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Abstract In this article, we derive and study symmetric exponential integrators. Nu-
merical experiments are performed for the cubic Schrödinger equation and compar-
isons with classical exponential integrators and other geometric methods are also
given. Some of the proposed methods preserve the L2-norm and/or the energy of the
system.
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1 Introduction

The cubic Schrödinger equation in Td = (R/2πZ)d , the d-dimensional torus, is

iut + �u = λ|u|2u. (1)

For d = 1 this equation is completely integrable, and in general, it has the L2-norm
or density as a conserved quantity,

ρ[u] =
∫

Td

|u|2dx (2)
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and for H 1-solutions one has conservation of energy

H [u] =
∫

Td

(
1

2
|∇u|2 + λ

4
|u|4

)
dx. (3)

It is of great interest [6, 8] to devise numerical schemes which conserve discretized
versions of these same invariants. In practice, one needs to introduce a space dis-
cretization of (1) and in the periodic case, the use of a discrete Fourier transformation
is a favorable choice. Several methods have been proposed for the numerical integra-
tion of the cubic Schrödinger equation. For arbitrary d , examples of schemes which
exactly preserve (2, 3), or discretized versions of them are given in [4, 9]. Special
attention has been given to the one-dimensional case. Considerable success has been
reported in early papers using splitting and Fourier techniques, see [19] for a review
and comparisons. Another approach has been to impose integrability on the discrete
level, the best example is the Ablowitz–Ladik model [1]; its numerical properties are
discussed in [12]. The Hamiltonian structure of nonlinear wave equations, in general,
and the cubic Schrödinger equation, in particular, has invoked the idea of applying
symplectic time integrators to semidiscretizations of these equations, see e.g., [16].
More recently, the use of multisymplectic formulations of Hamiltonian wave equa-
tions has become popular as a basis for designing numerical schemes with good geo-
metric properties. For the cubic Schrödinger equation, schemes that preserve a dis-
cretized version of the multisymplectic form were discussed by Reich [18]. In mul-
tisymplectic integration, there is also local conservation of quantities derived from
the multisymplectic form, like energy and momentum. When discretizing in space,
and imposing conservation of a space averaged quantity, one may observe large lo-
cal fluctuations in space that are averaged throughout the domain. In [13], Islas and
Schober consider properties of the nonlinear spectrum for a certain initial function in
the cubic Schrödinger equation. In particular, they study a case where there is an ε-
gap between two eigenvalues, and they consider whether the numerical schemes are
able to maintain this gap over long times. In the case that the numerical discretization
error causes the gap to close, the structural properties of the solution will change.
The multisymplectic schemes seem to handle this problem well, however, in a more
recent report [2], it was pointed out that these spectral properties were also very well
conserved by another type of time integration scheme called exponential integrators.
Modern versions of these schemes are generally formulated for problems of the form

u̇ = Lu + N(u). (4)

Here L is typically a linear unbounded differential operator; alternatively, one can
think of L as a matrix arising from a space discretization of such an operator, and
thus bounded for a fixed spatial resolution, but with a large norm. The map N(u) is
on the other hand nonlinear, but we assume that for spatial resolutions of interest the
size of N(u) is small compared to L. The schemes we consider here can all be cast
in the form

Nr = N

(
ecrhLu0 + h

s∑
j=1

arj (hL)Nj

)
, r = 1, . . . , s, (5)
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u1 = ehLu0 + h

s∑
r=1

br(hL)Nr . (6)

Here the functions arj (z) and br(z) are usually real entire or at least real analytic
in a domain of the complex plane which includes the spectrum of hL for all h of
interest. Their value at 0, arj := arj (0) and br := br(0) is the underlying Runge–
Kutta method to which the scheme reduces to in the situation that L = 0 in (4).
One then has cr = ∑

j arj . In applying such schemes to the nonlinear Schrödinger
equation, it is of importance to choose functions arj (z) and br(z) which are bounded
on the imaginary axis, a property which is rather common among popular exponential
integrators. Although we shall not dwell too much on the added technical difficulties
related to the situation when the problem (4) is infinite dimensional, it deserves a few
remarks. In the present situation, we are interested in the case where L = iA with A a
self-adjoint operator on the Hilbert space L2(Td). In this case, L is the infinitesimal
generator of a one-parameter unitary group. The spectrum of L is on the imaginary
axis and we assume that functions f (hL) can be defined in terms of eigenvalues λi

