyz ∈ S3W , dimW = 5. Then R(φ) = 5 and
8 ≤ R(φ) ≤ 9.

Proof The upper bound follows from the expression

φ = (
x + y + 21/3z

)3 − (
22/3x + z

)3 − (
22/3y + z

)3

− x2(−u − 3x + 3y − 3 · 21/3z
) − y2(−v + 3x − 3y − 3 · 21/3z

)
,

where the last two terms have the form a2b; recall that R(a2b) = 3.
To obtain the lower bound, note that the map φ1,2 is surjective, so codim Rkerφ1,2

= dimW = 5. In particular, R(φ) ≥ 5. The singular set Σ1 = {x = y = 0} ∼= P
2.

Therefore R(φ) ≥ 5 + 2 + 1 = 8.
The upper bound for border rank follows by techniques explained in Sect. 10.

Explicitly, define five curves in W as follows:

a(t) = x + t (u − z), b(t) = y + t (v − z), c(t) = (x + y) + tz,

d(t) = x + 2y, e(t) = x + 3y,

and for t �= 0 let P(t) ∈ PS3W be P(t) = [a(t)3 + · · · + e(t)3], so P(t) ∈
σ5(v3(PW)). Note that limt → 0 P(t) is well defined. A straightforward calculation
as in Sect. 10, Sect. 11 shows that (after scaling coordinates) [φ] = limt→0 P(t). �
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Table 1 Ranks and border ranks of plane cubic curves

Description Normal form R R P Rkerφ1,2 ∩ σ2(v2(PW∗))

triple line x3 1 1

three concurrent lines xy(x + y) 2 2

double line + line x2y 3 2

irreducible y2z − x3 − z3 3 3 triangle

irreducible y2z − x3 − xz2 4 4 smooth

cusp y2z − x3 4 3 double line + line

triangle xyz 4 4 triangle

conic + transversal line x(x2 + yz) 4 4 conic + transversal line

irreducible, smooth (a3 �= −27/4) y2z − x3 − axz2 − z3 4 4 irreducible, smooth cubic

irreducible, singular (a3 = −27/4) y2z − x3 − axz2 − z3 4 4 irreducible, singular cubic

conic + tangent line y(x2 + yz) 5 3 triple line

8 Plane Cubic Curves

Throughout this section dimW = 3.
Normal forms for plane cubic curves were determined in [24] in the 1930’s. In [5]

an explicit algorithm was given for determining the rank of a cubic curve (building
on unpublished work of Reznick), and the possible ranks for polynomials in each
σr(v3(P

2))\σr−1(v3(P
2)) were determined. Here we give the explicit list of normal

forms and their ranks and border ranks, illustrating how one can use singularities of
auxiliary geometric objects to determine the rank of a polynomial.

Theorem 8.1 The possible ranks and border ranks of plane cubic curves are de-
scribed in Table 1.

The proof of Theorem 8.1 given by [5] relies first on a computation of equations
for the secant varieties σk(v3(PW)) for 2 ≤ k ≤ 3, which determines all the border
ranks in Table 1. Note that σ3(v3(PW)) is a hypersurface defined by the Aronhold
invariant, not a symmetric flattening. To refine the results to give the ranks of a non-
generic point φ in each secant variety, first [5] uses the geometry of the Hessian
of φ to distinguish some cases. (The Hessian is the variety whose equation is the
determinant of the Hessian matrix of the equation of φ. Given a vector v ∈ W ∗,
φ1,2(v) in bases is the Hessian of φ evaluated at v. When the curve Zeros(φ) ⊂ PW ∗
is not a cone, the variety P Rkerφ1,2 ∩ σ2(v2(PW ∗)) is the Hessian cubic of φ.)

The last case, φ = y(x2 + yz), is distinguished by an unpublished argument due
to B. Reznick. Reznick shows by direct calculation that for any linear form L, the
geometry of the Hessian of φ − L3 implies φ − L3 has rank strictly greater than 3;
so φ itself has rank strictly greater than 4. We thank Reznick for sharing the details
of this argument with us.

We exploit this connection to prove Theorem 8.1 by examining the geometry of
the Hessian using the machinery we have set up to study P Rkerφ1,2. We begin by
computing the ranks of each cubic form. We show that φ = y(x2 + yz) has rank 5 by
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directly studying the Hessian of φ itself (rather than the modification φ − L3 as was
done by Reznick).

Proof Upper bounds for the ranks listed in Table 1 are given by simply display-
ing an expression involving the appropriate number of terms. For example, to show
R(xyz) ≤ 4, observe that

xyz = 1

24

(
(x + y + z)3 + (x − y − z)3 − (x − y + z)3 − (x + y − z)3).

We present the remainder of these expressions in Table 2.
Next we show lower bounds for the ranks listed in Table 1. The first three cases

are covered by Theorem 4.1. For all the remaining φ in the table, φ /∈ Sub2, so by (5),
R(φ) ≥ 3. By Remark 6.6, if φ is singular then R(φ) ≥ 4, and this is the case for the
triangle, the union of a conic and a line, and the cusp (but we will show the rank of
the conic plus a tangent line is 5). We have settled all but the following three cases:
y2z − x3 − xz2, y2z − x3 − axz2 − z3, y(x2 + yz).

If φ = η3
1 +η3

2 +η3
3 with [ηi] linearly independent, then the Hessian of φ is defined

by η1η2η3 = 0, so it is a union of three nonconcurrent lines. In particular, it has three
distinct singular points. But a short calculation verifies that the Hessian of y2z−x3 −
xz2 is smooth and the Hessian of y2z − x3 − axz2 − z3 has at most one singularity.
Therefore these two curves have rank at least 4, which agrees with the upper bounds
given in Table 2.

