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Abstract The idea of a finite collection of closed sets having “linearly regular inter-
section” at a point is crucial in variational analysis. This central theoretical condition
also has striking algorithmic consequences: in the case of two sets, one of which
satisfies a further regularity condition (convexity or smoothness, for example), we
prove that von Neumann’s method of “alternating projections” converges locally to
a point in the intersection, at a linear rate associated with a modulus of regularity.
As a consequence, in the case of several arbitrary closed sets having linearly regular
intersection at some point, the method of “averaged projections” converges locally at
a linear rate to a point in the intersection. Inexact versions of both algorithms also
converge linearly.
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1 Introduction

An important theme in computational mathematics is the relationship between “con-
ditioning” of a problem instance and speed of convergence of iterative solution al-
gorithms on that instance. A classical example is the method of conjugate gradients
for a positive definite system of linear equations: the relative condition number of
the associated matrix gives a bound on the linear convergence rate. More generally,
Renegar [41–43] showed that the rate of convergence of interior-point methods for
conic convex programming can be bounded in terms of the “distance to ill-posedness”
of the program.

In studying the convergence of iterative algorithms for nonconvex minimization
problems or nonmonotone variational inequalities, we must content ourselves with
a local theory. A suitable analogue of the distance to ill-posedness is then the no-
tion of “metric regularity,” fundamental in variational analysis. Loosely speaking, a
constraint system, such as a system of inequalities, for example, is metrically regular
when, locally, we can bound the distance from a trial solution to an exact solution by
a constant multiple of the error in the equation generated by the trial solution. The
constant needed is called the “regularity modulus,” and its reciprocal has a natural
interpretation as a distance to ill-posedness [19]. While not appropriate as a universal
condition on general variational systems [34], metric regularity is often a reasonable
assumption for constraint systems.

This philosophy suggests understanding the speed of convergence of algorithms
for solving constraint systems in terms of the regularity modulus at a solution. Re-
cent literature focuses in particular on the proximal point algorithm (see, for example
[1, 13, 26, 37]). After the initial version [29] of this article, an independent but related,
proximal-type development was announced in [2]. A unified approach to the relation-
ship between metric regularity and the linear convergence of a family of conceptual
algorithms appears in [27].

We here study a very basic algorithm for a very basic problem. We consider the
problem of finding a point in the intersection of several closed sets, using the method
of averaged projections: at each step, we project the current iterate onto each set, and
average the results to obtain the next iterate. Global convergence of this method for
convex sets was proved in 1969 in [3]. Here we show, in complete generality, that
this method converges locally to a point in the intersection of the sets, at a linear
rate governed by an associated regularity modulus. Our linear convergence proof is
elementary: although we use the idea of the normal cone, we apply only the definition,
and we discuss metric regularity only to illuminate the rate of convergence.

Finding a point in the intersection of several sets is a problem of fundamental
computational significance. In the case of closed halfspaces, for example, the problem
is equivalent to linear programming. We mention some nonconvex examples below.
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Our approach to the convergence of the method of averaged projections is stan-
dard [5, 38, 39]: we identify the method with von Neumann’s alternating projections
algorithm [49] on two closed sets (one of which is a linear subspace) in a suitable
product space. A nice development of the classical method of alternating projections
in the convex case may be found in [15]. The convergence of the method for two
intersecting closed convex sets was proved in [8], and linear convergence under a
regular intersection assumption was proved in [5], strengthening a classical result
of [25]. Our algorithmic contribution is to show that assuming linear regularity, local
linear convergence does not depend on convexity of both sets, but rather on a good
geometric property (such as convexity, smoothness, or more generally, “amenability”
or “prox-regularity”) of just one of the two.

One consequence of our convergence proof is an algorithmic demonstration for
the “exact extremal principle” of [31] (see also [33, Theorem 2.8]). This result, a
unifying theme in [33], asserts that if several sets have linearly regular intersection
at a point, then that point is not “locally extremal”: that is, translating the sets by
sufficiently small vectors cannot render the intersection empty locally. To prove this
result, we simply apply the method of averaged projections, starting from the point of
regular intersection. In a further section, we show that inexact versions of the method
of averaged projections, closer to practical implementations, also converge linearly.

The method of averaged projections is a conceptual algorithm that might appear
hard to implement on concrete nonconvex problems. However, the projection prob-
lem for some nonconvex sets is relatively easy. A good example is the set of matrices
of some fixed rank: given a singular value decomposition of a matrix, projecting it
onto this set is immediate. Furthermore, nonconvex alternating projection algorithms
and analogous heuristics are quite popular in practice, in areas such as inverse eigen-
value problems [10, 11], pole placement [35, 51], information theory [48], low-order
control design [23, 24, 36], and image processing [7, 50]. Previous convergence re-
sults on nonconvex alternating projection algorithms have been uncommon, and have
either focussed on a very special case (see, for example [10, 30]), or have been much
weaker than for the convex case [14, 48]. For more discussion, see [30].

Our results primarily concern R-linear convergence: we show that our sequences
of iterates converge, with error bounded by a geometric sequence. In a final section,
we employ a completely different approach to show that the method of averaged pro-
jections, for prox-regular sets with regular intersection, has a Q-linear convergence
property: each iteration guarantees a fixed rate of improvement. In a final section,
we illustrate these theoretical results with an elementary numerical example coming
from signal processing.

Our interest here is not in the development of practical numerical methods.
Notwithstanding linear convergence proofs, basic alternating and averaged projec-
tion schemes may be slow in practice. Rather we aim to study the interplay between
a simple, popular, fundamental algorithm and a variety of central ideas from varia-
tional analysis. Whether such an approach can help in the design and analysis of more
practical algorithms remains to be seen.
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2 Notation and Definitions

We fix some notation and definitions. Our underlying setting throughout this work is
a Euclidean space E with corresponding closed unit ball B . For any point x ∈ E and
radius ρ > 0 , we write Bρ(x) for the set x + ρB .

Consider first two sets F,G ⊂ E. A point x̄ ∈ F ∩ G is locally extremal [33] for
this pair of sets if there exists a constant ρ > 0 and a sequence of vectors zr → 0 in
E such that (F + zr)∩G∩Bρ(x̄) = ∅ for all r = 1,2, . . . . In other words, restricting
to a neighborhood of x̄ and then translating the sets by arbitrarily small distances can
render their intersection empty. Clearly x̄ is not locally extremal if and only if

0 ∈ int
((

(F − x̄) ∩ ρB
)− (

(G − x̄) ∩ ρB
))

for all ρ > 0.

For recognition purposes, it is easier to study a weaker property than local ex-
tremality. We say that two sets F,G ⊂ E have linearly regular intersection at the
point x̄ ∈ F ∩G if there exist constants α, δ > 0 such that for all points x ∈ F ∩Bδ(x̄)

and z ∈ G ∩ Bδ(x̄), and all ρ ∈ (0, δ], we have

αρB ⊂ (
(F − x) ∩ ρB

)− (
(G − z) ∩ ρB

)
.

(In [28], this property is called “strong regularity.”) By considering the case x =
z = x̄, we see that linear regularity implies that x̄ is not locally extremal. This “pri-
mal” definition of linear regularity is often not the most convenient way to handle
linear regularity, either conceptually or theoretically. By contrast, a “dual” approach,
using normal cones, is very helpful.

Given a set F ⊂ E, we define the distance function and (multi-valued) projection
for F by

dF (x) = d(x,F ) = inf
{‖z − x‖ : z ∈ F

}
,

PF (x) = argmin
{‖z − x‖ : z ∈ F

}
.

The normal cone to a closed set F ⊂ E at a point x̄ ∈ F is

NF (x̄) =
{

lim
i

ti (xi − zi) : ti ≥ 0, xi → x̄, zi ∈ PF (xi)
}
.