of L and a complete set of orthonormal eigenvectors ei through the spectral mapping
theorem as

f (hL)u =
∑

i

f (λi)〈u, ei〉ei

where f satisfies the requirements stated above for arj (z) and bj (z).
Exponential integrators go back a long time, at least to Certaine [7], but there has

been a revived interest in these schemes in the last decade; for an account, see, for
instance, [17] and the references therein. Most of the recently proposed exponential
integrators have the property that arj (z) ≡ 0 for j ≥ r and are thus explicit in the
nonlinear term N(u). For periodic problems, the Fourier transformation diagonalizes
the operator L making the functions arj (hL) and br(hL) inexpensive to compute
and store. For constant stepsize, they can even be reused in every step. A disadvan-
tage with such schemes is that they cannot be symplectic or symmetric. However,
in the related class of schemes called Lie group integrators, implicit schemes that
are self-adjoint were considered by Zanna et al. [20]. In this work, we shall consider
implicit schemes of the form (5, 6) that are symmetric. We shall argue that the im-
plicitness is still relatively inexpensive to handle and that we obtain methods with
good long time preservation properties. We show, however, that the schemes cannot
in general preserve quadratic invariants exactly, and, in particular, the density ρ[u].
But it is possible to force exact preservation without the loss of symmetry by using
the symmetric projection approach as discussed by Hairer [10]. We show how this
projection can be implemented at relatively low additional cost. Finally, we illustrate
the behavior of these new schemes by numerical experiments.

2 Symmetric Exponential Integrators

Writing u1 = Φh(u0) for the exponential integrator defined in the Introduction, one
defines the adjoint method as the map

Φ̂h = Φ−1
−h.
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A straightforward calculation (exchanging 1 ↔ 0 and h ↔ −h, as usual) shows that
the adjoint scheme Φ̂h is again a scheme of the form (5, 6) where the coefficient
functions ârj (z) and b̂r (z) are given as

ârj (z) = e(1−cs+1−r )zbs+1−j (−z) − as+1−r,s+1−j (−z), (7)

b̂r (z) = ezbs+1−r (−z). (8)

We now consider the possibility of obtaining symmetric methods, i.e., schemes where
ârj (z) = arj (z), b̂r (z) = br(z).

Symmetric one-stage exponential integrators If s = 1, there is only a(z) := a11(z),
b(z) := b1(z), c := c1 = a11(0) to be determined. We get immediately from (7, 8)
that

a(z) = e(1−c)zb(−z) − a(−z), (9)

b(z) = ezb(−z). (10)

So by multiplying (10) from each side by e−z/2 we realize that G(z) := e−z/2b(z)

must be an even function so that

b(z) = ez/2G(z), G(z) even, G(0) = 1.

Combining (9) and (10), we derive

a(z) + a(−z) = e−czb(z) = e( 1
2 −c)zG(z),

thus c = 1
2 , and the even part of a(z) equals G(z)/2. Summarizing, a one stage sym-

metric exponential integrator is constructed as follows:

• Let c = 1
2 and choose a(z) arbitrary, subject only to the condition a(0) = 1

2 .
• Set b(z) = ez/2(a(z) + a(−z)).

Note in particular that every one stage symmetric exponential integrator will have
the midpoint rule as its underlying scheme.

Example 2.1 Let us define ϕ1(z) = ez−1
z

(for details on the ϕl-functions, see [17]).

Taking a(z) = 1
2ϕ1(z/2), and thus b(z) = ϕ1(z), the one stage symmetric exponential

integrator reads as follows

U = e
hL
2 u0 + h

2
ϕ1

(
hL

2

)
N(U), (11)

u1 = ehLu0 + hϕ1(hL)N(U). (12)

Alternatively, the update step can be written as

u1 = e
hL
2 U + h

2
ϕ1

(
hL

2

)
N(U). (13)
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Symmetric two-stage exponential integrators To illustrate the case with two stages,
we use the Hammer and Hollingsworth method (a Gauss method with s = 2) as an
underlying scheme:

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

Of the six conditions (7, 8), only three are independent. Subject to the obvious con-
dition on the coefficient functions at z = 0, we can use the following recipe to obtain
a two-stage symmetric exponential integrator:

– Pick b1(z) arbitrarily and set b2(z) = ezb1(−z).
– Pick a11(z) arbitrarily and set a22(z) = ec2zb1(−z) − a11(−z).
– Pick a12(z) arbitrarily and set a21(z) = e−c1zb1(z) − a12(−z).

