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1 Introduction

The goal of this paper is to show how to produce a piece of the rigorous bifurcation
diagram of the periodic orbits for an ODE. We study the Rössler system [23], one
of the textbook examples of ODEs generating nontrivial dynamics, for a parameter
range containing two period-doubling bifurcations.

According to the discussion in the Kuzniecov textbook [13, Sect. 2.7], there are
two extremes in studying bifurcations in dynamical systems. The first one, going
back to Poincaré, is to analyze the appearance (branching) of new invariant objects
(equilibria or periodic orbits) from known ones as parameters of the system vary. A
good reference for this approach is the textbook by Chow and Hale [6]. On the other
extreme is the approach going back to Andronov [2] and Thom [25], which is to
study rearrangements (bifurcations) of the whole phase portrait under variations of
parameters. It is apparent that the first approach is necessarily one of the initial steps
in attempting to describe the bifurcations in the Andronov–Thom sense. In fact, in
many-dimensional systems (even for planar maps like the Hénon map) achieving a
complete description of the phase space portrait and its changes appears to be hope-
less in view of the results on the Henon-like maps [4, 18, 27, 28].

While there exists a vast literature on the bifurcation theory—see, for example,
[3, 6, 7, 13] and the references therein, and also a lot of numerical bifurcation dia-
grams for various systems can be found in the literature (see, for example, the refer-
ences in [13]), there are virtually no rigorous results on bifurcations of periodic orbits
for ODEs in dimension three or higher in the situation where the periodic orbit under-
going the bifurcation is not given to us analytically due to some special symmetries of
the system. The basic reason for this is: while numerical experiments and/or normal
form computations may clearly show what is happening (in terms of the bifurcations)
we usually lack any reasonable rigorous estimates about the observed orbits, which
prevents us from turning these observations into rigorous statements. To obtain the
necessary estimates, one needs to integrate the variational equations describing the
partial derivatives with respect to the initial conditions up to order 3 or higher. This
is usually a serious problem for rigorous ODE solvers. It turns out that the naive ap-
proach of applying an ODE solver to the system of variational equations does not
work because the methods dealing with the wrapping effect used in Lohner-type al-
gorithms (the most effective rigorous ODE solvers) [14, 20, 30] break down for such
systems. As a solution to this problem, the Cr -Lohner algorithm was proposed in
[29] and it is used in the present work.

Concerning the content of the paper regarding the bifurcation theory itself, we
were forced to reformulate some well-known theorems to make them amenable to
computer-assisted proofs. It is a common feature of all bifurcation theorems that the
bifurcation point (or rather a candidate) and all necessary data like the spectrum and
maybe some higher order terms are always given as part of the assumptions. But in a
nonlinear system, we usually do not have these data explicitly. In fact, the existence of
the bifurcation point has to be proved by looking at the behavior of the system in some
neighborhood. This forces us to reformulate some bifurcation theorems in a semi-
local way and we have to investigate properties of solutions of implicit equations
that are degenerate (due to the presence of bifurcations). This is the reason why, from
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various approaches to bifurcations, we chose the one developed in [6], which is based
on the Lyapunov–Schmidt reduction.

In our work, we focus on the period-doubling bifurcation of periodic orbits for the
Rössler equations. Indeed, we study the Poincaré map for the Rössler system. The
paper is organized as follows: In Sects. 3, 4, and 5, we discuss the main tools used to
produce a validated piece of the bifurcation diagram containing the period-doubling
bifurcations. In the remaining sections, we give some details concerning our results
for the Rössler system.

2 Basic Definitions

By N, Z, Q, R, C we denote the set of natural, integer, rational, real, and complex
numbers, respectively. Z− and Z+ are the negative and positive integers, respectively.
By S1, we will denote the unit circle on the complex plane.

For R
n, we will denote the norm of x by ‖x‖ and if the formula for the norm is

not specified in some context, then it means that one can use any norm there. For
x0 ∈ R

s , let Bs(x0, r) = {z ∈ R
s | ‖x0 − z‖ < r} and Bs = Bs(0,1).

Let A : R
n → R

n be a linear map. By Sp(A), we denote the spectrum of A, which
is the set of λ ∈ C such that there exists x �= C

n \ {0}, such that Ax = λx.
For a map f : X → Y , by dom(f ) we will denote the domain of f . For a map

F : X → X, we will denote the fixed point set by Fix(F,U) = {x ∈ U | F(x) = x}.
Let x = (x1, . . . , xn) ∈ R

n. By πi we will denote the projection on the ith coor-
dinate, i.e., πi(x) = xi . Analogously for any multi-index α = (i1, i2, . . . , ik) ∈ Z

k+,

we define πα(x) = (xi1, xi2, . . . , xik ). Sometimes the points in the phase space will
have coordinates denoted by different letters, for example, z = (ν, x, y); then we will
index the projection by the names of variables, i.e., π(ν,x)(z) = (ν, x) etc.

Definition 1 Let f : R
n ⊃ dom(f ) → R

n be C1. Let z0 ∈ dom(f ). We say that z0
is a hyperbolic fixed point for f iff f (z0) = z0 and Sp(Df (z0)) ∩ S1 = ∅, where
Df (z0) is the derivative of f at z0.

Definition 2 Consider a map f : X ⊃ dom(f ) → X. Let x ∈ X. Any sequence
{xk}k∈I , where I ⊂ Z is a set containing 0 and for any l1 < l2 < l3 in Z if l1, l3 ∈ I ,
then l2 ∈ I , such that

x0 = x, f (xi) = xi+1, for i, i + 1 ∈ I

will be called an orbit through x. If I = Z− ∪ {0}, then we will say that {xk}k∈I is a
full backward orbit through x.

Definition 3 Let X be a topological space and let the map f : X ⊃ dom(f ) → X be
continuous.

Let Z ⊂ R
m, z0 ∈ Z, Z ⊂ dom(f ). We define

Ws
Z(z0, f ) =

{
z | ∀n ≥ 0 f n(z) ∈ Z, lim

n→∞f n(z) = z0

}
,
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Wu
Z(z0, f ) =

{
z | ∃{xn} ⊂ Z a full backward orbit through z, such that

lim
n→−∞xn = z0

}
,

Ws(z0, f ) =
{
z | lim

n→∞f n(z) = z0

}
,

Wu(z0, f ) =
{
z | ∃{xn} a full backward orbit through z, such that

lim
n→−∞xn = z0

}
,

Inv+(Z,f ) = {z | ∀n≥0 f n(z) ∈ Z
}
,

Inv−(Z,f ) = {z | ∃{xn} ⊂ Z a full backward orbit through z
}
,

Inv(Z,f ) = Inv+(Z,f ) ∩ Inv−(Z,f ).

If f is known from the context, then we will usually drop it from the notation and
use Ws(z0), Ws

Z(z0), etc. instead.

Definition 4 Let P : J × R
n → R

n, where J ⊂ R. For each ν ∈ J , we define Pν =
P(ν, ·). We say that Pν has a period-doubling bifurcation at (ν0, x0) iff there exists
V = [ν1, ν2] × X ⊂ J × R

n, such that the following conditions are satisfied:

• (ν0, x0) ∈ intV , Pν0(x0) = x0.
• There exists a continuous function xfp : [ν1, ν2] → intX, such that

Fix(Pν,X) = {xfp(ν)
}
.

• There exist two continuous curves ci : [ν0, ν2] → intX, i = 1,2, such that for
ν ∈ [ν0, ν2] there holds

c1(ν0) = c2(ν0) = xfp(ν0),

c1(ν) �= c2(ν), ν �= ν0,

Pν

(
c1(ν)
) = c2(ν), Pν

(
c2(ν)
)= c1(ν),

Fix
(
P 2

ν ,X
) = {c1(ν), c2(ν), xfp(ν)

}
.

• The dynamics: for ν ≤ ν0

Inv(X,Pν) = {xfp(ν)
}
.

For ν > ν0, the maximal invariant set in X Inv(X,Pν) is equal to

Wu
X

(
xfp(ν),P

)∩
(

Ws
X

(
c1(ν),P 2

ν

)∪ Ws
X

(
c2(ν),P 2

ν

))

and is a one-dimensional connected manifold with boundary points c1(ν), c2(ν).

The objects appearing in the above definition are illustrated in Fig. 1.
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Fig. 1 (Color online) The
dynamics in a small
neighborhood of the bifurcation
point as in Definition 4. The
maximal invariant set for a
certain parameter value ν > ν0
is shown in blue (when in color).
The arrows show the dynamics
in a neighborhood of the
bifurcation point

3 Derivation of the Conditions for the Occurrence
of the Period-Doubling Bifurcation

The goal of this section is to present a set of conditions, which guarantee the existence
of a period-doubling bifurcation for a given map, and which can be verified using
rigorous numerics. The main tools used are the Lyapunov–Schmidt reduction [6] and
the implicit function theorem.

Assume that we have a parameter dependent map z �→ P(ν, z), which apparently
undergoes period-doubling bifurcation as the parameter ν changes. This means that
a period-doubling bifurcation is numerically observed, but we do not assume that it
exists. Let zfp(ν) be a fixed point curve for P . We assume that it is of the class Ck ,
with k ≥ 3, and we can compute it and its all derivatives.

To prove the existence of the period-doubling bifurcation, we proceed as in [6].
First, we perform the Lyapunov–Schmidt reduction to obtain a function G : R × R ⊃
dom(G) → R, whose zeros correspond to the fixed points and period two points
of Pν then we try to describe the solution set for the equation G(ν,x) = 0. Next,
through some additional computation of eigenvalues, we will be able to decide about
the hyperbolicity of bifurcating periodic orbits.

The basic steps of the Lyapunov–Schmidt reduction for P 2 are:

• We choose good coordinates (x, y) ∈ R × R
n−1. It is desirable to choose x in the

approximate bifurcation direction (in the eigendirection corresponding to the −1
eigenvalue of DPν at the bifurcation point).

• Let Z = [ν1, ν2] × [x1, x2] and Y ⊂ R
n−1 be such that the apparent bifurcation

point (ν0, x0, y0) belongs to the interior of Z × Y .
• We need to show that there exists a function y(ν, x), defined on Z with values in

Y , such that

y − πy

(
P 2

ν (x, y)
)= 0 for (ν, x, y) ∈ Z × Y iff y = y(ν, x). (1)
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• The bifurcation function G : Z → R is defined by

G(ν,x) = x − πx

(
P 2

ν

(
x, y(ν, x)

))
. (2)

Now, we have to find the solution set of the following equation:

G(ν,x) = 0, (ν, x) ∈ Z. (3)

Let xfp(ν) = πx(zfp(ν)) be the x-coordinate of the fixed point curve. We assume
that [ν1, ν2] ⊂ dom(xfp) and xfp([ν1, ν2]) ⊂ [x1, x2]. Therefore, we have

G
(
ν, xfp(ν)

)= 0. (4)

The idea of solving (3) goes as follows: We introduce a new bifurcation function

g(ν, x) = G(ν,x)

x − xfp(ν)
(5)

and then we solve equation g(ν, x) = 0 by the implicit function theorem.
Observe that expression (5) defining g(ν, x) contains zero in the denominator.

Moreover, usually the exact value of xfp(ν) is not known. Therefore, the formula
(5) appears to be useless in rigorous computations. The next lemma will give us an
integral representation of g, which will not contain any singularities and, therefore, it
is well suited for rigorous numerics.

Lemma 1 Assume F : R
n → R is C1. Let x, y ∈ R

n. Then

F(x) − F(y) =
∫ 1

0
DF
(
t (x − y) + y

)
dt · (x − y).