The centrality of this idea in variational analysis is described at length in [12, 33, 44].
This construction dates back to [31]: see [44, Chap. 6 Commentary] and [33, Chap. 1
Commentary] for a discussion of the equivalence between this definition and that of
[44, p. 199]. Notice two properties in particular. First,

z ∈ PF (x) =⇒ x − z ∈ NF (z). (2.1)

Secondly, the normal cone is a “closed” multifunction: for any sequence of points
xr → x̄ in F , any limit of a sequence of normals yr ∈ NF (xr) must lie in NF (x̄). In-
deed, the normal cone is the smallest cone satisfying the two properties. A noteworthy
equivalence is NF (x) = {0} ⇔ x ∈ intF .
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Normal cones provide an elegant alternative approach to defining linear regularity.
A family of closed sets F1,F2, . . . ,Fm ⊂ E has linearly regular intersection at a point
x̄ ∈⋂

i Fi , when the only solution to the system

m∑

i=1

yi = 0, with yi ∈ NFi
(x̄) (i = 1,2, . . . ,m)

is yi = 0 for i = 1,2, . . . ,m (cf. the “exact extremal principle” of [33, Theorem 2.8]).
In the case m = 2, this condition can be written

NF1(x̄) ∩ −NF2(x̄) = {0}, (2.2)

and it is equivalent to our previous definition (see [28, Corollary 2], for example).
We also note that this condition appears throughout variational-analytic theory. For
example, it guarantees the crucial inclusion (see [32, Theorem 1] and also [44, The-
orem 6.42])

NF1∩···∩Fm(x̄) ⊂ NF1(x̄) + · · · + NFm(x̄).

For convex F1 and F2, condition (2.2) asserts the nonexistence of a separating hy-
perplane. More generally, linear regularity was introduced in [32] as the “generalized
nonseparation property.” The notion of a “linear regular” family of convex sets [6] is
also related, though the definition we use here is local.

We will find it helpful to quantify the notion of linear regularity (cf. [28]).
A straightforward compactness argument shows the following result.

Proposition 2.3 (Quantifying linear regularity) A collection of closed sets F1,F2, . . . ,

Fm ⊂ E have linearly regular intersection at a point x̄ ∈ ∩Fi if and only if there exists
a constant k > 0 such that the following condition holds:

yi ∈ NFi
(x̄) (i = 1,2, . . . ,m) =⇒

√∑

i

‖yi‖2 ≤ k

∥∥
∥∥
∑

i

yi

∥∥
∥∥. (2.3)

We define the condition modulus cond(F1,F2, . . . ,Fm|x̄) to be the infimum of all
constants k > 0 such that property (2.3) holds. Since ‖ · ‖2 is convex, we notice that
vectors y1, y2, . . . , ym ∈ E always satisfy the inequality

∑

i

‖yi‖2 ≥ 1

m

∥∥∥
∥
∑

i

yi

∥∥∥
∥

2

, (2.4)

which yields

cond(F1,F2, . . . ,Fm|x̄) ≥ 1√
m

, (2.5)

except in the special case when NFi
(x̄) = {0} (or equivalently x̄ ∈ intFi ) for all i =

1,2, . . . ,m; in this case the condition modulus is zero.
One goal of this paper is to show that far from being of purely analytic signif-

icance, linear regularity has central algorithmic consequences, specifically for the
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method of averaged projections for finding a point in the intersection
⋂

i Fi . Given
any initial point x0 ∈ E, the algorithm proceeds iteratively as follows:

zi
n ∈ PFi

(xn) (i = 1,2, . . . ,m),

xn+1 = 1

m

(
z1
n + z2

n + · · · + zm
n

)
.

Our main result shows, assuming only linear regularity that providing the initial point
x0 is sufficiently near x̄, any sequence x1, x2, x3, . . . generated by the method of av-
eraged projections converges linearly to a point in the intersection

⋂
i Fi , at a rate

governed by the condition modulus.

3 Linear and Metric Regularity

The notion of linear regularity is well known to be closely related to another cen-
tral idea in variational analysis: “metric regularity.” A concise summary of the rela-
tionships between a variety of regular intersection properties and metric regularity
appears in [28]. We summarize the relevant ideas here.

Consider a set-valued mapping � : E ⇒ Y, where Y is a second Euclidean space.
The inverse mapping �−1 : Y ⇒ E is defined by x ∈ �−1(y) ⇔ y ∈ �(x), for x ∈ E
and y ∈ Y. For vectors x̄ ∈ E and ȳ ∈ �(x̄), we say � is metrically regular at x̄ for
ȳ if there exists a constant κ > 0 such that all pairs (x, y) ∈ E × Y sufficiently near
(x̄, ȳ) satisfy the inequality

d
(
x,�−1(y)

)≤ κd
(
y,�(x)

)
.

The infimum of all such constants κ is called the modulus of metric regularity of �

at x̄ for ȳ, denoted reg�(x̄|ȳ). See [44, Chap. 9G] for a discussion.
Intuitively, metric regularity gives a local linear bound for the distance to a solution

of the constraint system y ∈ �(x) (where the vector y is given and we seek the
unknown vector x), in terms of the distance from y to the set �(x). The modulus is
a measure of the sensitivity or “conditioning” of the constraint system y ∈ �(x). To
take one simple example, if � is a single-valued linear map, the modulus of regularity
is the reciprocal of its smallest singular value. In general, variational analysis provides
a powerful calculus for computing the regularity modulus. In particular, we have the
following formula (see [32, Theorem 8] and [44, Theorem 9.43]):

1

reg�(x̄|ȳ)
= min

{
d
(
0,D∗�(x̄|ȳ)(w)

) : w ∈ Y,‖w‖ = 1
}
, (3.1)

where D∗ denotes the “coderivative.” We now study these ideas for a particular map-
ping, highlighting the connections between metric and linear regularity. As in the
previous section, consider closed sets F1,F2, . . . ,Fm ⊂ E and a point x̄ ∈⋂

i Fi . We
endow the space Em with the inner product

〈
(x1, x2, . . . , xm), (y1, y2, . . . , ym)

〉=
∑

i

〈xi, yi〉,
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and define a set-valued mapping � : E ⇒ Em by

�(x) = (F1 − x) × (F2 − x) × · · · × (Fm − x).

Then the inverse mapping is given by �−1(y) =⋂
i (Fi −yi), for y ∈ Em, and finding

a point in the intersection
⋂

i Fi is equivalent to finding a solution of the constraint
system 0 ∈ �(x). By definition, the mapping � is metrically regular at x̄ for 0 if
and only if there is a constant κ > 0 such that the following strong metric inequality
holds:

d

(
x,
⋂

i

(Fi − zi)

)
≤ κ

√∑

i

d2(x,Fi − zi) for all (x, z) near (x̄,0). (3.2)

Furthermore, the regularity modulus reg�(x̄|0) is just the infimum of those constants
κ > 0 such that inequality (3.2) holds.

To compute the coderivative D∗�(x̄|0), we decompose the mapping � as � − A,
where, for points x ∈ E, we define �(x) = F1 × F2 × · · · × Fm and Ax =
(x, x, . . . , x). The calculus rule [44, 10.43] yields D∗�(x̄|0) = D∗�(x̄|Ax̄) − A∗.
Then by definition,

v ∈ D∗�(x̄|Ax̄)(w) ⇐⇒ (v,−w) ∈ Ngph�(x̄,Ax̄),

and since gph� = E × F1 × F2 × · · · × Fm, we deduce

D∗�(x̄|Ax̄)(w) =
{{0} if wi ∈ −NFi

(x̄) ∀i,

∅ otherwise

and hence

D∗�(x̄|0)(w) =
{−∑

i wi if wi ∈ −NFi
(x̄) ∀i,

∅ otherwise.

From the coderivative formula (3.1), we now obtain

1

reg�(x̄|0)
= min

{∥∥∥∥
∑

i

yi

∥∥∥∥ :
∑

i

‖yi‖2 = 1, yi ∈ NFi
(x̄)

}
, (3.3)

where, as usual, we interpret the right-hand side as +∞ if NFi
(x̄) = {0} (or equiva-

lently x̄ ∈ intFi ) for all i = 1,2, . . . ,m. Thus, the regularity modulus agrees exactly
with the condition modulus that we defined in the previous section: reg�(x̄|0) =
cond(F1,F2, . . . ,Fm|x̄). It is well known [28] that linear regularity is equivalent to
the strong metric inequality (3.2).

4 Clarke Regularity and Refinements

“Clarke regularity” is a basic variational-geometric property of sets, shared in partic-
ular by closed convex sets and smooth manifolds. We next study a slight refinement,
crucial for our development. In the interest of maintaining as elementary approach
as possible, we use the following definition of Clarke regularity, easy to interpret
geometrically in terms of certain angles.
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Definition 4.1 (Clarke regularity) A closed set C ⊂ Rn is Clarke regular at a point
x̄ ∈ C if, for all δ > 0, any two points u, z sufficiently near x̄ with z ∈ C, and any
point y ∈ PC(u), satisfy 〈z − x̄, u − y〉 ≤ δ‖z − x̄‖ · ‖u − y‖.