We have not pursued any further the question of how to best make use of this free-
dom to find optimal symmetric schemes with two stages. It is, however, not difficult
to see that the coefficients of the two-stage Lawson method (see [14])

arj (z) = αrj e(cr−cj )z, br (z) = βre(1−cr )z (14)

actually satisfy (7) and (8) if the underlying Runge–Kutta with coefficients αrj and βr

is the method of Hammer and Hollingsworth.

Symmetric Lawson methods We will now give a complete characterization of the
symmetric Lawson methods. The Lawson methods are symmetric if

arj (z) = e(1−cs+1−r )z bs+1−j (−z) − as+1−r,s+1−j (−z),

br (z) = ez bs+1−r (−z).

Using (14), we obtain symmetry if

αr,j e(cr−cj )z = (βs+1−j − αs+1−r,s+1−j ) e(cs+1−j −cs+1−r )z,

βr e(1−cr )z = βs+1−r ecs+1−r z.

We thus obtain the following result (which can be compared to the result on classical
symmetric Runge–Kutta methods, see [11, Sect. V.2])

Proposition 2.2 The Lawson method with coefficients

arj (z) = αrj e(cr−cj )z, br (z) = βre(1−cr )z

is symmetric if the underlying Runge–Kutta method with coefficients αrj , βr is such
that

cs+1−r = 1 − cr , βs+1−r = βr, βj = αr,j + αs+1−r,s+1−j for all r, j.
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3 L2-Norm Preservation for the Nonlinear Schrödinger Equation

It is known (see, for example, [15]) that the L2-norm ‖u(·, t)‖L2 of the exact solution
of the nonlinear Schrödinger equation is a conserved quantity.

The aim of geometric numerical integration is to retain by a numerical discretiza-
tion as much as possible of the geometric structure of the exact solution. It is thus
natural to require that the L2-norm of the numerical solution, given by the exponen-
tial integrators (5, 6) is preserved.

We will now give a complete characterization of exponential integrators which
conserve exactly quadratic invariants of the form ρ[u] = 〈u,u〉.

Proposition 3.1 Consider the class of problems u̇ = Lu + N(u) where iL is self-
adjoint and where ρ[u] = 〈u,u〉 is preserved. An exponential integrator with coef-
ficient functions arj (z) and br(z) will preserve ρ[u] for all problems in this class if
there are real numbers β1, . . . , βs such that

br(hL) = βr e(1−cr )hL, r = 1, . . . , s, (15)

βjβr e(cj −cr )hL = βjajr (hL) + βra
∗
rj (hL), r, j = 1, . . . , s. (16)

Here a∗(hL) is the adjoint of a(hL).

Proof We first calculate from (6) writing just br for br(hL) and using the fact that
ehL is unitary

〈u1, u1〉 = 〈u0, u0〉 + h
∑

r

(〈
ehLu0, brNr

〉 + 〈
brNr, ehLu0

〉) + h2
∑
r,j

〈brNr, bjNj 〉

writing Nr = N(Ur) in (5), we substitute writing arj for arj (hL),

ehLu0 = e(1−cr )hLUr − h
∑
j

e(1−cr )hLarjNj

to obtain

ρ[u1] − ρ[u0] = 2h
∑

r

Re
〈
b∗
r e(1−cr )hLUr,Nr

〉

+ h2
∑
r,j

〈(
b∗
j br − b∗

j e(1−cj )hLajr − a∗
rj e−(1−cr )hLbr

)
Nr,Nj

〉
. (17)

Note that for the exact solutions, it holds for any u that

d

dt
ρ[u] = 2Re

〈
u,N(u)

〉 = 0.

It easily follows from (17) that (15, 16) imply ρ[u1] = ρ[u0]. �
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Remarks

1. To consider the converse of this result, one needs to look at the notion of irre-
ducibility for exponential integrators. If it can be shown that each term vanishes
in the two sums of (17), then the conditions (15, 16) are also necessary.