Hence, we can define equivalently g : [ν1, ν2] → [x1, x2] by

g(ν, x) =
∫ 1

0

∂G

∂x

(
ν, t
(
x − xfp(ν)

)+ xfp(ν)
)

dt. (6)

We obtain

G(ν,x) = (x − xfp(ν)
)
g(ν, x).

Therefore, we have to determine the solution set of the following equation:

g(ν, x) = 0 (ν, x) ∈ Z, (7)

where g is defined in (6).
In the case of a period-doubling bifurcation, we expect solutions of (7) to form a

regular curve. The following lemma gives a set of conditions, which implies this fact.

Lemma 2 Let Z = [ν1, ν2] × [x1, x2]. Assume that g : Z → R is a Ck-function,
k ≥ 2.
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Assume that

∂2g

∂x2
(Z) > 0, (8)

∂g

∂ν
(Z) < 0, (9)

g(ν1, x) > 0, for x ∈ [x1, x2], (10)

g(ν2, x1) > 0, (11)

g(ν2, x2) > 0, (12)

g(ν2, x0) < 0, for some x0 ∈ (x1, x2). (13)

Then there exist x̄1, x̄2, such that x1 < x̄1 < x0 < x̄2 < x2 and there exists a function
ν : [x̄1, x̄2] → [ν1, ν2] of class Ck , such that

{
(ν, x) ∈ Z | g(ν, x) = 0

}= {(ν(x), x
)
, x ∈ [x̄1, x̄2]

}
.

Moreover, there exists x̄0 ∈ (x̄1, x̄2) such that

ν′(x) > 0, x ∈ (x̄0, x̄2),

ν′(x) < 0, x ∈ (x̄1, x̄0),

ν(x) > ν1, x ∈ [x̄1, x̄2],
ν(x̄1) = ν(x̄2) = ν2.

Proof Observe first that from condition (8) it follows that for any given ν ∈ [ν1, ν2]
and any c ∈ R the equation

g(ν, x) = c,

has at most two solutions in [x1, x2].
From this observation and (11–13), it follows that there exist x̄1 and x̄2, such that

x1 < x̄1 < x0 < x̄2 < x2,{
x ∈ [x1, x2] | g(ν2, x) = 0

} = {x̄1, x̄2},
g(ν2, x) > 0, for x < x̄1 or x > x̄2,

g(ν2, x) < 0, for x ∈ (x̄1, x̄2).

From the above conditions and conditions (9) and (10), it follows immediately that
there exists a function ν : [x̄1, x̄2] → [ν1, ν2], such that

{
(ν, x) ∈ Z | g(ν, x) = 0

}= {(ν(x), x
)
, x ∈ [x̄1, x̄2]

}
.

By the implicit function theorem, the function ν(x) is of class Ck .
There remains for us to show the existence of a unique minimum of ν(x) and its

monotonicity properties.
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Since ν(x̄1) = ν(x̄2), there exists a critical point x̄0 ∈ (x̄1, x̄2). Let y ∈ (x̄1, x̄2) be
any critical point of ν(x), i.e ν̇(y) = 0. We will show that ν̈(y) > 0.

By differentiating twice equation g(ν(x), x) = 0, we obtain

∂2g

∂ν2

(
ν(x), x

)(
ν̇(x)
)2 + 2

∂2g

∂ν∂x

(
ν(x), x

)
ν̇(x)

+ ∂g

∂ν

(
ν(x), x

)
ν̈(x) + ∂2g

∂x2

(
ν(x), x

)= 0.

Therefore, for y, we have

0 = ∂g

∂ν

(
ν(y), y

)
ν̈(y) + ∂2g

∂x2

(
ν(y), y

)
,

ν̈(y) = −
(

∂g

∂ν

(
ν(y), y

))−1
∂2g

∂x2

(
ν(y), y

)
> 0.

We see that all critical points are strong local minima. This implies that the set of
critical points consists of just one point. �

The model for Lemma 2 is given by the function g1(ν, x) = x2 − ν in the neigh-
borhood of the point (0,0). By changing signs of ν and g, we obtain the following
model functions: g2(ν, x) = ν + x2, g3(ν, x) = ν − x2 and g4(ν, x) = −ν − x2 for
which we can state analogous lemmas.

Now we can formulate a lemma based on the implicit function theorem addressing
the assumptions implying intersection of curves, solving equation G(ν,x) = 0, where
G arises through the Lyapunov–Schmidt reduction in the context of a period-doubling
bifurcation.

Lemma 3 Let Z = [ν1, ν2]× [x1, x2]. Assume that G : Z → R is a Ck-function, with
k ≥ 3.

Assume that there exists a Ck-function xfp : [ν1, ν2] → (x1, x2), such that
G(ν,xfp(ν)) = 0 for ν ∈ [ν1, ν2].

Assume that

∂3G

∂x3
(Z) > 0, (14)

∂2G

∂x∂ν
(Z) + ∂2G

∂x2
(Z)x′

fp

([ν1, ν2]
) · [0,1] < 0. (15)

We assume that the following conditions are satisfied for some x1 ≤ δ1 < xfp(ν1) <

δ2 ≤ x2:

G
(
ν1, [δ2, x2]

)
> 0, G

(
ν1, [x1, δ1]

)
< 0, (16)

∂G

∂x

(
ν1, [δ1, δ2]

)
> 0, (17)

G(ν2, x2) > 0, G(ν2, x1) < 0, (18)
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∂G

∂x

(
ν2, xfp(ν2)

)
< 0. (19)

Then there exist x1 < x̄1 < x̄2 < x2, such that xfp(ν2) ∈ (x̄1, x̄2), and a function
ν : [x̄1, x̄2] → [ν1, ν2] of class Ck−1, such that

{
(ν, x) ∈ Z | G(ν,x) = 0

}= Cfp ∪ Cper

= {(ν, xfp(ν)
)
, ν ∈ [ν1, ν2]

}∪ {(ν(x), x
)
, x ∈ [x̄1, x̄2]

}
(20)

and the intersection of curves Cfp and Cper contains exactly one point.
Moreover, there exists x̄0 ∈ (x̄1, x̄2) such that

ν′(x) > 0, x ∈ (x̄0, x̄2),

ν′(x) < 0, x ∈ (x̄1, x̄0),

ν(x) > ν1, x ∈ [x̄1, x̄2],
ν(x̄1) = ν(x̄2) = ν2.

Proof For the proof, we want to apply Lemma 2. To this end, we define g as in (6).

We start by showing that (14) and (15) imply that ∂2g

∂x2 (Z) > 0 and ∂g
∂ν

(Z) < 0,
respectively.

We have

∂2g

∂x2
(ν, x) =

∫ 1

0

∂3G

∂x3

(
ν, t
(
x − xfp(ν)

)+ xfp(ν)
)
t2 dt.

Hence, from (14), we obtain immediately that ∂2g

∂x2 (Z) > 0.

∂g

∂ν
(ν, x) =

∫ 1

0

(
∂2G

∂x∂ν

(
ν, t
(
x − xfp(ν)

)+ xfp(ν)
)

+ ∂2G

∂x2

(
ν, t
(
x − xfp(ν)

)+ xfp(ν)
)
(1 − t)x′

fp(ν)

)
dt

∈ ∂2G

∂x∂ν
(Z) + ∂2G

∂x2
(Z)x′

fp

([ν1, ν2]
) · [0,1].

This and (15) imply that ∂g
∂ν

(Z) < 0.
To obtain condition (10), we need to split the interval [x1, x2] into three parts

[x1, δ1], [δ1, δ2], and [δ2, x2], so that in the middle part we have the zero of G(ν1, ·),
and we need to use there the integral representation of g. On the remaining parts,
it is enough to verify the signs of G. Hence, we see that conditions (16–17) im-
ply (10).

The remaining assumptions in Lemma 2 follow easily from (18–19). Now, we use
Lemma 2 to obtain the function ν(x) and the condition (20).
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There remains for us to show that the curves Cfp and Cper, defined by (20), in-
tersect in exactly one point. Observe that these curves intersect, because the curve
Cfp cuts Z into two pieces and the end points of the second curve belong to different
components, which follows directly from the fact that xfp(ν2) ∈ (x̄1, x̄2).

Now we turn to the question of the uniqueness of the intersection point.
Let α,β ∈ [ν1, ν2], α < β . For t ∈ [0,1], let νt = tα + (1− t)β and xt = txfp(α)+

(1 − t)xfp(β). Observe that for each t ∈ [0,1] the point (νt , xt ) belongs to Z. Let

θ ∈ (α,β) be such that x′
fp(θ) = xfp(α)−xfp(β)

α−β
. We have

∂G

∂x

(
α,xfp(α)

)− ∂G

∂x

(
β,xfp(β)

)

=
∫ 1

0

(
∂2G

∂x∂ν
(νt , xt )(α − β) + ∂2G

∂x2
(νt , xt )

(
xfp(α) − xfp(β)

))
dt

=
(∫ 1

0

(
∂2G

∂x∂ν
(νt , xt ) + ∂2G

∂x2
(νt , xt )x

′
fp(θ)

)
dt

)
(α − β)

∈
(

∂2G

∂x∂ν
(Z) + ∂2G

∂x2
(Z)x′

fp

([ν1, ν2]
) · [0,1]

)
(α − β).

Therefore, from the above computations and the assumption (15), it follows that the
function ν �→ ∂G

∂x
(ν, xfp(ν)) is injective on [ν1, ν2]. Observe that from (6) it follows

that if (ν, xfp(ν)) ∈ Cfp ∩ Cper, then ∂G
∂x

(ν, xfp(ν)) = 0, so the intersection of Cfp and
Cper contains at most one point. �

Observe that in the above lemma we cannot make the claim that the intersection
point of the curves which solve equation G(ν,x) = 0 is exactly in (ν(x̄0), x̄0). This
can be easily seen in the following example. Let G(ν,x) = (x − 1)(x2 − ν), x1 =
−2, x2 = 2, ν1 = −1 and ν2 = 1. It is easy to see that all assumptions of Lemma 3
are satisfied, but the intersection of the curves (ν(x) = x2, x) and (ν, x(ν) = 1) is
not (0,0). On the other hand, in the context of a period-doubling bifurcation, the
intersection point is (ν(x̄0), x̄0). But we cannot infer such a conclusion from Lemma 3
and we need to use the information about the dynamical origin of the function G.
Now, we state the theorem which addresses this issue.

Theorem 4 Let Pν : R
n ⊃ dom(Pν) → R

n, where ν ∈ I ⊂ R, be a one-parameter
family of maps of class Ck (k ≥ 3), both with respect to the parameter ν and x ∈ R

n.
Let Z = [ν1, ν2] × [x1, x2] and Y ⊂ R

n−1 be the closure of an open set, such that
[x1, x2] × Y ⊂ dom(P 2

ν ) for ν ∈ [ν1, ν2]. Assume that

A1 For any (ν, x) ∈ Z there exists a unique y = y(ν, x) ∈ intY , such that y −
πy(P

2
ν (x, y)) = 0. Moreover, we assume that y : Z → Y is Ck .

A2 There exists a Ck-function xfp : [ν1, ν2] → (x1, x2), such that for ν ∈ [ν1, ν2]
there holds

Fix
(
Pν, [x1, x2] × Y

)= {(xfp(ν), y
(
ν, xfp(ν)

))}
. (21)
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A3 Let

G(ν,x) = x − πx

(
P 2

ν

(
x, y(ν, x)

))
, for (ν, x) ∈ Z.

