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1. Introduction

This paper provides an efficient algorithm to be used in the computation of the
map on homology induced by a continuous function f : (X, A) → (Y, B). This
work is motivated by a growing number of applications in which f is not treated
analytically, but rather is obtained via rigorous numerical approximation [4], [5],
[6], [15], [16], [19] or experimental observation [18]. As such, before describing the
results presented here, there are three essential issues that need to be addressed:
the approximation of f , the representation of the spaces and the function in a
combinatorial form that can be manipulated by a computer, and the requirement
for dimension independent algorithms.

Beginning with the question of approximation, consider the case of a nonlinear
function f : Rn → Rm . Due to computational errors the best that one can expect
is that a careful numerical estimation of f results in a different map fnum with the
property that given x ∈ Rn one can construct ε > 0 such that ‖ f (x)− fnum(x)‖ < ε

or, equivalently, f (x) ∈ Bε( fnum(x)); that is, the correct value of f (x) lies in an ε-
ball of the numerical approximation of f . It is this latter formulation that suggests
the use of multivalued maps as a means of representing f .

To be more precise, a multivalued map F : X −→→ Y is a function from X to
the power set of Y , i.e., F(x) ⊂ Y for every x ∈ X . We impose the additional
assumption that F(x) �= ∅. A continuous map f : X → Y is called a selector of
F : X −→→ Y if f (x) ∈ F(x) for every x ∈ X .

We will use multivalued maps to approximate continuous functions on the level
of topology. However, as was mentioned earlier, in order to use the computer
we need a combinatorial means of representing these multivalued maps. For this
purpose we make use of the cubical theory developed in [11]. As is made clear
shortly, this is not an idiosyncratic choice—our algorithms strongly exploit the
fact that the product of cubes is a cube and inversely the obvious projections map
cubes to cubes.

Recall that an elementary cube Q in Rn is a d-dimensional face (for any d) of
the usual integer (cubic) lattice cell complex in Rn , which can be formally defined
as

Q = I1 × I2 × · · · × In ⊂ Rn

where Ii = {li } or Ii = [li , li + 1] and li ∈ Z. The set of elementary cubes in Rn

is denoted by Kn . The dimension of Q is defined as

dim Q := card{i | Ii = [li , li + 1]}

and Kn
d indicates the set of d-dimensional elementary cubes in Rn . Elements of

Kn
n are called full cubes.
Let X ⊂ Kn , then its geometric realization is

|X | :=
⋃
X ⊂ Rn.
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Consider finite sets of full cubes X ⊂ Kn
n and Y ⊂ Km

m . A combinatorial
multivalued map is a multivalued mapF :X −→→ Y . The upper envelope ofF is the
multivalued map �F�: |X | −→→ |Y| defined by

�F�(x) =
⋃
{|F(Q)| | x ∈ Q ∈ X } ⊂ |Y|.

Observe that this provides us with a well-defined procedure for passing from
combinatorial data to topological information. To simplify the notation, we will
implicitly define F := �F�.

A set X ⊂ Rn is a cubical set if it is a finite union of elementary cubes.
Note that a cubical set X is in fact a combinatorial object, as it can be repre-
sented in a finite way by the set X ∈ Kn such that X = |X |. However, the
representation of X is usually nonunique: DefineXmax := {Q ∈ Kn | Q ⊂ X} and
Xmin := {Q ∈ Xmax | for every R ∈ Xmax if Q ⊂ R, then Q = R}; then X = |X |
for every X ⊂ Kn such that Xmin ⊂ X ⊂ Xmax. In the implementation of our al-
gorithms we try and represent cubical sets as close to Xmin as possible. Since the
technical complications arising from such optimization are inevitable, in the al-
gorithms described in this paper we operate with cubical sets at the topological
level, but the reader should keep in mind the fact that they are really combinatorial
objects.

Because F is used to represent f , we are particularly interested in full cubical
sets; that is, cubical sets of the form X = |X | where X ⊂ Kn

n . Observe that if
X is a full cubical set, then there is a unique set of full cubes X ⊂ Kn

n such that
X = |X |.

To simplify the notation we adopt the following convention. We use calligraphic
letters to denote combinatorial objects and the corresponding capital letters to
denote the corresponding topological objects. In particular, if a full cubical set
in Rn is written using a capital letter, then the corresponding set of full cubes is
denoted by the corresponding calligraphic letter.

An important notion used in the reduction algorithms is acyclicity. A topological
set is called acyclic if its homology is isomorphic to the homology of a single-point
space. Note that the acyclicity of a set may depend on the ring of coefficients used
to compute homology. A simple example is provided by the real projective plane.

Because of the intended applications, we introduce two more concepts. A com-
binatorial multivalued mapF :X −→→ Y is a combinatorial representation of a con-
tinuous map f : X → Y if f is a selector of F . It is acyclic if F(x) is an acyclic
set for each x ∈ X .

Assume f : (X, A) → (Y, B) is a continuous map of pairs and X, A ⊂ Rn

and Y, B ⊂ Rm are full cubical sets. We are interested in an algorithm comput-
ing f∗: H∗(X, A) → H∗(Y, B). To this end we need to extend the concept of
representation of a single-valued map to the maps of pairs. We say that a combi-
natorial multivalued map F :X −→→ Y is a representation of f : (X, A) → (Y, B)
if F is a representation of f : X → Y and F(A) ⊂ B. (Note that if F :X −→→ Y
is a combinatorial representation of f : X → Y , then the condition F(A) ⊂ B
implies f (A) ⊂ B.) The reader may expect that given a representation F of
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f : (X, A) → (Y, B) we have F(A) ⊂ B, where F = �F�. However, this is not
true in general. In fact, as is indicated in Figure 6, in some cases there exist x ∈ ∂A
such that F(x) �⊂ B. Therefore, it is convenient to introduce another concept. A
pair (F,G) of multivalued maps is a representation of f : (X, A) → (Y, B) if
F : X → Y is a representation of f : X → Y, and G: A → B is a representation
of f |A: A → B, and G ⊂ F . It is straightforward that if F is a combinatorial
representation of f : (X, A)→ (Y, B), then (�F�, �F |A�) is a representation of f .

Observe that given a continuous map f : X → Y where X and Y are full
cubical sets, finding a combinatorial representation F :X −→→ Y is a question of
approximation. This is a topic in its own right (see [21, Theorem 4.2], and the
discussion in [23]) and is not the subject of this paper. Thus, we will limit ourselves
to a few comments. The simplest approach to computing a rigorous enclosure is to
use interval arithmetic [20] to evaluate the images of entire intervals or cubes by
the map f . For simple nonlinearities more sophisticated approaches to obtaining
bounds can also be used [5]. A more challenging example arises when f is the
translation map of a continuous dynamical system induced by an ODE. In this
setting one can use the method introduced in [12], [23], [33] (an implementation
is available at [2]), as, for instance, was done in [22], [25], [26]. With this set of
examples as justification our approach for the remainder of this paper is to assume
that an appropriate combinatorial representation has been found.

The use of cubes, as opposed to simplicies, is contrary to the customary approach
and thus deserves comment. At first it seems that the standard simplicial theory
provides us with a good setting for algorithmic computation of maps in homology.
Given a continuous map f : |K | → |L|, of two simplicial complexes K and L ,
which satisfies the star condition one can construct a simplicial approximation
of the map and from the simplicial approximation one can determine the map in
homology. However, there are at least three problems with this approach.

• To verify the star condition one has to find good upper estimates of the images
of the map on simplices. Unfortunately, standard numerical algorithms for
upper estimates of images are based on interval arithmetic, which leads to a
significant overestimation when applied to simplices.