Let φ = y(x2 +yz). The Hessian of φ is defined by the equation y3 = 0. Therefore
the Hessian P Rkerφ1,2 ∩ σ2(v2(PW)) is a (triple) line. Since it is not a triangle,
R(y(x2 + yz)) ≥ 4, as we have argued in the last two cases. But in this case we can
say more.

Suppose φ = y(x2 + yz) = η3
1 + η3

2 + η3
3 + η3

4, with the [ηi] distinct points in
PW . Since 〈φ〉 = W , the [ηi] are not all collinear. Therefore there is a unique two-
dimensional linear space of quadratic forms vanishing at the ηi . These quadratic
forms thus lie in Rkerφ1,2. In the plane P Rkerφ1,2 ∼= P

2, H := P Rkerφ1,2 ∩
σ2(v2(PW)) is a triple line and the pencil of quadratic forms vanishing at each ηi

is also a line L.
Now either H = L or H �= L. If H = L, then L contains the point P Rkerφ1,2 ∩

v2(PW) ∼= Σ1. But 〈φ〉 = W , so L is disjoint from v2(PW). Therefore H �= L. But
then L contains exactly one reducible conic, corresponding to the point H ∩ L. But
this is impossible: a pencil of conics through four points in P

2 contains at least three
reducible conics (namely the pairs of lines through pairs of points).

Thus φ = y(x2 + yz) = η3
1 + η3

2 + η3
3 + η3

4 is impossible, so R(y(x2 + yz)) ≥ 5.
In conclusion, we have obtained for each cubic curve φ listed in Table 1 a lower

bound R(φ) ≥ m which agrees with the upper bound R(φ) ≤ m as shown in Table 2.
This completes the proof of the calculation of ranks.

Finally one may either refer to the well-known characterization of degenerations
of cubic curves to find the border ranks, see for example [24], or simply evaluate the
defining equations of the various secant varieties on the normal forms. �
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Table 2 Upper bounds on ranks of plane cubic forms

xy(x + y) = 1

3
√

3i

(
(ωx − y)3 − (ω2x − y)3) (

ω = e2πi/3)

x2y = 1

6

(
(x + y)3 − (x − y)3 − 2y3)

y2z − x3 = 1

6

(
(y + z)3 + (y − z)3 − 2z3) − x3

xyz = 1

24

(
(x + y + z)3 − (−x + y + z)3 − (x − y + z)3 − (x + y − z)3)

x
(
x2 + yz

) = 1

96

(
(4x + y + z)4 + (4x − y − z)3 − 2(2x + y − z)3 − 2(2x − y + z)3)

y2z − x3 − xz2 = −1

12
√

3

((
31/2x + 31/4iy + z

)3 + (
31/2x − 31/4iy + z

)3

+ (
31/2x + 31/4y − z

)3 + (
31/2x − 31/4y − z

)3)

y2z − x3 − z3 = 1

6
√

3i

((
(2ω + 1)z − y

)3 − ((
2ω2 + 1

)
z − y

)3) − x3

y2z − x3 − axz2 − z3 = z(y − z)(y + z) − x
(
x − a1/2iz

)(
x + a1/2iz

)

= 1

6
√

3i

((
2ωz − (y − z)

)3 − (
2ω2z − (y − z)

)3)

− 1

6
√

3i

((
ω

(
x − a1/2iz

) − (
x + a1/2iz

))3

− (
ω2(

x − a1/2iz
) − (

x + a1/2iz
))3)

y
(
x2 + yz

) = (x − y)(x + y)y + y2(y + z)

= 1

6
√

3i

((
2ωy − (x − y)

)3 − (
2ω2y − (x − y)

)3)

+ 1

6

(
(2y + z)3 + z3 − 2(y + z)3)

9 Determinants and Permanents

Let X be an n × n matrix whose entries xi,j are variables forming a basis for W . Let
detn = detX and pern be the permanent of X.

In [8], L. Gurvits applied the equations for flattenings (1) to the determinant
and permanent polynomials to observe, for each 1 ≤ a ≤ n − 1, rank(detn)a,n−a =
rank(pern)a,n−a = (

n
a

)2, giving lower bounds for border rank. (In [8] he is only
concerned with rank but he only uses (1) for lower bounds.) Indeed, the image of
(detn)a,n−a is spanned by the determinants of a × a submatrices of X, and the image
of (pern)a,n−a is spanned by the permanents of a × a submatrices of X. These are

independent and number
(
n
a

)2. In the same paper Gurvits also gives upper bounds
as follows: R(detn) ≤ 2n−1n!,R(pern) ≤ 4n−1. The first bound follows by writing
detn as a sum of n! terms, each of the form x1 · · ·xn, and applying Proposition 11.6:
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Table 3 Bounds for determinants and permanents

n 2 3 4 5 6 7 8

Upper bound for R(detn) 4 24 192 1,920 23,040 322,560 5,160,960

Lower bound for R(detn) 4 14 43 116 420 1,258 4,939

Lower bound for R(detn) 4 9 36 100 400 1,225 4,900

Upper bound for R(pern) 4 16 64 256 1,024 4,096 16,384

Lower bound for R(pern) 4 12 40 110 412 1,246 4,924

Lower bound for R(pern) 4 9 36 100 400 1,225 4,900

R(x1 · · ·xn) ≤ 2n−1. For the second bound, a variant of the Ryser formula for the
permanent (see [19]) allows one to write pern as a sum of 2n−1 terms, each of
the form x1 · · ·xn: pern = 2−n+1 ∑

ε∈{−1,1}n
ε1=1

∏
1≤i≤n

∑
1≤j≤n εiεj xi,j , the outer sum

taken over n-tuples (ε1 = 1, ε2, . . . , εn). Note that each term in the outer sum is a
product of n independent linear forms and there are 2n−1 terms. Applying Proposi-
tion 11.6 again gives the upper bound for R(pern).