Remark 4.2 This property is equivalent to the standard notion of Clarke regularity
[44, Definition 6.4]. To see this, suppose the property in the definition holds. Consider
any unit vector v ∈ NC(x̄), and any unit “tangent direction” w to C at x̄. By definition,
there exists a sequences ur → x̄, yr ∈ PC(ur), and zr → x̄ with zr ∈ C, such that

vr = ur − yr

‖ur − yr‖ → v,

wr = zr − x̄

‖zr − x̄‖ → w.

By assumption, given any δ > 0, for all sufficiently large r, we have 〈vr ,wr 〉 ≤ δ,
and hence 〈v,w〉 ≤ δ. Thus, 〈v,w〉 ≤ 0, so Clarke regularity follows, by [44, Corol-
lary 6.29]. Conversely, if the property described in the definition fails, then for some
δ > 0 and some sequences ur → x̄, yr ∈ PC(ur), and zr → x̄ with zr ∈ C, we have

〈
ur − yr

‖ur − yr‖ ,
zr − x̄

‖zr − x̄‖
〉
≥ δ for all r.

Then any cluster points v and w of the two sequences of unit vectors defining the
above inner product are respectively an element of NC(x̄) and a tangent direction to
C at x̄, and satisfy 〈v,w〉 > 0, contradicting Clarke regularity.

The property we need for our development is an apparently-slight modification of
Clarke regularity, again easy to interpret geometrically.

Definition 4.3 (Super-regularity) A closed set C ⊂ Rn is super-regular at a point
x̄ ∈ C if, for all δ > 0, any two points u, z sufficiently near x̄ with z ∈ C, and any
point y ∈ PC(u), satisfy 〈z − y,u − y〉 ≤ δ‖z − y‖ · ‖u − y‖.

An equivalent statement involves the normal cone.

Proposition 4.4 (Super-regularity and normal angles) A closed set C ⊂ Rn is super-
regular at a point x̄ ∈ C if and only if, for all δ > 0, the inequality 〈v, z − y〉 ≤ δ‖v‖ ·
‖z − y‖ holds for all points y, z ∈ C sufficiently near x̄ and all vectors v ∈ NC(y).

Proof Super-regularity follows immediately from the normal cone property de-
scribed in the proposition, by property (2.1). Conversely, suppose the normal cone
property fails, so for some δ > 0 and sequences of distinct points yr , zr ∈ C ap-
proaching x̄ and unit normal vectors vr ∈ NC(yr), we have, for all r = 1,2, . . . ,

〈
vr ,

zr − yr

‖zr − yr‖
〉
> δ.
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Fix an index r . By definition of the normal cone, there exist sequences of distinct
points u

j
r → yr and y

j
r ∈ PC(u

j
r ) such that

lim
j→∞

u
j
r − y

j
r

‖uj
r − y

j
r ‖

= vr .

Since limj y
j
r = yr , we must have, for all sufficiently large j ,

〈
u

j
r − y

j
r

‖uj
r − y

j
r ‖

,
zr − y

j
r

‖zr − y
j
r ‖

〉
> δ.

Choose j sufficiently large to ensure both the above inequality and the inequality
‖uj

r − yr‖ < 1
r
, and then define points u′

r = u
j
r and y′

r = y
j
r .

We now have sequences of points u′
r , zr approaching x̄ with zr ∈ C, and y′

r ∈
PC(u′

r ), and satisfying
〈

u′
r − y′

r

‖u′
r − y′

r‖
,

zr − y′
r

‖zr − y′
r‖
〉
> δ.

Hence, C is not super-regular at x̄. �

Super-regularity is a strictly stronger property than Clarke regularity, as the fol-
lowing result and example make clear.

Corollary 4.5 (Super-regularity implies Clarke regularity) At any point in a closed
set C ⊂ Rn, super regularity implies Clarke regularity.

Proof Suppose the point in question is x̄. Fix any δ > 0, and set y = x̄ in Proposi-
tion 4.4. Then clearly any unit tangent direction d to C at x̄ and any unit normal vec-
tor v ∈ NC(x̄) satisfy 〈v, d〉 ≤ δ. Since δ was arbitrary, in fact 〈v, d〉 ≤ 0, so Clarke
regularity follows by [44, Corollary 6.29]. �

Example 4.6 Consider the following function f : R → (−∞,+∞], taken from an
example in [46]:

f (t) =
⎧
⎨

⎩

2r (t − 2r ) (2r ≤ t < 2r+1, r ∈ Z),

0 (t = 0),

+∞ (t < 0).

This function has Clarke-regular epigraph at (0,0), but an exercise shows it is not
super-regular there. Indeed, a minor refinement of this example (smoothing the set
slightly close to the nonsmooth points (2r ,0) and (2r ,4r−1)) shows that a set can be
everywhere Clarke regular, and yet not super-regular.

Super-regularity is a common property: indeed, it is implied by two well-known
properties that we discuss next. Following [44], we say that a set C ⊂ Rn is amenable
at a point x̄ ∈ C when there exists a neighborhood U of x̄, a C1 mapping G :
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U → R�, and a closed convex set D ⊂ R� containing G(x̄), and satisfying the con-
straint qualification

ND

(
G(x̄)

)∩ ker
(∇G(x̄)∗

)= {0}, (4.1)

such that

C ∩ U = {
x ∈ U : G(x) ∈ D

}
.

In particular, if C is defined by C1 equality and inequality constraints and the
Mangasarian–Fromovitz constraint qualification holds, then C is amenable.

Proposition 4.8 (Amenable implies super-regular) If a closed set C ⊂ Rn is
amenable at a point in C, then it is super-regular there.

Proof Suppose the result fails at some point x̄ ∈ C. Assume as in the definition of
amenability that in a neighborhood of x̄, the set C is identical with the inverse image
G−1(D), where the C1 map G and the closed convex set D satisfy the condition (4.1).
Then by definition, for some δ > 0, there are sequences of points yr , zr ∈ C converg-
ing to x̄ and unit normal vectors vr ∈ NC(yr) satisfying 〈vr , zr − yr 〉 > δ‖zr −yr‖ for
all r = 1,2, . . . . Since the normal cone mapping ND is outer semicontinuous relative
to D [44, Proposition 6.6], it is easy to check the condition

ND

(
G(yr)

)∩ ker
(∇G(yr)

∗)= {0},
for all sufficiently large r , since otherwise we contradict assumption (4.1). Conse-
quently, using the standard chain rule [44, Exercise 10.26(d)], we deduce
NC(yr) = ∇G(yr)

∗ND(G(yr)), so there are vectors ur ∈ ND(G(yr)) such that
∇G(yr)

∗ur = vr . The sequence (ur) must be bounded, since otherwise, by taking
a subsequence, we could suppose ‖ur‖ → ∞ and ‖ur‖−1ur approaches some unit
vector û, leading to the contradiction

û ∈ ND

(
G(x̄)

)∩ ker
(∇G(x̄)∗

)= {0}.
For all sufficiently large r , we now have 〈∇G(yr)

∗ur, zr − yr〉 > δ‖zr − yr‖, and
by convexity of D, since ur ∈ ND(G(yr)), we have 〈ur,G(zr) − G(yr)〉 ≤ 0. Adding
these two inequalities gives

〈
ur,G(zr) − G(yr) − ∇G(yr)(zr − yr)

〉
< −δ‖zr − yr‖.

But as r → ∞, the left-hand side is o(‖zr − yr‖), since the sequence (ur) is bounded
and G is C1. This contradiction completes the proof. �

A rather different refinement of Clarke regularity is the notion of “prox-regularity.”
Following [40, Theorem 1.3], we call a set C ⊂ E is prox-regular at a point x̄ ∈ C if
the projection mapping PC is single-valued around x̄. (In this case, clearly C must be
locally closed around x̄.) For example, if in the definition of an amenable set that we
gave earlier, we strengthen our assumption on the map G to be C2 rather than just C1,
the resulting set must be prox-regular. Without this strengthening, however, notice the
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set {(s, t) ∈ R2 : t = |s|3/2} is amenable at the point (0,0) (and hence super-regular
there), but is not prox-regular there.