• In most cases a significant amount of subdivisions of K is needed in order to
guarantee that the star condition is met even for simple maps. The large sub-
division implies heavy numerical computations to verify the star condition.
Additionally, we know of no practical a priori formula for determining what
the optimal subdivision should be, which forces one to loop in the search of
an optimal subdivision.

• Last but not least is the overhead caused by the necessity of matching the
vertices in the star condition needed to define the simplicial approximation.

A possible alternative is to first construct a covering A := {Aw | w ∈ L} of
|K | such that Aw ⊂ f −1(Stw), where Stw denotes the star of w. Then, find the
Lebesgue number, λ, of A and replace K with sdN K , where N is chosen so that
each simplex in sdN K has diameter less than λ/2. Unfortunately, this approach
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appears to be even worse, because finding Aw requires the construction of approx-
imations of f −1(Stw) from below, which is hard even for simple sets like balls or
rectangles.

Of course these arguments do not imply that an algorithm based on simplicial
homology is not possible, merely that we were not able to overcome these obstacles.
However, we do believe that the approach presented in this paper, based on cubical
homology and graphs of multivalued maps, when applied to maps available only
through numerical computations is more natural and practical.

The final point which needs to be addressed is the justification for the develop-
ment of a dimension independent algorithm. As was mentioned earlier, the origins
of this work lie in the analysis of numerical and experimental data. In particular,
the common strategy for these applications is to use the computer to identify an
isolating neighborhood and compute its homology Conley index which involves
computing the relative homology of a map (see [17], [14] for an introduction to
this theory in the context of computations). For the earliest applications [15], [16],
[19], [18] the computation of the homology map was greatly simplified by the
fact that the maps of interest were defined on subsets of the plane and only the
first homology groups were involved. This meant that the computation could be
reduced to a question involving the connectedness of graphs. However, recent ap-
plications to infinite-dimensional problems [4], [5] require that these computations
be performed in higher-dimensional spaces (dimension 6 for the specific exam-
ple discussed at the end of this Introduction). Furthermore, the higher-homology
groups come into play. At the moment, it appears that the techniques described
in this paper are essential to these applications in the sense that they can handle
relatively high-dimensional data in an efficient manner both in time and memory.

Our main result is Algorithm 5.1 (see Section 5) whose validity is justified by
the following theorem:

Theorem 1.1. Let A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm be full cubical sets. Let the
combinatorial multivalued map F :X −→→ Y be a representation of

f : (X, A)→ (Y, B).

Assume that F(A) ⊂ B and that both F and F |A are acyclic. Then the homo-
morphism returned by Algorithm 5.1 invoked with F , A, B, and “incl” set to
false coincides with f∗: H∗(X, A) → H∗(Y, B) in the sense that the domain D
of this homomorphism is isomorphic to H∗(X, A), the codomain C of it is iso-
morphic to H∗(Y, B), and the following diagram, in which ϕ denotes the returned
homomorphism, commutes

D
ϕ−−→ C�� ��

H∗(X, A)
f∗−−→ H∗(Y, B)

Moreover, if X ⊂ Y , A ⊂ B, and the inclusion i : (X, A) ↪→ (Y, B) induces
an isomorphism in homology, then the homomorphism returned by Algorithm 5.1
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invoked with F , A, B, and “incl” set to true coincides with the endomorphism
(i∗)−1 ◦ f∗: H∗(X, A)→ H∗(X, A).

While necessary, the validity of an algorithm is not sufficient. To be of practical
value it must also be efficient. Though we will not present a formal analysis of the
complexity, our experience suggests that the two predominant factors in the cost of
computing homology are the number and dimensions of the elements of X and Y .
For this reason much of the algorithm focuses on reducing these quantities before
computing homology. Since F :X −→→ Y , we cannot manipulate elements of X
and Y in a completely independent manner. Thus, we have adopted the following
strategy modeled on [9], [7], [8] which allows us to simultaneously keep track of
the modifications to X , Y, and F .

Given a continuous map f : X → Y one always has the commutative diagram,

� f

�
�
�✒
ι

X
f ✲ Y

❄
q (1)

where � f := {(x, f (x)) | x ∈ X} ⊂ X × Y is the graph of f , ι is the embedding
map ι(x) = (x, f (x)), and q is the projection onto Y . Observe that ι is a homeo-
morphism whose inverse is the projection p:� f → X . Thus, f = q ◦ p−1 and in
particular f∗ = q∗ ◦ (p∗)−1; that is, the homology map of f can be computed in
terms of the homology maps of two projections.

This same idea carries over to the multivalued setting. More precisely, let
F :X −→→ Y be an acyclic combinatorial multivalued represtentation of f : X → Y .
Then we can construct a corresponding diagram,

� f

✠�
�
�
p

X
F✲✲ Y

❄
q (2)

where �F := {(x, y) | x ∈ X, y ∈ F(x)} ⊂ X × Y is the graph of F . Of course,
in this case the projection p may not be invertible. However, because F is acyclic
valued, p∗ is an isomorphism (see Proposition 2.4) and hence (p∗)−1 is well-
defined. In particular, as we will show, f∗ = q∗ ◦ (p∗)−1.

Since our goal is to compute f∗: H∗(X, A)→ H∗(Y, B), we have two related
diagrams,

�F

✠�
�
�
pF

X
F✲✲ Y

❄
qF

�G

✠�
�
�
pG

X
G✲✲ Y

❄
qG (3)

that need to be considered, where G = �F |A�.
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Because p and q are simple projection maps, the computational cost of this
approach to computing homology is determined mainly by the number of elemen-
tary cubes in �F\�G . This is due to the fact that the elementary cubes in �G do
not become part of the relative chain complex of the graph of (F,G) which is
used for the homology computation (consult Proposition 3.2 and the definitions
that precede it for details).

As was suggested earlier, the efficiency of Algorithm 5.1 arises from preprocess-
ing the sets of elementary cubes before proceeding with algebraic computations.
This is done using a variety of other algorithms, three of which we briefly mention
here.

The first, reduceF (see Algorithm 4.3), is used to reduce the number of ele-
ments of X that need to be considered. More precisely, reduceF takes as input
the sets X and A and produces sets X̃ ⊂ X and Ã ⊂ A with the property that
H∗(X̃ , Ã) ∼= H∗(X, A) and both F̃ := F |X̃ and F̃ |Ã are acyclic.

Another way to simplify the computations is to enlarge the set A since its
content is in essence ignored during the homology computation. This is done using
expandF which produces sets Ã and B̃ satisfying A ⊂ Ã ⊂ X and B ⊂ B̃ ⊂ Y
such that F |Ã is still acyclic and F(Ã) ⊂ B̃.

The final algorithm which we wish to mention here is collapse which when-
ever possible eliminates the highest-dimensional cubes. The importance of this
is that in general the cost of homology computations increases rapidly as a func-
tion of the dimension of the cubes and by construction �F consists of (n + m)-
dimensional cubes. However, it is intuitively clear that on the level of homology
all the relevant information of the map should be carried by a collection of n-
dimensional cubes in�F . collapse is used to perform a reduction to such a set of
elements.

To put the previous discussion into perspective, let us consider an essential
nontrivial application of the techniques introduced in this paper. In [5], Day, Junge,
and one of the authors of this paper, reduce the problem of obtaining rigorous results
concerning the dynamics of an infinite-dimensional map to the computation of
the homology of continuous maps f : (X, A) → (Y, B). The justification of this
reduction and the details concerning the dynamics can be found in [5]. For the
purpose of this paper it is sufficient to remark that the homology computations
were performed using combinatorial representations F : (X ,A)−→→ (Y,B), where
Y := X ∪ F(X ), B := A ∪ F(A), X = |X |, Y = |Y|, etc.