Now, we apply Theorem 1.3 to improve the lower bounds for rank. The determi-
nant detn vanishes to order a + 1 on a matrix A if and only if every minor of A of
size n− a vanishes. Thus Σa(detn) is the locus of matrices of rank at most n− a − 1.
This locus has dimension n2 − 1 − (a + 1)2. Therefore, for each a,

R(detn) ≥
(

n

a

)2

+ n2 − (a + 1)2.

The right hand side is maximized at a = �n/2
.
A crude lower bound for dimΣa(pern) is obtained as follows. If a matrix A has

a+1 columns identically zero, then each term in pern vanishes to order a+1, so pern
vanishes to order at least a + 1. Therefore Σa(pern) contains the set of matrices with
a + 1 zero columns, which is a finite union of projective linear spaces of dimension
n(n − a − 1) − 1. Therefore, for each a,

R(pern) ≥
(

n

a

)2

+ n(n − a − 1).

Again, the right hand side is maximized at a = �n/2
.
See Table 3 for values of the upper bound for rank and lower bound for border

rank obtained by Gurvits and the lower bound for rank given here.

10 Limits of Secant Planes for Veronese Varieties

10.1 Limits of Secant Planes for Arbitrary Projective Varieties

Let X ⊂ PV be a projective variety. Recall that σ 0
r (X) denotes the set of points

on σr(X) that lie on a P
r−1 spanned by r points on X. We work inductively,
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so we assume we know the nature of points on σr−1(X) and study points on
σr(X)\(σ 0

r (X) ∪ σr−1(X)).
It is convenient to study the limiting r-planes as points on the Grassmannian in its

Plücker embedding, G(r,V ) ⊂ P(
∧r

V ). I.e., we consider the curve of r planes as
being represented by [x1(t) ∧ · · · ∧ xr(t)], where xj (t) ⊂ X̂\0 and examine the lim-
iting plane as t → 0. (There is a unique such plane as the Grassmannian is compact.)

Let [p] ∈ σr(X). Then there exist curves x1(t), . . . , xr (t) ⊂ X̂ with p ∈
limt→0〈x1(t), . . . , xr (t)〉. We are interested in the case when dim〈x1(0), . . . , xr (0)〉 <

r . (Here 〈v1, . . . , vk〉 denotes the linear span of the vectors v1, . . . , vk .) Use the nota-
tion xj = xj (0). Assume for the moment that x1, . . . , xr−1 are linearly independent.
Then we may write xr = c1x1 + · · · + cr−1xr−1 for some constants c1, . . . , cr−1.
Write each curve xj (t) = xj + tx′

j + 1
2 t2x′′

j + · · · where derivatives are taken at
t = 0.

Consider the Taylor series

x1(t) ∧ · · · ∧ xr(t)

=
(

x1 + tx′
1 + 1

2
t2x′′

1 + · · ·
)

∧ · · · ∧
(

xr−1 + tx′
r−1 + 1

2
t2x′′

r−1 + · · ·
)

∧
(

xr + tx′
r + 1

2
t2x′′

r + · · ·
)

= t
(
(−1)r

(
c1x

′
1 + · · · cr−1x

′
r−1 − x′

r

) ∧ x1 ∧ · · · ∧ xr−1
) + t2(. . .) + · · · .

If the t coefficient is nonzero, then p lies in the r plane 〈x1, . . . , xr−1, (c1x
′
1 +

· · · cr−1x
′
r−1 − x′

r )〉.
If the t coefficient is zero, then c1x

′
1 + · · · + cr−1x

′
r−1 − x′

r = e1x1 + · · · er−1xr−1

for some constants e1, . . . , er−1. In this case we must examine the t2 coefficient of
the expansion. It is (

∑r−1
k=1 ekx

′
k +∑r−1

j=1 cjx
′′
j − x′′

r )∧ x1 ∧ · · · ∧ xr−1. One continues
to higher order terms if this is zero.

For example, when r = 3, the t2 term is

x′
1 ∧x′

2 ∧x3 +x′
1 ∧x2 ∧x′

3 +x1 ∧x′
2 ∧x′

3 +x′′
1 ∧x2 ∧x3 +x1 ∧x′′

2 ∧x3 +x1 ∧x2 ∧x′′
3 .

(8)

10.2 Limits for Veronese Varieties

For any smooth variety X ⊂ PV , a point on σ2(X) is either a point of X, a point on
an honest secant line (i.e., a point of X-rank two) or a point on a tangent line of X.
For a Veronese variety all nonzero tangent vectors are equivalent. They are all of the
form xd + xd−1y (or equivalently xd−1z), in particular they lie on a subspace variety
Sub2 and thus have rank d by Theorem 4.1. In summary:

Proposition 10.1 If p ∈ σ2(vd(PW)) then R(p) = 1, 2 or d . In these cases, p re-
spectively has the normal forms xd, xd + yd, xd−1y. (The last two are equivalent
when d = 2.)
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We consider the case of points on σ3(vd(PW))\σ2(vd(PW)). We cannot have
three distinct limiting points x1, x2, x3 with dim〈x1, x2, x3〉 < 3 unless at least two
of them coincide because there are no trisecant lines to vd(PW). (For any variety
X ⊂ PV with ideal generated in degree two, any trisecant line of X is contained in
X, and Veronese varieties vd(PW) ⊂ PSdW are cut out by quadrics but contain no
lines.)