Proposition 4.9 (Prox-regular implies super-regular) If a closed set C ⊂ Rn is prox-
regular at a point in C, then it is super-regular there.

Proof If the results fails at x̄ ∈ C, then for some δ > 0, there exist sequences of points
yr , zr ∈ C converging to the point x̄, and a sequence of normal vectors vr ∈ NC(yr)

satisfying the inequality 〈vr , zr − yr 〉 > δ‖vr‖ · ‖zr − yr‖. By [40, Proposition 1.2],
there exist constants ε,ρ > 0 such that

〈
ε

2‖vr‖vr , zr − yr

〉
≤ ρ

2
‖zr − yr‖2

for all large r . This gives a contradiction, since ‖zr − yr‖ ≤ δε
ρ

eventually. �

We digress briefly to discuss relationships between super-regularity and other
notions in the literature. First note the following equivalent definition, which is
an immediate consequence of Proposition 4.4, and which gives an alternate proof
of Proposition 4.9 via “hypomonotonicity” of the truncated normal cone mapping
x �→ NC(x) ∩ B for prox-regular sets C [40, Theorem 1.3].

Corollary 4.10 (Approximate monotonicity) A closed set C ⊂ Rn is super-regular at
a point x̄ ∈ C if and only if, for all δ > 0, the inequality 〈v − w,y − z〉 ≥ −δ‖y − z‖
holds for all points y, z ∈ C sufficiently near x̄ and all normal vectors v ∈ NC(y)∩B

and w ∈ NC(z) ∩ B .

If we replace the normal cone NC in the property described in the result above by
its convex hull, the “Clarke normal cone,” we obtain a stronger property, called “sub-
smoothness” in [4]. Similar proofs to those above show that like super-regularity, sub-
smoothness is a consequence of either amenability or prox-regularity. However, sub-
smoothness is strictly stronger than super-regularity. To see this, consider the graph
of the function f : R → R defined by the following properties: f (0) = 0, f (2r ) = 4r

for all integers r , f is linear on each interval [2r ,2r+1], and f (t) = f (−t) for all
t ∈ R. The graph of f is super-regular at (0,0), but is not subsmooth there.

In a certain sense, however, the distinction between subsmoothness and super-
regularity is slight. Suppose the set F is super-regular at every point in F ∩ U , for
some open set U ⊂ Rn. Since super-regularity implies Clarke regularity, the normal
cone and Clarke normal cone coincide throughout F ∩ U , and hence F is also sub-
smooth throughout F ∩ U . In other words, “local” super regularity coincides with
“local” subsmoothness, which in turn, by [4, Theorem 3.16] coincides with the “first
order Shapiro property” [45] (also called “near convexity” in [47]) holding locally.

5 Alternating Projections with Nonconvexity

Having reviewed or developed over the last few sections the key variational-analytic
properties that we need, we now turn to projection algorithms. In this section, we
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develop our convergence analysis of the method of alternating projections. The fol-
lowing result is our basic tool, guaranteeing conditions under which the method of
alternating projections converges linearly. For flexibility, we state it in a rather techni-
cal manner. For clarity, we point out afterward that the two main conditions, (5.3) and
(5.4), are guaranteed in applications via assumptions of linear regularity and super-
regularity (or in particular, amenability or prox-regularity), respectively.

Given any sets F,C ⊂ E, an alternating projection sequence is any sequence of
points {xj } in E satisfying the condition

x2n+1 ∈ PF (x2n) and x2n+2 ∈ PC(x2n+1) (n = 0,1,2, . . .), (5.1)

or the same property with F and C interchanged.

Theorem 5.2 (Linear convergence of alternating projections) Consider the closed
sets F,C ⊂ E, and a point x̄ ∈ F . Fix any constant ε > 0. Suppose for some constant
c′ ∈ (0,1), the following condition holds:

x ∈ F ∩ (x̄ + εB), u ∈ −NF (x) ∩ B

y ∈ C ∩ (x̄ + εB), v ∈ NC(y) ∩ B

}
=⇒ 〈u,v〉 ≤ c′. (5.3)

Suppose for some constant δ ∈ [0, 1−c′
2 ) the following condition holds:

y, z ∈ C ∩ (x̄ + εB)

v ∈ NC(y) ∩ B

}
=⇒ 〈v, z − y〉 ≤ δ‖z − y‖. (5.4)

Define a constant c = c′ + 2δ < 1. Then for any initial point x0 ∈ C satisfying
‖x0 − x̄‖ ≤ 1−c

4 ε, any alternating projection sequence {xj } for the sets F and C

must converge with R-linear rate
√

c to a point x̂ ∈ F ∩ C satisfying the inequality
‖x̂ − x0‖ ≤ 1+c

1−c
‖x0 − x̄‖.

Proof Assume property (5.1). By the definition of the projections, we have

‖x2n+3 − x2n+2‖ ≤ ‖x2n+2 − x2n+1‖ ≤ ‖x2n+1 − x2n‖. (5.5)

Clearly, we therefore have

‖x2n+2 − x2n‖ ≤ 2‖x2n+1 − x2n‖. (5.6)

We next claim

‖x2n+1 − x̄‖ ≤ ε
2 and

‖x2n+1 − x2n‖ ≤ ε
2

}
=⇒ ‖x2n+2 − x2n+1‖ ≤ c‖x2n+1 − x2n‖. (5.7)

To see this, note that if x2n+2 = x2n+1, the result is trivial, and if x2n+1 = x2n then
x2n+2 = x2n+1 so again the result is trivial. Otherwise, we have

x2n − x2n+1

‖x2n − x2n+1‖ ∈ NF (x2n+1) ∩ B
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while
x2n+2 − x2n+1

‖x2n+2 − x2n+1‖ ∈ −NC(x2n+2) ∩ B.

Furthermore, using inequality (5.5), the left-hand side of the implication (5.7) ensures

‖x2n+2 − x̄‖ ≤ ‖x2n+2 − x2n+1‖ + ‖x2n+1 − x̄‖
≤ ‖x2n+1 − x2n‖ + ‖x2n+1 − x̄‖ ≤ ε.

Hence, by assumption (5.3) we deduce
〈

x2n − x2n+1

‖x2n − x2n+1‖ ,
x2n+2 − x2n+1

‖x2n+2 − x2n+1‖
〉
≤ c′,

so

〈x2n − x2n+1, x2n+2 − x2n+1〉 ≤ c′‖x2n − x2n+1‖ · ‖x2n+2 − x2n+1‖.
On the other hand, by assumption (5.4), we know

〈x2n − x2n+2, x2n+1 − x2n+2〉 ≤ δ‖x2n − x2n+2‖ · ‖x2n+1 − x2n+2‖
≤ 2δ‖x2n − x2n+1‖ · ‖x2n+2 − x2n+1‖,

using inequality (5.6). Adding this inequality to the previous inequality then gives the
right-hand side of (5.7), as desired.

Now let α = ‖x0 − x̄‖. We will show by induction the inequalities

‖x2n+1 − x̄‖ ≤ 2α
1 − cn+1

1 − c
<

ε

2
, (5.8)

‖x2n+1 − x2n‖ ≤ αcn <
ε

2
, (5.9)

‖x2n+2 − x2n+1‖ ≤ αcn+1. (5.10)

Consider first the case n = 0. Since x1 ∈ PF (x0) and x̄ ∈ F , we deduce ‖x1 −
x0‖ ≤ ‖x̄ − x0‖ = α < ε/2, which is inequality (5.9). Furthermore,

‖x1 − x̄‖ ≤ ‖x1 − x0‖ + ‖x0 − x̄‖ ≤ 2α <
ε

2
,

which shows inequality (5.8). Finally, since ‖x1 − x0‖ < ε/2 and ‖x1 − x̄‖ < ε/2,
the implication (5.7) shows

‖x2 − x1‖ ≤ c‖x1 − x0‖ ≤ c‖x̄ − x0‖ = cα,

which is inequality (5.10).
For the induction step, suppose inequalities (5.8), (5.9), and (5.10) all hold for

some n. Inequalities (5.5) and (5.10) imply

‖x2n+3 − x2n+2‖ ≤ αcn+1 <
ε

2
. (5.11)
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We also have, using inequalities (5.11), (5.10), and (5.8)

‖x2n+3 − x̄‖ ≤ ‖x2n+3 − x2n+2‖ + ‖x2n+2 − x2n+1‖ + ‖x2n+1 − x̄‖

≤ αcn+1 + αcn+1 + 2α
1 − cn+1

1 − c
,

so

‖x2n+3 − x̄‖ ≤ 2α
1 − cn+2

1 − c
<

ε

2
. (5.12)

Now implication (5.7) with n replaced by n+1 implies ‖x2n+4 −x2n+3‖ ≤ c‖x2n+3 −
x2n+2‖, and using inequality (5.11) we deduce

‖x2n+4 − x2n+3‖ ≤ αcn+2. (5.13)

Since inequalities (5.12), (5.11), and (5.13) are exactly inequalities (5.8), (5.9), and
(5.10) with n replaced by n+1, the induction step is complete and our claim follows.