Algorithm 5.1 is used to compute the following endomorphism induced in
homology: (i∗)−1 ◦ f∗: H∗(X, A)→ H∗(X, A), where i : (X, A) ↪→ (Y, B) is the
inclusion map. Obviously, this result is only valid if i induces an isomorphism in
homology, and this condition is verified during the homology computation. Let
us now explain step by step how the actual program available in [27] proceeds.
Note that some additional actions not listed in Algorithm 5.1 are undertaken by
the program, which is motivated mainly by efficiency reasons. Moreover, the map
in question has convex values which implies that all its restrictions are acyclic,
and therefore the program skips some time-consuming verifications. The numbers
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we quote correspond to Example 3 in [5], but in the other two cases the steps
undertaken by the program are essentially the same.

The program first reads the sets X andA from the initial data files (10,330 and
6,683 full cubes in R6) and stores the disjoint setsX \A andA in the memory. The
first reduction step applied to the data is the removal of cubes fromAwhich do not
have neighbors in X \A (part of Algorithm 4.1). Then the program reads Y and B
from the disk (25,737 and 22,090 cubes, respectively), stores Y\B and B in the
memory, and verifies (just in case) that X \A ⊂ Y and A ⊂ B to make sure that
the inclusion map i : (X, A) ↪→ (Y, B) is well-defined. Then the program reduces
(X ,A)with the reduce procedure (Algorithm 4.1). This reduction decreases the
data very significantly, with only 699 cubes remaining. At this point the program
considers the map F , but it only reads its restriction to X \A for the moment.
It verifies that F(X \A) ⊂ Y (just in case) and runs expandF (Algorithm 4.7)
followed byreduce (Algorithm 4.1); this step leaves 332 cubes inX , 197 of which
are inA, and adds 2,222 cubes to B. Now the program considers the mapF on the
entire setX and reads all the necessary data from the disk. It verifies thatF(A) ⊂ B
to make sure the data is correct. Then it appliesexpandA (Algorithm 4.5) to (Y,B),
which increases B by 1,091 cubes. This step is followed by applying the reduce
procedure (Algorithm 4.1) to (Y,B) in such a way that the cubes inF(X )∪X ⊂ Y
(7,588 cubes) are left intact. In our example this decreases the number of cubes in
Y to 7,610.

At this point the full cubes are transformed into elementary cubes (called “cells”
for short), because a different data type is used to represent them, and the procedure
collapse (Algorithm 4.9) is applied to (X ,A). It leaves only 9,103 elementary
cubes in X \A. There are still 66,757 elementary cubes left in A which will be
used in the next step, and the dimension of X \A decreases from 6 to 2. Now
reducemap (Algorithm 4.12) is run to determine the images of the cells inX and
inA by |F | and to collapse them to lower-dimensional cubical sets if possible.
This results in the graph of F̃ , a replacement for F |X\A, consisting of 217,929 cells.
The last geometric reduction is eventually applied to (Y, B). The full cubes that
represent them are transformed into elementary cubes, and collapse is applied
in such a way that F̃(X\A) is preserved. This reduces the number of elementary
cubes in Y\B which are relevant for homology computation to just 5,945, and the
dimension decreases to 3.

To enter the last stage of the computations, the geometric sets are transformed
into algebraic data. The elementary cubes in �F̃ and Y\B are used as genera-
tors of the appropriate chain complexes, and the chain maps corresponding to
the projection q: (�F̃ , �G) → (Y, B) and to the composition of the projection
p: (�F̃ , �G) → (X, A) with the inclusion i : (X, A) ↪→ (Y, B) are created, as
explained in Section 3. The algebraic homology computation over Z reveals
that H1(�F̃ , �G) � H1(Y, B) � Z, H2(�F̃ , �G) � H2(Y, B) � Z18, and all
the remaining homology groups are trivial. Some generators of H2(�F̃ , �G) and
H2(Y, B) are fixed, and the matrices M∗ and N∗ of the homomorphisms induced
by q and i ◦ p on the first and second homology groups with respect to these
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generators are as follows:

M1= [0] , N1= [1] ,

M2=




0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0




,

N2=




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0




.

Since both N1 and N2 are invertible, it follows that the inclusion i : (X, A) ↪→
(Y, B) induces an isomorphism in homology and, therefore, M∗N−1

∗ is in fact
the matrix of (i∗)−1 ◦ f∗ with respect to some generators of H∗(X, A). All these
computations take about 68 minutes on a PC with a 2.4 GHz processor, and use
almost 100 MB of memory.



208 K. Mischaikow, M. Mrozek, and P. Pilarczyk

The outline of this paper is as follows. In Section 2 we discuss the class of
multivalued maps that are used for the homology computations. Although we are
working in a different context, the reasoning is motivated by Górniewicz [7]. We
also present Corollary 2.6 which guarantees that computing the homology map of
an appropriate multivalued function produces the homology map of its continuous
selector.

Section 3 recalls the cubical theory developed in [11]. In particular, it is indicated
how, given a combinatorial multivalued map, one can construct a chain map from
which the homology map can be computed.

Section 4 describes the reduction algorithms indicated above. As was men-
tioned above the purpose of these algorithms is to preprocess the data so as to
minimize the cost of the homology computations. As such they are essential el-
ements of Algorithm 5.1. However, for the sake of continuity of presentation we
delay presenting the proofs of their validity to Section 7.

In Section 5 we state Algorithm 5.1 and prove Theorem 1.1. In Section 6 we
present several examples indicating the applicability of this method.

2. Multivalued Maps

As was indicated in the Introduction, in this section we delve into the class of
multivalued maps used for computing the homology of continuous functions. In
particular, we define homomorphisms induced in homology by such maps. We
begin our discussion on a fairly general level; postponing to the next section the
restriction to the setting of cubical complexes.

Definition 2.1. Let X ⊂ Rn and Y ⊂ Rm . A continuous map f : X → Y is a
Vietoris map if the following conditions are satisfied:

(i) f is proper, that is, f −1(C) is compact for every compact set C ⊂ Y ; and
(ii) f −1(y) is acyclic for every y ∈ Y .

Since we are going to restrict our attention to cubical sets, X and Y will be
assumed compact thus making the map f automatically proper. Therefore, in
what follows we often simplify matters by assuming that all the sets we consider
are compact. Moreover, the restriction to cubical sets will guarantee that we can
use the cubical homology theory (as in [11]) without loss of generality.

The following two theorems allow us to use graph projections to compute the
homology of multivalued maps. The first is a special case of [30, Theorem 6.9.15]
and the second is a straightforward extension.

Theorem 2.2 (Vietoris–Begle Mapping Theorem). Let X and Y be compact. If
f : X → Y is a Vietoris map, then the induced map f∗: H∗(X) → H∗(Y ) is an
isomorphism.
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Proposition 2.3. Let A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm be compact sets. If
f : (X, A) → (Y, B) is a continuous map such that both f : X → Y and its
restriction f |A: A → B are Vietoris maps, then f∗: H∗(X, A)→ H∗(Y, B) is an
isomorphism.

Proof. Since f is a Vietoris map, the induced homomorphism f∗: H∗(X) →
H∗(Y ) is an isomorphism. For the same reason, ( f |A)∗: H∗(A)→ H∗(B) is also
an isomorphism. Applying the five lemmas to the following commutative diagram
whose rows are the exact sequences for the pairs (X, A) and (Y, B):

· · · → Hk(A) → Hk(X) → Hk(X, A) → Hk−1(A) → Hk−1(X) → · · ·�( f |A)k
� fk

� f

�( f |A)k−1

� fk−1

· · · → Hk(B) → Hk(Y ) → Hk(Y, B) → Hk−1(B) → Hk−1(Y ) → · · ·

we conclude that f∗: H∗(X, A)→ H∗(Y, B) is an isomorphism.

Let us now introduce the notion of upper semicontinuity for multivalued maps
which corresponds to the notion of continuity for (ordinary) maps in our case. Note
that there also exists the notion of lower semicontinuity (see [11] for details), but
we will not use it here.