Write our curves as

x(t) = (
x0 + tx1 + t2x2 + t3x3 + · · · )d

= xd
0 + t

(
dxd−1

0 x1
) + t2

((
d

2

)
xd−2

0 x2
1 + dxd−1

0 x2

)

+ t3
((

d

3

)
xd−3

0 x3
1 + d(d − 1)xd−2

0 x1x2 + dxd−1
0 x3

)
+ · · ·

and similarly for y(t), z(t).
Case 1: two distinct limit points xd

0 , zd
0 , with y0 = x0. (We can always rescale

to have equality of points rather than just collinearity since we are working in pro-
jective space.) When we expand the Taylor series, assuming d > 2 (since the d = 2
case is well understood and different), the coefficient of t (ignoring constants which
disappear when projectivizing) is xd−1

0 (x1 − y1) ∧ xd
0 ∧ zd

0 which can be zero only
if x1 ≡ y1 mod x0. If this holds, examining (8) we see the second order term is of
the form xd−1

0 (x2 − y2 + λx1) ∧ xd
0 ∧ zd

0 . Similarly if this term vanishes, the t3 term
will still be of the same nature. Inductively, if the lowest nonzero term is tk then for
each j < k, yj = xj mod (x0, . . . , xj−1), and the coefficient of the tk term is (up to
a constant factor) xd−1

0 (xk − yk + �) ∧ xd
0 ∧ zd

0 , where � is a linear combination of
x0, . . . , xk−1. We rewrite this as xd−1y ∧ xd ∧ zd . If dim〈z, x, y〉 < 3 we are reduced
to a point of σ3(vd(P1)) and can appeal to Theorem 4.1. If the span is three dimen-
sional then any point in the plane [xd−1y ∧ xd ∧ zd ] can be put in the normal form
xd−1w + zd .

Case 2: One limit point x0 = y0 = z0 = z. The t coefficient vanishes and the t2

coefficient is (up to a constant factor) xd−1
0 (x1 − y1)∧ xd−1

0 (y1 − z1)∧ xd
0 which can

be rewritten as xd−1y ∧xd−1z∧xd . If this expression is nonzero then any point in the
plane [xd−1y ∧ xd−1z ∧ xd ] lies in σ2(vd(P1)). So we thus assume the t2 coefficient
vanishes. Then y1 − z1, x1 − y1, and x0 are linearly dependent; a straightforward
calculation shows that the t3 coefficient is xd

0 ∧ xd−1
0 (y1 − x1) ∧ (xd−1

0 � + (λ2 +
λ)(y1 − x1)

2), where � is a linear combination of x0, . . . , z2. We rewrite this as xd ∧
xd−1y ∧ (xd−1�+μxd−2y2). If μ = 0, every point in the plane [xd ∧xd−1y ∧xd−1�]
lies in σ2(vd(P1)), so we apply Theorem 4.1. If μ �= 0 and xd ∧ xd−1y ∧ (xd−1� +
μxd−2y2) = 0, then x, y are linearly dependent; then one considers higher powers
of t . One can argue that the lowest nonzero term always has the form xd ∧ xd−1y ∧
(xd−1� + μxd−2y2).

Thus our point lies in a plane of the form [xd ∧ xd−1y ∧ (xd−1� + μxd−2y2)].

Theorem 10.2 There are three types of points φ ∈ S3W of border rank three with
dim〈φ〉 = 3. They have the following normal forms:
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limiting curves normal form R

xd, yd, zd xd + yd + zd 3
xd, (x + ty)d , zd xd−1y + zd d ≤ R ≤ d + 1

xd, (x + ty)d, (x + 2ty + t2z)d xd−2y2 + xd−1z d ≤ R ≤ 2d − 1

The upper bounds on ranks come from computing the sum of the ranks of the
terms. The lower bounds on ranks are attained by specialization to Sd

C
2. We remark

that when d = 3, the upper bounds on rank are attained in both cases.

Corollary 10.3 Let φ ∈ SdW with R(φ) = 3. If R(φ) > 3, then 2d − 1 ≥ R(φ) ≥
d − 1 and only three values occur, one of which is d − 1.

Proof The only additional cases occur if dim〈φ〉 = 2 which are handled by Theo-
rem 4.1. �

Even for higher secant varieties, xd
1 ∧ · · · ∧ xd

r cannot be zero if the xj are distinct
points, even if they lie on a P

1, as long as d ≥ r . This is because a hyperplane in SdW

corresponds to a (defined up to scale) homogeneous polynomial of degree d on W .
Now take W = C

2. No homogeneous polynomial of degree d vanishes at d + 1 dis-
tinct points of P

1, thus the image of any d + 1 distinct points under the d-th Veronese
embedding cannot lie on a hyperplane. As long as the degree is sufficiently large,
there is a similar phenomenon for tangent lines and higher osculating spaces (e.g.,
the intersection of the embedded tangent space to the Veronese with the Veronese is
the point of tangency when d > 2, the intersection of the second osculating space of a
point with the Veronese is just that point if d > 3, etc.). Because of this, when taking
limits of small numbers of points (small with respect to d), all limits are sums of
limits to distinct points as in Sect. 11.1 below. These remarks prove Theorems 10.4
and 10.5 below.