2. For the symmetric midpoint exponential integrator, the second sum of (17) van-
ishes, however, the first one does not. Thus, the numerical solution given by this
method will not preserve exactly the ρ[u] as we will see in Sect. 5.2.

3. The proof of Proposition 3.1 does not apply to the conservation of quadratic in-
variants of the more general form 〈u,Cu〉. Indeed, to obtain that 〈u1,Cu1〉 =
〈u0,Cu0〉, we have to assume that (CehL)∗ = Ce−hL, which is in general not
true.

We note that the methods proposed by Lawson (see Sect. 2) actually satisfy
(15, 16) whenever αrj , βr , of the underlying Runge–Kutta scheme are chosen to sat-
isfy the conditions

βrβj = βjαjr + βrαrj , for r, j = 1, . . . , s.

Example 3.2 An example of a symmetric Lawson scheme preserving the L2-norm is
the one-stage second order Lawson scheme with coefficients

a11(z) = 1/2, b1(z) = ez/2, and c1 = 1/2.

In fact, the Lawson schemes can be interpreted as applying a classical Runge–
Kutta scheme to the differential equation resulting from the change of variables

y(t) = e(t−t0)Lv(t) ⇒ v′(t) = e−(t−t0)LN
(
e(t−t0)Lv(t)

)
.

This observation suggests that one may in fact replace the transformation used in the
Lawson scheme by any unitary transformation, and consider the integrator resulting
from applying a classical quadratic invariant preserving scheme to the transformed
system. An example of a transformation which could be used is the Cayley transform.

4 Symmetric Projection Algorithm

In general, as we have seen in the previous section, not all symmetric exponential
integrators preserve the L2-norm. Following Hairer [10], one may perform a sym-
metric projection of the symmetric exponential integrator onto the constraint mani-
fold. Suppose a constraint map P : Rm → Rq is given such that there are q preserved
quantities Pk(u) = 0, k = 1, . . . , q . The idea is to perturb the initial value u0 away
from the constraint manifold, apply a step of a symmetric scheme, and then project
back in such a way that the three composed steps give a symmetric map. Denoting by
Φh the symmetric integrator, we have

ũ0 = u0 + P ′(u0)
Tμ,

ũ1 = Φh(ũ0),

u1 = ũ1 + P ′(u1)
Tμ
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where μ ∈ Rq is chosen such that P(u1) = 0. Here P ′(u) ∈ Rq×m is the Jacobian
matrix evaluated at the point u ∈ Rm. Considering the midpoint rule (11, 13), we
write the symmetric projection method in the form

U − e
hL
2

(
u0 + P ′(u0)

Tμ
) − h

2
ϕ1

(
hL

2

)
N(U) = 0,

u1 − e
hL
2 U − h

2
ϕ1

(
hL

2

)
N(U) − P ′(u1)

Tμ = 0,

P (u1) = 0.

This is now a coupled system of 2m + q equations F(Y ) = 0 for the unknowns Y =
(U,u1,μ). Thus, it seems that the situation with respect to computational complexity
has deteriorated considerably. However, we may approximate the Jacobian matrix
of F by the matrix

J =
[

Im 0 −ehL/2 P ′(u0)
T

−ehL/2 Im − P ′′(u1,μ) −P ′(u1)
T

0 P ′(u1) 0

]
.

Here Im is the m×m identity matrix and P ′′(u,μ) is the Jacobian matrix of P ′(u)Tμ

with respect to u. If one only projects onto the density constraint, this matrix is sim-
ply a scalar times Im. In the case of projection onto both the density and the energy
constraint, one may replace this second derivative matrix with a simple linearization,
disregarding the contributions due to the nonlinear map N . As a result, the submatrix
corresponding to the four left uppermost blocks of J , becomes easy to invert. Thus,
the kth iterate for the increment of the Lagrange multiplier μ can be calculated effi-
ciently by means of a Schur complement formula followed by a sequential calculation
of the iterate for U and u1.

