
Found Comput Math (2009) 9: 599–609
DOI 10.1007/s10208-009-9048-2

Real Computational Universality: The Word Problem
for a Class of Groups with Infinite Presentation

Klaus Meer · Martin Ziegler

Received: 17 August 2007 / Revised: 7 January 2009 / Accepted: 17 March 2009 / Published online: 29
April 2009
© SFoCM 2009

Abstract The word problem for discrete groups is well known to be undecidable by
a Turing Machine; more precisely, it is reducible both to and from and thus equivalent
to the discrete Halting Problem. The present work introduces and studies a real exten-
sion of the word problem for a certain class of groups which are presented as quotient
groups of a free group and a normal subgroup. As a main difference to discrete groups
these groups may be generated by uncountably many generators with index running
over certain sets of real numbers. We study the word problem for such groups within
the Blum–Shub–Smale (BSS) model of real number computation. The main result es-
tablishes the word problem to be computationally equivalent to the Halting Problem
for such machines. It thus gives the first non-trivial example of a problem complete,
that is, computationally universal for this model.
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1 Introduction

In the classical theory of computation relying on Turing machines the Halting Prob-
lem H was the first problem shown to be undecidable. It asks for the termination
of a given Turing machine on the empty string as input. Later on, several other and
more natural problems P were shown to be of the same degree of undecidability as
the Halting Problem. Two of them, Hilbert’s Tenth and the Word Problem for groups,
became particularly famous, not least because they arise and are stated in purely
mathematical terms whose relation to computer science turned out to be kind of a
surprise. The corresponding undecidability proofs both proceed by constructing from
a given Turing Machine M an instance xM of the problem P under consideration
such that xM ∈ P iff M terminates; in other words, a reduction from H to P . As P

is easily seen to be semi-decidable this establishes, conversely, reducibility to H and
thus Turing-completeness of P .

In this paper we want to study related questions in the Blum–Shub–Smale model,
for short BSS model [1, 2]. It is a real counterpart of the Turing model dealing with
computations over the real numbers. As for Turing machines there exist universal
BSS machines and a related Halting Problem H.

Definition 1 The real Halting Problem H is the following decision problem. Gi-
ven the code cM ∈ R

∞ of a BSS machine M, does M terminate its computation on
input 0?

Both the existence of such a coding for BSS machines and the undecidability
of H in the BSS model were shown in [1]. Concerning other BSS-complete prob-
lems P however, not many are known so far. For example, the Turing-complete ones
and, more generally, all discrete problems become decidable over the reals by al-
lowing real constants in the algorithms. Similarly, extending an undecidable discrete
problem to the reals usually does not result in a complete problem either. For exam-
ple, Hilbert’s Tenth Problem, which asks whether a given multivariate polynomial
equation has a solution, is decidable over R due to quantifier elimination. And other
provably undecidable problems over the reals, such as the Mandelbrot Set or the ra-
tionals Q, are supposedly (concerning the first) or, concerning the latter, have actually
been established [14] not reducible from and thus strictly easier than H. In fact the
only BSS-complete P essentially differing from H we are aware of is a certain count-
able existential theory in the language of ordered fields [6].

The current work presents a real version of the word problem for groups and
proves it to be reducible both from and to the real Halting Problem. We introduce a
certain class of groups that are generated as quotient groups over a free group which
has uncountably many generators. These groups bear some resemblance to certain
recent presentations of continuous fundamental groups from topology [5] where, too,
the set of generators (‘alphabet’) is allowed to be infinite and in fact of continuum
cardinality. There however words generally have transfinite length whereas we re-
quire them to consist of finitely many symbols only. On the other side, the groups we
analyze also differ significantly from the usual problems studied in the BSS model
which typically stem from semi-algebraic geometry. Indeed, the papers dealing with
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groups G in the BSS setting [4, 8, 20] treat such G as underlying structure of the
computational model, that is, not over the reals R and its arithmetic. [22] considers
the question of computationally realizing G and its operation, not of deciding proper-
ties of (elements of) G. In a rare exception, Derksen, Jeandel, and Koiran do consider
BSS-decidability (and complexity) of properties of a real group [7]; however they
lack completeness results. Also, their group is not fixed nor presented but given by
some matrix generators. For instance, finiteness of the multiplicative subgroup of C