Theorem 10.4 There are six types of points of border rank four in SdW , d > 2,
whose span is four-dimensional. They have the following normal forms:

limiting curves normal form R

xd, yd, zd ,wd xd + yd + zd + wd 4
xd, (x + ty)d , zd ,wd xd−1y + zd + wd d ≤ R ≤ d + 2
xd, (x + ty)d , zd , (z + tw)d xd−1y + zd−1w d ≤ R ≤ 2d

xd, (x + ty)d , (x + ty + t2z)d , (x + t2z)d xd−2yz d ≤ R ≤ 2d − 2
xd, (x + ty)d , (x + ty + t2z)d ,wd xd−2y2 + xd−1z + wd d ≤ R ≤ 2d

xd, (x + ty)d , (x + ty + t2z)d , xd−3y3 + xd−2z2 + xd−1w d ≤ R ≤ 3d − 3
(x + ty + t2z + t3w)d

For σ5(vd(PW)), we get a new phenomenon when d = 3 because dimS3
C

2 = 4
< 5. We can have 5 curves a, b, c, d, e, with a0, . . . , e0 all lying in a C

2, but otherwise
general, so dim〈a3

0, . . . , e3
0〉 = 4. Thus the t term will be of the form a3

0 ∧ b3
0 ∧ c3

0 ∧
d3

0 ∧ (s1a
2
0a1 +· · ·+ s4d

2
0d1 − e2

0e1). Up to scaling we can give C
2 linear coordinates

x, y so that a0 = x, b0 = y, c0 = x +y, d0 = x +λy for some λ. Then, independent of
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e0, the limiting plane will be contained in 〈x3, y3, (x+y)3, (x+λy)3, x2α,xyβ,y2γ 〉
for some α,β, γ ∈ W (depending on a1, . . . , e1). Any point contained in the plane is
of the form x2u + y2v + xyz for some u,v, z ∈ W .

Theorem 10.5 There are seven types of points of border rank five in SdW whose
span is five-dimensional when d > 3, and eight types when d = 3. Six of the types are
obtained by adding a term of the form ud to a point of border rank four, the seventh
has the normal form xd−4u+ xd−3y3 + xd−2z2 + xd−1w, and the eighth type, which
occurs when d = 3, has normal form x2u + y2v + xyz.

Remark 10.6 By dimension count, we expect to have normal forms of elements of
σr(vd(Pn−1)) as long as r ≤ n because dimσr(vd(Pn−1)) ≤ rn − 1 and
dimGLn = n2.

11 Monomials

11.1 Limits of Highest Possible Osculation

Let x(t) ⊂ W be a curve, write x0 = x(0), x1 = x′(0) and xj = x(j)(0). Consider the
corresponding curve y(t) = x(t)d in v̂d (PW) and note that

y(0) = xd
0 ,

y′(0) = dxd−1
0 x1,

y′′(0) = d(d − 1)xd−2
0 x2

1 + dxd−1
0 x2,

y(3)(0) = d(d − 1)(d − 2)xd−3
0 x3

1 + 3d(d − 1)xd−2
0 x1x2 + dxd−1

0 x3,

y(4)(0) = d(d − 1)(d − 2)(d − 3)xd−4
0 x4

1 + 6d(d − 1)(d − 2)xd−3
0 x2

1x2

+ 3d(d − 1)xd−2
0 x2

2 + 4d(d − 1)xd−2
0 x1x3 + dxd−1

0 x4,

y(5)(0) = d(d − 1)(d − 2)(d − 3)(d − 4)xd−5
0 x5

1

+ 9d(d − 1)(d − 2)(d − 3)xd−4
0 x3

1x2

+ 10d(d − 1)(d − 2)xd−3
0 x2

1x3 + 15d(d − 1)(d − 2)xd−3
0 x1x

2
2

+ 4d(d − 1)xd−2
0 x2x3 + 5d(d − 1)xd−2

0 x1x4 + dxd−1
0 x5,

...

At r derivatives, we get a sum of terms xd−s
0 x

a1
1 · · ·xap

p , a1 +2a2 +· · ·+pap = r, s =
a1 +· · ·+ap . In particular, x0x1 · · ·xd−1 appears for the first time at the 1+2+· · ·+
(d − 1) = (

d
2

)
derivative.

11.2 Bounds for Monomials

Write b = (b1, . . . , bm). Let Sb,δ denote the number of distinct m-tuples (a1, . . . , am)

satisfying a1 + · · · + am = δ and 0 ≤ aj ≤ bj . Adopt the notation that
(
a
b

) = 0 if
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b > a and is the usual binomial coefficient otherwise. We thank L. Matusevich for
the following expression:

Proposition 11.1 Write I = (i1, i2, . . . , ik) with i1 ≤ i2 ≤ · · · ≤ ik . Then Sb,δ =∑m
k=0(−1)k[∑|I |=k

(
δ+m−k−(bi1+···+bik

)
m

)].

Proof The proof is safely left to the reader. (It is a straightforward inclusion-
exclusion counting argument, in which the k-th term of the sum counts the m-tuples
with aj ≥ bj +1 for at least k values of the index j .) For those familiar with algebraic
geometry, note that Sb,δ is the Hilbert function in degree δ of the variety defined by
the monomials x

b1+1
1 , . . . , x

bm+1
m . �

For b = (b1, . . . , bm), consider the quantity Tb := ∏m
i=1(1 + bi). Tb counts the

number of tuples (a1, . . . , am) satisfying 0 ≤ aj ≤ bj (with no restriction on a1 +
· · · + am).

Theorem 11.2 Let b0 ≥ b1 ≥ · · · ≥ bn and write d = b0 + · · · + bn. Then

S
(b0,b1,...,bn),� d

2 
 ≤ R
(
x

b0
0 x

b1
1 · · ·xbn

n

) ≤ T(b1,...,bn).