Consider a multivalued map F : X −→→ Y . It is upper semicontinuous if for every
x ∈ X the set F(x) is compact and for every open set V ⊂ Y the set F−1(V ) :=
{x ∈ X | F(x) ⊂ V } is an open subset of X . By [7, Proposition 1.2] if F : X −→→ Y
is upper semicontinuous, then the image F(A) of every compact set A ⊂ X under
F is compact.

A multivalued map G: X −→→ Y is a submap of a multivalued map F : X −→→ Y , if
G(x) ⊂ F(x) for all x ∈ X . Observe that a selector f of F is a particular example
of a submap.

The following proposition indicates how we will make use of Vietoris maps in
the context of upper semicontinuous multivalued maps. Recall that a multivalued
map F : X −→→ Y is acyclic if F(x) is acyclic for every x ∈ X .

Proposition 2.4. Consider compact sets A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm . Let
F : X −→→ Y and let G: A−→→ B be a submap of F |A. If F and G are acyclic upper
semicontinuous maps, then the natural projection p: (�F , �G)→ (X, A) induces
an isomorphism in homology.

Proof. Since the image of a compact set under an upper semicontinuous map is
compact, the preimage of every compact set by each of the projections pF :�F →
X and pG :�G → A is compact. This property combined with the acyclicity of F
and G implies that pF and pG are Vietoris maps. Moreover, pG is a restriction of
pF . Proposition 2.3 completes the proof.
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We define the map induced in homology by a pair of multivalued maps (F,G)
satisfying the assumptions of Proposition 2.4 in the following way:

(F,G)∗ := q∗ ◦ (p∗)−1: H∗(X, A)→ H∗(Y, B),

where q is the natural projection (�F , �G)→ (Y, B). Note that by Proposition 2.4,
p induces an isomorphism in homology, so this map is well-defined. Moreover,
it is easy to see that if F = f (i.e., F is a single-valued map), then (F,G)∗ =
( f, f |A)∗ = f∗.

Proposition 2.5. Consider compact sets A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm . Let
F : X −→→ Y and let G be a submap of F |A: A−→→ B. Assume that F and G are acyclic
upper semicontinuous maps. If F̃ and G̃ are acylic upper semicontinuous submaps
of F and G, respectively, and G̃ is a submap of F̃ , then (F,G)∗ = (F̃, G̃)∗.

Proof. Denote the natural projections for the map F by p, q, and for the map F̃
by p̃, q̃ . Consider the following commutative diagram:

(�F , �G)

✠��p ❅❅
q
❘

(X, A) (Y, B)

�❅❅̃
p

��✒̃q

(�F̃ , �G̃)

ι

✻

where ι: (�F̃ , �G̃) ↪→ (�F , �G) is the inclusion. Apply the homology functor to
this diagram and notice that

(F,G)∗ = q∗ ◦ (p∗)−1 = q∗ ◦ ι∗ ◦ ( p̃∗)−1 = q̃∗ ◦ ( p̃∗)−1 = (F̃, G̃)∗.

Corollary 2.6. Let F and G be as in Proposition 2.4. Let f : (X, A) → (Y, B)
be a continuous map. If f is a selector of F and f |A is a selector of G, then
(F,G)∗ = f∗.

3. Representable Sets and Maps

In this section we return to the discussion of the combinatorial representation
of sets and maps in terms of elementary cubes. We begin by introducing some
additional terminology and then turn to the relation between these combinatorial
objects and the topological constructs of the previous section. We conclude with
a description of the formulas for the chain maps of the graph projections.

If P ⊂ Q ⊂ Rn are two elementary cubes, then P is a face of Q. It is a proper
face of Q if, in addition, P �= Q. Given an elementary cube Q, define

◦
Q := Q\

⋃
{P | P is a proper face of Q} .
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Observe that if P and Q are elementary cubes such that P �= Q, then
◦
P ∩

◦
Q = ∅.

Since by definition every cubical set is the finite union of elementary cubes, it is

compact and, moreover, is a disjoint union of
◦
Q over all the elementary cubes Q

it contains.
A multivalued map F : X −→→ Y , where X ⊂ Rn and Y ⊂ Rm are cubical sets, is

called a cubical multivalued map if�F is a cubical set in Rn+m . It follows that F(x)

is a cubical set in Rm for every x ∈ X and F is constant on
◦
Q for every elementary

cube Q ⊂ X . Note that since �F is compact, F is upper semicontinuous.
We would like to stress that a cubical multivalued map is in fact a combinatorial

object and can be represented in a finite way by the set of assignments {
◦
Q �→

F(
◦
Q) |

◦
Q ⊂ X}. In particular, in order to define such a map in an algorithm, it

is enough to define each F(
◦
Q), and this is done in Algorithm 4.12, although the

assignment “F(
◦
Q) := D” may look strange at first glance.

As an immediate consequence of Corollary 2.6 we have the following:

Theorem 3.1. Let A ⊂ X ⊂ Kn
n , B ⊂ Y ⊂ Km

m , and F :X −→→ Y . Assume that
F(A) ⊂ B and that F is a representation of a continuous map f : X → Y (note
that then f (A) ⊂ B). Let G := F |A. If F and G are acyclic, then (F,G)∗ =
f∗: H∗(X, A)→ H∗(Y, B).

Computing the homology of f with the use of a pair of multivalued maps
(F,G) instead of using F : (X, A)−→→ (Y, B) directly (as is suggested in [7]) may,
at first glance, appear somewhat artificial. However, it should be kept in mind
that the actual computations are performed using F and by definition F = �F�.
Because of this F(A) ⊂ B does not imply that F(A) ⊂ B (see F(x) in Figure
6 for a counterexample). In fact, one can check that F(A) ⊂ B if and only if
F(oX (A)) ⊂ B, where oX (A) is the set A together with all its neighbors in X ,
that is,

oX (A) := {Q ∈ X | Q ∩ P �= ∅ for some P ∈ A}.
Note that even the identity map I:X −→→ X given by I(Q) = {Q} does not in
general satisfy this assumption.

We would also like to explain why we assume that both maps F and F |A are
acyclic in Theorem 3.1. The reason is that a restriction of an acyclic combinatorial
multivalued map need not be acyclic, as one of the examples in [27] proves.

In the remainder of this section we introduce explicit formulas for the chain
maps of the projections used to compute the homomorphism induced in homology
by a pair of multivalued maps.

Given a pair of cubical sets (K , L), let C(K , L) denote the associated cubical
chain complex. This is a free chain complex whose generators correspond to the
elementary cubes Q ⊂ K such that Q �⊂ L . The generator corresponding to Q is
denoted by Q̂. See [11] for further details.
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Let A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm be cubical sets. Let F : X −→→ Y and
G: A−→→ B be acyclic cubical multivalued maps such that G is a submap of F |A. The
chain map ϕ: C(�F , �G)→ C(X, A) of the projection p: (�F , �G)→ (X, A) is
defined on generators Q̂ of Ck in the following way. If the corresponding cube Q
is reduced by the projection map (i.e., dim p(Q) < dim Q), then Q̂ is mapped to
zero. Otherwise it is mapped to the generator of Ck(X, A) corresponding to p(Q)
(which still can be zero if p(Q) ⊂ A). Formally, this definition can be written as

ϕk(Q̂) =
{

p̂(Q), if p̂(Q) ∈ Ck(X, A),
0, otherwise.

The chain mapψ : C(�F , �G)→ C(Y, B) of the projection q: (�F , �G)→ (Y, B)
is defined similarly.

Proposition 3.2 (See [11]). The homomorphisms induced in homology by the
chain maps ϕ and ψ defined above coincide with the homomorphisms induced in
homology by the projections p: (�F , �G) → (X, A) and q: (�F , �G) → (Y, B),
respectively.

