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Abstract Every orthonomic system of partial differential equations is known to pos-
sess a finite number of integrability conditions sufficient to ensure the validity of them
all. Here we show that a redundancy-free sufficient set of integrability conditions can
be constructed in a time proportional to the number of equations cubed.
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1 Introduction

1. The Riquier–Janet theory [15] is perhaps the most intuitive way to study for-
mal integrability of overdetermined systems of partial differential equations. This
theory applies to orthonomic systems, i.e., systems resolved with respect to highest-
rank derivatives. However, somewhat surprisingly, existing literature lacks an effec-
tive construction of a provably irredundant sufficient set of integrability conditions.
The aim of this paper is to fill this gap.

In the special case of linear systems with constant coefficients, formal integra-
bility can be established through the famous Buchberger algorithm [5]. This is so
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because such systems are equivalently described as ideals in the polynomial ring
R[∂/∂x1, . . . , ∂/∂xn], and all what is needed is computing the Gröbner basis. Ana-
logues of integrability conditions are known as S-polynomials. The problem of
minimizing the number of S-polynomials was already addressed by Buchberger
[5, 6], with many later developments [1, 7, 9, 37]. The basic idea, expressed through
syzygies, later migrated back to differential algebra (Boulier [4]) and Riquier theory
(Reid’s school [28, 30]). Within the syzygy approach one detects superfluous “criti-
cal pairs” (S-polynomials or integrability conditions) and removes them sequentially.
The complete removal being deemed too expensive, methods to remove most of the
redundancy were considered. In practical implementations such as Wittkopf’s dis-
sertation [38], detection of superfluous integrability conditions turns out to be nearly
exhaustive (see examples in Sect. 8), but still consuming considerable time. In this
paper, the emphasis is on effective description of the set of all nontrivial integrability
conditions, and on efficient algorithms to construct it (at every step of the completion
algorithm).

2. Present developments of formal integrability theory are, to a great extent, driven
by computer algebra applications, especially solution of large systems of overde-
termined PDEs connected with computation of symmetries, conservation laws, and
other invariants of PDE [3, 13, 22]. Since input systems consisting of hundreds of
equations are not uncommon, efficiency of the algorithms is an important issue.

Initially (Riquier [27], Janet [15]) the basic question was which coefficients of
Taylor expansion of a solution could be chosen arbitrarily (parametric derivatives)
and which were then uniquely determined by the system (principal derivatives). As is
well known, hidden dependences between parametric derivatives lead to integrabil-
ity (or compatibility) conditions. A system with or without unsatisfied integrability
conditions is said to be active or passive, respectively. The procedure of augment-
ing an active system with its integrability conditions is called the completion. The
augmented system is not necessarily passive, since new integrability conditions can
emerge. However, repeated completion is guaranteed to stop after a finite number of
steps under fairly general assumptions (Tresse [33]; see [25] for an overview).

Conventional wisdom says that computing integrability conditions amounts to tak-
ing cross-derivatives. But the notion of a cross-derivative applies only to orthonomic
systems (ones resolved with respect to “highest” derivatives). Moreover, integrability
conditions can depend substantially on the way the system is resolved (as opposed to
the Cartan and Spencer geometric theory of involutivity [23] and the recent theory of
Mayer brackets [17, 18]). On the other hand, if we accept all the unpleasant conse-
quences, as we do in the present paper, we find ourselves placed in an environment
tailored for easy and efficient implementation of reduction. Reduction is a procedure
to compute a normal form modulo identifications following from the system.

3. As usual, this paper deals with the infinitely prolonged system Σ∞ which con-
sists of individual equations of the input system Σ differentiated with respect to every
combination of independent variables. Under a suitable ranking of derivatives, every
equation of Σ∞ comes out resolved with respect to a principal derivative, which
substantially simplifies the procedure of reduction with respect to Σ∞. The main
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technical difficulty is that reduction is not unique unless the system Σ is passive,
which is not guaranteed before the completion algorithm is finished. To circumvent
this problem, we consider a triangular subsystem Σ ′ of Σ∞ with the goal to show
linear equivalence of Σ ′ and Σ∞ under Definition 4.

Our main result says how to locate nonignorable integrability conditions in the
monomial ideal(s) generated by the system. Namely, at each principal derivative uk

μ,
we determine the nontrivial integrability conditions from connected components of
a subset X k

μ of the monomial ideal ordered by divisibility. It is easily seen that uk
μ

must be a cross-derivative in order to yield nontrivial integrability conditions. This
observation immediately leads to a canonical construction of a sufficient set of in-
tegrability conditions (Construction 2), which is shown to be free of redundancies
(Proposition 3). This set is computable in time proportional to the number of equa-
tions cubed (Algorithms 1, 2 and Remark 5).

The idea strongly resembles that of “subconnectedness” (see [19, 35, 36] and ref-
erences therein) having roots in the same Gröbner basis theory [6]. What we actually
find is a simple correspondence between nontrivial integrability conditions and sub-
connected components (and also an effective way to compute the latter). Thus, the
present work can be viewed as a natural continuation of Buchberger’s [6].

Considering the “staircase diagram” associated with the monomial ideal, our main
result provides a geometric identification of the vertices where nontrivial integrability
conditions reside. This opens the door to asking and answering various combinatorial
questions, which is, however, out of the scope of the present paper.

It is often argued that orthonomicity essentially means linearity from the practical
perspective because arbitrary nonlinearities can occur at later stages of completion.
Let us, however, point out that for the integrability conditions to show up it is not nec-
essary that the system be explicitly resolved. As a matter of fact, our results can be
easily formulated for generic triangular polynomial systems [14]. The only substan-
tial difficulty lies with computation of derivatives of implicit functions not satisfying
the constant rank condition [26]. That said, we leave this issue to a further study.

An extended abstract of the previous version of this paper appeared in Proceedings
of the GIFT 2006 conference [20]. Another abridged exposition will be made through
the book [34].

2 Orthonomic Systems

In this section, we recall standard facts and fix our notation. For unexplained order-
theoretic notions see [2, Chap. 1 §1–§3] or [12, Chap. 1 §1–§2].

We denote by U = {u1, . . . , ul} a set of dependent variables and by X =
{x1, . . . , xn} a set of independent variables. Consider the free commutative monoid
X ∗ over X . An arbitrary element μ ∈ X ∗ is of the form μ = x

r1
1 · · ·xrn

n , r1 ≥
0, . . . , rn ≥ 0, and will be called a Janet monomial [15]. A derivative ∂r1+···+rnuk/

∂x
r1
1 · · · ∂x

rn
n can be identified with a pair (uk, x

r1
1 · · ·xrn

n ) ∈ U × X ∗. It will be conve-
nient to denote derivatives as uk

μ, μ ∈ X ∗. Dependent variables uk can be identified

with derivatives uk
1 of order 0.
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Elements of X ∪ (U × X ∗) bijectively correspond to local coordinates on an ap-
propriate infinite-dimensional jet space J∞ [3, 22, 23, 31]. For the purpose of under-
standing the present paper it is sufficient to think of J∞ as an infinite-dimensional
space equipped with local coordinates indexed by elements of X ∪ (U × X ∗). Smooth
functions are defined as mappings J∞ → R that depend on only a finite number of
the coordinates. The total derivatives

Dx = ∂

∂x
+

∑

k,μ

uk
μx

∂

∂uk
μ

, x ∈ X

can be viewed as vector fields on J∞ (or differentiations of the R-algebra of smooth
functions on J∞). Observe that Dx acts on a derivative uk

μ by multiplying the Janet
monomial μ by x. As is well known, total derivatives commute. For every ν ∈ X ∗,
the corresponding composition of total derivatives is denoted by Dν .