Proof Let φ = x
b0
0 · · ·xbn

n . The lower bound follows from considering the image of

φ� d
2 
,� d

2 �, which is φ� d
2 
,� d

2 �(S
� d

2 �
C

n+1) = 〈xa0
0 x

a1
1 · · ·xan

n |0 ≤ aj ≤ bj , a0 + a1 +
· · · + an = � d

2 
〉 whose dimension is S
(b0,b1,...,bn),� d

2 
.

We show the upper bound as follows. Let b = (b0, . . . , bn) and

Fb(t) =
b1∧

s1=0

· · ·
bn∧

sn=0

(
x0 + t1λ1,s1x1 + t2λ2,s2x2 + · · · + tnλn,snxn

)d
, (9)

where the λi,s are chosen sufficiently generally. We may take each λi,0 = 0 and each
λi,1 = 1 if we wish. For t �= 0, [Fb(t)] is a plane spanned by Tb points in vd(PW). We
claim x

b0
0 · · ·xbn

n lies in the plane limt→0[Fb(t)], which shows R(x
b0
0 · · ·xbn

n ) ≤ Tb.
In fact, we claim

lim
t→0

[
Fb(t)

] =
[

b1∧

a1=0

· · ·
bn∧

an=0

x
d−(a1+···+an)
0 x

a1
1 · · ·xan

n

]

(10)

so x
b0
0 · · ·xbn

n occurs precisely as the last member of the spanning set for the limit
plane.

The coefficients of terms in limt→0 Fb(t) are given by determinants of certain ma-
trices, as follows. For an n-tuple I = (a1, . . . , an) and an n-tuple (p1, . . . , pn) satisfy-
ing 0 ≤ pi ≤ bi , let c

(a1,...,an)
(p1,...,pn) = λ

a1
1,p1

· · ·λan
n,pn

, the coefficient of

x
a1
1 · · ·xan

n x
d−(a1+···+an)
0 in (x0 + tλ1,p1x1 +· · ·+ tnλn,pnxn)

d , omitting binomial co-
efficients. Choose an enumeration of the n-tuples (p1, . . . , pn) satisfying 0 ≤ pi ≤ bi ;
say, in lexicographic order. Then given n-tuples I1, . . . , ITb , the coefficient of the term



362 Found Comput Math (2010) 10: 339–366

xI1 ∧ · · · ∧ xITb in Fb(t) is the product
∏Tb

j=1 c
Ij

j , omitting binomial coefficients. We

may interchange the xIj so that I1 ≤ · · · ≤ ITb in some order, say lexicographic.
Then the total coefficient of xI1 ∧ · · · ∧ xITb is the alternating sum of the permuted

products,
∑

π (−1)|π | ∏Tb
j=1 c

Ij

π(j), (summing over all permutations π of {1, . . . , Tb})
times a product of binomial coefficients (which we henceforth ignore). This sum is

the determinant of the Tb × Tb matrix C := (c
Ij

i )i,j .
First we show that for the term in (10), detC �= 0, i.e., the term does appear with

a non-zero coefficient in limt→0[Fb(t)]. This is the term xI1 ∧ · · · ∧ xITb where
I1, . . . , ITb is an enumeration of the set of tuples {(a1, . . . , an) | 0 ≤ ai ≤ bi}. For

this term, C is a tensor product, C = (λ
j

1,i )
b1
i,j=0 ⊗ · · · ⊗ (λ

j
n,i)

bn

i,j=0. Since the matri-
ces on the right are Vandermonde and the λk,i are distinct, they are all nonsingular.
Therefore so is C.

Next we show that all other terms xI1 ∧ · · · ∧ xITb have coefficient detC = 0 or
appear in Fb(t) with a strictly greater power of t than the term in (10) (or both), so
that the term in (10) is the only term surviving in limt→0[Fb(t)].

We may assume the monomials xI1, . . . , xITb are all distinct (otherwise the term
xI1 ∧ · · · ∧ xITb vanishes identically).

Let r = x
r2
2 · · ·xrn

n and p = d − deg(r) ≥ 0. We claim that if x
p−q

0 x
q

1 r occurs
among the xIj for more than b1 + 1 values of q , then detC = 0. Reordering the Ij

if necessary, say xI1 = x
p−q1
0 x

q1
1 r, . . . , xIb1+2 = x

p−qb1+2

0 x
qb1+2

1 r . Let C′ be the first

b1 +2 columns of C. Then C′ is a tensor product: C′ = (λ
qj

1,i ) i=0,...,b1
j=1,...,b1+2

⊗(λ
r2
2,i )

b2
i=0 ⊗

· · · ⊗ (λ
rn
n,i)

bn

i=0. Here the first matrix has size (b1 + 1) × (b1 + 2) and the rest are
column vectors, (bi + 1) × 1. The columns of the first matrix are dependent, hence
so are the columns of C′, which are just columns of C. This shows detC = 0.

More generally, if r is any monomial in (n − 1) of the variables, say x1, . . . , xi−1,
xi+1, . . . , xn, then x

q
i r can occur for at most bi + 1 distinct values of the exponent q .