Assume that G and xfp satisfy assumptions of Lemma 3 and let x̄1, x̄2, x̄0 and
ν : [x̄1, x̄2] → [ν1, ν2] be as in the assertion of Lemma 3.

Then the fixed point set of P 2
ν for ν ∈ [ν1, ν2], i.e.,

{
(ν, x, y) ∈ Z × Y | P 2

ν (x, y) = (x, y)
}

is equal to the union of the fixed point set for Pν

Per1 = {(ν, xfp(ν), y
(
ν, xfp(ν)

)) | ν ∈ [ν1, ν2]
}

and the period-2 points set

Per2 = {(ν(x), x, y
(
ν(x), x

)) | x ∈ [x̄1, x̄2]
}
.

For any point (ν(x), x, y(ν(x), x)) ∈ Per2 the point (ν(x),Pν(x)(x, y(ν(x), x)))

also belongs to Per2, and for ξ ∈ (ν(x̄0), ν2] the set Per2 ∩{ν = ξ} is a period-2 orbit
for Pξ .

Sets Per1 and Per2 have exactly one common point (νb, zb) given by

(νb, zb) = (ν(x̄0),
(
x̄0, y
(
ν(x̄0), x̄0

)))
.

Moreover, the projections of Per1 and Per2 onto the (ν, x)-plane have exactly one
common point (νb, xb) given by

(νb, xb) = (ν(x̄0), x̄0
)
.

Proof From the construction of the bifurcation function G and our assumptions, we
immediately obtain that

{
(ν, x, y) ∈ Z × Y | P 2

ν (x, y) = (x, y)
}= Per1 ∪ Per2.

From Lemma 3, we know that projections onto the (ν, x)-plane of sets Per1 and
Per2 intersect in exactly one point, say (ν̄, x̄). Observe that the point (ν̄, x̄, y(ν̄, x̄))

belongs to the intersection of Per1 and Per2.
We need to show that (ν̄, x̄) = (ν(x̄0), x̄0). We will show that the function x �→

ν(x) has a local extremum at x̄. This will imply that x̄ = x̄0, because by Lemma 3 x̄0
is the only local extremum of ν(x).

We reason by contradiction. Let us assume that ν′(x̄) �= 0. Let U = Uν ×Ux ×Uy ,
where Uν ⊂ [ν1, ν2], Ux ⊂ [x1, x2] and Uy ⊂ Y , be a neighborhood of (ν̄, x̄, y(ν̄, x̄)),
such that

Pν(x, y) ∈ int
([x1, x2] × Y

)
, for (ν, x, y) ∈ U,

ν(a) �= ν(b), for a, b ∈ Ux and a �= b.
(22)

Such U exists because (x̄, y(ν̄, x̄)) is a fixed point for Pν̄ and (x̄, y(ν̄, x̄)) ∈
int([x1, x2] × Y).
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Let us take v ∈ Ux , such that v �= x̄. Then (v, y(ν(v), v)) is not a fixed point for
Pν(v). Points (v, y(ν(v), v)) and Pν(v)(v, y(ν(v), v)) are different. Both belong to Z

and are period-2 points for Pν(v). Therefore, they both belong to Per2 and

ν
(
πxPν(v)

(
v, y
(
ν(v), v

)))= ν(v). (23)

Observe that from the continuity, it follows that

lim
v→x̄

πxPν(v)

(
v, y
(
ν(v), v

))= πxPν(x̄)

(
x̄, y
(
ν(x̄), x̄

))= x̄.

From the above observation, it follows that for v sufficiently close to x̄ the points
v and πxPν(v)(v, y(ν(v), v)) are in Ux . But in this situation, condition (23) contra-
dicts (22). This proves that x̄ = x̄0.

It remains to prove that for any point (ν(x), x, y(ν(x), x)) ∈ Per2 the point
(ν(x),Pν(x)(x, y(ν(x), x))) also belongs to Per2 and for ξ ∈ (ν(x̄0), ν2] the set
Per2 ∩ {ν = ξ} is a period-2 orbit for Pξ .

By Lemma 3, Per2 is the union of two curves u, l : [ν(x̄0), ν2] → Z ×Y , such that

u
(
ν(x̄0)
) = l
(
ν(x̄0)
)= (x̄0, y

(
ν(x̄0), x̄0

))
, (24)

πxu(ν2) = x̄2, πxl(ν2) = x̄1, (25)

dπx(u(ν))

dν
> 0,

dπx(l(ν))

dν
< 0. (26)

Let us consider the set

K = {ν ∈ [ν(x̄0), ν2
] ∣∣ for ν(x̄0) ≤ ξ ≤ ν holds Pξ

(
u(ξ)
)= l(ξ)

}
. (27)

Observe that ν(x̄0) ∈ K , because l(ν(x̄0)) = u(ν(x̄0)) is the fixed point for Pν(x̄0) ∈
int([x1, x2]×Y). Hence, for ξ > ν(x̄0), ξ close to ν(x̄0) we have l(ξ) ∈ int([x1, x2]×
Y) and Pξ (u(ξ)) ∈ int([x1, x2] × Y). Therefore, Pξ (u(ξ)) = l(ξ) and ξ ∈ K , because
Pξ (u(ξ)) is a period-2 point in int([x1, x2]×Y) different from u(ξ). Observe that the
same argument applies to ξ = supK . Therefore, K = [ν(x̄0), ν2]. �

3.1 Hyperbolicity of Bifurcating Solutions

The Lyapunov–Schmidt projection does not give any direct information about the dy-
namical character of the bifurcating objects. The required information concerning the
hyperbolicity is of course contained in the spectra of DPν and DP2

ν and its derivatives.
Below, we present a lemma addressing this issue.

Lemma 5 Assume that Pν : R
n → R

n for ν ∈ [ν1, ν2] satisfies all assumptions of
Theorem 4 and in the sequel we will use all the notation introduced there.

Let zfp(ν) = (xfp(ν), y(ν, xfp(ν))).

Fixed points: Assume that there exists ε > 0, such that for all ν ∈ [ν1, ν2] there holds

Sp
(
DPν

(
zfp(ν)
))= Aν ∪ Bν ∪ {λ(ν)

}
,
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where λ(ν) ∈ R has multiplicity one, Aν ⊂ {α ∈ C, |α| < 1 − ε} and Bν ⊂
{β ∈ C, |β| > 1 + ε}. Moreover, we assume that

λ(ν1) ∈ (−1,1), (28)

λ(ν2) < −1, (29)

dλ

dν

(
zfp(ν)
)
< 0, ν ∈ [ν1, ν2]. (30)

Then the fixed points for Pν on curve zfp(ν) are hyperbolic for ν ∈ [ν1, ν2] \
{ν(x̄0)} and

dimWu
(
zfp(ν

−),Pν−
)+ 1 = dimWu

(
zfp(ν

+),Pν+
)

for any ν1 ≤ ν− < ν(x̄0) < ν+ ≤ ν2.

Period-2 points: Assume that there exists ε > 0, such that on the Per2 curve (i.e., for
x ∈ [x̄1, x̄2]) there holds

Sp
(
DP2

ν(x)

(
x, y
(
ν(x), x

)))= Ax ∪ Bx ∪ {γ (x)
}

where γ (x) ∈ R has multiplicity one, Ax ⊂ {α ∈ C, |α| < 1 − ε} and Bx ⊂ {β ∈
C, |β| > 1 + ε}. Moreover, we assume that

d2γ

dx2
(x) < 0, x ∈ [x̄1, x̄2], (31)

0 < γ (x̄1) < 1. (32)

Then for x ∈ [x̄1, x̄2]\{x̄0} the period two points zd(x) = (x, y(ν(x), x)) for Pν(x)

are hyperbolic and

γ (x̄0) = 1,

0 < γ (x) < 1,

dimWs
(
zd(x),P 2

ν(x)

) = dimWs
(
zfp(ν

−),Pν−
)

for any ν1 ≤ ν− < ν(x̄0) and x ∈ [x̄1, x̄2] \ {x̄0}.

Proof Let us consider first the fixed points part. From conditions (28–30), it follows
that there exists a unique ν̄ ∈ [ν1, ν2], such that λ(ν̄) = −1. We will show that ν̄ =
νb(= ν(x̄0)).

We reason by contradiction. Assume that λ(νb)) �= −1; then for some small inter-
val I containing νb in its interior, all the fixed points zfp(ν) will be hyperbolic. There-
fore, there will be no period two points for Pν for ν ∈ I in some small neighborhood
of the curve (ν, zfp(ν)). But this contradicts the fact (see Theorem 4) that (νb, zb) is
the intersection point of the fixed point branch with the period-two branch. Hence,
λ(ν) = −1 for ν ∈ [ν1, ν2] iff ν = νb . Moreover, by conditions (28, 30) λ(ν) < −1
for ν2 ≥ ν > νb = ν(x̄0) and λ(ν) ∈ (−1,1) for ν1 ≤ ν < νb . This finishes the proof
of the fixed points part of the lemma.
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For the proof of the second part, observe that at the bifurcation point there holds

λ
(
ν(x̄0)
)= −1, γ (x̄0) = λ

(
ν(x̄0)
)2 = 1. (33)

We will argue that

dγ

dx
(x̄0) = 0. (34)

From Theorem 4, it follows that for v1 > x̄0 and v1 − x̄0 are sufficiently small. The
point z2 = Pν(v1)(v1, y(ν(v1), v1)) also belongs to the curve Per2 and its x-projection
is converging to x̄0 for v1 → x̄0. Let v2 = πxz2.

We have

v2 < x̄0 < v1, γ (v2) = γ (v1). (35)

This implies (34).
Condition (31) and (34) imply that at x̄0 the function γ (x) achieves a maximum

and since γ (x̄1) = γ (x̄2) we see that

γ (x) ∈ (0,1) for x ∈ [x̄1, x̄2] \ {x̄0}. (36)

From the above observation, it follows that the number of eigenvalues inside the unit
circle is the same for the fixed points for ν < ν(x̄0) and the period-2 orbits. �

4 Continuation

To apply the tools described in Sect. 3 (in the part regarding the existence of the
Lyapunov–Schmidt reduction), we need to prove the existence and uniqueness (lo-
cally) of a solution of the equation of the form f (a, y) = 0 for a given a, where
y ∈ R

n and a is a parameter. Similarly, when continuing the fixed-point curve or
period-2 point curve, we have to solve the existence and the local uniqueness of the
solution of x − P i(a, x) = 0, where a is the parameter. It turns out that both of the
above mentioned tasks can be handled by the same tools.

In this section, we will discuss such tools; the first one consists of classical inter-
val analysis tools: the interval Newton method [1, 17, 19] and the Krawczyk method
[1, 12, 19], which can be seen as clever interval versions of the standard Newton
method. These methods work very efficiently in the situation where the solution
sought is well isolated from other solutions and it requires C1-estimates only. The
second approach, which is based on the implicit function theorem deals with the sit-
uation where we are close to the bifurcation point and, therefore, there are several
solutions close to one another, as in the case of period-doubling, when we have the
fixed point and period-two points in a small neighborhood.

4.1 Two Methods for Proving the Existence of Zeros for a Map

Let A ⊂ R
n. By [A]I , we will denote an interval enclosure of the set A, i.e., the

smallest set of the form [A]I = [a1, b1] × · · · × [an, bn], such that A ⊂ [A]I , where
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ai, bi ∈ R
n ∪ {±∞}. By an interval matrix M, we mean a subset of R

n×n such that
[M]I = M . The inverse of an interval matrix M is defined by

M−1 = [C−1 : C ∈ M
]
I

provided each C ∈ M is invertible.