5 Implementation and Numerical Experiments

5.1 Implementation Issues

In order to solve the equation

U = g(U) := e
hL
2 u0 + h

2
ϕ1

(
hL

2

)
N(U) (18)

with respect to U , one may apply fixed point iteration directly to (18). We obtain
approximations U [k] to U of the type

U [k+1] = e
hL
2 u0 + h

2
ϕ1

(
hL

2

)
N

(
U [k]).

By defining the iteration error e[k] = U [k] − U , one gets the recursion

e[k+1] = h

2
ϕ1

(
hL

2

)(
N

(
U [k]) − N(U)

) ≈ h

2
ϕ1

(
hL

2

)
N ′(U)e[k].
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The derivative map N ′(U) can be bounded in a strip containing the solution and
the bound is obtained independently of the dimension of the discretized system. Us-
ing the discrete Fourier transformation, ϕ1(

hL
2 ) is a diagonal matrix whose norm is

bounded by 1.
In order to further improve the convergence properties, one may consider the exact

Newton iteration for solving (18)

U [k+1] = U [k] − [
I − g′(U [k])]−1

r [k], r [k] = U [k] − g
(
U [k]).

Noting that g′(U) = O(h), we can approximate

[
I − g′(U [k])]−1 ≈ I + g′(U [k])

and thus obtain the iteration

U [k+1] = g
(
U [k]) − g′(U [k])r [k].

In the cubic Schrödinger equation, one has N(u) = −iλ|u|2u which leads to

N ′(u)v = −iλ
(
2|u|2v + u2 v

)
.

Using a pseudospectral discretization, we replace N(u) by the function

N̂(û) = F
(
N

(
F−1(û)

))

and the derivative map is

N̂ ′(û)v̂ = F
(
N ′(F−1û

)
F−1v̂

)
.

Note, however, that when N̂ ′(Û [k])r̂ [k] is required, one has already computed U [k] =
F−1Û [k] as a part of the residual calculation, and thus only two additional Fourier
transforms are required for this modification. More advanced algorithms for approx-
imating the Newton iteration map could of course be devised, for instance by Krylov
subspace techniques.

5.2 Numerical Experiments

We illustrate the results of the preceding sections with some numerical experiments.
In this subsection, we will present some results on the cubic Schrödinger equation (1)
setting d = 1 and λ = −1, with periodic boundary conditions, integrated from 0 to T .
We consider a pseudospectral space discretization and two different choices for the
initial condition. The first is

u(x,0) = 1/
(
1 + sin(x)2), (19)

whereas the second is

u(x,0) = √
8/ cosh(2x)e2ix, (20)
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a soliton solution. The initial data (20) require smaller time steps than (19). In these
experiments, we always choose a pseudospectral discretization in space with M =
512 Fourier modes. The stepsizes h we use always satisfy hM2 � 1 meaning that we
operate far away from the regime of explicit integrators.

In the following, we plot the error of the numerical methods in the preservation of
the discretized invariants corresponding to (2) and (3),

ρ�x[U ] = 2π

M

M∑
k=1

|Uk|2

and

H�x[U ] = πλ

2M

M∑
k=1

|Uk|4 + M

4π

M∑
k=1

|Uk+1 − Uk|2,

respectively. The considered numerical schemes are:

1. The symmetric midpoint exponential integrator (11, 12) of Example 2.1 (SMEXP).
This method is symmetric, but does not preserve the L2-norm.

2. The one-stage Lawson scheme (L1) of Example 3.2. A symmetric and L2-norm
preserving method.

3. The symmetrically projected midpoint exponential integrator, with projection on
the density constraint (SPMEXP-D), and with projection on both the density and
energy constraint (SPMEXP-DE). The constraint map P of Sect. 4 in this case is
P(U) = ρ�x[U ] − ρ�x[U0] for (SPMEXP-D), and

P(U) =
[

ρ�x[U ] − ρ�x[U0]
H�x[U ] − H�x[U0]

]
,

for (SPMEXP-DE). The method (SPMEXP-D) preserves exactly the discrete den-
sity, and the method (SPMEXP-DE) preserves exactly both the discrete density
and the discrete energy.

4. The Pseudo-Steady-State-Approximation (PASSA) scheme (see [3] and refer-
ences therein). This explicit exponential type method is a standard scheme in
the chemistry literature, has order two, is not symmetric, does not preserve the
L2-norm and the total energy.