generated by exp(2πi/x), x ∈ R, is equivalent to x ∈ Q and thus undecidable yet not
reducible from H [14]; whereas any fixed such group is isomorphic either to (Z,+)

or to (Zn,+) for some n ∈ N and has a decidable word problem.
Our work is structured as follows. Section 2 gives a short introduction to the clas-

sical word problem in finitely presented groups. We then introduce real counterparts
called algebraically presented groups, the core objects of our interest, and illustrate
the definition with a few examples. The word problem for these groups is defined
and shown to be semi-decidable in the BSS model of computation over the reals.
Section 3 recalls some basic notions from computational group theory needed later
on. Then, the main result is proved: The real Halting Problem can be reduced to the
word problem of algebraically presented real groups. We close in Sect. 3.3 with some
discussions.

We suppose the reader to be familiar with the BSS model. Since potential readers
likely are complexity theorists we decided to include the presentation of some con-
cepts from combinatorial group theory in Sect. 3.1. It is certainly recommended to
study the related material from original sources. In particular, we found the books by
Rotman [21] and by Lyndon and Schupp [13] extremely helpful.

2 Word-Problem for Groups

In this section we briefly recall the definition of the classical word problem. We then
introduce the class of groups we are interested in and prove semi-decidability of the
corresponding word problem in the BSS model.

2.1 The Classical Setting

We briefly recall the classical word problem.

Definition 2 (a) Let X be a set. The free group generated by X, denoted by
F = (〈X〉,◦) or more briefly 〈X〉, is the set (X ∪ X−1)∗ of all finite sequences
w̄ = x

ε1
1 · · ·xεn

n with n ∈ N, xi ∈ X, εi ∈ {−1,+1}, equipped with concatenation ◦
as group operation subject to the rules

x ◦ x−1 = 1 = x−1 ◦ x ∀x ∈ X, (1)

where x1 := x and where 1 denotes the empty word, that is, the unit element.
(b) For a group H and W ⊆ H , denote by

〈W 〉H := {
w

ε1
1 · · ·wεn

n : n ∈ N,wi ∈ W,εi = ±1
}
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the subgroup of H generated by W . The normal subgroup of H generated by W is

〈W 〉Hn := 〈{
h · w · h−1 : h ∈ H,w ∈ W

}〉
H

.

For h ∈ H , we write h/W for the W -coset {h · w : w ∈ 〈W 〉Hn} of all g ∈ H with
g ≡W h.

(c) Fix sets X and R ⊆ 〈X〉 and consider the quotient group G := 〈X〉/〈R〉n, de-
noted by 〈X|R〉, of all R-cosets of 〈X〉.

If both X and R are finite, the tuple (X,R) will be called a finite presentation
of G; if X is finite and R recursively enumerable (by a Turing machine, that is in
the discrete sense; equivalently: semi-decidable), it is a recursive presentation; if X

is finite and R arbitrary, G is finitely generated.

Intuitively, R induces further rules “w̄ = 1, w̄ ∈ R” in addition to (1); put dif-
ferently, distinct words ū, v̄ ∈ 〈X〉 might satisfy ū = v̄ in G, that is, by virtue of R.
Observe that the rule “wε1

1 · · ·wεn
n = 1” induced by an element w̄ = (w

ε1
1 · · ·wεn

n ) ∈ R

can also be applied as “wε1
1 · · ·wεk

k = w−εn
n · · ·w−εk+1

k+1 ”.

Definition 2 (Continued) (d) The word problem for 〈X|R〉 is the task of deciding,
given w̄ ∈ 〈X〉, whether w̄ = 1 holds in 〈X|R〉.

The famous work of Novikov and, independently, Boone establishes the word
problem for finitely presented groups to be Turing-complete:

Fact 3 (a) For any finitely presented group 〈X|R〉, its associated word problem is
semi-decidable (by a Turing machine).

(b) There exists a finitely presented group 〈X|R〉 whose associated word problem
is many-one reducible by a Turing machine from the discrete Halting Problem H .

(a) is immediate. For the non-trivial Claim (b), see, e.g., one of [3, 13, 18, 21].
In order to establish Fact 3(b), the following result is crucial.

Fact 4 (Higman Embedding Theorem) Every recursively presented group can be
embedded in a finitely presented group.