The lowest power of t occurs when the values of q are q = 0,1, . . . . In particular x
q
i r

only occurs for q ≤ bi .
Therefore, if a term xI1 ∧ · · · ∧ xITb has a nonzero coefficient in Fb(t) and occurs

with the lowest possible power of t , then in every single xIj , each xi occurs to a
power ≤ bi . The only way the xIj can be distinct is for it to be the term in the right
hand side of (10). This shows that no other term with the same or lower power of t

survives in Fb(t). �

For example

F(b)(t) = xd
0 ∧

b∧

s=1

(x0 + tλsx1)
d

= t(
b+1

2 )
[
xd

0 ∧
(∑

(−1)sλs

)
xd−1

0 x1 ∧
∑

(−1)s+1λ2
s x

d−2
0 x2

1 ∧ · · ·

∧
∑

(−1)s+bλb
s x

d−b
0 xb

1

]

+ O
(
t(

b+1
2 )+1)
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and (with each λi,s = 1)

F(1,1)(t) = xd
0 ∧ (x0 + tx1)

d ∧ (
x0 + t2x2

)d ∧ (
x0 + tx1 + t2x2

)d

= xd
0 ∧

(
xd

0 + dtxd−1
0 x1 +

(
d

2

)
t2xd−2

0 x2
1 + · · ·

)

∧ (
xd

0 + dt2xd−1
0 x2 + · · · )

∧
(

xd
0 + dtxd−1

0 x1 + t2
((

d

2

)
xd−2

0 x2
1 + dxd−1

0 x2

)

+ t3
((

d

3

)
xd−3

0 x3
1 + d(d − 1)xd−2

0 x1x2

)
+ · · ·

)

= t6(xd
0 ∧ dxd−1

0 x1 ∧ dxd−1
0 x2 ∧ d(d − 1)xd−2

0 x1x2
) + O

(
t7).

Theorem 11.3 Let b0 ≥ b1 + · · · + bn. Then R(x
b0
0 x

b1
1 · · ·xbn

n ) = T(b1,...,bn).

Theorem 11.3 is an immediate consequence of Theorem 11.2 and the following
lemma:

Lemma 11.4 Let a = (a1, . . . , an). Write b = (a0,a) with a0 ≥ a1 + · · · + an. Then
for a1 + · · · + an ≤ δ ≤ a0, Sb,δ is independent of δ and in fact Sb,δ = Ta.

Proof The right-hand side Ta counts n-tuples (e1, . . . , en) such that 0 ≤ ej ≤ aj . To
each such tuple we associate the (n+ 1)-tuple (δ − (e1 +· · ·+ en), e1, . . . , en). Since
0 ≤ δ− (a1 +· · ·+an) ≤ δ− (e1 +· · ·+en) ≤ δ ≤ a0, this is one of the tuples counted
by the left hand side Sb,δ , establishing a bijection between the sets counted by Sb,δ

and Ta. �

In particular,

Corollary 11.5 Write d = a + n, and consider the monomial φ = xa
0 x1 · · ·xn. If

a ≥ n, then R(xa
0 x1 · · ·xn) = 2n. Otherwise,

( n

� d
2 
−a

) + ( n

� d
2 
−a+1

) + · · · + ( n

� d
2 


) ≤
R(xa

0 x1 · · ·xn) ≤ 2n.

Proof The right hand inequality follows as T(1,...,1) = 2n. To see the left hand in-
equality, for 0 ≤ k ≤ a, let e = � d

2 
 − a + k. Then
(
n
e

)
is the number of monomials of

the form x
�d/2
−e

0 xi1 · · ·xie , 1 ≤ i1 < · · · < ie ≤ n and S
(a,1,...,1),� d

2 
 is precisely the
total number of all such monomials for all values of e. �

Proposition 11.6
(

n
�n/2


)+�n/2�−1 ≤ R(x1 · · ·xn) ≤ 2n−1,
(

n
�n/2


) ≤ R(x1 · · ·xn) ≤
2n−1.
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Proof Write φ = x1 · · ·xn. First,

φ = 1

2n−1n!
∑

ε∈{−1,1}n−1

(x1 + ε1x2 + · · · + εn−1xn)
nε1 · · · εn−1,

a sum with 2n−1 terms, so R(φ) ≤ 2n−1.
Now, for 1 ≤ a ≤ n − 1, the image of φa,n−a is spanned by the monomials

xi1 · · ·xia , 1 ≤ i1 < · · · < ia ≤ n. So rankφa,n−a = (
n
a

)
. Thus R(φ) ≥ (

n
�n/2


)
. The

set Σa consists of those points p ∈ PW ∗ ∼= P
n−1 at which (at least) a + 1 of the coor-

dinate functions vanish. So dimΣa = n − a − 2. Therefore R(φ) >
(
n
a

) + n − a − 2,
for 1 ≤ a ≤ n − 1. This quantity is maximized at a = �n/2
. �

To give a sense of how these bounds behave, we illustrate with the following table
for bounds on the ranks and border ranks of x1 · · ·xn.

n 1 2 3 4 5 6 7 8 9 10

upper bound for R(x1 · · ·xn) 1 2 4 8 16 32 64 128 256 512
lower bound for R(x1 · · ·xn) 1 2 4 7 12 22 38 73 130 256
lower bound for R(x1 · · ·xn) 1 2 3 6 10 20 35 70 126 252

For n < 4 the upper and lower bounds agree. Here is the next case:

Proposition 11.7 R(x1x2x3x4) = 8.

Proof Suppose R(x1x2x3x4) = 7. Write φ = x1x2x3x4 = η4
1 + · · · + η4

7 with the
[ηi] ∈ PW distinct points. Let L = {p ∈ S2W ∗ | p(ηi) = 0, i = 1, . . . ,7}, so PL ⊂
P Rkerφ2,2. We have dim PL ≥ dim PS2W ∗ − 7 = 2. On the other hand, PL is con-
tained in P Rkerφ2,2 and disjoint from P Rkerφ2,2 ∩ v2(PW ∗) ∼= Σ2, so dim PL ≤ 2
(as in the proof of Theorem 1.3).