We can now easily check that the sequence (xk) is Cauchy and, therefore, con-
verges. To see this, note for any integer n = 0,1,2, . . . and any integer k > 2n, we
have

‖xk − x2n‖ ≤
k−1∑

j=2n

‖xj+1 − xj‖

≤ α
(
cn + cn+1 + cn+1 + cn+2 + cn+2 + · · · )

so

‖xk − x2n‖ ≤ αcn 1 + c

1 − c
,

and a similar argument shows

‖xk+1 − x2n+1‖ ≤ 2αcn+1

1 − c
. (5.14)

Hence, xk converges to some point x̂ ∈ E, and for all n = 0,1,2, . . . we have

‖x̂ − x2n‖ ≤ αcn 1 + c

1 − c
and ‖x̂ − x2n+1‖ ≤ 2αcn+1

1 − c
. (5.15)

We deduce that the limit x̂ lies in the intersection F ∩ C and satisfies the inequality
‖x̂ − x0‖ ≤ α 1+c

1−c
, and furthermore that the inequality

‖x̂ − xr‖ ≤ α
(√

c
)r 1 + c

1 − c

holds for all r = 0,1,2, . . . , so the convergence is R-linear with rate
√

c. �
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We can now prove our key result. To apply Theorem 5.2 to alternating projections
between a closed and a super-regular set, we make use of the key geometric property
of super-regular sets (Proposition 4.4).

Theorem 5.16 (Alternating projections with a super-regular set) Consider closed
sets F,C ⊂ E and a point x̄ ∈ F ∩ C. Suppose C is super-regular at x̄ (as holds,
for example, if it is amenable or prox-regular there). Suppose furthermore that F

and C have linearly regular intersection at x̄: that is, NF (x̄) ∩ −NC(x̄) = {0}, or
equivalently, the constant

c̄ = max
{〈u,v〉 : u ∈ NF (x̄) ∩ B,v ∈ −NC(x̄) ∩ B

}
(5.17)

is strictly less than one. Fix any constant c ∈ (c̄,1). Then any alternating projection
sequence with initial point sufficiently near x̄ must converge to a point in F ∩ C with
R-linear rate

√
c.

Proof Let us show first the equivalence between c̄ < 1 and linear regularity. The
compactness of the intersections between normal cones and the unit ball guarantees
the existence of u and v achieving the maximum in (5.17). Observe then that 〈u,v〉 ≤
‖u‖‖v‖ ≤ 1. The cases of equality in the Cauchy–Schwarz inequality permits to write

c̄ = 1 ⇐⇒ u and v are colinear ⇐⇒ NF (x̄) ∩ −NC(x̄) �= {0},
which corresponds to the desired equivalence.

Denote the alternating sequence {xj }. We can suppose x0 ∈ C. Fix any constant

c′ ∈ (c̄, c) and define δ = c−c′
2 . To apply Theorem 5.2, we just need to check the

existence of a constant ε > 0 such that conditions (5.3) and (5.4) hold. Condition
(5.4) holds for all sufficiently small ε > 0, by Proposition 4.4. On the other hand,
if condition (5.3) fails for all sufficiently small ε > 0, then there exist sequences
of points xr → x̄ in the set F and yr → x̄ in the set C, and sequences of vectors
ur ∈ −NF (xr) ∩ B and vr ∈ NC(yr) ∩ B , satisfying 〈ur, vr 〉 > c′. After taking sub-
sequences, we can suppose ur approaches some vector u ∈ −NF (x̄) ∩ B and vr ap-
proaches some vector v ∈ NC(x̄) ∩ B , and then 〈u,v〉 ≥ c′ > c̄, contradicting the
definition of the constant c̄. �

Corollary 5.18 (Improved convergence rate) With the assumptions of Theorem 5.16,
suppose the set F is also super-regular at x̄. Then the alternating projection sequence
converges with R-linear rate c.

Proof Inequality (5.7) and its analog when the roles of F and C are interchanged,
together show ‖xk+1 − xk‖ ≤ c‖xk − xk−1‖ for all sufficiently large k, and the result
then follows easily, using an argument analogous to that at the end of the proof of
Theorem 5.2. �

In the light of our discussion in the previous section, the linear regularity assump-
tion of Theorem 5.16 is equivalent to the metric regularity at x̄ for 0 of the set-valued
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mapping � : E ⇒ E2 defined by �(x) = (F − x) × (C − x), for x ∈ E. Using (3.3),
the regularity modulus is determined by

1

reg�(x̄|0)
= min

{‖u + v‖ : u ∈ NF (x̄), v ∈ NC(x̄),‖u‖2 + ‖v‖2 = 1
}
,

and a short calculation then shows

reg�(x̄|0) = 1√
1 − c̄

. (5.19)

The closer the constant c̄ is to one, the larger the regularity modulus. We have shown
that c̄ also controls the speed of linear convergence for the method of alternating
projections applied to the sets F and C.

Inevitably, Theorem 5.16 concerns local convergence: it relies on finding an initial
point x0 sufficiently close to a point of linearly regular intersection. How might we
find such a point? One natural context in which to pose this question is that of sen-
sitivity analysis. Suppose we already know a point of linearly regular intersection of
two closed sets, but now want to find a point in the intersection of two slight transla-
tions of these sets. The following result shows that starting from the original point of
intersection, the method of alternating projections will converge linearly to the new
intersection.

Theorem 5.20 (Perturbed intersection) Given any closed sets F,C ⊂ E and any
point x̄ ∈ F ∩ C, suppose the assumptions of Theorem 5.16 hold. Then for any suf-
ficiently small vector d ∈ E, any alternating projection sequence for the sets d + F

and C, with the initial point x̄, must converge with R-linear rate
√

c to a point in the
set (d + F) ∩ C ∩ Bρ(x̄), where ρ = 1+c

1−c
‖d‖.

Proof As in the proof of Theorem 5.16, if we fix any constant c′ ∈ (c̄, c) and define
δ = c−c′

2 , then there exists a constant ε > 0 such that conditions (5.3) and (5.4) hold.
Suppose the vector d satisfies

‖d‖ ≤ (1 − c)ε

8
<

ε

2
.

Since

y ∈ (C − d) ∩
(

x̄ + ε

2
B

)
and v ∈ NC−d(y)

=⇒ y + d ∈ C ∩ (x̄ + εB) and v ∈ NC(y + d),

we deduce from condition (5.3) the implication

x ∈ F ∩
(

x̄ + ε

2
B

)
, u ∈ −NF (x) ∩ B

y ∈ (C − d) ∩
(

x̄ + ε

2
B

)
, v ∈ NC−d(y) ∩ B

⎫
⎪⎪⎬

⎪⎪⎭
=⇒ 〈u,v〉 ≤ c′.
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Furthermore, using condition (5.4), we deduce the implication

y, z ∈ (C − d) ∩
(

x̄ + ε

2
B

)
and v ∈ NC−d(y) ∩ B

=⇒ y + d, z + d ∈ C ∩ (x̄ + εB) and v ∈ NC(y + d) ∩ B

=⇒ 〈v, z − y〉 ≤ δ‖z − y‖.
We now apply Theorem 5.2 with the set C replaced by C − d and ε replaced by ε

2 .
We deduce that any alternating projection sequence for the sets F and C − d , starting
at the point x0 = x̄ − d ∈ C − d , converges with R-linear rate

√
c to a point x̂ ∈

F ∩(C−d) satisfying the inequality ‖x̂−x0‖ ≤ 1+c
1−c

‖x0 − x̄‖. The theorem statement
then follows by translation. �

Lack of convexity notwithstanding, more structure sometimes implies that the
method of alternating projections converges Q-linearly, rather than just R-linearly,
on a neighborhood of point of linearly regular intersection of two closed sets. One
example is the case of two manifolds [30].