Corollary 3.3. If f : (X, A)→ (Y, B) is a selector of F and f |A is a selector of
G, then

f∗ = (F,G)∗ = (ψ)∗ ◦
(
(ϕ)∗

)−1
.

Based on the discussion above, in Section 5 we will assume that we have the
following algorithms which compute the chain maps of the projections p and q,
respectively, and whose details are left to the reader.

Algorithm 3.4. Chain Map of the Projection p
function proj p (F , G: cubical multivalued map; X , A: cubical set):

chain map;

Algorithm 3.5. Chain Map of the Projection q
function proj q (F , G: cubical multivalued map; Y , B: cubical set):

chain map;

For the homology computation of the chain maps ϕ and ψ of the projections
(�F , �G)→ (X, A) and (�F , �G)→ (Y, B), respectively, one can use the algo-
rithm introduced in [10], or its generalization [24]. Our interface to this algorithm
is as follows:

Algorithm 3.6. Homology of Chain Maps
function homchain (�F , �G , X , A, Y , B: cubical set; ϕ, ψ : chain map):

(ϕ∗, ψ∗: homomorphism);
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At this point we are able to compute f∗: H∗(X, A)→ H∗(Y, B). Unfortunately,
the method introduced so far is of limited use in practice, since the amount of
algebraic data to process can be extremely large due to the size of the chain complex
of (�F , �G), as illustrated in Section 6. Therefore, it is necessary to replace the
pair (�F , �G) with a smaller one. To this end, we decrease in size the domain and
codomain of f and we construct a possibly small cubical submap of F such that
the homomorphism induced in homology after the reduction is the same as for
the original map. Effective algorithms which we use for this kind of reduction are
discussed in Section 4.

4. Geometric Cubical Reduction

In this section we introduce algorithms for the reduction of a pair of cubical sets
(X, A) in such a way that the homology of (X, A) is preserved. The reduction
is done either on the level of full cubical sets or cubical sets. We also introduce
an algorithm for the construction of a possibly small cubical submap of a cubical
multivalued map. For the sake of clarity of presentation, proofs of the results are
postponed to Section 7.

The first algorithm in this section removes cubes from X whenever it does not
affect the homology of (X, A). Moreover, it does not remove cubes which belong
to S (this feature is used in Algorithms 4.7 and 5.1).

Algorithm 4.1. Reduce Cubes
procedure reduce (var X , A: finite subset of Kn

n ; S: finite subset of Kn
n);

begin
while exists Q ∈ X \S

such that
(

Q �∈ A and Q ∩ |X \{Q}| is acyclic
)

or
(

Q ∈ A and Q ∩ |A\{Q}| is acyclic
and Q ∩ |X \{Q}| is acyclic

)
or
(

Q ∈ A and Q ∩ |X \A| = ∅ ) do
begin
X := X \{Q};
A := A\{Q}

end
end.

Fig. 1. Reduction with Algorithm 4.1. Cubes inA are dark-gray, cubes inX \A are light-gray,S = ∅.
Cubes selected for removal are indicated with arrows and labeled with the corresponding condition
from Lemma 7.2.
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Proposition 4.2. Consider the finite subsets A ⊂ X ⊂ Kn
n . Let S ⊂ X . Then

Algorithm 4.1 transforms (X ,A) in a finite number of steps into the pair (X̃ , Ã)
such that the inclusion (X̃ , Ã) ↪→ (X, A) induces an isomorphism in homology.
Moreover, S ⊂ X̃ .

LetF :X −→→ Y be an acyclic combinatorial multivalued map. Assume thatA ⊂
X and that F |A is also acyclic. In order to make sure that the restrictions of F
to X \{Q} as well as A\{Q} are acyclic at each step, we propose the following,
enhanced version of Algorithm 4.1.

Algorithm 4.3. Reduce Mutlivalued Map
procedure reduceF (var X , A: finite subset of Kn

n ;
F :X −→→ Y: combinatorial multivalued map);

begin
while exists Q ∈ X

such that
[ (

Q �∈ A and Q ∩ |X \{Q}| is acyclic
)

or
(

Q ∈ A and Q ∩ |A\{Q}| is acyclic
and Q ∩ |X \{Q}| is acyclic

)
or
(

Q ∈ A and Q ∩ |X \A| = ∅ ) ]
and

[
for each proper face P of Q(

the set
⋃ {|F(R)| | R ∈ X , R �= Q, P ⊂ R} is acyclic

and if P ⊂ |A| then
⋃ {|F(R)| | R ∈ A, R �= Q, P ⊂ R}

is also acyclic
) ]

do
begin
X := X \{Q};
A := A\{Q}

end
end.

Proposition 4.4. Let X and A be finite subsets of Kn
n such that A ⊂ X . Then

Algorithm 4.3 transforms (X ,A) in a finite number of steps into the pair (X̃ , Ã)
such that the inclusion (X̃ , Ã) ↪→ (X, A) induces an isomorphism in homology.
Moreover, if F and F |A are acyclic, then so are F |X̃ and F |Ã.

The following algorithm increases the set A within X in such a way that this
does not change the homology of (X, A).

Algorithm 4.5. Expand Relative Set
procedure expandA (X : finite subset of Kn

n , var A: finite subset of Kn
n);

begin
while exists Q ∈ X \A such that Q ∩ |A| is acyclic do
A := A ∪ {Q}

end.
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Proposition 4.6. LetA ⊂ X ⊂ Kn
n . Then Algorithm 4.5 transforms (X ,A) in a

finite number of steps into the pair (X , Ã) such that the inclusion (X, A) ↪→ (X, Ã)
induces an isomorphism in homology.

If a combinatorial multivalued map F :X −→→ Y is given and F(A) ⊂ B, then
after obtaining the pair (X , Ã) from (X ,A)with Algorithm 4.5, it can turn out that
the inclusionF(Ã) ⊂ B is not valid. Therefore, whenever a cube Q is added toA,
one must also modify the set B so that the inclusion F(A) ⊂ B is preserved and
the homology of (Y, B) remains unchanged. The latter holds true, for example,
if B ∪ F(Q) can be reduced to B with Algorithm 4.1 (note that this is not an
“if and only if” condition). Moreover, as in Algorithm 4.3, we must be cautious
not to spoil the acyclicity of F |A. With this in mind, we propose the following
modification of Algorithm 4.5:

Algorithm 4.7. Expand Relative Part of Map
procedure expandF (F :X −→→ Y: combinatorial multivalued map;

var A: finite subset of Kn
n ; var B: finite subset of Km

m );
begin

while exists Q ∈ X \A such that Q ∩ |A| is acyclic
and reduce (B ∪ F(Q), ∅, B) = B
and for each face P ⊂ |A| of Q the set⋃ {|F(R)| | R ∈ A, R �= Q, P ⊂ R} is acyclic do

begin
A := A ∪ {Q};
B := B ∪ F(Q)

end
end.

Proposition 4.8. Let A ⊂ X ⊂ Kn
n and B ⊂ Y ⊂ Km

m . Let F :X −→→ Y be
a combinatorial multivalued map such that F(A) ⊂ B. Let G := F |A. Then
Algorithm 4.7 modifies (A,B) in a finite number of steps into (Ã, B̃) such that the
inclusions i : (X, A) ↪→ (X, Ã) and j : (Y, B) ↪→ (Y, B̃) induce isomorphisms in
homology. Moreover, F(Ã) ⊂ B̃, and if F |A is acyclic, then so is F |Ã.

Algorithms 4.1, 4.3, 4.5, and 4.7 provide a variety of methods for reducing the
number of highest-dimensional cubes that need to be considered in the computation
of homology. Thus, before turning to algorithms which reduce the dimension we
include some technical remarks concerning possible modifications and their effect
on runtime.