Proof See, e.g., [13, Sect. IV.7] or [21, Theorem 12.18]. �

2.2 Presenting Real Groups

We now define the kind of groups we are interested in and illustrate the definition
with a few examples. Semi-decidability of the related word-problem is shown.

Definition 5 Let X ⊆ R
∞ and R ⊆ 〈X〉 ⊆ R

∞. The tuple (X,R) is called a presen-
tation of the real group G = 〈X|R〉. This presentation is algebraically generated if
X is BSS-decidable and X ⊆ R

N for some N ∈ N. G is termed algebraically enu-
merated if R in addition is BSS semi-decidable; if R is further BSS-decidable, call G

algebraically presented. The word problem for the presented real group G = 〈X|R〉
is the task of BSS-deciding, given w̄ ∈ 〈X〉, whether w̄ = 1 holds in G.
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Remark 6 (a) More formally, in the above definition R is a set of vectors of vectors
of varying lengths. However, by suitably encoding delimiters we shall regard R as
effectively embedded into single vectors of varying lengths.

(b) Although X inherits from R algebraic structure such as addition + and multi-
plication ×, Definition 2(a) of the free group G = (〈X〉,◦) considers X as a plain set
only. In particular, (group-)inversion in G must not be confused with (multiplicative)
inversion: 5 ◦ 1

5 �= 1 = 5 ◦ 5−1 for X = R. This difference may be stressed notation-

ally by writing ‘abstract’ generators xā indexed with real vectors ā; here x−1
5 �= x1/5

holds more intuitively.
(c) Isomorphic (that is, essentially identical) groups 〈X|R〉 ∼= 〈X′|R′〉 may have

different presentations (X,R) and (X′,R′). Even when R = R′, X need not be
unique! Nevertheless we adopt from literature such as [13] the convention of speaking
of “the group 〈X|R〉”, meaning a group with presentation (X,R).

For a BSS-machine to read or write a word w̄ ∈ 〈X〉 = (X ∪ X−1)∗ of course
means to input or output a vector (w1, ε1, . . . ,wn, εn) ∈ (RN × N)n. In this sense,
rules of type (1) which are implicit in the free group are obviously decidable and may
without loss of generality be included in R.

The following are some examples of groups presented in the above way.

Example 7 (a) Every finite or recursive presentation is an algebraic presentation. Its
word problem is BSS-decidable.

(b) The following is the so-called Weil presentation of SL2(R). For each b ∈ R,
write

U(b) :=
(

1 b

0 1

)
, V :=

(
0 1

−1 0

)
,

S(a) := V · U
(

1

a

)
· V · U(a) · V · U

(
1

a

)
∈ SL2(R).

Let X = {xU(b) : b ∈ R} ∪ {XV }. Furthermore let R denote the union of the following
four families of relations (which are easy but tedious to state formally as subsets
of 〈X〉):
SL1: “U(·) is an additive homomorphism”;
SL2: “S(·) is a multiplicative homomorphism”;
SL3: “V 2 = S(−1)”;
SL4: “S(a) · U(b) · S(1/a) = U(ba2)∀a, b”.

According to [12], 〈X|R〉 is isomorphic to SL2(R) under the natural homomorphism.
(c) The following are presentations 〈X|R〉 of (Q,+):

(i) X = {xr : r ∈ Q}, R = {xrxs = xr+s : r, s ∈ Q}.
(ii) X = {xp,q : p,q ∈ Z, q �= 0},

R = {xp,qxa,b = x(pb+aq,qb) : p,q, a, b ∈ Z} ∪ {xp,q = x(np,nq) : p,q,n ∈
Z, n �= 0}.

(iii) Let (bi)i∈I denote an algebraic basis of the Q-vector space R; without loss
to generality 0 ∈ I and b0 = 1. Consider the linear projection P : R → Q,
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∑
i ribi �→ r0 with ri ∈ Q.

X = {xt : t ∈ R}, R = {xtxs = xt+s : t, s ∈ R} ∪ {xt = xP(t) : t ∈ R}.
Case (ii) yields an algebraic presentation, (i) is not even algebraically generated
but (iii) is. The word problem is decidable for (i): e.g., by effective embedding
into (R,+); and so is it for (ii) although not for (iii): xt = 1 ⇔ P(t) = 0 but both
P −1(0) = {∑j∈J bjqj : 0 �∈ J ⊆ I finite, qj ∈ Q} and its complement are totally dis-
connected and uncountable, hence BSS-undecidable.