Theorem 6 (Interval Newton Method [1, 17, 19]) Let X ⊂ R
n be a convex, compact

set, let f : X → R
n be smooth and fix a point x ∈ X. Let us denote by

N(f,X,x) = [x − [Df (X)
]−1
I

f (x)
]
I

(37)

the Interval Newton Operator for a map f on the set X with fixed x ∈ X. Then

• If N(f,X,x) ⊂ intX then the map f has a unique zero in X. Moreover, if x∗ is
this unique zero of f in X, then x∗ ∈ N(f,X,x).

• If N(f,X,x) ∩ X = ∅, then the map f has no zeros in X.

Theorem 7 (Interval Krawczyk Method [1, 12, 19]) Let X ⊂ R
n be a convex, com-

pact set, let f : X → R
n be smooth and fix a point x ∈ X. Let C ∈ R

n×n be an
isomorphism. Let us denote by

K(f,C,X,x) = [x − Cf (x) + (Id−C · [Df (X)
]
I

)
(X − x)

]
I

(38)

the Interval Krawczyk Operator for a map f on the set X with fixed x ∈ X and matrix
C. Then

• If K(f,C,X,x) ⊂ intX, then the map f has a unique zero in X. Moreover, if x∗
is this unique zero of f in X, then x∗ ∈ K(f,C,X,x).

• If K(f,C,X,x) ∩ X = ∅, then the map f has no zeros in X.

4.2 Continuation Close to the Bifurcation Point

The next lemma gives us a tool for extending the curves of period-two points further
from the bifurcation point. Schematically, the situation is shown in Fig. 2.

Lemma 8 Let X = [x1, x2]. Assume fν : R × R
n−1 ⊃ X × Y → R

n, ν ∈ [ν1, ν2] is a
Ck function with respect to both its argument and the parameter, with k ≥ 3, such that

1. For ν ∈ [ν1, ν2], there exists a unique fixed point (xfp(ν), yfp(ν)) for fν in X × Y .
2. For all (ν, x) ∈ [ν1, ν2]×X, there exists a unique y(ν, x) ∈ intY solving equation

y − πy(f
2
ν (x, y)) = 0 and the map y : [ν1, ν2] × X → Y is of class Ck .

3. The map G(ν,x) = x − πx(f
2
ν (x, y(ν, x))) satisfies

∂3G

∂x3
(ν, x) > 0, for ν ∈ [ν1, ν2], x ∈ X, (39)

G(ν,x1) < 0, G(ν, x2) > 0, for ν ∈ [ν1, ν2], (40)

∀ν ∈ [ν1, ν2] ∃x− ∈ (xfp(ν), x2
)

G(ν,x−) < 0, (41)

∀ν ∈ [ν1, ν2] ∃x+ ∈ (x1, xfp(ν)
)

G(ν,x+) > 0. (42)
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Fig. 2 Location of the objects
which appear in Lemma 8

Then there exist two Ck curves c1, c2 : [ν1, ν2] → R
n such that for ν ∈ [ν1, ν2] there

holds πx(c1(ν)) < xfp(ν) < πx(c2(ν)) and ci(ν) is a period two point for fν , i = 1,2.
Moreover, if for some ν0 ∈ {ν1, ν2} there holds fν0(c1(ν0)) = c2(ν0) or fν0(c2(ν0)) =

c1(ν0), then for all ν ∈ [ν1, ν2]

fν

(
c1(ν)
)= c2(ν), fν

(
c2(ν)
)= c1(ν). (43)

Proof The second assumption and (39) imply that for a fixed ν the map f 2
ν has at

most three fixed points in X × Y . From the first assumption, we know that fν has a
unique fixed point (xfp(ν), yfp(ν)) in X × Y . Therefore, any zero of G(ν, ·) which is
different from (ν, xfp(ν)) corresponds to a period-two point of fν . From the conti-
nuity of G and from (40–42), it follows that G has one zero in each of the intervals
x1

per(ν) ∈ (x1, xfp(ν)) and x2
per(ν) ∈ (xfp(ν), x2). It is easy to see that the functions

xi
per are continuous for i = 1,2. We set ci(ν) = (xi

per(ν), y(ν, xi
per(ν)).

We will show the smoothness of xi
per, which together with the assumption that

y(x, ν) is Ck implies the smoothness of ci . It is enough to show that

∂G

∂x

(
ν, xi

per(ν)
) �= 0,

because then we can apply the implicit function theorem to obtain the required dif-
ferentiability. Let us fix ν ∈ [ν1, ν2]. Observe that condition (39) implies that for any
fixed ν the function x �→ ∂G

∂x
(ν, x) has at most two zeros in [x1, x2]. From the remain-

ing assumptions, it is clear that on the intervals [x1, xfp(ν)] and [xfp(ν), x2] the func-
tion x �→ G(ν,x) has a strictly positive maximum and a strictly negative minimum,
respectively. Therefore, these extremal points are zeros of ∂G

∂x
(ν, x) and obviously

they are different from the points xi
per(ν), which are zeros of G(ν, ·). Hence, we have

shown that ∂G
∂x

(ν, xi
per(ν)) �= 0.

Assume that ν0 = ν1 (the other case is analogous). From the implicit function
theorem, it follows that for some ν′ > ν1 condition (43) is satisfied for ν1 ≤ ν < ν′.
Let νm be the supremum of such ν′ ≤ ν2. It is easy to see that νm = ν2, because at νm
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it is also satisfied by continuity and the implicit function theorem allows us to extend
the range of ν satisfying (43) to the right if νm < ν2. �

5 Extracting the Dynamical Information from the Lyapunov–Schmidt
Reduction

As was mentioned already in Sect. 3.1, the Lyapunov–Schmidt projection does not
give us any direct information about the dynamics of bifurcating solutions regard-
ing the invariant manifolds of the bifurcating objects as required by Definition 4. In
this section, following the ideas of de Oliveira and Hale [9, 21], we show that the
information obtained from the Lyapunov–Schmidt reduction and the spectrum of the
bifurcating fixed point curve is enough to say precisely what are the dynamics in the
neighborhood of the bifurcation point.

Our argument follows the ideas from [6, Chap. 9, Theorems 3.1 and 4.2], where
an analogous problem was considered for fixed points for ODEs and periodic orbits
for periodically forced ODEs. The notion of the central manifold [11] plays a crucial
role in this proof.

Theorem 9 Let Pν : R
n → R

n for ν ∈ [ν1, ν2] be a Ck-map (k ≥ 3) both with respect
to ν and its arguments. Assume that on the set K = [ν1, ν2] × [x1, x2] × Y , where
Y ⊂ R

n−1 is the closure of an open set, we are able to perform the Lyapunov–Schmidt
reduction and verify the assumptions of Theorem 4. Let (νb, zb) be the bifurcation
point and zfp(ν) = (xfp(ν), y(ν, xfp(ν)) be the fixed point curve for Pν in K .

Let v be the eigenvector of DPνb
(zb) corresponding to the eigenvalue −1. We

assume that πxv �= 0.
Assume that there exists ε > 0, such that for all ν ∈ [ν1, ν2] there holds

Sp
(
DPν

(
zfp(ν)
))= Aν ∪ Bν ∪ {λ(ν)

}
,

where λ(ν) ∈ R has multiplicity one, Aν ⊂ {α ∈ C, |α| < 1 − ε} and Bν ⊂ {β ∈
C, |β| > 1 + ε}. Moreover, we assume that

λ(ν1) ∈ (−1,1),

λ(ν2) < −1.

Then the map P has a period-doubling bifurcation at (νb, xb, y(νb, xb)).

Proof Let ν : [x̄1, x̄2] → [ν1, ν2] be the function from assumption A3 of Theorem 4
(in fact of Lemma 3), which is assumed to be satisfied. In the notation used in Theo-
rem 4, we have (νb, zb) = (ν(x̄0), (x̄0, y(ν(x̄0), x̄0))). Let c1(ν) and c2(ν) be, respec-
tively, the lower and upper branches of the graph of the function x → ν(x) giving
period-2 points; see Fig. 3.

Let us define a map H : K → R × R
n by

H(ν, z) = (ν,P (ν, z)
)
.
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Consider the spectrum of DH(νb, zb). It is easy to see that +1 is an eigenvalue of
DH(νb, zb) of multiplicity one, λ = −1 has also multiplicity one and all other eigen-
values are off the unit circle.

We apply the center manifold theorem [7, 10, 11] to H in the neighborhood
of (νb, zb). Therefore, there exists a neighborhood M of (νb, zb) and a two-
dimensional center manifold Wc ⊂ M such that

∀(ν, z) ∈ Wc if Hi(ν, z) ∈ M then H(ν, z) ∈ Wc, for i = −1,1,

Inv(M,H) ⊂ Wc,

Wc is tangent at (νb, zb) to the subspace spanned by vectors {(1,0), (0, v)} ⊂ R×R
n.

Observe that from our assumption about v, i.e., πx(v) �= 0, it follows that we can
use on Wc in the neighborhood of (νb, zb) the same coordinates (ν, x) as in the
Lyapunov–Schmidt reduction. There exists a neighborhood of (νb, zb) denoted by
U = [ν̃1, ν̃2] × [x̃1, x̃2] × Ỹ ⊂ M ∩ K and Ck-functions h : [ν̃1, ν̃2] × [x̃1, x̃2] → Ỹ

and f : [ν̃1, ν̃2] × [x̃1, x̃2] → R satisfying

Wc = {(ν, x,h(ν, x)
)}

,

P
(
ν, x,h(ν, x)

) = (f (ν, x),h
(
ν,f (ν, x)

))
, (44)

Inv(U,H) ⊂ Wc.

Let us stress that the dynamics of Pν in Wc is one-dimensional, namely that of
x �→ f (ν, x).

From the Lyapunov–Schmidt reduction, we know that a point (ν, x, y) ∈ U has
period one or two with respect to map H iff y = y(ν, x) and G(ν,x) = 0. Let
N = [ν̃1, ν̃2] × [x̃1, x̃2]. If U is chosen to be sufficiently close to the bifurcation
point, then the set N \ {(ν, x) | G(ν,x) = 0} has four connected components; see
Fig. 3. Namely,

A1 = {(ν, x) ∈ N | ((ν ≤ νb) and
(
x < xfp(ν)

))
or

(
(ν > νb) and

(
x < c1(ν)

))}
,

A2 = {(ν, x) ∈ N | ((ν ≤ νb) and
(
x > xfp(ν)

))
or

(
(ν > νb) and

(
x > c2(ν)

))}
,

B1 = {(ν, x) ∈ N | (ν > νb) and
(
xfp(ν) > x > c1(ν)

)}
,

B2 = {(ν, x) ∈ N | (ν > νb) and
(
xfp(ν) < x < c2(ν)

)}
.

We also require that

x̃1 < c1(ν̃2) < c2(ν̃2) < x̃2. (45)

Such a neighborhood N exists, since we assumed that Theorem 4 applies. Therefore,
the zeroes of the function G in the neighborhood of the bifurcation point are two
intersecting curves, as presented in Fig. 3.
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Fig. 3 Location of sets Ai , Bi

with respect to zeros of G

On each of these components, the function d(ν, x) = x −f (ν,f (ν, x)) must have
a constant sign. Observe that on A2 we have

x − f
(
ν,f (ν, x)

)
> 0, for (ν, x) ∈ A2 (46)

because zfp(ν̃1) is attracting on Wc and we consider the second iterate. Analogously,
we obtain

x − f
(
ν,f (ν, x)

)
< 0, for (ν, x) ∈ A1. (47)

For the component B2, we have

x − f
(
ν,f (ν, x)

)
< 0, for (ν, x) ∈ B2,

because xfp(ν̄2) is repelling on Wc and we consider the second iterate. Analogously,

x − f
(
ν,f (ν, x)

)
> 0, for (ν, x) ∈ B1.