In Algorithm 4.1 it is worthwhile to make an additional effort to choose, for
reduction, those elements of Kn

n which have the smallest number of neighbors in
X . Figure 2 shows two possible results of reduction of a pair of cubical sets in
R2. The upper result was obtained with the use of this improvement, the lower
one is an example of what one can obtain without it. Note that the gain is not only
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Fig. 2. Two different results of reduction.

in the smaller number of cubes to process, but also the chain complexes and the
generators of homology obtained in this way are smaller.

Algorithm 4.5 usually reduces the computations significantly, but it causes the
loss of the information about the actual generators of homology, as illustrated in
Figure 3.

Note that if (X ,∅) can be reduced with Algorithm 4.1 to a set containing
exactly one grid element, then X is acyclic. However, the converse is not true.
There exist acyclic sets X ⊂ Kn

n such that cardX > 1, but no element of X can
be removed without causing the change in the homology of |X | (consult [27] for
examples).

Algorithms 4.3 and 4.7 can perform more efficiently if one cancels the veri-
fication whether the acyclicity of F is preserved, and verify this condition only
on the final sets of cubes X̃ and Ã (in dimension 3 our experiments suggest
that the computations run about three times faster). However, in some cases
acyclicity may be lost (an example is available at [27]). On the other hand,
if F has convex values then we know a priori that every restriction of F is
acyclic.

If X ⊂ Rk is a cubical set, then an elementary cube Q is called a free face
in X if there exists exactly one elementary cube P ⊂ X such that Q ⊂ P and
dim P − dim Q = 1.

The following algorithm removes pairs of elementary cubes from a cubical set
with the use of so-called free face collapses (see [11]).

Fig. 3. A homology generator obtained without and with Algorithm 4.5.
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Fig. 4. Reduction with Algorithm 4.9. Free faces are indicated with arrows.

Algorithm 4.9. Collapse Free Faces
procedure collapse (var X : cubical set in Rn; A, K : cubical set in Rn);
begin

for k := n − 1 downto 0 do
while exists a k-dimensional free face Q in X

such that Q �⊂ A ∪ K do
begin

let P ⊂ X be the (k + 1)-dimensional elementary cube
such that Q ⊂ P;

X := X\(
◦
Q ∪ ◦

P)
end

end.

At this point we would like to make a remark that Algorithm 4.9 works on more
general data than Algorithm 4.1 and in our computations it is supposed to be the
continuation of the latter, as shown in Figure 5. However, one should expect to
obtain a similar result of reduction even if one does not run Algorithm 4.1 prior
to Algorithm 4.9, but such computations use more resources, as one can see in
Table 3 (Examples 1 and 5).

Proposition 4.10. Let A ⊂ X ⊂ Rn and K ⊂ X be cubical sets. Then Algorithm
4.9 transforms X in a finite number of steps into X̃ such that K ⊂ X̃ ⊂ X and the
inclusion (X̃ , A) ↪→ (X, A) induces an isomorphism in homology.

As in the case of Algorithm 4.1, if (X,∅) can be reduced with Algorithm 4.9
to a single point, then X is acyclic, but the converse is not true (see [27] for an
example).

Fig. 5. Two stages of reduction of cubical sets—with Algorithm 4.1 and Algorithm 4.9.
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In addition to the reduction by Algorithm 4.9, a considerable amount of data
can often be removed in a very simple manner, as shown in the following result
which follows directly from the excision property.

Proposition 4.11. Let A ⊂ X ⊂ Rn be cubical sets. Take X̃ := cl (X\A) and
Ã := X̃ ∩ A. Then the inclusion (X̃ , Ã) ↪→ (X, A) induces an isomorphism in
homology.

Since computing the intersection and the closure of difference of cubical sets is
obvious from the algorithmic point of view, we do not write an explicit algorithm
for computing (X̃ , Ã) as defined above. In Algorithm 5.1 we refer directly to
Proposition 4.11 instead.

The last algorithm introduced in this section constructs a possibly small upper
semicontinuous cubical submap F̃ of a given cubical multivalued map F |̃X for the
purpose of homology computation.

Algorithm 4.12. Reduce Map
function reducemap (F :X −→→ Y: combinatorial multivalued map;
A: finite subset of Kn

n , X̃ , Ã: cubical set): cubical multivalued map;
begin

F̃ := ∅;
for k := n downto 0 do

for each elementary cube Q ⊂ X̃ of dimension k do
begin

D := �F�(
◦
Q);

K :=
⋃{F̃( ◦P) | P is an elementary cube, Q ⊂ P ⊂ X̃ ,

and dim P − dim Q = 1};
if Q ⊂ Ã then

K := K ∪ �F |A�(
◦
Q);

collapse (D, ∅, K );

F̃(
◦
Q) := D; [see explanation in Section 3]

end;
return F̃

end.

Proposition 4.13. Let A ⊂ X ⊂ Kn
n and B ⊂ Y ⊂ Km

m . Let F :X −→→ Y be
a combinatorial multivalued map. Assume that F(A) ⊂ B. Let G := F |A. Let
Ã ⊂ X̃ ⊂ Rn be cubical sets such that Ã ⊂ A and X̃ ⊂ X . Let i : (X̃ , Ã) ↪→ (X, A)
denote the inclusion map. Then Algorithm 4.12 applied toF ,A, X̃ , Ã returns F̃ in a
finite number of steps, such that F̃ is an upper semicontinuous cubical multivalued
map which is a submap of F , G̃ := G| Ã is a submap of F | Ã and if F is acyclic,
then so is F̃ .
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Fig. 6. The graph of F and the graph of F̃ ; note that F(x) (indicated with a dashed line) is not
contained in B, although x ∈ A.

We would like to point out that Algorithm 4.12 is crucial for the effectiveness
of our approach. This is due to the fact that if X, Y ⊂ Rn , then the graph of
F is a subset of R2n . However, Algorithm 4.12 can usually replace this graph
with a subset that is essentially n-dimensional, as illustrated in Figure 6. Note
that if complicated acyclic cubical sets which cannot be reduced by means of
free face collapses appear in Algorithm 4.12, then the dimension of the cre-
ated graph is higher. This impacts the effectiveness of the algorithm since the
associated algebraic computations become more complicated. Observe that the
graph of G does not need to be reduced at all, because for relative homology
computation all the generators of the cubical chain complex of �G are
neglected.

5. Homology Computation of Maps

In this section we gather the algorithms introduced in the previous sections in order
to compute the homology of a continuous map, given its representation. We also
repeat the statement of Theorem 1.1 and we prove it.
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Before we proceed, we would like to explain the meaning of the parameter
“incl” appearing in Algorithm 5.1: If it is set to true, then the algorithm assumes
(X, A) ⊂ (Y, B), and takes into consideration the inclusion i : (X, A) ↪→ (Y, B)
to find the endomorphism (i∗)−1 ◦ f∗: H∗(X, A) → H∗(X, A). Otherwise the
homomorphism f∗: H∗(X, A) → H∗(Y, B) is computed and its matrix is given
with respect to some generators of H∗(X, A) and H∗(Y, B) which are unrelated to
each other even if (X, A) ⊂ (Y, B).