(d) Any semi-algebraic group is algebraically presented. Here, a semi-algebraic
group is a semi-algebraic subset of some R

n bearing a group structure. The graph of
the group operation is required to be definable (i.e., semi-algebraic) in R

3n. In the
algebraic presentation of such a group we can take X as the group elements and R as
the graph relation.

The first result below shows that the word problem for any algebraically enumer-
ated real group is not harder than the real Halting Problem.

Theorem 8 Let G = 〈X|R〉 denote an algebraically enumerated real group. Then
the associated word problem is BSS semi-decidable.

Proof First, if a Y ⊆ R
∞ is (semi-)decidable, then so is 〈Y 〉. To see this for a given

string w̄ = (y1, . . . , yk) ∈ R
k , consider all 2k−1 partitions of w̄ into non-empty sub-

words. For each subword, (semi-)decide whether it belongs to Y ∪ Y−1. Accept iff,
for at least one partition, all its subwords succeed.

Next, for an input w of the word problem for G we have w̄ ≡ 1 ⇔ w̄ ∈ 〈R〉n, that
is, if and only if

∃n ∈ N∃x̄1, . . . , x̄n ∈ 〈X〉∃r̄1, . . . , r̄n ∈ 〈R〉 :
w̄ = x̄1r̄1x̄

−1
1 · x̄2r̄2x̄

−1
2 · · · x̄nr̄nx̄

−1
n .

(2)

Since both X and R were assumed to be semi-decidable, the same holds for 〈X〉 and
〈R〉. This yields semi-decidability of (2). Indeed, let f,g :⊆ R

∞ → R
∞ be BSS-

computable with 〈X〉 = range(f ) and 〈R〉 = range(g); then it is easy to construct
(but tedious to formalize) from f and g a BSS-computable function on R

∞ ranging
over all n ∈ N, all w̄ ∈ 〈X〉, all x̄1, . . . , x̄n ∈ 〈X〉, and all r̄1, . . . , r̄n ∈ 〈R〉. Compose
its output with the decidable test “w̄ = x̄1r̄1x̄

−1
1 · · · x̄nr̄nx̄

−1
n ?” and, if successful, re-

turn w̄. This constitutes a function on R
∞ with range exactly 〈R〉n. By quantifier

elimination over R the latter is equivalent to semi-decidability of the word problem
in G, see [15]. �

3 Reduction from the Real Halting Problem

This section proves the main result of the paper, the continuous counterpart to
Fact 3(b): The word problem for algebraically presented real groups is in general not
only undecidable in the BSS model but in fact as hard as the real Halting Problem.
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3.1 Basics from Group Theory and Their Presentations

For sake of completeness this subsection briefly recalls some constructions from
group theory and their properties to be used in the next subsection. The familiar
reader can skip this part. For a more detailed exposition as well as proofs of the cited
results we refer to the two textbooks [13, 21].

Here, no (e.g., effectivity) assumptions are made concerning the set of genera-
tors nor relations presenting a group. To start with let us briefly extend the standard
notions of a subgroup and a homomorphism to the setting of presented groups:

Definition 9 A subgroup U of the presented group G = 〈X|R〉 is a tuple (V ,S) with
V ⊆ 〈X〉 and S = R ∩ 〈V 〉. This will be denoted by U = 〈V |RV 〉 or, more relaxed,
U = 〈V |R〉.

A realization of a homomorphism ψ : G → H between presented groups G =
〈X|R〉 and H = 〈Y |S〉 is a mapping ψ ′ : X → 〈Y 〉 whose unique extension to a ho-
momorphism on 〈X〉 maps R-cosets to S-cosets.

A realization of an isomorphism φ is a realization of φ as a homomorphism.

Fact 10 (Nielsen) Let U ⊆ 〈X〉.
(a) Suppose U is finite. Then there exists a finite V ⊆ 〈X〉 such that 〈U 〉〈X〉 = 〈V 〉〈X〉

and V is Nielsen reduced in the sense that it satisfies for all u,v,w ∈ V ∪ V −1:
(N0) u �= 1.
(N1) If uv �= 1, then |uv| ≥ max{|u|, |v|}.
(N2) If uv �= 1 �= vw, then |uvw| > |u| − |v| + |w|
where |u| denotes the length of u ∈ 〈X〉.