We will show that there are six reducible quadrics in PL, and they restrict the ηi

in such a way to imply a contradiction.
By Theorem 1.3, for all λ �= 0, R(φ − λx4

1) ≥ rank(φ − λx4
1)2,2 + dimΣ2(φ −

λx4
1)+1 = 7+0+1, where rank(φ −λx4

1)2,2 = 7 because the image of (φ −λx4
1)2,2

is spanned by the seven elements x2
1 , x1x2, x1x3, . . . , x3x4. If one of the ηi were (a

scalar multiple of) x1 then we would have R(φ − λx4
1) ≤ R(φ) − 1 < 7. By the same

argument for x2, . . . , x4, all 11 of the points [xi], [ηj ] are distinct.
Let α1, . . . , α4 be the dual basis of W ∗ to x1, . . . , x4. Then P Rkerφ2,2 is clearly

spanned by {[α2
1], . . . , [α2

4]} = P Rkerφ2,2 ∩ v2(PW ∗). The reducible quadrics in
P Rkerφ2,2 are precisely the elements [pα2

i + qα2
j ], i �= j , that is, the lines which

form the edges of the tetrahedron with vertices at the [α2
i ]. By a dimension count,

L intersects these lines. Since L is a linear subspace, it intersects the tetrahedron at
precisely six points, which are not the vertices. This shows there are precisely six
reducible quadrics passing through the [ηi].

Denote them Q12, . . . ,Q34, where Qij spans L ∩ 〈α2
i , α

2
j 〉. Up to scaling the Qij ,

there are constants b1, . . . , b4 such that Qij = biα
2
i − bjα

2
j . (Indeed, writing each
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Q1j = α2
1 − bjα

2
j , Qjk must be a scalar times Q1k − Q1j , from which the claim

follows.) The bi are nonzero, so we may rescale coordinates so each bi = 1.
Then up to scalar multiple each ηi = x1 ±x2 ±x3 ±x4. Solving for the coefficients

ci in x1x2x3x4 = c1η
4
1 + · · · + c7η

4
7 shows there are no solutions. Equivalently, let

η1, . . . , η8 be all 8 of the points x1 ± x2 ± x3 ± x4. There is no solution for ci in
x1x2x3x4 = c1η

4
1 + · · · + c8η

4
8 with one of the ci = 0. �

Remark 11.8 The singular quadrics in P Rkerφ2,2 are those of the form [pα2
i1

+
qα2

i2
+ rα2

i3
], where {i1, i2, i3} ⊂ {1,2,3,4} which correspond to the faces of the

tetrahedron spanned by [α2
1], . . . , [α2

4]. Each such quadric is singular at [xi4], where
{i1, i2, i3, i4} = {1,2,3,4}. It would be interesting to see if considering these singular
quadrics, instead of the reducible quadrics, yields a simpler proof that R(x1x2x3x4)

> 7.

Remark 11.9 One can get lower and upper bounds on the ranks of monomials by The-
orem 1.3 and specialization. The upper bound, for b0 ≥ · · · ≥ bn, is R(x

b0
0 · · ·xbn

n ) ≤
(b0 + 1) · · · (bn−1 + 1)bn. This follows from considering the polarization-type iden-
tity appearing in the proof of Proposition 11.6 for the product y0,1 · · ·y0,b0 · · ·yn,bn

and then specializing each yi,j → xi .

Proposition 11.10 R(x2yz) = 6 and R(x2yz) = 4.

Proof Let φ = x2yz. We have R(φ) = 4 by Theorem 11.3. We have 5 ≤ R(φ) ≤ 6 by
Remark 11.9. (Explicitly: R(φ) ≥ 5 by Theorem 1.3. The upper bound comes from
x2yz = x2((y + z)/2)2 − x2((y − z)/2)2 where each term has the form a2b2, and
R(a2b2) = 3 by Corollary 4.5.)

We will show that in fact R(φ) = 6, following a suggestion provided to us by
Bruce Reznick. Suppose that R(φ) = 5, with φ = η4

1 + · · · + η4
5, for some distinct

[ηi] ∈ PW = P
2. Let L := P{p ∈ S2W ∗ | p(ηi) = 0,1 ≤ i ≤ 5}. The proof of Theo-

rem 1.3 shows dimL = 0, i.e., L consists of exactly one point, so the [ηi] lie on a
unique conic Q in the projective plane. In particular, no four of the [ηi] are collinear.
One checks that R(x2yz − λx4) ≥ 5 by Theorem 1.3, for all λ, and so no [ηi] = [x].

The conic Q is an element of P Rkerφ2,2, which one finds is spanned by β2 and
γ 2. Therefore Q factors, Q = (cβ − dγ )(cβ + dγ ). We have c, d �= 0 (or else all five
[ηi] are collinear).

Therefore exactly three of the [ηi] lie on one of the lines of Q and exactly two
lie on the other line. Up to reordering, we have ηi = six + ti (dy + cz) for i = 1,2,3
and ηi = six + ti (dy − cz) for i = 4,5. The substitution z → −d

c
y takes the equation

φ = x2yz = η4
1 + · · · + η4

5 to −d
c

x2y2 = (s4
1 + s4

2 + s4
3)x4 + η4

4 + η4
5, where η4, η5

are linear forms in x, y. Multiplying by scalar factors, this gives an expression of
x2y2 − Ax4 as a sum of two fourth powers. But we have R(x2y2 − Ax4) ≥ 3 for all
A; indeed, the symmetric flattening (x2y2 − Ax4)2,2 has rank 3 already.

This contradiction shows R(φ) > 5. �
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