Definition 1 We denote by ≤ the relation of divisibility of monomials and by μ/ν

the quotient of monomials μ,ν ∈ X ∗ whenever μ ≥ ν. A derivative ul
ν is said to be

lower than the derivative uk
μ, writing ul

ν ≤ uk
μ, if k = l and ν ≤ μ. We say that ul

ν is
strictly lower than uk

μ, writing ul
ν < uk

μ, if ul
ν ≤ uk

μ and ν 
= μ.

Essential in Riquier’s theory is a suitable ordering of derivatives compatible with
differentiation.

Definition 2 A ranking is a linear ordering � of the set U × X ∗ of derivatives such
that

p ≺ Dxp,

p ≺ p′ =⇒ Dxp ≺ Dxp
′

for all p,p′ ∈ U × X ∗ and every x ∈ X .

Again, p ≺ q means p � q and p 
= q , as usual. For a complete classification of
rankings see [28, 29].

Obviously, we have the implication q ≤ p ⇒ q � p, but not the converse. It is
an easy consequence of Dickson’s lemma (see also Thomas [32]) that U × X ∗ is a
well-ordered set under �, in particular, every decreasing chain is finite. This enables
transfinite induction through the set U × X ∗.

For a smooth function F let LD� F or simply LD F denote the leading derivative
which is defined to be the �-maximal element in the finite set derF of derivatives
the function F depends on (hence, LD F exists if and only if derF is nonempty).

Now we take into consideration a system Σ of finitely many partial differential
equations resolved with respect to leading derivatives

uk
μ = Φk

μ. (1)

In particular, Φk
μ are smooth functions such that all derivatives q ∈ derΦk

μ satisfy
q ≺ uk

μ. By LD Σ we denote the set of all derivatives appearing on the left-hand side
of at least one of (1).



Found Comput Math (2009) 9: 651–674 655

The basic object of interest in formal integrability theory is the associated infinitely
prolonged system Σ∞ consisting of all possible differential consequences

uk
μν = DνΦ

k
μ, ν ∈ X ∗. (2)

It easily follows from Definition 2 that (2) are resolved with respect to leading deriva-
tives. Derivatives belonging to LD Σ∞ are said to be principal. The other derivatives
are said to be parametric. Thus, a derivative is principal if it either belongs to LD Σ

or is a derivative of some derivative from LD Σ .
Now, the input system (1) is assumed to be orthonomic in the following sense:

Definition 3 A system of equations Σ resolved with respect to leading derivatives is
said to be

– triangular, if for every derivative q ∈ LD Σ there is exactly one equation with q

appearing on its left-hand side
– autoreduced, if no principal derivative occurs on the right-hand side of any equa-

tion
– orthonomic, if it is triangular and autoreduced.

Of course, these properties depend on the choice of the ranking ≺.
In what follows, we shall need the notion of linear equivalence of possibly infi-

nite systems of equations. (Let us remark that completion uses a weaker “algebraic”
equivalence meaning linear equivalence combined with resolving a finite number of
equations with respect to leading derivatives.)

Definition 4 Let Σ1, Σ2 be two (not necessarily finite) systems of partial differential
equations. We say that Σ2 linearly follows from Σ1 if each equation from Σ2 is a
linear combination of a finite number of equations from Σ1. Systems Σ1, Σ2 are said
to be linearly equivalent if each linearly follows from the other.

The property of being triangular is usually lost in Σ∞ (which is why integrability
conditions occur). Having autoreduced right-hand sides of Σ is convenient, while for
Σ∞ no such property is needed.

Expositions of the Riquier–Janet theory now proceed by introducing division be-
tween multiplicative and nonmultiplicative variables [15]. Formalized by Gerdt and
Blinkov [10, 11] (these works triggered an active thread of research in polynomial
elimination theory), the so-called involutive divisions became a standard tool to pre-
scribe a unique right-hand side to every principal derivative from LD Σ∞.

3 Reduction Subsystem

Here we take another path to uniqueness. Namely, we consider an arbitrary triangu-
lar subsystem Σ ′ of Σ∞ with LD Σ ′ = LD Σ∞ and call it a reduction subsystem of
Σ∞, since it provides us with a unique reduction (see below). All algorithms to fol-
low actually refer only to a finite part of Σ ′; hence, its infiniteness does not hamper
computability.
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Construction 1 Select a mapping γ : LD Σ∞ → X ∗ such that for each uk
μ ∈ LD Σ∞

we have uk
μ/ξ ∈ LD Σ for ξ = γ (uk

μ). Hence, Φk
μ/ξ exists, and we can put Ψ k

μ =
DξΦ

k
μ/ξ . The triangular system of equations

uk
μ = Ψ k

μ, uk
μ ∈ LD Σ∞, (3)

is the reduction subsystem sought.

Obviously, such a mapping γ always exists. The freedom of choice is measured by
the number of elements in LD Σ that are lower than uk

μ in the sense of Definition 1.
Alternatively, we could select Γ : LD Σ∞ → LD Σ such that Γ (uk

μ) ≤ uk
μ for every

uk
μ ∈ LD Σ∞, with Γ (uk

μ) = uk
μ/γ (uk

μ)
.

To implement such a selection, one can simply assign γ (uk
μ) or Γ (uk

μ) on the
fly. If concerns arise that remembering all these assignments would consume too
much space, a unique Γ (uk

μ) can be determined, e.g., by means of an arbitrary fixed
ordering of LD Σ .

Given an expression F depending on a finite number of derivatives, one can apply
equations of the reduction subsystem (3) as substitutions to obtain a linearly equiv-
alent (Definition 4) expression SF without dependence on principal derivatives. In
each step, the leading principal derivative p = uk

μ the expression F actually depends
on is substituted by the corresponding expression Ψ k

μ from Construction 1. Such steps
can be repeated while F depends on principal derivatives. There can be only a finite
number of these steps since ≺ has the descending chain property. Hence, the reduc-
tion procedure is algorithmic.

Reduction S is an R-algebra homomorphism C∞(J∞) → C∞(J∞) and satisfies
S ◦ S = S. If applying reduction S on the right-hand sides Ψ k

μ of system (1) we
obtain an autoreduced reduction system (see Definition 3), the right-hand sides Ψ k

μ

of which depend only on parametric derivatives; hence, we simply have Suk
μ = Ψ k

μ .
The autoreduced system generates the same reduction as the unreduced one. Actually,
the previous version of this paper (see the extended abstract [20]) depended on use of
an autoreduced reduction subsystem. However, autoreduction is no longer necessary
in practical implementations (see Remark 3).