(b) Suppose U is Nielsen-reduced. Then u1, . . . , un ∈ U ∪ U−1 with uiui+1 �= 1 im-
plies |u1 · · ·un| ≥ n. In particular the subgroup 〈U 〉〈X〉 of 〈X〉 is again free and
isomorphic to 〈U 〉.

(c) Every subgroup of 〈X〉 is free.

Proof Cf. [13, Sect. I.2]. �

Definition 11 (Free Product) Consider two presented groups G = 〈X|R〉 and H =
〈Y |S〉 with disjoint generators X ∩ Y = ∅—e.g., by proceeding to X′ := X ×
{1}, Y ′ := Y × {2}, R′ := R × {1}, S′ := S × {2}. The free product of G and H is
the presented group

G ∗ H := 〈X ∪ Y |R ∪ S〉.
Similarly for the free product *i∈IGi with Gi = 〈Xi |Ri〉, i ranging over an arbitrary
index set I .

In many situations one wants to identify certain elements of a free product
of groups. These are provided by a basic construction called Higman–Neumann–
Neumann (or shortly HNN) extension, see [10, 13, 21].
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Definition 12 (HNN Extension) Let G = 〈X|R〉, A = 〈V |R〉,B = 〈W |R〉 be sub-
groups of G, and φ′ a realization of an isomorphism between A and B . The Higman–
Neumann–Neumann (HNN) extension of G relative to A,B and φ is the presented
group

〈
G; t |ta = φ(a)t∀a ∈ A

〉 := 〈
X ∪ {t}|R ∪ {

φ′(v̄)t v̄−1t−1 : v̄ ∈ V
}〉

.

G is the base of the HNN extension, t �∈ X is a new generator called the stable letter,
and A and B are the associated subgroups of the extension.

Similarly for the HNN extension 〈G; (ti)i∈I | tia = φi(a)ti∀a ∈ Ai∀i ∈ I 〉 with
respect to a family of isomorphisms φi : Ai → Bi and subgroups Ai,Bi ⊆ G, i ∈ I .

HNN extensions admit simple and intuitive characterizations for a word to be, in
the resulting group, equivalent to 1. These results are connected to some very famous
names in group theory. Proofs can be found, e.g., in [13, Chap. IV] or [21, Chap. 11].

Fact 13 (Higman–Neumann–Neumann) Let G∗ := 〈G; t |ta = φ(a)t∀a ∈ A〉 be an
HNN extension of G. Then, identity g �→ g is an embedding of G into G∗.

Fact 14 (Britton’s Lemma) Let G∗ := 〈G; t |ta = φ(a)t∀a ∈ A〉 be an HNN ex-
tension of G. Consider a sequence (g0, t

ε1, g1, . . . , t
εn , gn) with n ∈ N, gi ∈ G,

εi ∈ {−1,1}. If it contains no consecutive subsequence (t−1, gi, t) with gi ∈ A nor
(t, gj , t

−1) with gj ∈ B , then there holds g0 · tε1 · g1 · · · tεn · gn �= 1 in G∗.

3.2 The Main Result

With the preparations and tools from the previous sections we may now establish the
main result of this work: the existence of an algebraically presented group such that
the real Halting Problem can be reduced to the word problem of that group.

The next corollary reduces in an elementary way the membership problem in a set
to the word problem in a suitably defined group.

Corollary 15 Let X := {xr : r ∈ R},H ⊆ X∞ and let s and t be two further elements
not in X. For an element (xr1, . . . , xrd ) ∈ X∞ coded via r := (r1, . . . , rd) define w̄r

in the free group generated by X and s as

w̄r1,...,rd := x−1
rd

· · ·x−1
r1

· s · xr1
· · ·xrd

.

Now let G be the group generated by X,s, t and presented by relations saying that t

and w̄r commute iff r codes an element in H :

G = 〈
X,s, t |tw̄r = w̄r t ∀r = (r1, . . . , rd) such that (xr1, . . . , xrd ) ∈ H

〉
.

Then in G we have t · w̄r · t−1 · w̄−1
r = 1 if and only if (xr1, . . . , xrd ) ∈ H .