For a subset Z ⊂ N by Zν, we will denote Zν = {x : (ν, x) ∈ N}. Observe that for
each ν ∈ [ν̃1, ν̃2] there holds

f 2
ν

(
(Ai)ν
)∩ [x̃1, x̃2] ⊂ (Ai)ν, f 2

ν

(
(Bi)ν
)∩ [x̃1, x̃2] ⊂ (Bi)ν i = 1,2. (48)

For the proof of (48), observe that map l(ν, x) = (ν, f (ν, x)) maps connected
components of N \ {G(ν,x) = 0} into connected components, i.e., for any S ∈
{A1,A2,B1,B2} there exists T = T (S) ∈ {A1,A2,B1,B2}, such that

(
l(S) ∩ N

)⊂ T (S), (49)

because

l
(
G−1(0) ∩ N

)∩ N = G−1(0) ∩ N = l−1(G−1(0) ∩ N
)∩ N.

Observe that the relevant eigenvalue of DPν at zfp(ν) describing the dynamics on Wc

is λ(ν), which is real and since we consider the second iterate we see that in the neigh-
borhood of the fixed point curve we have points mapped into the same component.
This together with (49) proves (48).
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From the above considerations, we obtain for ν ≤ νb

xfp(ν) < f
(
ν,f (ν, x)

)
< x, for xfp(ν) < x ≤ x̃2,

xfp(ν) > f
(
ν,f (ν, x)

)
> x, for xfpν) > x ≥ x̃1.

The above conditions, (44) and nonexistence of other period-two points in U imply
that

Inv(πx,y U,Pν) = {zfp(ν)
}
, for ν ∈ [ν̃, νb].

For ν ∈ (νb, ν̃2], we have

xfp(ν) < x < f
(
ν,f (ν, x)

)
< c2(ν), for xfp(ν) < x < c2(ν),

xfp(ν) > x > f
(
ν,f (ν, x)

)
> c1(ν), for xfp(ν) > x > c1(ν),

c2(ν) < f
(
ν,f (ν, x)

)
< x, for x > c2(ν),

c1(ν) > f
(
ν,f (ν, x)

)
> x, for x < c1(ν).

The above conditions, conditions (44–45) and nonexistence of other period two points
in U imply that for ν ∈ (νb, ν̃2]

Inv(πx,y U,Pν) = {(x,h(ν, x)
) | x ∈ [c1(ν), c2(ν)

]}
. �

We would like to stress here that contrary to all previous theorems and lemmas, in
the proof of the above theorem we prove the statements about the invariant manifold
of bifurcating orbits from Definition 4 on some set U , whose size we do not control,
whereas it is given by the range of the existence of the central manifold. In principle,
this range can be inferred from the proof of the center manifold theorem, but it will be
an interesting task to develop a computable approach, which will allow to rigorously
prove these facts on the whole set V . Such a task will require explicit estimates of
the central manifold in the region very close to the bifurcation as well as some other
tools, maybe of the Conley index type [15], further away from the bifurcation.

6 Application to the Rössler System

Consider the autonomous ODE in R
3 called the Rössler system [23]

⎧⎨
⎩

ẋ = −y − z,

ẏ = x + by,

ż = b + z(x − a).

(50)

The classical parameter values (considered by Rössler) are a = 5.7 and b = 0.2. For
the remainder of this paper, we fix b = 0.2.

The system (50) has been extensively studied in the literature and is treated as one
of the classical examples of systems generating chaotic attractors. Yet, the number
of rigorous results concerning it is very small. In Fig. 4, we show a numerically
obtained bifurcation diagram for periodic orbits on section x = 0 with b = 0.2 and a
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as parameter. We see that when the parameter a increases from 2 to 5.7, one observes
a cascade of period-doubling bifurcations. In Fig. 5, we show some periodic orbits for
different values of a. Our goal in this section is to validate the part of the bifurcation
diagram in Fig. 4 containing two first period doublings using the approach introduced
in the previous sections.

Let us list the few known rigorous results about (50). Pilarczyk (see [22] and
references therein) gave a computer assisted proof of the following facts: for a = 2.2,
there exists a periodic orbit; for a = 3.1, there exist two periodic orbits. From his
proof, however, one cannot infer any information about the dynamical character of
these orbits. He constructs suitable isolating neighborhoods, which have an index

Fig. 4 Bifurcation diagram for
the Rössler system

Fig. 5 Periodic orbits corresponding to fixed point, period two point, period four point, and period eight
point for the Poincaré map of the Rössler system (50). Parameter values are a = 2.8, a = 3.5, a = 4,

and a = 4.2
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of an attracting or a hyperbolic orbit with one unstable direction, but no such claim
can be made about the periodic orbit proved to exist. In fact, we do not even know
whether this orbit is unique.

Finally, for the classical parameter values b = 0.2 and a = 5.7, the system is
chaotic [31] in the following sense: a suitable Poincaré map has an invariant set S

and the dynamics on S for the second iterate of the Poincaré map is semiconjugated
to the full shift map on two symbols.

Before proceeding any further, we need to introduce some notation. Let  =
{(x, y, z) ∈ R

3 | x = 0, x′ > 0} be a Poincaré section. Since for u ∈ , the first coor-
dinate is equal to zero we will use the remaining two coordinates u = (y, z) to repre-
sent a point on . For a fixed parameter value a > 0 by Pa = (Pa,y,Pa,z) :  → ,

we will denote the corresponding Poincaré return map. By P, we will denote the map
defined by P(a, y, z) = (a,Pa,y(y, z),Pa,z(y, z)).

Apparently, the first period-doubling bifurcation is observed for a ≈ 2.832445
and the second one for a ≈ 3.837358. In the remainder of this section, we discuss the
computer assisted proof of the existence of both these bifurcations. In our presenta-
tion, we will discuss the first one more in detail, while for the second one, we will
just state relevant lemmas and estimates.

Let u0 = (y0, z0) be an approximate fixed point for Pa0 , i.e., we set

u0 = (y0, z0) = (−4.7946653021070986256,0.052488098609082899093) (51)

and put

M =
[

0.99999765967819775891 −0.9582095926217468751
0.0021634782474835700244 −0.28606708410382636343

]
. (52)

The columns of M are normalized approximate eigenvectors of DPa0(u0), where
first column corresponds to the eigenvalue close to −1 and the second one to the
eigenvalue close to zero. On the section , we choose new coordinates (ỹ, z̃) =
M−1((y, z) − u0) and since in the sequel, we will use only the new coordinates we
and will drop the tilde.

Define

A = [a1, a2] = [2.83244,2.832446],
Y = [y1, y2] = 1.3107 · [−1,1] × 10−3,

Z = [z1, z2] = 1.3107 · [−1,1] × 10−4.

(53)

Now our goal is to present the proof of the following theorem.

Theorem 10 The map Pa has a period-doubling bifurcation at some point (a, y, z) ∈
int(A × Y × Z).

Remark 11 The existence of a period-doubling bifurcation is a local phenomenon.
In fact, the sets A, Y , Z can be chosen to be smaller which speeds up the proof
(13 minutes versus 87 minutes), namely we were able to prove the existence of a
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period-doubling bifurcation in the set

A = [a1, a2] = [2.83244,2.832445028],
Y = [y1, y2] = [−1,1] · 10−4,

Z = [z1, z2] = [−1,1] · 10−5.

However, the choice of a larger set facilitates the proof of the existence of the connect-
ing branch of period-two points between first and second period-doubling bifurcation,
because decreasing a2 results in the eigenvalue of period-two points to be very close
to 1, which makes it very difficult to rigorously continue it.

6.1 The Existence of the Fixed-Point Curve

Lemma 12 There exists a function (yfp, zfp) : A → Y × Z of class C∞ such that for
(a, y, z) ∈ A × Y × Z there holds

Pa(y, z) = (y, z) iff (y, z) = (yfp(a), zfp(a)
)

and

y′
fp(A) ⊂ [−1.3336825610133946629, −1.3275439332565022177]. (54)

Proof The proof, which is computer assisted, consists of two parts. In the first one,
we prove the existence of the fixed point curve, and in the second part we establish
the estimate (54).

For the first part, we use the Interval Newton Method (Theorem 6) and the C1-
Lohner algorithm [30] to prove that for a ∈ A there exists a unique fixed point
(yfp(a), zfp(a)) for Pa in Y × Z. In the computations, we insert the whole set
A×Y ×Z as an initial condition in our routine, which computes the Interval Newton
Operator and obtain that for all a ∈ A the fixed point (yfp(a), zfp(a)) belongs to the set

N := N(Id−Pa,Y × Z)

=
[ [−2.838378938597049559,3.2727784971172813446] × 10−5

[−4.8121450471307824034,4.2979575521536656939] × 10−6

]T

. (55)

To obtain (54), we apply the C1-Lohner algorithm [30] to the system

⎧⎪⎪⎨
⎪⎪⎩

ẋ = −y − z,

ẏ = x + by,

ż = b + z(x − a),

ȧ = 0,

(56)

with b = 0.2 in order to compute a bound for y′
fp(A). Differentiating

P
(
a, yfp(a), zfp(a)

)= (a, yfp(a), zfp(a)
)
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with respect to a, we obtain

y′
fp =

∂Pa,y

∂a
(1 − ∂Pa,z

∂z
) + ∂Pa,z

∂a
· ∂Pa,y

∂z

(
∂Pa,y

∂y
− 1)(

∂Pa,z

∂z
− 1) − ∂Pa,y

∂z

∂Pa,z

∂y

(57)

where the partial derivatives of P are evaluated at (yfp(a), zfp(a)).
We use the set A × N , where N is defined in (55) as the initial condition in our

routine which computes partial derivatives of P and after substituting them in (57)
we obtain a bound for y′

fp as in (54).
We used the Taylor method of order 14 and the time step equal to 0.02 to integrate

the system (50) in R
3 for the first part of the proof and the order 10 and the time step

0.01 when we integrate the extended system (56) in the second part. �

Lemma 13 The eigenvalues λ1, λ2 : A → R of DPa(yfp(a), zfp(a)) are given by

λ1(a) = 1

2

(
∂Pa,y

∂y
+ ∂Pa,z

∂z
− s(a)

)
,

λ2(a) = 1

2

(
∂Pa,y

∂y
+ ∂Pa,z

∂z
+ s(a)

)
,

s(a) =
√(

∂Pa,y

∂y
− ∂Pa,z

∂z

)2

+ 4
∂Pa,y

∂z

∂Pa,z

∂y

where the partial derivatives of P are evaluated at (yfp(a), zfp(a)). Let v(a) be the
normalized eigenvector corresponding to eigenvalue λ1(a). Then

λ1(a1) ∈ [−0.99999781944914578613,−0.99999548919217751131],
λ1(a2) ∈ [−1.00000064581599335217,−1.00000064581598072628],
λ2(A) ⊂ [−0.0013533261367103342071,0.0013530378340487671934],
λ′

1(A) ⊂ [−0.70107900728585614836,−0.62770519734197127715],
vy(A) ⊂ ±[0.99728887963031764841,1.0027184248801992439]

where vy denotes the y coordinate of v.