6 Inexact Alternating Projections

Our basic tool, the method of alternating projections for a super-regular set C and an
arbitrary closed set F , is a conceptual algorithm that may be challenging to realize
in practice. We might reasonably consider the case of exact projection on the super-
regular set C: for example, in the next section, for the method of averaged projections,
C is a subspace and computing projections is trivial. However, projecting onto the set
F may be much harder, so a more realistic analysis allows relaxed projections.

We sketch one approach. Given two iterates x2n−1 ∈ F and x2n ∈ C, a necessary
condition for the new iterate x2n+1 to be an exact projection on F , that is x2n+1 ∈
PF (x2n), is

‖x2n+1 − x2n‖ ≤ ‖x2n − x2n−1‖ and x2n − x2n+1 ∈ NF (x2n+1).

In the following result, we assume only that we choose the iterate x2n+1 to satisfy a
relaxed version of this condition, where we replace the second part by the assumption
that the distance

dNF (x2n+1)

(
x2n − x2n+1

‖x2n − x2n+1‖
)

from the normal cone at the iterate to the normalized direction of the last step is
sufficiently small.

Theorem 6.1 (Inexact alternating projections) With the assumptions of Theo-
rem 5.16, fix any constant γ <

√
1 − c2, and consider the following inexact al-

ternating projection iteration. Given any initial points x0 ∈ C and x1 ∈ F , for
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n = 1,2,3, . . . suppose x2n ∈ PC(x2n−1) and x2n+1 ∈ F satisfies

‖x2n+1 − x2n‖ ≤ ‖x2n − x2n−1‖ and dNF (x2n+1)

(
x2n − x2n+1

‖x2n − x2n+1‖
)

≤ γ.

Then providing x0 and x1 are sufficiently close to x̄, the iterates converge to a point
in F ∩ C with R-linear rate

√

c

√
1 − γ 2 + γ

√
1 − c2 < 1.

Sketch proof Once again as in the proof of Theorem 5.16, we fix any constant c′ ∈
(c̄, c) and define δ = c−c′

2 , so there exists a constant ε > 0 such that conditions (5.3)
and (5.4) hold. Define a vector

z = x2n − x2n+1

‖x2n − x2n+1‖ .

By assumption, there exists a vector w ∈ NF (x2n+1) satisfying ‖w − z‖ ≤ γ .
Easy manipulation then shows that the unit vector ŵ = ‖w‖−1w satisfies 〈ŵ, z〉 ≥√

1 − γ 2. As in the proof of Theorem 5.2, assuming inductively that x2n+1 is suffi-
ciently close to both x̄ and x2n, since ŵ ∈ NF (x2n+1), and

u = x2n+2 − x2n+1

‖x2n+2 − x2n+1‖ ∈ −NC(x2n+2) ∩ B,

we deduce 〈ŵ, u〉 ≤ c′.
We now see that on the unit sphere, the arc distance between the unit vectors ŵ

and z is no more than arccos(
√

1 − γ 2), whereas the arc distance between ŵ and the
unit vector u is at least arccos c′. Hence, by the triangle inequality, the arc distance
between z and u is at least

arccos c′ − arccos
(√

1 − γ 2
)
,

so

〈z,u〉 ≤ cos
(

arccos c′ − arccos
(√

1 − γ 2
))= c′

√
1 − γ 2 + γ

√
1 − c′2.

Some elementary calculus shows that the quantity on the right-hand side is strictly
less than one. Again as in the proof of Theorem 5.2, this inequality shows, providing
x0 is sufficiently close to x̄, the inequality

‖x2n+2 − x2n+1‖ ≤
(
c

√
1 − γ 2 + γ

√
1 − c2

)
‖x2n+1 − x2n‖,

and in conjunction with the inequality ‖x2n+1 − x2n‖ ≤ ‖x2n − x2n−1‖, this suffices
to complete the proof by induction. �



Found Comput Math (2009) 9: 485–513 503

7 Local Convergence for Averaged Projections

We return to the problem of finding a point in the intersection of several closed sets
via averaged projections. Given sets F1,F2, . . . ,Fm ⊂ E, an averaged projection se-
quence is any sequence of points {xj } in E satisfying

xj+1 ∈ 1

m

m∑

i=1

PFi
(xj ) (j = 0,1,2, . . .).

We apply our previous results to the method of averaged projections via the well-
known reformulation of the algorithm as alternating projections in a product space.
This leads to the main result of this section, Theorem 7.3, which shows linear con-
vergence in a neighborhood of any point of linearly regular intersection, at a rate
governed by the associated regularity modulus.

We begin with a characterization of linearly regular intersection, relating the con-
dition modulus with a generalized notion of angle for several sets. Such notions, for
collections of convex sets, have also been studied recently in the context of projection
algorithms in [16, 17].

Proposition 7.1 (Variational characterization of linear regularity) Closed sets
F1,F2, . . . ,Fm ⊂ E have linearly regular intersection at a point x̄ ∈ ⋂

i Fi if and
only if the optimal value c̄ of the optimization problem

maximize
∑

i

〈ui, vi〉

subject to
∑

i

‖ui‖2 ≤ 1,

∑

i

‖vi‖2 ≤ 1,

∑

i

ui = 0,

ui ∈ E, vi ∈ NFi
(x̄) (i = 1,2, . . . ,m)

is strictly less than one. Indeed, we have

c̄2 =
{

0 (x̄ ∈⋂
i intFi),

1 − 1
m·cond2(F1,F2,...,Fm|x̄)

(otherwise). (7.2)

Proof When x̄ ∈⋂
i intFi , the result follows by definition. Henceforth, we therefore

rule out that case.
For any vectors ui, vi ∈ E (i = 1,2, . . . ,m), by Lagrangian duality and differenti-

ation, we obtain

max
ui

{∑

i

〈ui, vi〉 :
∑

i

‖ui‖2 ≤ 1,
∑

i

ui = 0

}
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= min
λ∈R+,z∈E

max
ui

{∑

i

〈ui, vi〉 + λ

2

(
1 −

∑

i

‖ui‖2
)

+ 〈z,∑i ui〉
}

= min
λ∈R+,z∈E

{
λ

2
+
∑

i

max
ui

{
〈ui, vi + z〉 − λ

2
‖ui‖2

}}

= min
λ>0,z∈E

{
λ

2
+ 1

2λ

∑

i

‖vi + z‖2
}

= min
z∈E

√∑

i

‖vi + z‖2

=
√√√√

m∑

i=1

∥∥∥∥vi − 1

m

∑

j

vj

∥∥∥∥

2

=
√√√
√
∑

i

‖vi‖2 − 1

m

∥∥∥∥
∑

i

vi

∥∥∥∥

2

.

Consequently, c̄2 is the optimal value of the optimization problem

maximize
∑

i

‖vi‖2 − 1

m

∥∥∥∥
∑

i

vi

∥∥∥∥

2

subject to
∑

i

‖vi‖2 ≤ 1,

vi ∈ NFi
(x̄) (i = 1,2, . . . ,m).

By homogeneity, the optimal solution must occur when the inequality constraint is
active, so we obtain an equivalent problem by replacing that constraint by the corre-
sponding equation. By (3.3) and the definition of the condition modulus, the optimal
value of this new problem is

1 − 1

m · cond2(F1,F2, . . . ,Fm|x̄)

as required. �

Theorem 7.3 (Linear convergence of averaged projections) Suppose closed sets
F1,F2, . . . ,Fm ⊂ E have linearly regular intersection at a point x̄ ∈ ⋂

i Fi . Define
a constant c̄ ∈ [0,1) by (7.2), and fix any constant c ∈ (c̄,1). Then any averaged
projection sequence with initial point sufficiently near x̄ converges to a point in the
intersection

⋂
i Fi , with R-linear rate c (and if each set Fi is super-regular at x̄,

or in particular, prox-regular or amenable there, then the convergence rate is c2).
Furthermore, for any sufficiently small perturbations di ∈ E for i = 1,2, . . . ,m, any
averaged projection sequence for the sets di + Fi with the initial point x̄ converges
linearly to a nearby point in the intersection, with R-linear rate c.