Our main result below (Theorem 1) shows that reduction and total derivatives Dx

on J∞ satisfy

S ◦ Dx ◦ S = S ◦ Dx.

The next example demonstrates that we have no such property until we know that Σ

is passive.

Example 1 A simple example of an active system Σ with SDxSF 
= SDxF is

ux = f (u), uy = g(u).

The ranking ≺ can be arbitrary. Let the reduction subsystem Σ ′ contain the equation

uxy = Dyf
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rather than its alternative uxy = Dxg. For F = uy we obtain

SDxSuy = SDxg = S

(
∂g

∂u
ux

)
= ∂g

∂u
f,

SDxuy = Suxy = SDyf = S

(
∂f

∂u
uy

)
= ∂f

∂u
g.

Observe that SDxSuy = SDxuy is exactly the integrability condition

∂f

∂u
g = ∂g

∂u
f

for the system Σ .

4 Integrability Conditions

Henceforth we fix a reduction subsystem Σ ′ of Σ∞ such that LD Σ ′ = LD Σ∞ as
in the preceding section. As above, S denotes the reduction with respect to Σ ′. Inte-
grability conditions investigated in this section measure the linear nonequivalence of
various ways of prolongation.

Definition 5 For every principal derivative uk
μ (i.e., uk

μ ∈ LD Σ∞) we introduce the

principal subset X k
μ as the set of all monomials ξ 
= 1 such that uk

μ/ξ ∈ LD Σ∞. Thus,

elements of X k
μ are principal derivatives strictly lower than uk

μ (see Definition 1).

Definition 6 If Σ includes an equation of the form uk
μ = Φk

μ such that the principal
subset X k

μ is nonempty and ξ ∈ X k
μ, then the condition

Φk
μ = SDξSuk

μ/ξ (4)

is called an integrability condition of the first kind at the point uk
μ.

For every pair ξ, η ∈ X k
μ, the condition

SDξSuk
μ/ξ = SDηSuk

μ/η (5)

is called an integrability condition of the second kind at the point uk
μ.

Let us remind the reader that Σ is not necessarily a subset of Σ ′. This explains
why integrability conditions of the first kind are needed.

According to Definition 6, integrability conditions at the point uk
μ are satisfied if

any two possible ways of obtaining the value Suk
μ lead to the same result. It is well

known that all such integrability conditions follow from a finite subset. The main goal
of this paper is to reestablish this result in an irredundant way.

The following definition is quite standard and reflects properties of the graph of
the ordered principal subset.
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Definition 7 For every principal derivative uk
μ, consider the principal subset X k

μ or-
dered by the divisibility relation ≤. Let ≈ denote the reflexive, symmetric, and tran-
sitive closure of the ordering ≤.

Recall that the reflexive, symmetric, and transitive closure of a given relation is
the smallest reflexive, symmetric, and transitive relation containing the given re-
lation. The explicit description is given by p ≈ q if and only if there exists a fi-
nite sequence of monomials z1, . . . , z2s+1 ∈ X k

μ such that p = z1, q = z2s+1 and
z2j−1 ≤ z2j whereas z2j ≥ z2j+1 for every j = 1, . . . , s. Since ≈ is an equivalence
relation, we obtain a partition X k

μ/≈ of the set X k
μ into equivalence classes [x]≈,

x ∈ X k
μ.

Definition 8 A pair of elements p,q of the principal subset X k
μ is said to be con-

nected if p ≈ q . Equivalence classes of X k
μ with respect to ≈ are called connected

components of X k
μ. The principal subset X k

μ is said to be connected, if it consists of a
single connected component.

For a finite ordered set, connected components are just connected components of
the corresponding (Hasse) diagram.

Let us remark that connectedness of the principal subset means subconnectedness
in the sense of [6, 19, 35, 36].

Construction 2 For every uk
μ ∈ LD Σ with nonempty principal subset X k

μ choose
one integrability condition of the first kind (4),

Φk
μ = SDξSuk

μ/ξ ,

where ξ ∈ X k
μ is arbitrary. For every uk

μ ∈ LD Σ∞ such that the principal subset X k
μ

consists of s connected components [ξ1]≈, . . . , [ξs]≈ with s > 1, choose arbitrary
representatives ξ1, . . . , ξs of these components and consider integrability conditions
of the second kind (5) in the form of a chain of equations

SDξ1Suk
μ/ξ1

= SDξ2Suk
μ/ξ2

= · · · = SDξs Suk
μ/ξs

. (6)

The set of integrability conditions obtained in this way will be called a sufficient set
of integrability conditions.

Clearly, each ξ of Construction 2 can be chosen so that uk
μ/ξ is minimal in X k

μ, and

hence belongs to LD Σ so that we can replace SDξSuk
μ/ξ with SDξΦ

k
μ/ξ to obtain

conventional integrability conditions in the sense of the following definition.

Definition 9 Integrability conditions of the form

Φk
μ = SDξΦ

k
μ/ξ or SDξ1Φ

k
μ/ξ1

= · · · = SDξs Φ
k
μ/ξs

are said to be conventional if uk
μ/ξ , u

k
μ/ξi

∈ LD Σ .
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Remark 1 Obviously, every integrability condition can become conventional at the
expense of enlarging the system Σ by some reduced equations from Σ∞.

Our immediate goal now is to show that satisfying the sufficient set from Con-
struction 2 implies satisfying all the other integrability conditions of Definition 6.
The following lemma is the key. Let varF denote the finite set of all variables (inde-
pendent variables and derivatives) a smooth function F depends on.

Lemma 1 Let x be an independent variable, σ ∈ X ∗ a monomial, and F a func-
tion of independent variables and parametric derivatives. Let SDτSDxp = SDxτp

for every derivative p ∈ varF (i.e., p ∈ derF ) and every monomial τ ≤ σ . Then
SDσ SDxF = SDxσ F .

Proof We have

Dσ (FG) =
∑

ρτ=σ

cρτ
σ DρF · DτG,

for suitable constants c
ρτ
σ . Applying SDσ to

DxF =
∑

q∈varF

∂F

∂q
Dxq, SDxF =

∑

q∈varF

∂F

∂q
SDxq,

we get

SDσ DxF =
∑

q∈varF

∑

ρτ=σ

cρτ
σ SDρ

(
∂F

∂q

)
· SDτxq,

whereas

SDσ SDxF =
∑

q∈varF

∑

ρτ=σ

cρτ
σ SDρ

(
∂F

∂q

)
· SDτSDxq.

These two expressions coincide since SDτSDxq = SDτxq holds by assumption for
all q and τ ≤ σ . �

Theorem 1 Suppose that the reduction subsystem Σ ′ (see Sect. 3) satisfies some
sufficient set of integrability conditions as in Construction 2. Then

(i) For all uk
μ ∈ LD Σ∞ and all ξ < μ we have

Suk
μ = SDξSuk

μ/ξ . (7)

(ii) All integrability conditions in the sense of Definition 6 hold true (meaning that
Σ is passive).