Algorithm 5.1. Computation of Homology Map
function homology (F :X −→→ Y: combinatorial multivalued map;
A: finite subset of Kn

n , B: finite subset of Km
m , bool incl):

homomorphism;
begin

expandF (F , A, B); [Algorithm 4.7]
reduceF (X , A, F); [Algorithm 4.3]
S := F(X );
if incl then S := S ∪ X ;
reduce (Y , B, S); [Algorithm 4.1]
expandA (Y , B); [Algorithm 4.5]
X̃ := |X |; Ã := |A|;
collapse (X̃ , Ã, ∅); [Algorithm 4.9]
X̃ := cl (X̃\ Ã); Ã := Ã ∩ X̃ ; [Proposition 4.11]
F̃ := reducemap (F , A, X̃ , Ã); [Algorithm 4.12]
G := F |A;
G̃ := G| Ã;
K := q(�F̃ );
if incl then K := K ∪ X̃ ;
Ỹ := |Y|; B̃ := |B|;
collapse (Ỹ , B̃, K ); [Algorithm 4.9]
if incl then

ϕ := proj p (F̃ , G̃, Ỹ , B̃); [Algorithm 3.4]
else ϕ := 0;
ψ := proj q (F̃ , G̃, Ỹ , B̃); [Algorithm 3.5]
(ϕ̄, ψ̄) := homchain (�F̃ , �G̃ , Ỹ , B̃, Ỹ , B̃, ϕ, ψ); [Algorithm 3.6]
if incl then return ψ̄ ◦ (ϕ̄)−1

else return ψ̄
end.

Theorem 5.2 (Theorem 1.1). Let A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm be full cubical
sets. Let the combinatorial multivalued map F :X −→→ Y be a representation of

f : (X, A)→ (Y, B).

Assume that F(A) ⊂ B and that both F and F |A are acyclic. Then the homo-
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morphism returned by Algorithm 5.1 invoked with F , A, B, and “incl” set to
false coincides with f∗: H∗(X, A) → H∗(Y, B) in the sense that the domain D
of this homomorphism is isomorphic to H∗(X, A), the codomain C of it is iso-
morphic to H∗(Y, B), and the following diagram, in which ϕ denotes the returned
homomorphism, commutes

D
ϕ−−→ C�� ��

H∗(X, A)
f∗−−→ H∗(Y, B)

Moreover, if X ⊂ Y , A ⊂ B, and the inclusion i : (X, A) ↪→ (Y, B) induces
an isomorphism in homology, then the homomorphism returned by Algorithm 5.1
invoked with F , A, B, and “incl” set to true coincides with the endomorphism
(i∗)−1 ◦ f∗: H∗(X, A)→ H∗(X, A).

Proof. At the beginning of Algorithm 5.1, Algorithm 4.7 transforms A, B to
A1, B1 such that by Proposition 4.8 the inclusions i1: (X, A) ↪→ (X, A1) and
j1: (Y, B) ↪→ (Y, B1) induce isomorphisms in homology. Moreover, the map
G1 := F |A1 is acyclic.

Next, Algorithm 4.3 transforms (X ,A1) to (X2,A2) such that by Proposition
4.4 the inclusion i2: (X2, A2) ↪→ (X, A1) induces an isomorphism in homology
and the maps F2 := F |X2 and G2 := F |A2 are acyclic.

Afterward, Algorithm 4.1 transforms (Y,B1) to (Y2,B2) such that the inclusion
j2: (Y2, B2) ↪→ (Y, B1) induces an isomorphism in homology. Note thatF2(X2) ⊂
Y2 and F2(A2) ⊂ B2, which implies that F2(X2) ⊂ Y2 and G2(A2) ⊂ B2.
Moreover, if “incl” is set to true, then also X2 ⊂ Y2 and A2 ⊂ B2, and therefore
X2 ⊂ Y2 and A2 ⊂ B2.

In the next step, Algorithm 4.5 transforms B2 to B3 such that the inclusion
j3: (Y2, B2) ↪→ (Y2, B3) induces an isomorphism in homology.

Then Algorithm 4.9 and the two assignments that follow it transform (X2, A2)

to (X̃ , Ã) such that the inclusion i3: (X̃ , Ã) ↪→ (X2, A2) induces an isomorphism
in homology by Propositions 4.10 and 4.11. Note that the maps F̃2 := F2 |̃X and
G̃ := G2| Ã are acyclic as restrictions of acyclic cubical multivalued maps F2 and
G2, respectively.

Next, Algorithm 4.12 constructs the submap F̃ : X̃ −→→ Y2 of F̃2 and the two
assignments that follow it construct G̃ as above. Proposition 4.13 implies that F̃
is acyclic. Moreover, Proposition 2.5 implies that (F̃, G̃)∗ = (F̃2, G̃)∗.

In the next step, Algorithm 4.9 transforms (Y2, B3) to (Ỹ , B̃) such that the
inclusion j4: (Ỹ , B̃) ↪→ (Y2, B3) induces an isomorphism in homology. Since
F̃(X̃) ⊂ Ỹ , the multivalued maps F̃ : X̃ −→→ Ỹ and G̃: Ã−→→ B̃ are well-defined.
Moreover, if “incl” is set to true, then X̃ ⊂ Ỹ .
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Consider the following diagram which gathers most of the sets and maps dis-
cussed so far:

(X, A)
i1

↪−−→ (X, A1)
i2←−−↩ (X2, A2)

i3←−−↩ (X̃ , Ã)

��(F,G) ��(F,G1)

��(F2,G2)

��(F̃2 ,̃G)↘↘ (F̃ ,̃G)

(Y, B)
j1

↪−−→ (Y, B1)
j2←−−↩ (Y2, B2)

j3
↪−−→ (Y2, B3)

j4←−−↩ (Ỹ , B̃).

This is not a commutative diagram, but it becomes one after applying the homol-
ogy functor. Then the horizontal arrows correspond to isomorphisms. Therefore,
f∗ = (F,G)∗ ≈ (F̃, G̃)∗. In addition to this, if “incl” is set to true, then the
inclusion map ĩ : (X̃ , Ã) ↪→ (Ỹ , B̃) is well-defined and i∗ ≈ ĩ∗.

In the remaining computations programmed in Algorithm 5.1, either the ho-
momorphism q̃∗: H∗(�F̃ , �G̃) → H∗(Ỹ , B̃) induced in homology by the natural
projection q , or the homomorphism q̃∗ ◦ (̃i∗)−1: H∗(Ỹ , B̃) → H∗(Ỹ , B̃) is com-
puted, which corresponds either to f∗ or (i∗)−1 ◦ f∗, respectively.

6. Examples

In this section several examples of the applications of the algorithms introduced
in this paper are discussed and the issue of computational complexity is briefly
addressed. Some possible improvements to the algorithms are also indicated.

A software implementation of the algorithms introduced in this paper is avail-
able [27]. In particular, a computer program for the computation of the homomor-
phism induced in homology by a combinatorial multivalued map F : (X ,A)−→→
(Y,B) is available there, as well as a program which verifies whether a given map
F satisfies the assumptions of Theorem 3.1.

To the best of our knowledge the first and only other dimension independent
algorithm for computing homology of maps is due to Allili and Kaczynski [1].
Therefore, a comparison is appropriate. To begin with, the algorithm of [1] requires
that the upper representation F of the combinatorial multivalued map has convex
as opposed to acyclic values for each point in the domain. Moreover, the issue of
relative homology is not addressed there. In addition to that, no geometric reduction
is performed, which usually results in much larger algebraic data that needs to be
processed. Last but not least, the algorithm in [1] produces only a chain map ϕ and
one needs to continue the computations further in order to find the homomorphism
induced by this chain map in homology. These algebraic computations are included
in our algorithm. An actual comparison of effectiveness of the computer program
[27] based on our algorithm with the implementation of [1] introduced in [13]
proves the superiority of our approach (consult a discussion in [27] for details).

In order to illustrate the effectiveness of the algorithm introduced in this paper,
we would like to mention a few example maps which we computed for bench-
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Table 1. Some example computation benchmarks.