Proof In the product space Em with the inner product

〈
(u1, u2, . . . , um), (v1, v2, . . . , vm)

〉=
∑

i

〈ui, vi〉,
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we consider the closed set F =∏
i Fi and the subspace L = {Ax : x ∈ E}, where the

linear map A : E → Em is defined by Ax = (x, x, . . . , x). Notice Ax̄ ∈ F ∩ L, and it
is easy to check NF (Ax̄) =∏

i NFi
(x̄) and

L⊥ =
{
(u1, u2, . . . , um) :

∑

i

ui = 0

}
.

Hence, F1,F2, . . . ,Fm have linearly regular intersection at x̄ if and only if F and L

have linearly regular intersection at the point Ax̄. This latter property is equivalent
to the constant c̄ in Theorem 5.16 (with C = L) being strictly less than one. But that
constant agrees exactly with that defined by (7.2), so we show next that we can apply
Theorems 5.16 and 5.20.

To see this note that for any point x ∈ E, we have the equivalence

(z1, z2, . . . , zm) ∈ PF (Ax) ⇐⇒ zi ∈ PFi
(x) (i = 1,2, . . . ,m).

Furthermore a quick calculation shows, for any z1, z2, . . . , zm ∈ E,

PL(z1, z2, . . . , zm) = 1

m
(z1 + z2 + · · · + zm).

Hence, in fact the method of averaged projections for the sets F1,F2, . . . ,Fm, starting
at an initial point x0, is essentially identical with the method of alternating projections
for the sets F and L, starting at the initial point Ax0. If x0, x1, x2, . . . is a possible
sequence of iterates for the former method, then a possible sequence of even iterates
for the latter method is Ax0,Ax1,Ax2, . . . . For x0 sufficiently close to x̄, this latter
sequence must converge to a point Ax̂ ∈ F ∩ L with R-linear rate c, by Theorem
5.16 and its corollary. Thus, the sequence x0, x1, x2, . . . converges to x̂ ∈⋂

i Fi at the
same linear rate. When each of the sets Fi is super-regular at x̄, it is easy to check
that the Cartesian product F is super-regular at Ax̄, so the rate is c2. The last part of
the theorem follows from Theorem 5.20. �

Applying Theorem 6.1 to the product-space formulation of averaged projections
shows in a similar fashion that an inexact variant of the method of averaged projec-
tions will also converge linearly.

Remark 7.4 (Linear regularity and local extremality) In the language of [33], we have
proved algorithmically that if closed sets have linearly regular intersection at a point,
then that point is not “locally extremal”.

Remark 7.5 (Alternating versus averaged projections) For a feasibility problem for
two super-regular sets F1 and F2, assume that linear regularity holds at x̄ ∈ F1 ∩ F2

and set κ = cond(F1,F2|x̄). Theorem 7.3 gives a bound on the rate of convergence
of the method of averaged projections as

rav ≤ 1 − 1

2κ2
.
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Notice that each iteration involves two projections: one onto each of the sets F1
and F2. On the other hand, Corollary 5.18 and (5.19) give a bound on the rate of
convergence of the method of alternating projections as

ralt ≤ 1 − 1

κ2
,

and each iteration involves just one projection. Thus, we note that our bound on the
rate of alternating projections ralt is always better than the bound on the rate of av-
eraged projections rav. From the perspective of this analysis, averaged projections
seems to have no advantage over alternating projections, although our proof of lin-
ear convergence for alternating projections needs a super-regularity assumption not
necessary in the case of averaged projections.

8 Prox-Regularity and Averaged Projections

If we assume that the sets F1,F2, . . . ,Fm are prox-regular, then we can refine our
understanding of local convergence for the method of averaged projections using a
completely different approach, explored in this section.

Proposition 8.1 Around any point x̄ at which the set F ⊂ E is prox-regular,
the squared distance to F is continuously differentiable, and its gradient ∇d2

F =
2(I − PF ) has Lipschitz constant 2.

Proof This result corresponds essentially to [40, Proposition 3.1], which yields the
smoothness of d2

F together with the gradient formula. This proof of this proposition
also shows that for any sufficiently small δ > 0, all points x1, x2 ∈ E near x̄ satisfy
the inequality

〈
x1 − x2,PF (x1) − PF (x2)

〉 ≥ (1 − δ)
∥∥PF (x1) − PF (x2)

∥∥2

(see “Claim” in [40, p. 5,239]). Consequently, we have
∥∥(I − PF )(x1) − (I − PF )(x2)

∥∥2 − ‖x1 − x2‖2

= ∥∥(x1 − x2) − (
PF (x1) − PF (x2)

)∥∥2 − ‖x1 − x2‖2

= −2
〈
x1 − x2,PF (x1) − PF (x2)

〉+ ∥
∥PF (x1) − PF (x2)

∥
∥2

≤ (2δ − 1)
∥∥PF (x1) − PF (x2)

∥∥2 ≤ 0,

provided we choose δ ≤ 1/2. �

As before, consider sets F1,F2, . . . ,Fm ⊂ E and a point x̄ ∈⋂
i Fi , but now let us

suppose moreover that each set Fi is prox-regular at x̄. Define a function f : E → R
by

f = 1

2m

m∑

i=1

d2
Fi

. (8.2)
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This function is half the mean-squared-distance from the point x to the set sys-
tem {Fi}. According to the preceding result, f is continuously differentiable around
x̄, and its gradient

∇f = 1

m

m∑

i=1

(I − PFi
) = I − 1

m

m∑

i=1

PFi
(8.3)

is Lipschitz continuous with constant 1 on a neighborhood of x̄. The method of aver-
aged projections constructs the new iterate x+ ∈ E from the old iterate x ∈ E via the
update

x+ = 1

m

m∑

i=1

PFi
(x) = x − ∇f (x), (8.4)

so we can interpret it as the method of steepest descent with a step size of one when
the sets Fi are all prox-regular. To understand its convergence, we return to our linear
regularity assumption.

The condition modulus controls the behavior of normal vectors not just at the point
x̄ but also at nearby points.

Proposition 8.5 (Local effect of condition modulus) Consider closed sets F1,F2, . . . ,

Fm ⊂ E having linearly regular intersection at a point x̄ ∈ ∩Fi , and any constant
k > cond(F1,F2, . . . ,Fm|x̄). Then for any points xi ∈ Fi sufficiently near x̄, any
vectors yi ∈ NFi

(xi) (for i = 1,2, . . . ,m) satisfy the inequality

√∑

i

‖yi‖2 ≤ k

∥∥∥∥
∑

i

yi

∥∥∥∥.

Proof If the result fails, then we can find sequences of points xr
i → x̄ in Fi and

sequences of vectors yr
i ∈ NFi

(xr
i ) (for i = 1,2, . . . ,m) satisfying

√∑

i

∥∥yr
i

∥∥2
> k

∥∥∥∥
∑

i

yr
i

∥∥∥∥

for all r = 1,2, . . . . Define new vectors

ur
i = 1

√∑
j ‖yr

j‖2
yr
i ∈ NFi

(
xr
i

)

for each index j = 1,2, . . . ,m and r . Notice
∑

i ‖ur
i ‖2 = 1 and ‖∑i u

r
i ‖ < 1

k
. For

each i = 1,2, . . . , the sequence u1
i , u

2
i , . . . is bounded, so after taking subsequences

we can suppose it converges to some vector ui ∈ E, and since the normal cone NFi

is closed as a set-valued mapping from Fi to E, we deduce ui ∈ NFi
(x̄). But then

we have
∑

i ‖ui‖2 = 1 and ‖∑i ui‖ ≤ 1
k

, contradicting the definition of the modulus
cond(F1,F2, . . . ,Fm|x̄). �
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The size of the gradient of the mean-squared-distance function f , defined by (8.2),
is closely related to the value of the function near a point of linearly regular intersec-
tion. To be precise, we have the following result.