(iii) For every monomial ξ and every smooth function f on J∞

SDξf = SDξSf

are satisfied.
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(iv) Systems Σ ′ and Σ∞ are linearly equivalent (Definition 4).

Proof To prove (i) we proceed by induction with respect to p = uk
μ. If uk

μ/ξ exists

and is parametric, then (7) is satisfied trivially since Suk
μ/ξ = uk

μ/ξ . It remains to deal

with the case when uk
μ/ξ exists and is principal, i.e., the case of ξ ∈ X k

μ. To start with,

we consider p = uk
μ minimal with respect to the ordering ≺. Then (7) holds true in a

trivial way, since X k
μ = ∅ in that case.

To perform the induction step, let us consider an arbitrary derivative p = uk
μ as-

suming validity of (7) for all q ≺ p. We shall prove

SDσ Suk
μ/σ = SDρSuk

μ/ρ (8)

for all σ,ρ ∈ X k
μ. We start with the case of σ,ρ belonging to one connected com-

ponent, i.e., σ ≈ ρ. Obviously, this case can be reduced to ρ < σ by the definition
of ≈. But then it can be further reduced to the case when ρ is covered by σ , i.e.,
when ρ < σ and there is no other monomial in between, which we shall denote by
ρ � σ . Indeed, < is the transitive closure of � since X k

μ is always finite [12, Chap. 1
§2, Lemma 1]. However, ρ � σ obviously means that ρ < σ and σ/ρ is a variable.
Therefore, let x be an independent variable x such that ρ = xσ . To prove that σ ≡ ρ,
we establish equalities

SDσ Suk
μ/σ = SDσ SDxSuk

μ/xσ = SDxσ Suk
μ/xσ = SDρSuk

μ/ρ.

The first equality follows from Suk
μ/σ = SDxSuk

μ/xσ , which is (7) for μ/σ ≺ μ and
ξ = x, therefore holds by induction assumption.

To prove the second equality we apply Lemma 1 to F = Suk
μ/xσ . Let us verify the

assumptions. Consider an arbitrary monomial τ ≤ σ and q ∈ varF . Then q ≺ uk
μ/xσ ,

whence Dxτq ≺ Dxτu
k
μ/xσ = uk

μτ/σ � uk
μσ/σ = uk

μ. By induction assumption, (7)

holds with uk
μ replaced with Dxτq and ξ with x, meaning that SDxτ q = SDxSDτq .

Assumptions of Lemma 1 being thus verified, the second equality follows. The third
equality is obvious. Therefore, (8) holds for arbitrary ρ,σ belonging to one connected
component of X k

μ.
We are left with the case when σ,ρ belong to different components. But if the

set I of integrability conditions is sufficient in the sense of Construction 2, as it is
supposed to be, then I contains an integrability condition SDσ Suk

μ/σ ′ = SDρSuk
μ/ρ′

with some other ρ′ ≈ ρ and σ ′ ≈ σ from the same components, and then (8) holds
for σ ′, ρ′ by assumption and then for σ,ρ by transitivity.

This means that we have the same value SDσ Suk
μ/σ = SDρSuk

μ/ρ for all σ,ρ ∈
X k

μ. To establish (7), it remains to show that this common value is also equal to Suk
μ. If

uk
μ 
∈ LD Σ , then Suk

μ = SDξSuk
μ/ξ for some ξ ∈ X k

μ by construction of the reduction

system Σ ′ (Construction 1). If uk
μ ∈ LD Σ and X k

μ = ∅, then (7) is void. If uk
μ ∈

LD Σ and X k
μ 
= ∅ and Suk

μ = Φk
μ, then the sufficient system involves an integrability

condition of the first kind Φk
μ = SDξSuk

μ/ξ for some ξ ∈ X k
μ. Finally, if uk

μ ∈ LD Σ
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and X k
μ 
= ∅ and Suk

μ 
= Φk
μ, then (7) follows from the same Construction 1 again.

Thus, statement (i) is proved.
Statement (ii) follows immediately from (i) or (8). Statement (iii) holds for all

functions f if it holds for all derivatives uk
ν , and then it follows from (i). Finally,

by (ii) every equation from system Σ∞ becomes an identity when reduced with
respect to S. This means that systems Σ∞ and Σ ′ are linearly equivalent. Hence
statement (iv). �

Theorem 1 implies that Reid’s standard form [24] of a passive system Σ can be
easily obtained from the reduction system Σ ′.

Construction 3 Let Σ ′ be a reduction subsystem satisfying some sufficient set of
integrability as in Construction 2. Let H be the set of principal derivatives LD Σ ′ =
LD Σ∞ ordered by divisibility ≤ and M be the subset of minimal elements in H .
Consider the subsystem Σ ′

M ⊂ Σ ′ determined by LD Σ ′
M = M . Denote by Σ◦ the

orthonomic system obtained when applying reduction to right-hand sides of equations
in Σ ′

M .

As an immediate consequence of Theorem 1(iv) we obtain the following proposi-
tion.

Proposition 1 The system Σ◦ is the standard form of Σ as defined in [24]. Passive
orthonomic systems Σ1 and Σ2 have linearly equivalent prolongations Σ∞

1 and Σ∞
2

if and only if the standard forms Σ◦
1 and Σ◦

2 coincide.

Remark 2 Operators SDxS on the full jet space J∞ are R-linear and satisfy
the Leibniz rule, hence they are vector fields. Moreover, they commute, since
[SDxS,SDyS]f = SDxSDySf − SDySDxSf = SDxDySf − SDyDxSf = 0 by
Theorem 1(iii). Hence, the full jet space J∞ equipped with vector fields SDxS,
x ∈ X , is a diffiety in the sense of [3]. Now, denoting EΣ∞ and EΣ ′ the submani-
folds in J∞ determined by Σ∞ and Σ ′, respectively, we have C∞EΣ∞ = C∞EΣ ′ ∼=
C∞J∞/KerS ∼= SC∞J∞ by Theorem 1(iv). Hence, SDxS induce well defined op-
erators on the manifold EΣ∞ , turning it into a diffiety.

In an attempt to convey the sense of the method we conclude this section with a
simple example in dimension two. For less trivial examples see Sect. 8.

Example 2 Consider the following system Σ :

uxyyyy = e, uxxyyy = f, uxxxyy = g, uxxxxy = h,

where e, f, g,h are arbitrary functions of parametric derivatives. Figure 1 shows
the ordered set LD Σ∞ of principal derivatives placed within a coordinate system.
Symbols e, f, g,h denote the four generating derivatives uxyyyy, uxxyyy, uxxxyy,

uxxxxy ∈ LD Σ , respectively. The circle at uxxxxyyyy denotes a typical principal deriv-
ative. Thick lines show the corresponding principal subset Xxxxxyyyy , which is obvi-
ously connected. Actually, one easily sees that all principal subsets are connected
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Fig. 1 A typical principal
subset (Example 2)

except

Xxxxxyy = {uxxxxy, uxxxyy},
Xxxxyyy = {uxxxyy, uxxyyy},

Xxxyyyy = {uxxyyy, uxyyyy},
which consist of two isolated points each. Correspondingly, each of the derivatives
uxxxxyy , uxxxyyy , uxxyyyy harbors one nontrivial integrability condition. They are,
respectively,

SDxe = SDyf, SDxf = SDyg, and SDxg = SDyh.