Proof We leave the derivation of formulas for λ1, λ2 to the reader. We used the C1-
Lohner algorithm applied to the system (50) in order to compute bounds for λ1(a1)

and λ1(a2). Since the parameter a2 has been chosen to be very close to the bifur-
cation parameter, we find difficulties with the verification of condition λ1(a2) < −1
in computations performed in interval arithmetics based on double precision (52-bit
mantissa) boundary value type. In our computations, we used interval arithmetics
based on float numbers with 150-bit mantissa (MPFR [16] and GMP [8] packages).

Since the eigenvalue λ1(a) of DPa(yfp(a), zfp(a)) is given by an explicit formula,
one can express λ′

1(a) in terms of first and second order partial derivatives of P . We
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Table 1 Parameters of the
C1–C2-Lohner algorithms Order Step

λ2(A), λ′
1(A) 10 0.03

λ1(a1) 10 0.1

λ1(a2)–150-bit precision 14 0.05

obtain

λ′
1(a) = 1

2

(
d

da

∂Pa,y

∂y
+ d

da

∂Pa,z

∂z
− s′(a)

)
,

s′(a) = 1

s(a)

(
∂Pa,y

∂y
− ∂Pa,z

∂z

)(
d

da

∂Pa,y

∂y
− d

da

∂Pa,z

∂z

)

+ 2

s(a)

((
d

da

∂Pa,y

∂z

)
∂Pa,z

∂y
+
(

d

da

∂Pa,z

∂y

)
∂Pa,y

∂z

)
,

where the symbols d
da

∂Pa,y

∂z
and d

da

∂Pa,z

∂y
should be understood as

d

da

∂Pa,z

∂y

(
yfp(a), zfp(a)

) = ∂2Pa,z

∂a∂y

(
yfp(a), zfp(a)

)

+ ∂2Pa,z

∂y2

(
yfp(a), zfp(a)

)
y′

fp(a)

+ ∂2Pa,z

∂y∂z

(
yfp(a), zfp(a)

)
z′

fp(a)

and y′
fp(a) and z′

fp(a) can be computed as in (57). Next, we applied the C2-Lohner
algorithm [29] to the extended system (56) in order to compute a bound for the first
and the second order partial derivatives of P and in consequence a bound for λ′

1(A).
We inserted A × N , where N is defined in (55), as the initial condition in our

routine, which computes the partial derivatives of the Poincaré map up to second
order. In these computations, we simultaneously computed bounds for λ2(A) and
λ′

1(A). The parameter settings of the Taylor method used in the computations are
listed in Table 1. �

6.2 The Existence of Lyapunov–Schmidt Reduction

Lemma 14 For all (a, y) ∈ A × Y , there exists a unique z = z(a, y) ∈ Z such that

P 2
a,z(y, z) = z iff z = z(a, y) (58)

and the map z : A × Y → Z is smooth of class C∞. Moreover, the map G : A ×
Y → R defined by

G(a,y) = y − P 2
a,y

(
y, z(a, y)

)
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satisfies

∂3G

∂y3
(A × Y) ⊂ [1.8296823158090675943,7.2204769494502958338], (59)

∂2G

∂y2
(A × Y) ⊂ [−0.2084557586786322414,0.2080871792788867581]. (60)

Proof Let us fix(a, y) ∈ A × Y and define a function Va,y : Z → R by Va,y(z) =
z − P 2

a,z(y, z). The computer assisted proof of this lemma consists of the following
steps:

• We divide uniformly the interval A onto 30 parts. For each subinterval Ā in this
covering, we proceed as follows.

• We verified that for all (a, y) ∈ Ā × Y the function Va,y has exactly one zero in Z.
Notice that Z is centered at zero—see (53). Put

Z̄ = N(VĀ,Y ,Z,0) = 0 −
(

1 − ∂

∂z
P 2

Ā,z
(Y × Z)

)−1(
0 − P 2

Ā,z
(Y,0)
)

= P 2
Ā,z

(Y,0)

(
1 − ∂

∂z
P 2

Ā,z
(Y × Z)

)−1

.

Using the Interval Newton Method (Theorem 6), we obtain that if Z̄ ⊂ Z then for
each (a, y) ∈ Ā × Y there exists unique z(a, y) ∈ Z̄ such that Va,y(z(a, y)) = 0.
This defines the unique map z : Ā × Y → Z which is smooth by implicit function
theorem and which satisfies (58). The subdivision of the set A onto 30 equal parts
is the minimal one for which we were able to obtain inclusion Z̄ ⊂ Z for each Ā

in the subdivision and such that ∂3G

∂y3 (A × Y) > 0; see below.

• Let Z̄ denote a bound for z(Ā, Y ) resulting from the previous step. Differentiating
z(a, y) − P 2

a,z(y, z(a, y)) = 0 with respect to y, we obtain
(

1 − ∂Pa,z

∂z

)
∂z

∂y
= ∂Pa,z

∂y
,

(
1 − ∂Pa,z

∂z

)
∂2z

∂y2
= ∂2Pa,z

∂z2

(
∂z

∂y

)2

+ 2
∂2Pa,z

∂y∂z

∂z

∂y
+ ∂2Pa,z

∂y2
,

(
1 − ∂Pa,z

∂z

)
∂3z

∂y3
= ∂3Pa,z

∂z3

(
∂z

∂y

)3

+ 3
∂3Pa,z

∂y∂z2

(
∂z

∂y

)2

+ 3

(
∂2z

∂y2

∂2Pa,z

∂z2
+ ∂3Pa,z

∂y2∂z

)
∂z

∂y

+ 3
∂2z

∂y2

∂2Pa,z

∂y∂z
+ ∂3Pa,z

∂y3
.

We see that we can compute all the partial derivatives of z(a, y) as a function
of the partial derivatives of P . Hence, the partial derivatives of G(a,y) = y −
P 2

a,y(y, z(a, y)) can be expressed in terms of the partial derivatives of P .
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Using the C3-Lohner algorithm [29] applied to the system (50) with a range
of parameter values Ā and an initial condition Y × Z̄, we computed bounds of
partial derivatives of the Poincaré map P up to third order and an estimation for
∂3G

∂y3 (Ā×Y) and ∂2G

∂y2 (Ā×Y). The estimates (59) and (60) are an interval enclosures
of the estimates obtained in each of 30 steps.

We used 6th order Taylor method with the time step 0.04, both to verify the exis-
tence of z(a, y) and to compute higher order partial derivatives of P . �

6.3 The Existence of a Period-Doubling Bifurcation for P

Lemma 15 For A = [a1, a2], Y = [y1, y2] the following estimations hold true

∂G

∂y

(
a2, yfp(a2)

) ∈ [−1.2916325,−1.2916323] × 10−6, (61)

G(a2, y1) ∈ [−1.15,−1.07] × 10−13, (62)

G(a2, y2) ∈ [5.2,5.21] × 10−12, (63)

∂2G

∂y∂a
(A × Y) ⊂ [−2.421398492231531,−0.278863623843693], (64)

∂G

∂y

({a1} × Y
) ⊂ [0.83,16.87] × 10−6. (65)

Proof The estimations have been obtained using C0–C1–C2-Lohner algorithms
[29, 30] applied to the systems (50) and (56). The verification of conditions (61–63)
required computations in interval arithmetics based on 150-bit mantissa floating
points.

The settings of C0–C2-Lohner methods for the above computations are listed in
Table 2. �

Proof of Theorem 10 The assertion follows from Theorems 4, 9, and numerical Lem-
mas 12, 13, 14, and 15.

Indeed, assumptions of Theorem 4 has been verified in

• A1–Lemma 14,
• A2–from Lemma 12 there exists a fixed point curve (yfp, zfp) : A → (y1, y2) and

from Lemma 14 it has form as desired in A2,

Table 2 Parameters of the C0–C2-Lohner algorithms

Order Step Grid Remarks

∂G
∂y

(a2, yfp(a2)) 14 0.05 – 150-bit mantissa

G(a2, y1) 14 0.05 – 150-bit mantissa

G(a2, y2) 14 0.05 – 150-bit mantissa
∂2G
∂y∂a

(A × Y ) 6 0.05 5 × 30 Integration of (56)
∂G
∂y

({a1} × Y ) 10 0.05 1 × 16 000 Nonequal parts
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• A3–0 /∈ ∂3G

∂y3 (A × Y) because of (59).

From (60), (64), and (54), it follows that 0 /∈ ∂2G
∂a∂y

(A × Y) + ∂2G

∂y2 y′
fp(A) · [0,1].

Lemma 15 guarantees the remaining assumptions of Lemma 3 with [δ1, δ2] =
[y1, y2]. Finally, from Lemma 13, we see that the assumptions about the spectrum
of DPa(A) and an eigenvector v(a) as desired in Theorem 9 are satisfied. �

6.4 The Existence of a Second Period-Doubling Bifurcation

In Sect. 6.3, we gave a computer assisted proof that for some parameter value ā1 ∈
[2.83244,2.832446] a period-doubling bifurcation occurs for Pā1 . In this section, we
use similar arguments in order to prove that P 2

ā2
has a period-doubling bifurcation for

some ā2 ∈ [3.83735812,3.837358168411].
Since the arguments used to prove the existence of a second period-doubling bi-

furcation are the same as for the first period-doubling bifurcation, we omit the details
and we present only the sets and the necessary estimates.

Define

A2 = [a3, a4] = [3.83735812,3.837358168411],
Y2 = [y3, y4] = [−1.1,1.1] × 10−6,

Z2 = 1

3
Y2,

u2 = (−4.5003284169596655673,0.043136987520848421584),

M2 =
[

0.99999908059259889903 0.82277742767392003653
0.0013560287448822982113 −0.56836370794614177182

]
.

The point u2 is an approximate period two point for parameter value a4, and the
columns of matrix M2 are normalized eigenvectors of DP2

a4
, where the first column

corresponds to eigenvalue close to −1.
On the Poincaré section , we will use coordinates (y, z) = M−1

2 (u − u2), where
u denotes a point in cartesian coordinates. In this subsection, we will use only these
coordinates.

Theorem 16 The Poincaré map P 2
a has a period doubling bifurcation at some point

(ā2, ȳ2, z̄2) ∈ int(A2 × Y2 × Z2).

The proof is a consequence of the following lemmas (proved with computer assis-
tance)

Lemma 17 There exist a function (yper, zper) : A2 → Y2 × Z2 smooth of class C∞
such that for (a, y, z) ∈ A2 × Y2 × Z2 there hold

P 2
a (y, z) = (y, z) iff (y, z) = (yper(a), zper(a)

)
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and

y′
per(A2) ⊂ [−0.36435039423614490328,−0.36419313389173590956].

Lemma 18 Let λ1, λ2 : A → R be the eigenvalues of DP2
a(yper(a), zper(a)) defined

by similar formulas as in Lemma 13. Let v(a) be the normalized eigenvector corre-
sponding to the eigenvalue λ1(a). Then

λ1(a3) ∈ [−0.99999992011934590863,−0.99999992005484927837],
λ1(a4) ∈ [−1.00000000000149573159618,−1.00000000000149573159615],
λ2(A2) ⊂ [−7.7304566166653588839,7.7302177026359675856] × 10−5,

λ′
1(A2) ⊂ [−1.6554066232416912996,−1.6460891324715511974],

πyv(A2) ⊂ ±[0.99984657385734598822,1.0001534381577519284].