Proposition 8.6 (Gradient of mean-squared-distance) Consider prox-regular sets
F1,F2, . . . ,Fm ⊂ E having linearly regular intersection at a point x̄ ∈ ∩Fi , and
any constant k > cond(F1,F2, . . . ,Fm|x̄). Then on a neighborhood of x̄, the mean-
squared-distance function

f = 1

2m

m∑

i=1

d2
Fi

satisfies the inequalities

1

2
‖∇f ‖2 ≤ f ≤ k2m

2
‖∇f ‖2. (8.7)

Proof Consider any point x ∈ E sufficiently near x̄. Equation (8.3) implies ∇f (x) =
1
m

∑
i yi , where yi = x − PFi

(x) ∈ NFi
(PFi

(x)) for each i = 1,2, . . . ,m. By defini-
tion, we have f (x) = 1

2m

∑
i ‖yi‖2. Using inequality (2.4), we obtain

m2
∥∥∇f (x)

∥∥2 =
∥∥∥∥∥

m∑

i=1

yi

∥∥∥∥∥

2

≤ m

m∑

i=1

‖yi‖2 = 2m2f (x).

But since x is sufficiently near x̄, so are the projections PFi
(x), so

2mf (x) =
∑

i

‖yi‖2 ≤ k2
∥∥∥∥
∑

i

yi

∥∥∥∥

2

= k2m2
∥∥∇f (x)

∥∥2

by Proposition 8.5. The result now follows. �

A standard argument now gives the main result of this section.

Theorem 8.8 (Q-linear convergence for averaged projections) Consider prox-
regular sets F1,F2, . . . ,Fm ⊂ E having linearly regular intersection at a point
x̄ ∈ ⋂

Fi , and any constant k > cond(F1,F2, . . . ,Fm|x̄). Then for any averaged
projection sequence {xj } with initial point x0 sufficiently near x̄, the mean-squared-
distance

f = 1

2m

m∑

i=1

d2
Fi

is reduced by at least a constant factor at each iteration:

f (xj+1) ≤
(

1 − 1

k2m

)
f (xj ) (j = 0,1,2, . . .).
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Proof Consider any point x ∈ E near x̄. The function f is continuously differentiable
around the minimizer x̄, so the gradient ∇f (x) must be small, and hence the new
iterate x+ = x − ∇f (x) must also be near x̄. Hence, as we observed after (8.3),
the gradient ∇f has Lipschitz constant one on a neighborhood of the line segment
[x, x+]. Consequently,

f (x+) − f (x)

=
∫ 1

0

d

dt
f
(
x − t∇f (x)

)
dt =

∫ 1

0

〈−∇f (x),∇f
(
x − t∇f (x)

)〉
dt

=
∫ 1

0

(−∥∥∇f (x)
∥∥2 + 〈∇f (x),∇f (x) − ∇f

(
x − t∇f (x)

)〉)
dt

≤ −∥∥∇f (x)
∥∥2 +

∫ 1

0

∥∥∇f (x)
∥∥ · ∥∥∇f (x) − ∇f

(
x − t∇f (x)

)∥∥dt

≤ −∥∥∇f (x)
∥∥2 +

∫ 1

0

∥∥∇f (x)
∥∥2

t dt = −1

2

∥∥∇f (x)
∥∥2 ≤ − 1

k2m
f (x),

using Proposition 8.6. �

A simple induction argument now gives an independent proof in the prox-regular
case that the method of averaged projections converges linearly to a point in the
intersection of the given sets. Specifically, the result above shows that mean-squared-
distance f (xk) decreases by at least a constant factor at each iteration, and Proposi-
tion 8.6 shows that the size of the step ‖∇f (xk)‖ also decreases by a constant factor.
Hence, the sequence (xk) must converge R-linearly to a point in the intersection.

Comparing this result to Theorem 7.3 (linear convergence of averaged projec-
tions), we see that the predicted rates of linear convergence are the same. Theorem 7.3
guarantees that the squared distance to the intersection converges to zero with R-
linear rate c2 (for any constant c ∈ (c̄,1)). The argument gives no guarantee about
improvements in a particular iteration: it only describes the asymptotic behavior of
the iterates. By contrast, the argument of Theorem 8.8, with the added assumption of
prox-regularity, guarantees the same behavior but with the stronger information that
the mean-squared-distance decreases monotonically to zero with Q-linear rate c2. In
particular, each iteration must decrease the mean-squared-distance.

9 A Numerical Example

In this final section, we give a numerical illustration showing the linear convergence
of alternating and averaged projections algorithms. Some major problems in signal
or image processing come down to reconstructing an object from as few linear mea-
surements as possible. Several recovery procedures from randomly sampled signals
have been proved to be effective when combined with sparsity constraints (see, for
instance, the recent developments of compressed sensing [18, 20]). These optimiza-
tion problems can be cast as linear programs. However, for extremely large and/or
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nonlinear problems, projection methods become attractive alternatives. In the spirit
of compressive sampling, we use projection algorithms to optimize the compression
matrix. This speculative example is meant simply to illustrate the theory rather than
make any claim on real applications.

We consider the decomposition of images x ∈ Rn as x = Wz where W ∈ Rn×m

(n < m) is a “dictionary” (that is, a redundant collection of basis vectors). Com-
pressed sensing consists in linearly reducing x to y = Px = PWz with the help of
a compression matrix P ∈ Rd×n (with d � n); the inverse operation is to recover x

(or z) from y. Compressed sensing theory gives sparsity conditions on z to ensure
exact recovery [18, 20]. Reference [20], in fact, proposes a recovery algorithm based
on alternating projections (on two convex sets). In general, we might want to design
a specific sensing matrix P adapted to W , to ease this recovery process. An initial
investigation on this question is [21]; we suggest here another direction, inspired by
[9] and [22], where averaged projections naturally appear.

Candes and Romberg [9] showed that under orthogonality conditions, sparse re-
covery is more efficient when the entries |(PW)ij | are small. One could thus use the
componentwise �∞ norm of PW as a measure of quality of P . This leads to the fol-
lowing feasibility problem: to find U = PW such that UU� = I and with the infinity
norm constraint ‖U‖∞ ≤ α (for a fixed tolerance α). The sets corresponding to these
constraints are given by

L = {
U ∈ Rd×m : U = PW

}
,

M = {
U ∈ Rd×m : UU� = I

}
,

C = {
U ∈ Rd×m : ‖U‖∞ ≤ α

}
.

The first set L is a subspace, the second set M is a smooth manifold while the third C

is convex; hence the three are prox-regular. Moreover, we can easily compute the pro-
jections. The projection onto the linear subspace L can be computed with a pseudo-
inverse. The manifold M corresponds to the set of matrices U whose singular values
are all ones; it turns out that naturally the projection onto M is obtained by comput-
ing the singular value decomposition of U , and setting singular values to 1 (apply,
for example, Theorem 27 of [30]). Finally, the projection onto C comes by shrink-
ing entries of U (specifically, we operate min{max{uij ,−α}, α} for each entry uij ).
This feasibility problem can thus be treated by projection algorithms, and hopefully
a matrix U ∈ L ∩ M ∩ C will correspond to a good compression matrix P .

To illustrate, we generate random entries (normally distributed) of the dictionary
W (size 128 × 512, redundancy factor 4) and of an initial iterate U0 ∈ L. (In practice,
since the theory only guarantees local convergence, we would need a heuristic to find
an initial iterate.) We fix α = 0.1 and run the averaged projection algorithm, thereby
computing a sequence of Uk that appear to be converging, as hoped, to a feasible
solution to our problem. Furthermore, the convergence appears linear: Figure 1 shows

10 log10 f (Uk) with f (U) = d2
L(U) + d2

M(U) + d2
C(U)

for each iteration k. We observe f (Uk+1)/f (Uk) < 0.9627 for all k, suggesting the
expected local Q-linear convergence. Random examples are interesting for our simple
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Fig. 1 Convergence of
averaged projection algorithm
for designing compression
matrix in compressed sensing

test of averaged projections: the challenging question of checking a priori the linear
regularity of the intersection of the three sets is open, but randomness seems to pre-
vent irregular solutions, providing α is not too small. So in this situation, we would
hope that the algorithm will converge locally linearly; this is indeed what the numer-
ical results in Fig. 1 suggest. We note furthermore that we tested iterated projections
on this problem (involving three sets, so not explicitly covered by Theorem 5.16).
We observed that the method still appears locally linearly convergent in practice, and
again, that the rate is better than for averaged projections.

This example illustrates how the projection algorithm behaves on random feasibil-
ity problems of this type. However, the potential benefits of using optimized compres-
sion matrix versus random compression matrix in practice are still unclear. Further
study and more complete testing have to be done for these questions; this is beyond
the scope of this paper.
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