5 Cross-Derivatives

In this section, we find an alternative description of the sufficient set suitable for
effective implementation.

Construction 2 leaves us with the problem of finding all principal derivatives with
disconnected principal subset. Indeed, a nontrivial integrability condition of the sec-
ond kind at a point uk

μ exists if and only if there are at least two distinct connected
components in X k

μ. To extend this line of argument further, let us consider different
possible descriptions of the quotient sets X k

μ/≈.
Let B be a subset of X k

μ such that every element of X k
μ is connected to an element

of B in the sense of Definition 8. Then, obviously, every connected component in-
tersects with B . In particular, the quotient set X k

μ/≈ is the same as the quotient set
B/≈B , where ≈B is the equivalence relation on B inherited from the relation ≈ on
X k

μ. There are two natural choices for B , which lead to two alternative descriptions
of X k

μ/≈:

(a) min X k
μ = the subset of minimal elements in X k

μ.
(b) max X k

μ = the subset of maximal elements in X k
μ.

Let L(k) denote the set of all monomials μ such that uk
μ ∈ LD Σ . Assuming L(k)

ordered by divisibility ≤, let M(k) = minL(k) denote the set of all minimal elements
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in L(k). Obviously, the subset min X k
μ coincides with the intersection X k

μ ∩ M(k).
Define a reflexive and symmetric relation ↑ on min X k

μ by p ↑ q if lcm(p, q) ∈ X k
μ,

i.e., if lcm(p, q) is a proper divisor of uk
μ.

Elements of max X k
μ are quotients μ/x with x ∈ X an independent variable such

that the derivative uk
μ/x is principal. To simplify reasoning, we identify max X k

μ with a

subset of X . Define a reflexive and symmetric relation ↓ on max X k
μ ⊆ X by x ↓ y if

there exists σ ∈ L(k) (equivalently, σ ∈ M(k)) and σ ≤ μ/x,μ/y. The same relation
↓ can be defined by x ↓ y if x = y or the derivative uk

μ/xy is principal as well.
We have the following obvious lemma.

Lemma 2 The inherited equivalence relation ≈min X k
μ

coincides with the transitive

closure ↑∗ of ↑. The inherited equivalence relation ≈max X k
μ

coincides with the tran-

sitive closure ↓∗ of ↓.

Corollary 1 We have the obvious induced bijections

X k
μ/≈ ↔ min X k

μ/↑∗ ↔ max X k
μ/↓∗.

Thus, we have obtained two “extremal” descriptions of the quotients X k
μ/≈. The

former is essentially through the concept of subconnectedness and is well-known to
be computationally hard. The latter description is what we actually use below.

Proposition 2 Let uk
μ be a principal derivative such that the principal subset X k

μ

contains nonequivalent elements σ 
≈ τ . Then μ = lcm(σ, τ ). Elements σ, τ can be
chosen to lie in min X k

μ.

Proof Since σ, τ ∈ X k
μ, we have lcm(σ, τ ) ≤ μ. If lcm(σ, τ ) < μ, then obviously

σ ≈ τ , contradicting the assumptions. The last statement follows from the fact that
every connected component intersects with min X k

μ. �

Now we introduce cross-derivatives as the “least common derivatives.”

Definition 10 A cross-derivative is a derivative uk
LCM(σ,τ )

, where uk
σ ,uk

τ ∈ LD Σ and
σ, τ do not divide one another.

By Proposition 2, nontrivial integrability conditions of the second kind can be
found only at cross derivatives. Hence the well-known result that the number of such
integrability conditions is always finite and less or equal to 1

2p(p − 1), where p is
the number of equations in the system Σ .

Of course, a cross-derivative gives rise to integrability conditions (6) if and only if
it satisfies the following nontriviality condition:

Definition 11 A cross-derivative uk
μ is said to be trivial if the principal subset X k

μ is
connected. Otherwise it is called nontrivial.
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Example 3 Generalizing Example 2, consider an arbitrary system of r equations in
two dimensions such that LD Σ consists of incomparable derivatives (with respect
to ≤ of Definition 1). It is an easy exercise to show that of the r(r − 1)/2 cross-
derivatives only r − 1 are nontrivial.

Let us close this section with some remarks concerning visualization of the rela-
tion ↓. The monoid X ∗ can be visualized as the n-dimensional grid N

n ⊂ R
n, where

N = {0,1,2, . . . }, via the correspondence x
r1
1 · · ·xrn

n ↔ (r1, . . . , rn). Given a mono-
mial μ ∈ X ∗ the cone generated by μ is defined to be C(μ) = {μν | ν ∈ X ∗}. A union
of cones in X ∗ is called a monomial ideal (see, e.g., [21]). For each k, we have

{
σ ∈ X ∗∣∣uk

σ ∈ LD Σ∞} =
⋃

uk
μ∈LD Σ

C(μ).

Hence, to every infinitely prolonged system Σ∞ there corresponds a collection of
monomial ideals, one for each k, consisting of principal derivatives uk

μ with one and
the same k.

Monomial ideals are usually visualized by staircase diagrams in R
n. In R

n, every
point (z1, . . . , zn) ∈ N

n generates the corner

C(z1, . . . , zn) = {
(x1, . . . , xn) ∈ R

n
∣∣ zi ≤ xi for all i

}
.

A union of corners, which is an unbounded orthogonal (usually non-convex) poly-
tope with vertices in integer points N

n ⊂ R
n, is called a staircase diagram. An ori-

ented edge between two integer points p = (z1, . . . , zi , . . . , zn) and q = (z1, . . . , zi +
1, . . . , zn) is called a direction from p to q . A square bounded by four adjacent edges
is called a tile. An xy-tile is a tile parallel to the xy-plane. Two of the bounding di-
rections end in a common point, which will be called the vertex of the tile. Now, on
the staircase diagram uk

μ lies in, max X k
μ can be seen as the set of all directions that

lead to μ. Two distinct directions x, y ∈ max X then satisfy x ↓ y if and only if the
staircase diagram contains the xy-tile with the vertex μ.

6 The Algorithm

Before proceeding to more substantial examples, let us finally present the procedure
to find a sufficient set of integrability conditions. Below the symbol # denotes the
number of elements in a finite set and var(ρ) = {x ∈ X | x divides ρ} for ρ ∈ X ∗
is the set of all variables to occur in a monomial. For clarity, we present two sepa-
rate algorithms, one for integrability conditions of each kind. Both algorithms share
partitioning of the system Σ into subsystems Σ(k) such that LD Σ(k) contains deriv-
atives uk

μ of uk . Sets LD Σ(k) being denoted by L(k), their minimal elements are then

collected in subsets M(k) ⊆ L(k). Of course, the algorithms can share the k loop.
Algorithm 1 to compute integrability conditions of the first kind is very simple. To

each non-minimal element uk
σ ∈ L(k) \ M(k) there corresponds exactly one integra-

bility condition of the first kind.