Proof The words w̄r , (xr1, . . . , xrd ) ∈ X∞ are Nielsen-reduced in the free group
〈X,s〉. Thus, the set of all w̄r , r ∈ R

∞ forms a free set in this group. Now the group
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G in the statement is an HNN-extension of 〈X,s〉. According to Britton’s lemma
t · w̄r · t−1 · w̄−1

r = 1 in G if and only if (xr1, . . . , xrd ) ∈ H . �

The corollary holds as well for arbitrary sets X not related to R
∞.

Example 16 If we choose X = {0,1} and H as the classical Halting problem, then
the corollary gives a group G with undecidable word problem. However, this group
is not finitely presented.

Theorem 17 There exists an algebraically presented real group H = 〈X|R〉 such
that the real Halting problem H is BSS-reducible to the word problem in H.

Proof Let H be semi-decided by some constant-free universal BSS Machine M. De-
note by n �→ γn an effective enumeration of all computational paths of M and let
Hn ⊆ H be the set of inputs accepted at path γn. Without loss of generality we can
assign a dimension d(n) to each such path, i.e., Hn ⊆ H ∩ R

d(n). Let G be the group
defined in Corollary 15 with H := H:

G = 〈
X,s, t |tw̄r = w̄r t ∀r = (r1, . . . , rd(n)) such that (xr1, . . . , xrd ) ∈ H

〉
.

The set of rules is semi-decidable. The following construction transforms it into a
decidable set of rules. Take a new generator k, k �∈ {s, t, xr |r ∈ R} and define H as

H = 〈
xr , r ∈ R; s; t; k|k = 1, t · w̄r · t−1 · w̄−1

r kn = 1 ∀n ∈ N,∀r such that

(xr1, . . . , xrd(n)
) ∈ Hn

〉
.

Now in H we have

t · w̄r · t−1 · w̄−1
r = 1 ⇔ t · w̄r · t−1 · w̄−1

r · kn = 1 for an n ∈ N

⇔ (xr1, . . . , xrd(n)
) ∈ Hn for an n ∈ N.

Thus, the word problem in H is at least as hard as the real Halting problem. Finally,
the set of rules defining H is decidable since each Hn is. �

Note that since a universal BSS Machine does not need constants, it follows that
the real Halting Problem H is reducible to the word problem of an algebraically
presented group 〈X|R〉 with X semi-algebraic and R countable unions of sets semi-
algebraic over Q!

3.3 Conclusions and Questions

This note has introduced the class of algebraically presented real groups given as a
quotient group of a free group and a normal subgroup. The free group was defined
through a possibly uncountable set of generators BSS-decidable in some fixed dimen-
sional space; the relations are similarly generated by a BSS-decidable set. We then
considered the word problem for such groups: Given a finite sequence of generators,
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decide whether this word is equivalent (with respect to the relations) to the unit ele-
ment? We believe our results to be an interesting step into the direction of extending
the BSS theory into different areas of mathematics. Many of the known computability
and complexity results in the BSS model are closely related to computational prob-
lems of semi-algebraic sets. Though these play an important role in our approach as
well, the resulting problem is located in the area of computational group theory; its
connection to semi-algebraic geometry is visible in the background only.

The above proof works as well for the BSS model over the complex numbers and
more general structures, for example those defined in [9] and by Poizat [19].

There remain some interesting questions to be investigated further.
In our approach it seems crucial for the relations R to live in R

∞; this holds in
view of the rules defining H in the proof of Theorem 17. They include words w̄r̄ of
length 1 + 2d(n) and thus unbounded in n.

Question 1 Can one restrict the set of relations to some finite-dimensional and de-
finable subset of a suitable R

M?

A positive answer could be seen as a real analogue of the Novikov–Boone theo-
rem.

It would furthermore be nice to have a real counterpart to the famous Higman
Embedding Theorem (Fact 4):

Question 2 Does every semi-algebraically presented real group admit a
(BSS-computable) embedding into an effectively presented one?

Special classes of discrete groups with decidable word problems have been inves-
tigated with respect to the computational complexity of this decision [11, 17]. This
looks interesting to carry over to the reals; for instance in the form of

Question 3 Can we find a class of groups whose word problem is (decidable and)
complete for a certain complexity class like N P R?

This would be interesting in order to extend the yet sparse list of known
N P R-complete problems.

Finally, an entire bunch of interesting questions results from inspecting further
classical undecidability results in the new framework. We close here by just referring
to the survey paper [16] in which a lot of related issues are discussed.
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and insightful remarks helped to improve the paper a lot. In particular, an earlier proof of our main result
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