5. A relaxation scheme proposed by Besse in [4] (B). This scheme preserves both
the energy and the L2-norm.

6. The multisymplectic concatenated midpoint rule also known as the Preissman box
scheme (MULTI). See [12] for a thorough discussion of this method and its geo-
metric properties in the case of the cubic Schrödinger equation (see also [5]).

Remarks

1. For all the exponential type integrators considered, the computation of the
ϕ-functions was done using the Padé approximations, see [3] for more details.

2. In these experiments, we have used standard fixed point iteration since it con-
verges, and since the computational cost for each time step is not being measured
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Fig. 1 Error in the density (left column) and energy along (SMEXP), (L1), and (PASSA) (from the top to
the bottom) for the initial condition (19). Number of Fourier modes M = 512, time step 0.1. The curves are
truncated at the time when the relative deviation in the energy or density from the initial point exceeds 0.1

here. It is, however, easy to change to the quasi-Newton type iteration proposed in
the previous section for improved efficiency.

Figure 1 shows the error in the discretized energy and density along the numerical
solution given by (SMEXP), (L1), and (PASSA) obtained with a constant step size
h = 0.1 for the first choice of initial value, the interval of integration is [0,500]. The
curves are truncated at the time when the relative deviation in the energy or density
from the initial point, exceeds 0.1, e.g.,

H�x[U(tn)] − H�x[U(0)]
H�x[U(0)] > 0.1.

As predicted by Proposition 3.1, the Lawson scheme (L1) preserves exactly the
discretized density, which is not the case for the symmetric exponential integrator
(SMEXP). In the (SMEXP) method, the errors in the preservation of both the energy
and the density are smaller than 10−3 and seem to remain bounded over very long
integration times.

For the soliton solution, we have to use a smaller step size. Figure 2 shows as
before energy and density error for the second choice of initial value and with h =
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Fig. 2 Error in the density (left column) and energy along (SMEXP), (L1), and (PASSA) (from the top
to the bottom) for the initial condition (20). Number of Fourier modes M = 512, time step 0.025. The
curves are truncated at the time when the relative deviation in the energy or density from the initial point
exceeds 0.1

0.025, the interval of integration is [0,500]. Once again, the plots are truncated at the
time when the relative energy/density deviations exceed 0.1.

In Figures 3 and 4, we plot the results for the symmetrically projected midpoint
exponential integrators and compare the results with the methods MULTI and B. In
both experiments, we integrated on the time interval [0,50], with time step h = 0.025,
for the initial condition (19), and with h = 0.0125 for the initial condition (20). The
experiments confirm the good conservation properties of the methods. In particular,
the method (SPMEXP-D) which performs the symmetric projection only for the den-
sity, conserves the energy also very well. In fact, the error is about of the same size
as the energy error obtained with the multisymplectic method (MULTI) and with the
method (B).

Performing experiments with different sizes of M , the number of Fourier modes
in the space discretization, and fixed time step h = 0.025, we also observed that the
number of iterations needed to achieve convergence in the Newton iteration for the
methods (SMEXP), (SPMEXP-D), and (SPMEXP-DE) remains nearly unchanged.
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Fig. 3 Error in the density (left column) and energy along (SPMEXP-D), (SPMEXP-DE), (MULTI), and
(B) (from the top to the bottom) for the initial condition (19). Number of Fourier modes M = 512, time
step 0.025

6 Conclusion

We have presented a new class of exponential integrators which have favorable geo-
metric properties. The cost of this added quality is that the schemes are implicit in
the nonlinear function N(u). Each iteration needed for solving the resulting nonlinear
system of equations costs approximately the same as a low order explicit exponen-
tial integrator. The number of iterations needed seems to depend only on the (local)
Lipschitz constant of N(u) and the stepsize, and not on the space discretization pa-
rameter. So far, tests have been conducted only with one stage schemes of order two,
and only with the most common coefficient functions a(z) and b(z). The preliminary
tests are promising, but it remains to try out and analyze schemes of higher order, and
to take advantage of the ample freedom available in choosing coefficient functions of
the schemes.
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Fig. 4 Error in the density (left column) and energy along (SPMEXP-D), (SPMEXP-DE), (MULTI), and
(B) (from the top to the bottom) for the initial condition (20). Number of Fourier modes M = 512, time
step 0.0125
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