Found Comput Math (2009) 9: 651–674 665

Algorithm 1 Integrability conditions of the first kind
Input: Σ .
Output: the set IC(1)

Σ of integrability conditions of the first kind.

1: IC(1)
Σ := ∅

2: for all k do
3: L(k) := {ν ∈ X ∗ | uk

ν ∈ LD Σ}
4: M(k) := the set of minimal elements in L(k) with respect to ≤
5: for μ ∈ L(k) \ M(k) do
6: select arbitrary ν ∈ M(k) such that ν < μ

7: adjoin expression Φk
μ − Dμ/νΦ

k
ν to IC(1)

Σ

8: end for
9: end for

10: return IC(1)
Σ

Algorithm 2 Integrability conditions of the second kind

Input: Σ . Output: the set IC(2)
Σ of integrability conditions of the second kind

1: IC(2)
Σ := ∅

2: for all k do
3: let L(k),M(k) be those of Algorithm 1
4: C(k) := {lcm(ν1, ν2) | {ν1, ν2} ⊆ M(k) a two-element subset}
5: for μ ∈ C(k) do
6: M = {var(μ/σ) | σ ∈ M(k) and σ < μ}
7: N := the set of connected components of the hypergraph (

⋃
M,M)

8: if #N > 1 then
9: select arbitrary σ1, . . . , σs ∈ L(k) such that var(μ/σi) is a subset of the ith

connected component,
10: adjoin Dμ/σ2Φ

k
σ2

− Dμ/σ1Φ
k
σ1

, . . . , Dμ/σs Φ
k
σs

− Dμ/σ1Φ
k
σ1

to IC(2)
Σ

11: end if
12: end for
13: end for
14: return IC(2)

Σ

Before explaining Algorithm 2 to compute integrability conditions of the second
kind, let us consider various descriptions offered by Corollary 1. There is no upper
bound for the size # min X k

μ since the number of equations in the system Σ can be
arbitrary, whereas # max X k

μ is bounded by the number of independent variables #X .
During completion, # min X k

μ grows as new equations are added to the system, while
# max X k

μ remains essentially stable. This is why Algorithm 2 uses the relation ↓ on
max X k

μ rather than the relation ↑ on min X k
μ.

Now, Algorithm 2 works as follows. On line 4 cross-derivatives are computed,
using only minimal derivatives collected in M(k). This is justified by Proposition 2 as
trivial cross-derivatives do not contribute to IC(2)

Σ .
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To explain lines 6 and 7, observe that the reflexive and symmetric relation ↓ is
conveniently represented as the union of relations ↓σ , where σ runs through M(k)

and ↓σ is defined by x ↓σ y if x = y or σ ≤ μ/x,μ/y. Obviously, each ↓σ is an
equivalence relation. Moreover, the associated partition of X ⊆ max X k

μ has only
one nontrivial class, apart from one-element sets, and this class can be identified
with var(μ/σ). Hence, the partition N corresponding to the transitive hull ↓∗ is the
least partition such that every var(μ/σ) is a subset of some class of N. Computing
such a least partition amounts to joining all incident subsets. Alternatively, N can
be described as the set of connected components of the hypergraph (max X k

μ,M),

where the set of hyperedges is M = {var(μ/σ) | σ in M(k)} and the set of vertices is
max X k

μ = ⋃
M. Known algorithms [16] are capable of labeling connected compo-

nents of a (hyper)graph in expected time linear in the number of vertices. The time
complexity of Algorithm 2 is estimated in Remark 5 below. An obvious time-saving
modification is to interlace lines 6 and 7 and break as soon as N = X and consists
of one connected component. The arbitrary selections made on line 6 of Algorithm 1
and lines 10, 11 of Algorithm 2 exhaust the entire freedom of choice of conventional
integrability conditions (Definition 9) relative to Remark 1.

Let us discuss the whole completion procedure now. If all the integrability con-
ditions of Theorem 1 are satisfied (i.e., if they reduce to identities as explained in
Sect. 3), then the system is passive and no further steps are needed. Otherwise let
Σ̄ denote the extended system obtained by resolving the non-identical integrability
conditions with respect to maximal derivatives (under the same ranking) and adjoin-
ing them to Σ (incrementally, see below). The system Σ̄ is afterwards subject to
the same procedure of selecting a reduction subsystem Σ̄ ′ of the infinite prolon-
gation Σ̄∞, identifying the integrability conditions, etc. Obviously, we then have
S̄ ◦ S = S̄ = S ◦ S̄ and EΣ ′ ⊆ EΣ̄ ′ (see Remark 2).

Of course, the time spent on redundancy elimination is only one factor, and not the
most important one. Far greater savings can be achieved by an appropriate choice of
the completion strategy (cf. Buchberger [5, 6]). It is well known that adding one inte-
grability condition at a time is better than adding all of them at once. The number of
newly emerging integrability conditions (of both kinds) that result from extending Σ

to Σ̄ is at most #M(k) per one added μ ∈ M̄(k) \ M(k). Nevertheless, yet unresolved
integrability conditions of the second kind can trivialize and the objective is to avoid
computing the integrability conditions that will trivialize. Prospects are higher if lin-
ear combinations of integrability conditions are taken into consideration, as is the
case with the Faugère algorithm [8]. Faugère’s empirically optimal “normal strategy”
is to select minimal order leading derivatives. Hopes are that our work can provide a
theoretical foundation for optimal selection. The idea of early integration [39] is also
worth further study.

Of course, being a part of a completion algorithm, the implementation should keep
track of the integrability conditions already satisfied in previous steps. But do the once
satisfied integrability conditions of Σ continue to hold under the new reduction S̄?
Recall the inductive proof of (7) (the core statement of Theorem 1 the others follow
from) for the system Σ̄ . Assume (7Σ ), i.e., Suk

μ = SDξSuk
μ/ξ , at uk

μ, while for all

ul
ν ≺ uk

μ assume (7Σ̄ ), i.e., S̄ul
ν = S̄Dξ S̄ul

ν/ξ . By (7Σ̄ ) we have S̄Dξ S̄F = S̄DξF for

arbitrary function F of derivatives that precede uk
μ, in particular, for F = Suk

μ/ξ . But
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then S̄Dξ S̄uk
μ/ξ = S̄Dξ S̄Suk

μ/ξ = S̄DξSuk
μ/ξ = S̄SDξSuk

μ/ξ = S̄Suk
μ = S̄uk

μ. Thus,

we have (7Σ̄ ) at uk
μ as well.

An important question is whether the completion algorithm eventually stops.
An affirmative answer easily follows from the Dickson lemma, since new integra-
bility conditions can reside only at points uk

μ outside the monomial ideals generated

by LD Σ(k).
We close this section with a remark on autoreduction.