Lemma 19 For all (a, y) ∈ A2 ×Y2, there exists a unique z = z(a, y) ∈ Z2 such that

P 4
a,z(y, z) = z iff z = z(a, y)

and the map z : A2 × Y2 → Z2 is smooth of class C∞. Moreover, the map G : A2 ×
Y2 → R defined by

G(a,y) = y − P 4
a,y

(
y, z(a, y)

)

satisfies

∂3G

∂y3
(A × Y) ⊂ [11.780861336872181511,22.544626008881969881],

∂2G

∂y2
(A × Y) ⊂ [−0.12474597648618415136,0.12474408945310766494].

Lemma 20 The following estimations hold true

∂G

∂y

(
a4, yper(a4)

) ∈ [−2.992,−2.991] × 10−12,

G(a4, y3) ∈ [−5.13,−5.11] × 10−19,

G(a4, y4) ∈ [5.21,5.22] × 10−19,

∂2G

∂y∂a
(A2 × Y2) ⊂ [−4.354355790892265432,−2.244876361570084633],

∂G

∂y

({a3} × Y2
) ⊂ [0.99,30.98] × 10−8.

Parameter settings of computations involved in proofs of the above lemmas are
listed in Table 3.
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Table 3 Parameters of the C0–C3-Lohner algorithms in the proof of the existence of second period
doubling bifurcation

Order Step Grid Remarks

∂3G

∂y3 (A2 × Y2) 10 0.04 150 × 1 –

∂2G

∂y2 (A2 × Y2) 10 0.04 150 × 1 –

∂G
∂y

(a4, yper(a4)) 25 0.05 – 150-bit mantissa

G(a4, y3),G(a4, y4) 25 0.05 – 150-bit mantissa
∂2G
∂y∂a

(A2 × Y2) 10 0.05 150 × 1 Integration of (56)

∂G
∂y

({a3} × Y2) 14 0.05 1 × 10 000 –

7 Continuation of Bifurcation Diagram

In the previous sections, we proved that the map Pa has period-doubling bifurcations
for parameter values ā1 ∈ [a1, a2] = A and ā2 ∈ [a3, a4] = A2 in sets Y × Z and
Y2 × Z2, respectively.

Our goal now is to connect these bifurcations with the curve of period two points.
More precisely, we prove the following result.

Theorem 21 There exists a continuous curve

(yper, zper) : (ā1, ā2] → R
2

of period two points for Pa . Moreover,

(
yper(a), zper(a)

)
,Pa

(
yper(a), zper(a)

) ∈ Y × Z for ā1 < a ≤ a2,

(
yper(a), zper(a)

)
,P 2

a

(
yper(a), zper(a)

) ∈ Y2 × Z2 for a3 ≤ a ≤ ā2.

Therefore, the curve (yper, zper) connects the two bifurcation points for a = ā1 and
a = ā2.

The proof of the existence of a branch of period two points for P consists of the
following steps:

1. The existence of a continuous curve of period two points on intervals (ā1, a2] and
[a3, ā2] is a consequence of Theorem 10 and Theorem 16, respectively.

2. For parameter values slightly above a2, a2 < a ≤ ã, with ã − a2 small, we ex-
tend this curve using Lemma 8, which requires some C3 estimates (hence it is
demanding computationally).

3. For parameters far from a2 up to a3, i.e., ã < a ≤ a3, we verify the existence of
period two point curves using the Krawczyk method (Theorem 7), which requires
only C1 estimates.
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4. Since we use different methods for proving the existence of segments of period
two points curve over some intervals in [ā1, ā2], it is necessary to verify that these
segments can be glued to produce a continuous curve.

At first, it appears that step 2, requiring costly C3 computations, is not necessary,
because in step 3 we can consider also points close to a2 using C1 computations. But
it turns out that while in principle it is possible, this approach may require very large
computation times, because the hyperbolicity is very weak there due to the fact that
one eigenvalue of P 2

a2
is very close to 1.

To deal with this problem, we used Lemma 8 to prove that for parameter values
slightly above a2 there exists a continuous branch of period two points. Algorithm 1 is
designed to verify assumptions of Lemma 8. In Lemma 22, we prove its correctness.

Definition 5 Let U ⊂ R
n be a bounded set. We say that G ⊂ 2R

n
is a grid of U if

1. G is a finite set and each G ∈ G is a closed set
2. U ⊂⋃G∈G G.

In our algorithms, which will be presented below, we always use grids consisting
of interval sets, i.e., sets which are Cartesian products of intervals, most of the time
uniform grids, which are defined as follows.

Definition 6 Let Y =∏n
i=1 Yi , where Yi = [ai, bi] for ai ≤ bi and let (g1, . . . , gn) ∈

Z+. We define a (uniform) g1 ×g2 ×· · ·×gn-grid for Y denoted by G(g1, . . . , gn,Y )

as follows.
For any (j1, . . . , jn) ∈ Z+, such that ji ≤ gi, we set

gj1,...,jn =
∏
i=1

[
ai, ai + ji · bi − ai

gi

]
. (66)

Then G(g1, . . . , gn,Y ) is a collection of all gj1,...,jn .

Lemma 22 If Algorithm 1 is called with its arguments ν1, ν2, g1, g2, g3, gx, t , X ×Y

and fν and it does not exit with an exception then the assumptions of Lemma 8 are
satisfied for fν , ν ∈ [ν1, ν2] on X × Y .

Proof The assumption about the existence of the fixed-point curve is verified in lines
15–19 since for all ν ∈ [ν1, ν2] the Interval Newton Operator satisfies the assumptions
of Theorem 6.

The existence of the Lyapunov–Schmidt reduction together with condition (39)
is verified in lines 2–8. In lines 4–6, we see that y(ν, x) which solves equation
y − πy(f

2
ν (x, y)) is unique for fixed ν. Therefore, by the implicit function theorem,

y(ν, x) is smooth and we can compute map G and its partial derivatives.
In lines 9–10, we verify that G(ν2,min(X)) < 0 and G(ν2,max(X)) > 0. Since

∂G
∂ν

(ν,min(X)) > 0 and ∂G
∂ν

(ν,max(X)) < 0 (lines 11–14), we see that for ν ∈
[ν1, ν2] there holds G(ν,min(X)) < 0 and G(ν,max(X)) > 0. Therefore, (40) holds
true.
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Algorithm 1: verification of assumptions of Lemma 8
Data: [ν1, ν2] - an interval, g1, g2, g3, gx - integers, t ∈ (0,1) - a floating-point

number, X × Y - a convex, compact set, fν - a parameterized family of
maps

Result: If the algorithm stops and does not exit with an exception, then the
assumptions of Lemma 8 are satisfied

begin1

G1 ←− g1 × gx -grid for [ν1, ν2] × X;2

foreach ν̄ × X̄ ∈ G1 do3

y(ν̄, X̄) ←−4

IntervalNewtonOperator(IdY −πY ◦ f 2
ν̄ (X̄, ·), Y, center(Y ));

if not y(ν̄, X̄) ⊂ intY then5

exit: Lyapunov–Schmidt reduction not verified;6

if not ∂3G

∂x3 (ν̄, X̄) > 0 then7

exit: condition (39) is not satisfied;8

if (not G(ν2,min(X)) < 0) or (not G(ν2,max(X)) > 0) then9

exit: condition (40) is not satisfied;10

G2 ←− g2-grid for [ν1, ν2];11

foreach ν̄ ∈ G2 do12

if (not ∂G
∂ν

(ν̄, x1) > 0) or (not ∂G
∂ν

(ν̄, x2) < 0) then13

exit: condition (40) is not satisfied;14

G3 ←− g3-grid for [ν1, ν2];15

foreach ν̄ ∈ G3 do16

(X̄, Ȳ ) ←− IntervalNewtonOperator(Id−fν̄,X × Y, center(X × Y));17

if not (X̄, Ȳ ) ⊂ int(X × Y) then18

exit: fixed points curve not verified;19

x+ ←− (1 − t)min(X) + t min(X̄);20

x− ←− (1 − t)max(X) + t max(X̄);21

if (not G(min(ν̄), x+) > 0) or (not G(min(ν̄), x−) < 0) then22

exit: condition (41) or (42) is not satisfied;23

if (not ∂G
∂ν

(ν̄, x+) < 0) or (not ∂G
∂ν

(ν̄, x−) > 0) then24

exit: condition (41) or (42) is not satisfied;25

end26

Finally, in lines 15–25, we verify conditions (41–42). Again, we verify that for
an element of grid ν̄ it there holds G(min(ν̄), x+) > 0 and G(min(ν̄), x−) < 0. This
together with ∂G

∂ν
(ν̄, x+) > 0 and ∂G

∂ν
(ν̄, x−) < 0 proves (41–42). �

As was mentioned earlier, Algorithm 1 is used to prove the existence of a period-
two points curve for parameter values slightly above the first bifurcation, i.e., for
parameters close to a2 where G has three solutions close to one another. For these
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Algorithm 2: verification the existence of period two points branch.

Data: [a∗, a∗] - an interval, Yi × Zi , i = 1,2,3,4 - convex, compact sets, g - an
integer

Result: if the algorithm stops and does not exit with an exception then there
exists a continuous branch of period two points for Pa for parameter
values a ∈ [a∗, a∗]

begin1

G ←− g-grid for [a∗, a∗];2

foreach ā ∈ G do3

a ←− center(ā);4

u1 = (y1, z1) ←− find approximate period two point for P 2
a using5

standard Newton method;
u2 = (y2, z2) ←− P̄a(y1, z1);6

u3 = (y3, z3) ←− P̄a(y2, z2);7

u4 = (y4, z4) ←− P̄a(y3, z3);8

C ←− compute approximate value of DFa(u1, u2, u3, u4);9

if C is singular then10

C ←− Id;11

U ←− (u1 + Y1 × Z1, u2 + Y2 × Z2, u3 + Y3 × Z3, u4 + Y4 × Z4);12

u ←− (u1, u2, u3, u4);13

Kā = (k1,ā , k2,ā , k3,ā , k4,ā) ←−14

IntervalKrawczykOperator(Fā,C
−1,U,u);

if not Kā ⊂ intU then15

exit: cannot verify the existence of period two point;16

if k1,ā ∩ k3,ā �= ∅ then17

exit: the unique fixed point for P 2
ā in k1,ā is not necessary period18

two point for Pā ;

B ←−⋃ā∈G ā × k1,ā ;19

if B is not connected then20

exit: cannot verify if branch of fixed point curve is continuous on21

interval [a∗, a∗];
end22

parameter values, we found difficulties with verifying the existence of period-two
points curve using C1-computations only.

For parameter values away from the bifurcation, where all eigenvalues of periodic
orbit are well separated from the unit circle, we use Algorithm 2 based on the Newton
interval method and the Krawczyk method, both requiring only C1-computations,
which verifies the existence of only one branch of period two points for Pa .

Before we present this algorithm, we need to introduce some notations. Let ̄ =
{(x, y, z) ∈ R

3 : x = 0} be a Poincaré section for (50) and P a : ̄−→◦ ̄ be the corre-
sponding Poincaré map for a system with parameter value a. Notice that the trajectory
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can intersect ̄ at a point (y, z) ∈ ̄ for which x′ = −y − z is positive or negative
(if it is equal to zero the Poincaré map is not defined). Hence, we have P̄ 2

a | = Pa ,
where Pa is the Poincaré map for the section  = {(x, y, z) ∈ R

3 | x = 0, x′ > 0}
and, therefore, period two points for Pa correspond to period four points for P̄a . Let
us define a map Fa : ̄4 → R

8 by

Fa

⎡
⎢⎢⎣

(y1, z1)

(y2, z2)

(y3, z3)

(y4, z4)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

(y2, z2) − P̄a(y1, z1)

(y3, z3) − P̄a(y2, z2)

(y4, z4) − P̄a(y3, z3)

(y1, z1) − P̄a(y4, z4)

⎤
⎥⎥⎦ .