Remark 3 Certain grounds exist for maintaining the reduction subsystem non-
autoreduced. For example, let the input system Σ contain two equations uμ = Fu,
uν = Gu, where F,G are linear differential operators with constant coefficients. Let,
moreover, μ,ν be relatively prime. Then the corresponding integrability condition
of the second kind at uμν is nontrivial, yet automatically satisfied: DνFu = FGu =
GFu = DμGu on E ∞

Σ . (In polynomial elimination theory, this case is covered by
the so-called first Buchberger criterion [5].) Now, the crucial identity FGu = GFu

(which only appears in expanded form) is much easier to check before applying any
reductions for uσ ∈ varFGu = varGFu. To a lesser extent this is the case even if
F,G have non-constant coefficients etc.

7 Irredundancy

In this section, we prove that Construction 2 produces no redundant integrability
condition. By a redundant condition we usually mean one that can be safely omitted
from the checklist, since it is satisfied automatically whenever the others are. To put
it more formally, observe that the essentials of Construction 2 depend only on the set
P = LD Σ of derivatives uk

μ on the left-hand side of the input system (1), while func-

tions Φk
ξ on the right-hand side play the role of parameters. Let us therefore consider

the whole class SP of orthonomic systems Σ with fixed set P = LD Σ , parametrized
by arbitrary functions Φk

ξ subject only to requirements of orthonomicity. Obviously,
Construction 2 provides a set of integrability conditions applicable to every member
of the class SP .

Definition 12 Consider the class SP of orthonomic systems Σ with a fixed set P =
LD Σ . Let I be a set of integrability conditions of SP . An integrability condition
I ∈ I is said to be redundant if it is satisfied for every choice of right-hand sides Φk

ξ

for which all the other integrability conditions I \ {I } are satisfied. The set I is said
to be irredundant if it contains no redundant integrability condition.

A chain (6) is to be considered as a sequence of s − 1 integrability conditions, so
that each equality sign determines a separate integrability condition.

Remark 4 Definition 12 implicitly refers to some functional space S to choose the
right-hand sides Φk

ξ from. The proof of Proposition 3 below only requires that S
contains all polynomials in the independent variables.
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Proposition 3 The set I of integrability conditions resulting from Construction 2 is
irredundant.

Proof To start with, we assume that all integrability conditions from I are conven-
tional (see Definition 9). Let Φk

μ = SDμ/ξSΦk
ξ ∈ I be such an integrability condition

of the first kind. By assigning Φk
μ = 1 and Φl

σ = 0 for all ul
σ ∈ LD Σ \ {uk

μ}, we
obtain an orthonomic system obviously satisfying all integrability conditions except
Φk

μ = 1 
= 0 = SDμ/ξSΦk
ξ .

Similarly, consider an arbitrary conventional integrability condition of the second
kind from I , say

SDμ/ξ1Φ
k
ξ1

= SDμ/ξ2Φ
k
ξ2

= · · · = SDμ/ξs Φ
k
ξs

(9)

at uk
μ ∈ LD Σ∞. Let [ξ1], . . . , [ξs] denote the corresponding equivalence classes in

min X k
μ. Let 1 ≤ r < s be an arbitrary integer and I denote the r th integrability con-

dition in the chain, i.e., SDμ/ξr Φ
k
ξr

= SDμ/ξr+1Φ
k
ξr+1

. By Construction 2, I contains

no more than one integrability condition of the first kind of the form Φk
μ = SDμ/σ Φk

σ .
If such a σ exists, let Ξ denote [ξ1] ∪ · · · ∪ [ξr ] or [ξr+1] ∪ · · · ∪ [ξs] whichever con-
tains σ . If no such σ exists, then let Ξ be one (arbitrarily chosen) of these two sets.

For every monomial σ = x
a1
1 · · ·xan

n ∈ X ∗ we introduce the function of indepen-
dent variables

Fσ (x1, . . . , xn) = x
a1
1 · · ·xan

n

a1! · · ·an! ,

which obviously satisfies

DτFσ =
{

Fσ/τ if τ ≤ σ ,

0 otherwise.
(10)

Turning back to our proof, for every ul
σ ∈ LD Σ we assign Φl

σ according to the fol-
lowing simple rule:

Φl
σ =

{
Fμ/σ if l = k and σ ∈ {μ} ∪ Ξ ,

0 otherwise.
(11)

Consider an arbitrary integrability condition Φk
ν = SDν/σ Φk

σ , σ < ν, of the first kind
from I . The only possibility how the left-hand side can be nonzero is when

(A) σ ∈ {μ} ∪ Ξ, ν ≤ μ,

and then it equals Dν/σ Φk
σ = Dν/σ Fμ/σ = Fμ/ν . The only possibility how the right-

hand side can be nonzero is when

(B) ν ∈ {μ} ∪ Ξ,
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and then it equals the same Fμ/ν . It remains to be checked that conditions (A) and
(B) are equivalent. Before that we observe that the inequality σ < ν implies

(C) if σ, ν < μ, then σ, ν both or neither lie in Ξ.

Indeed, under these conditions we have σ ≈ ν in X k
μ.

Let (A) hold true. The case ν = μ being trivial, consider ν < μ. Then also σ < μ

and therefore σ ∈ Ξ . But then ν ∈ Ξ by (C), giving (B). Conversely, let (B) hold true.
If ν = μ, then σ ∈ Ξ since Ξ was chosen that way. Otherwise ν ∈ Ξ , but then σ ∈ Ξ

by (C) again. Therefore, (A) is true. Thus, we have proved the equivalence (A) ⇔
(B) and hence validity of all integrability conditions of the first kind.

Now consider an integrability condition of the second kind from I , at some ul
ν . In

the case of ul
ν = uk

μ, the integrability condition is (9). However, SDμ/ξΦ
k
ξ equals 1

if ξ ∈ Ξ and 0 otherwise, hence all equalities (9) hold except for I . Thus, we are left
with the case of an integrability condition SDν/σ1Φ

k
σ1

= · · · = SDν/σt Φ
k
σt

from I , at
some ul

ν 
= uk
μ. By (11) and (10), the values SDν/σi

Φk
σi

to be compared at ul
ν are all

zero except when

(Ai ) l = k, σi < ν ≤ μ, σi ∈ Ξ,

and then they are Dν/σi
Φk

σi
= Dν/σi

Fμ/σi
= Fμ/ν independently of i. Let us show that

conditions (Ai ) are equivalent. However, if one of (Ai ) holds, then l = k and ν ≤ μ,
hence ν < μ (otherwise ul

ν = uk
μ). We have σj < ν for all j by Construction 2, hence

σ1 ≈ · · · ≈ σt in X k
μ (although not in X k

ν ). Therefore, all σj belong to Ξ . Equivalence
of conditions (Ai ) is thereby established.

Thus, we have proved the proposition in case of conventional integrability con-
ditions. But since all Φl

σ assigned during the proof were functions of independent
variables only, we have simply SDνΦ

l
σ = DνΦ

l
σ for the reduction S of any princi-

pal derivative. This means that every integrability condition can be identified with a
conventional integrability condition. Hence, the proposition holds for general inte-
grability conditions as well. �

It remains to compare our definition of redundancy with that used by other authors,
notably Rust [28, 30]. Consider the free abelian algebra Ak

μ over the set of abstract

generators of the form Dμ/ξΦ
k
ξ . The total derivatives Dx act upon the generators,

hence upon the whole algebra, in a natural way. An integrability condition can be
viewed as a difference Dμ/ξΦ

k
ξ −Dμ/ηΦ

k
η ∈ Ak

μ of two generators. Given a finite set

I ⊂ Ak
μ of integrability conditions, another integrability condition I = Dμ/ξΦ

k
ξ −

Dμ/ηΦ
k
η is said to be syzygy redundant if monomials μi ≤ μ, integrability conditions

Ii = Dμi/ξi
Φk

ξi
− Dμi/ηi

Φk
ηi

∈ I , and integers ci ∈ Z exist such that

I =
∑

i

ciDμ/μi
Ii =

∑

i

ci

(
Dμ/ξi

Φk
ξi

− Dμ/ηi
Φk

ηi

)
(12)

holds in Ak
μ.



670 Found Comput Math (2009) 9: 651–674

It is clear that if I is syzygy redundant, then it is also redundant in the sense
of Definition 12 for all choices of S (see Remark 4). Hence the sufficient set of
integrability conditions resulting from Construction 2, proved to be irredundant
when S contains all polynomials in independent variables, is also syzygy irredun-
dant.

8 Examples

The first two examples compare our algorithms to Algorithm 9 from Wittkopf’s dis-
sertation [38]. Wittkopf’s algorithm removes nearly all of the syzygy redundancy.
Experiments with randomly generated monomial ideals showed that Wittkopf’s al-
gorithm can miss r redundant integrability conditions in case of ideals with 4r gen-
erators, but such instances are rather rare. A surprise was that Wittkopf’s algorithm
could be substantially slower than ours.

Example 4 Consider a system Σ of the form

uxyz = f1, uxxz = f2, uyyz = f3, uxxyy = f4.

We summarize the work of Algorithm 2 in Table 1.
The first column lists all possible cross-derivatives μ. Columns 2–5 correspond to

the four derivatives uσ from LD Σ . These four columns list variables the monomial
μ/σ depends on whenever σ divides μ, and contain an empty space when μ/σ is not
a monomial. The sixth column contains the least partition of max Xμ generated by
the sets occurring in columns 2–5 (max Xμ is the union of these sets). By results of
Section 5 this partition corresponds to the equivalence relation ≈ on max Xμ inherited
from Xμ. Algorithm 2 also says how to choose the integrability conditions (we omit
the reduction symbol S). In the first and second row, the only possibility is that given
in the last column (when μ = x2yz or μ = xy2z, each connected component of Xμ

contains a single σ ). Contrary to that, one of the connected components of Xxxyyz

contains three monomials σ , namely xyz, x2z, y2z. Hence, apart from Dxyf1 = Dzf4

shown in the table, there are two other equivalent ways to write the third integrability
condition: Dyyf2 = Dzf4 and Dxxf3 = Dzf4.

Table 1 Summary of Example 4

μ var(μ/σ), σ = max Xμ/ ≈ IC(2)

xyz x2z y2z x2y2

x2yz x y {x}, {y} Dxf1 = Dyf2

xy2z y x {x}, {y} Dyf1 = Dxf3

x2y2z xy y x z {x, y}, {z} Dxyf1 = Dzf4
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The example can be visualized (see the end of Sect. 5) as follows:

The reader may wish to locate the tile that induces the equivalence relation x ≈ y

at μ = x2y2z.

Example 4 is one of the simplest where Algorithm 9 from Wittkopf’s disserta-
tion [38] misses one redundant integrability condition. However, Wittkopf’s algo-
rithm depends on a choice of what is called compatible ranking [38, Definition 10]
of syzygies, which itself depends on a choice of a ranking for Σ (which we fix to be
x ≺ y ≺ z) and a permutation of the set Σ . In Example 4, Wittkopf’s algorithm has a
very favorable ratio 11

12 of correct answers in the set of all 4! = 24 permutations of Σ .
This ratio can be less favorable in other examples.

Example 5 Consider a system Σ of the form

uxxy = f1, uxxz = f2, uxyy = f3,

uxzz = f4, uyyz = f5, uyzz = f6.

We summarize the work of Algorithm 2 in Table 2.

Table 2 Summary of Example 5

μ var(μ/σ), σ = max Xμ/ ≈ IC(2)

x2y x2z xy2 y2z xz2 yz2

x2yz z y {y}, {z} Dzf1 = Dyf2

xy2z z x {x}, {z} Dzf3 = Dxf4

xyz2 y x {x}, {y} Dyf5 = Dxf6

x2y2 y x {x}, {y} Dyf1 = Dxf3

x2z2 z x {x}, {z} Dzf2 = Dxf5

y2z2 z y {y}, {z} Dzf4 = Dyf6

x2y2z yz y xz x {x, y, z}
x2yz2 z yz xy x {x, y, z}
xy2z2 z xz y xy {x, y, z}
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For explanation of the table see Example 4. The last column shows the unique
integrability condition in each of the first six rows and none in the remaining three.
The corresponding diagram is

Wittkopf’s Algorithm 9 gives an incorrect number of integrability conditions
(seven) in 540 of the full number 6! = 720 of permutations of Σ . Thus, the ratio
of correct answers is only 1/4 now.

Remark 5 In randomly generated examples, Wittkopf’s Algorithm 9 ran substantially
longer than ours on the same data. Both algorithms take advantage of the partitioning
Σ = ⋃

Σ(k). Let us therefore attempt a comparison in the case of one dependent
variable (so that there is no k loop).

The then outer loop of Wittkopf’s algorithm runs over the syzygy system S which
has O(r2) elements, where r = #Σ . At each run, the subset S ′ ⊆ S of already ex-
ecuted (accepted or rejected) syzygies is incremented. Processing elements s′ ∈ S ′
in Step 3.1 costs #S ′ time units. Processing pairs of elements s′, s′′ ∈ S ′ in Step 3.2
costs between #S ′ and (#S ′)2 time units (s′ and s′′ are not independent). This sug-
gests running time of at least O(r4).

In our Algorithm 2, L(k) as well as M(k) have O(r) elements. The main loop 5–12
runs over C(k), which has O(r2) elements. At each run, building M on line 6 requires
time proportional to #M(k). Obtaining connected components of the hypergraph M

on line 7 requires time proportional to #M(k) + #X , where typically #M(k) ≥ #X .
This means O(r3) running time.

Finally, we give an example where integrability conditions ordered by divisibility
form a chain. It is easy to show that n − 1 is the maximal length of such a chain in
the case of n variables.

Example 6 Let n > 2 be arbitrary. Consider the following n Janet monomials in n

variables:

x2x3x4 · · ·xn,

x2
1x3x4 · · ·xn,

x2
1x2

2x4 · · ·xn,
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· · · ,

x2
1x2

2x2
3 · · ·x2

n−1.

The cross-derivatives

x2
1x2x3x4 · · ·xn,

x2
1x2

2x3x4 · · ·xn,

x2
1x2

2x2
3x4 · · ·xn,

· · · ,

x2
1x2

2x2
3 · · ·x2

n−1xn

are all nontrivial and form a chain of length n − 1.
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