Algorithm 2 was used to verify the existence of a continuous branch of period
two points for Pa for a belonging to some interval. Sets Xi × Yi give the size of the
neighborhood around a candidate periodic orbit on section . Lines 4 to 8 constitute
a heuristic part and their task is to find a good candidate.

Lemma 23 If Algorithm 2 is called with its arguments [a∗, a∗], Yi × Zi ,
i = 1,2,3,4, and g and does not exit with an exception then there exists a con-
tinuous curve (yper, zper) : [a∗, a∗] →  such that (yper(a), zper(a)) is a period two
point for Pa .

Proof The existence of a fixed point for P 2
a for all a ∈ [a∗, a∗] is verified in lines

12–16. Lines 17–18 guarantee that this is a period two point for Pa , in fact, a unique
one in U .

Uniqueness implies continuity on each ā ∈ G and due to uniqueness and connect-
edness of the set B defined in line 19 we see that they agree on boundaries of ā. �

Proof of Theorem 21 The existence of a continuous curve of period two points on
intervals (ā1, a2] and [a3, ā2] is a consequence of Theorem 10 and Theorem 16, re-
spectively. Let as = 2.8329. For the parameter values [a2, as], we verify the existence
of a period-two points branch using Algorithm 1 and for parameter values a ∈ [as, a3]
we use Algorithm 2.

We have run Algorithm 1 five times with parameters listed in Table 4 (in each case
the map is Pa). Since in each case the algorithm had stopped and did not exit with
an exception, we conclude that in each interval of parameters listed in Table 4 there
exist two continuous curves c1(a), and c2(a) of period two points. Sets Xi ×Yi listed
in Table 4 are chosen so that

Y × Z ⊂ X1 × Y1 ⊂ · · · ⊂ X5 × Y5, (67)

where Y × Z is the set used in the proof of the existence of first period doubling
bifurcation. Observe also that since we know that for a2 holds Pa2(c1(a2)) = c2(a2)

and c1(a2), c2(a2) ∈ Y ×Z ⊂ X1 ×Y1 from Lemma 8 we obtain that {c1(a), c2(a)} is
a period two orbit for Pa , for a ∈ [a2, as], i.e., the whole interval of parameters cov-
ered by intervals listed in the first columns in Table 4. The uniqueness of a period two
orbit together with condition (67) implies that the curves are continuous on (ā1, as].
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Table 4 Parameters of Algorithm 1

[ν1, ν2] g1 g2 g3 gx t (Xi × Yi) × 10−4

[a2,2.8325] 8 70 600 150 0.88 [−99.022,97.95] × [−4,4]
[2.8325,2.8326] 14 80 300 270 0.7 [−166.9,163.9] × [−4,4]
[2.8326,2.8327] 16 60 150 340 0.6 [−214.59,209.62] × [−4,4]
[2.8327,2.8328] 17 50 120 340 0.5 [−253.8,246.8] × [−8,8]
[2.8328,2.8329] 20 50 100 350 0.5 [−287.757,279] × [−8,8]

One can see that the total number of initial values for which we need compute
third order derivatives of G,which is equal to the sum of g1gx over all rows in Ta-
ble 4, is equal to 23200. The total time of computation of this step is 10 hours on the
Pentium IV, 3 GHz processor.

We have run Algorithm 2 with 74 different arguments listed in Table 5. We have
chosen the parameters of the Algorithm 2 so that such 74 intervals [(a∗)i , (a∗)i],
i = 1, . . . ,74 cover the interval [as, a3]. Notice also that for parameters a closer to
as we need larger values of g since the hyperbolicity close to a2 is very weak. The
total number of subintervals used to cover interval [as, a3] is 614450. In fact, this is
the longest part of the numerical proof. The total time of computation of this step
is 53 hours on the Pentium IV, 3 GHz processor. Since in each case Algorithm 2
stops and does not exit with an exception, we conclude that on each subinterval
[(a∗)i , (a∗)i] there exists a continuous branch of period two points. We need to show
that these curves glue continuously at a∗

i ’s. In fact, this algorithm returns an upper
bound for this period two points branch which is of the form

B =
74⋃
i=1

Bi (68)

where the Bi ’s are defined in line 19 of Algorithm 2. We verified that B is
connected—this together with an information that for fixed a ∈ [as, a3] there exists a
unique period two point (yper(a), zper(a)) such that (a, yper(a), zper(a)) ∈ B implies
that the curve (yper(a), zper(a)) is continuous on [as, a3].

There remains for us to show the continuity of a period two point branch for pa-
rameter values a = as and a = a3. For a = as, we know that there exist period two
points c1(as), c2(as) which belongs to the last set listed in Table 4, i.e.,

c1(as), c2(as) ∈ W1 = u0 + M · ([−287.757,279] × [−8,8])× 10−4

where u0 and M define coordinate system close to the first period doubling bifur-
cation and are defined in (51–52). On the other hand, the estimation for period two
point resulting from the Krawczyk method used in the Algorithm 2 is

W2 = (W 1
2 ,W 2

2

)
,

W 1
2 = [−4.7668051788293892557,−4.7667832743925968586],

W 2
2 = [0.052543190547910088861,0.052543238016254205369].
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Table 5 Parameters of Algorithm 2. The initial set U is defined in the first line of the table

i U = [−1,1] · (1 100,3,1 000,3 000,1 100,3,1 000,3 000) × 10−8

[a∗, a∗] g Y1 × Z1 × Y2 × Z2 × Y3 × Z3 × Y4 × Z4

1 [2.8329,2.83291] 14 000 U

2 [2.83291,2.83292] 13 500 U

3 [2.83292,2.83293] 12 200 3U

4 [2.83293,2.83294] 11 250 3U

5 [2.83294,2.83295] 10 400 3U

6 [2.83295,2.83296] 9 650 3U

7 [2.83296,2.83297] 9 050 3U

8 [2.83297,2.83298] 8 500 3U

9 [2.83298,2.83299] 8 000 3U

10 [2.83299,2.833] 7 550 3U

11 [2.833,2.83301] 7 200 3U

12 [2.83301,2.83302] 6 800 3U

13 [2.83302,2.83303] 6 500 3U

14 [2.83303,2.83304] 6 200 3U

15 [2.83304,2.83305] 6 000 3U

16 [2.83305,2.83306] 5 700 3U

17 [2.83306,2.83307] 5 500 3U

18 [2.83307,2.83308] 5 300 3U

19 [2.83308,2.83309] 5 100 3U

20 [2.83309,2.8331] 4 900 3U

21 [2.8331,2.83311] 4 800 3U

22 [2.83311,2.83312] 4 600 3U

23 [2.83312,2.83313] 4 450 3U

24 [2.83313,2.83314] 4 300 3U

25 [2.83314,2.83315] 4 150 3U

26 [2.83315,2.83316] 4 050 3U

27 [2.83316,2.83317] 3 950 3U

28 [2.83317,2.83318] 3 850 3U

29 [2.83318,2.83319] 3 750 3U

30 [2.83319,2.8332] 3 650 3U

31 [2.8332,2.8333] 36 000 3U

32 [2.8333,2.8334] 29 000 3U

33 [2.8334,2.8335] 24 000 3U

34 [2.8335,2.8336] 20 000 3U

35 [2.8336,2.8337] 18 000 3U

36 [2.8337,2.8338] 16 000 3U

37 [2.8338,2.8339] 14 000 3U

38 [2.8339,2.834] 13 000 3U

39 [2.834,2.8345] 59 000 3U

40 [2.8345,2.835] 42 000 3U



Found Comput Math (2009) 9: 611–649 647

Table 5 (Continued)

i U = [−1,1] · (11 00,3,1 000,3 000,1 100,3,1 000,3 000) × 10−8

[a∗, a∗] g Y1 × Z1 × Y2 × Z2 × Y3 × Z3 × Y4 × Z4

41 [2.835,2.8355] 17 500 15U

42 [2.8355,2.836] 11 000 15U

43 [2.836,2.8365] 8 000 15U

44 [2.8365,2.837] 6 200 15U

45 [2.837,2.8372] 2 800 30U

46 [2.8372,2.8375] 3 600 30U

47 [2.8375,2.838] 5 000 30U

48 [2.838,2.8385] 3 600 30U

49 [2.8385,2.839] 2 900 30U

50 [2.839,2.8395] 2 400 30U

51 [2.8395,2.84] 2 100 30U

52 [2.84,2.841] 3 700 30U

53 [2.841,2.842] 3 000 30U

54 [2.842,2.843] 2 500 30U

55 [2.843,2.844] 2 200 30U

56 [2.844,2.845] 2 000 30U

57 [2.845,2.846] 1 700 30U

58 [2.846,2.848] 3 100 30U

59 [2.848,2.85] 2 600 30U

60 [2.85,2.86] 11 000 30U

61 [2.86,2.87] 6 500 30U

62 [2.87,2.88] 4 700 30U

63 [2.88,2.89] 3 700 30U

64 [2.89,2.9] 3 100 30U

65 [2.9,2.95] 4 400 150U

66 [2.95,3] 2 500 150U

67 [3,3.1] 3 500 150U

68 [3.1,3.2] 2 500 150U

69 [3.2,3.3] 2 100 150U

70 [3.3,3.4] 1 800 150U

71 [3.4,3.5] 1 600 150U

72 [3.5,3.6] 1 400 150U

73 [3.6,3.7] 1 500 150U

74 [3.7, a3] 2 400 150U

One can verify that W2 ⊂ W1 which obviously means that a period two point
(yper(as), zper(as)) ∈ W2 resulting from the Krawczyk method and Algorithm 2 is
one of the points c1(as), c2(as) resulting from Algorithm 1. Hence, the curve of pe-
riod two points is continuous at a = as .

In a similar way, we verified continuity at a = a3. From the Krawczyk method
used in Algorithm 2, we know that (yper(a3), zper(a3)) is a unique period two
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point in the set

W3 = (W 1
3 ,W 2

3

)
,

W 1
3 = [−4.5010116820607413146,−4.4996232549240025023],

W 2
3 = [0.043134233933640332703,0.043140290681655812932].

On the other hand from Theorem 16, we know that for a = a3 any period-two point
belongs to the set

W4 = u2 + M2 · (Y2 × Z2)

where M2, u2, Y2,Z2 define the set on which we verify the existence of a second
period-doubling bifurcation. One can verify that W4 ⊂ W3 which proves that the
branch of period two points is continuous at a = a3. �

7.1 Technical Data

In order to compute the Poincaré maps P and P 2 with their partial derivatives, we
used the interval arithmetic [17, 24], the set algebra and the Cr -Lohner algorithm
[29] developed at the Jagiellonian University by the CAPD group [5]. The C++
source files of the program with an instruction how it should be compiled and run are
available at [26].

All computations were performed with the Pentium IV, 3 GHz processor and 2 GB
RAM under the Ubuntu Intrepid Ibex linux with gcc-4.3.1 and MS Windows XP Pro-
fessional with gcc-3.4.4. The computations took approximately 3 days. The main
time-consuming part (over 53 hours) is the verification of the existence of a connect-
ing branch of period-two points between the first and second bifurcations.

The program is also available to compile and run in a multithreaded version for
multiprocessor computers. In that case, the computations are as much faster, as there
are processors free to use the program. We successfully compiled and ran the program
on a computer with 8 processors Quad-Core AMD Opteron(tm) 8354, each 2.2 GHz.
The program ran 2 hours on this computer.
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