Ex. Space No. of cubes in H∗(X, A) Computation Memory
no. dimension X\A and A over Z time used
1 3 2,136 and 1,016 (0,Z,Z) 0.33 min 9 MB
2 6 3,647 and 6,683 (0,Z,Z18) 192 min (3.2 h) 100 MB
3 3 122,178 and 0 (Z,Z,Z) 2.1 min 28 MB
4 3 840,303 and 0 (Z,Z4,Z44) 245 min (4.1 h) 204 MB
5 3 1,372,328 and 0 (Z,Z8,Z24) 770 min (12.8 h) 616 MB

marking and testing purposes (see Table 1). The first combinatorial map is a
representation of a Conley index map for an unstable periodic trajectory [29],
the second arises from a Conley index map for a finite-dimensional approxima-
tion of the Kot–Shaffer map [5], and the remaining three are rigorous enclo-
sures of various index maps for an attracting periodic trajectory in the Rössler
equations [25].

All the running times are measured accurately and refer to a PC with a 1 GHz
processor running Linux. The memory measurements are only approximate. In
Table 1 we indicate the size of the data in terms of the dimension of the space
and the number of cubes in the domain of the map. The topological complexity of
the examples is indicated by the homology module (over the ring of integers) of
the map’s domain. In all the cases the homomorphism induced in homology was
computed together with the homomorphism induced by the inclusion. Note that
the program easily handles relatively large sets of cubes, but the computation time
and memory requirements increase significantly with the dimension.

The latter observation is clearly illustrated in Table 2, which contains a bench-
mark comparison of the computation of the homomorphism induced in homol-
ogy by an example combinatorial multivalued map arising from the Conley in-
dex map for an attracting periodic trajectory. The domain of the map taken for
the tests contains 814 two-dimensional squares and was embedded in higher-
dimensional spaces in order to determine how the space dimension increases the
need for the computational resources. We also remark that the algebraic stage of
the homology computation usually requires far more memory than the geomet-
ric reduction; therefore, the effort put into the latter pays off in the final stage of
computations.

Table 2. A comparison of time and memory complexity for various space dimensions.

Space dimension Computation time Memory used
2 0.005 min < 2 MB
3 0.019 min < 2 MB
4 0.074 min 5 MB
5 0.32 min 12 MB
6 1.9 min 32 MB
7 8.3 min 80 MB
8 72 min 211 MB
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Table 3. Computation times and memory usage with some geometric reductions turned off.

Example no. 1 2 3 4 5 6 7
reduce (Alg. 4.1) + + + + + − −
reduceF (Alg. 4.3) + + + + + − −
expandA (Alg. 4.5) + + − + + − −
expandF (Alg. 4.7) + + − − + − −
reducemap (Alg. 4.12) + + + + − + −
collapse (Alg. 4.9) + − + + + + −
Computation time (min) 0.36 0.64 1.8 0.94 0.95 2.1 224(!)
Memory used (MB) 9.18 20.6 35.8 27.3 99.1 36.7 540(!)

For yet another benchmark we computed an endomorphism induced in homol-
ogy by a simple combinatorial multivalued map on a three-dimensional pair of
cubical sets arising from a Conley index map for a repelling periodic trajectory
in the plane and embedded in R3 as in the previous example. We compared how
the speed and memory usage change if we skip some of the algorithms. In Table 3
each column corresponds to one example computation. In each row, a “+” indi-
cates which reductions were used, and a “−” shows which were disabled. The last
two rows show the computation time and approximate memory usage. Notice that
the lack of some reductions is compensated, to a certain extent, by other reduc-
tions. As one should expect, without any geometric reduction the program is very
inefficient: it needs 3.7 hours and over 500 MB RAM to perform the computations
that can normally be done in 22 seconds within less than 10 MB RAM.

All the combinatorial multivalued maps used for benchmarks mentioned in this
section were obtained with the software available at [2] as cubical enclosures of
translation maps in various ODEs, except for the six-dimensional example listed
in Table 1, which was provided to us by S. Day and O. Junge (see [27] for details).

Although we don’t prove it in this paper, the worst-case complexity of all the
algorithms for the geometric reduction introduced in the paper is linear in the num-
ber of (elementary) cubes, provided the space dimension is fixed. Unfortunately,
this might not be the case with the algebraic homology computations used in the
software (see [24]). However, due to the simplicity of that algorithm, as well as the
specific data that arises from the geometric complexes, the algorithm [24] proves
to be efficient in practice.

Notice that in order to compute the homomorphism induced by a suitable com-
binatorial multivalued map F : (X ,A)−→→ (Y,B) one needs to know the map F
on X \A and on only these cubes in A which have at least one neighbor in X \A.
This is a valuable observation, but one can go even one step further. The idea of
relative homology of (X, A) is that the subset A of X is, from the topological point
of view, collapsed to a single point which is mapped to what B is collapsed to.
Therefore, the homomorphism induced in relative homology by the map on (X, A)
does not require the knowledge of the map on A at all. However, this observation
does not carry over to the cubical setting. The three maps illustrated in Figure 7
prove that the knowledge ofF only onX \Amay not be sufficient to determine the
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Fig. 7. Three maps F which differ only onA but induce different homomorphisms in homology.

homomorphism induced in homology by F . In these examples, X = Y = [1, 4],
A = B = [1, 2]∪ [3, 4], �G is indicated in dark gray, �F\�G is indicated in bright
gray, and �F̃\�G for some F̃ is sketched in black. The homomorphism induced
in homology is either the identity, or minus identity, or zero.

7. Proofs for Section 4

In this section we prove all the results introduced in Section 4. Since in most
cases the fact that a specific algorithm stops after a finite number of steps is fairly
obvious, we skip this issue and focus on more important features. We begin with
the following lemma which was proved implicitly in [25] but for the sake of
completeness we provide a proof.

Lemma 7.1. Let Q ∈ D ⊂ Kn
n . If Q ∩ |D\{Q}| is acyclic, then the inclusion

|D\{Q}| ↪→ |D| induces an isomorphism in homology.

Proof. To simplify the notation, set D′ := |D\{Q}| and D := |D| = Q ∪ D′.
Consider the following portion of the Mayer–Vietoris sequence for Q and D′:

Hk(Q ∩ D′)
ik−→ Hk(Q)⊕ Hk(D

′)
jk−→ Hk(D)

∂k−→ Hk−1(Q ∩ D′).

Since Q and Q ∩ D′ are acyclic, for k > 1 the first and last entries in this
sequence are trivial. By the exactness of the sequence, the homomorphism in the
middle, which is the homomorphism induced by the inclusion of interest (because
Hk(Q) ∼= 0), is an isomorphism for each k > 1.

Now consider the following part of the Mayer–Vietoris sequence:

H1(Q ∩ D′)︸ ︷︷ ︸
0

i1−→ H1(Q)︸ ︷︷ ︸
0

⊕H1(D
′)

j1−→ H1(D)
∂1−→

∂1−→ H0(Q ∩ D′)︸ ︷︷ ︸
∼=Z

i0−→ H0(Q)︸ ︷︷ ︸
∼=Z

⊕H0(D
′)

j0−→ H0(D)
∂0−→ 0.
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Since i0 acts as z �→ (z,−z), one can see, from the form of the domain and
codomain of i0, that i0 is a monomorphism. Therfore, ∂1 ≡ 0 and j1 is an epi-
morphism. Since i1 is the zero map, j1 is in fact an isomorphism, and this is the
isomorphism induced by the inclusion we are interested in, because H1(Q) ∼= 0.

The fact that ∂0 ≡ 0 implies that j0 is an epimorphism. Since j0 acts as (x, y) �→
x + y, one can use the information on i0 to see that j0 restricted to H0(D′) is an
isomorphism.

Lemma 7.2. Let A ⊂ X ⊂ Kn
n . If Q ∈ X satisfies at least one of the following

conditions:

(i) Q �∈ A and Q ∩ |X \{Q}| is acyclic;
(ii) Q ∈ A and both Q ∩ |A\{Q}| and Q ∩ |X \{Q}| are acyclic;

(iii) Q ∈ A and Q ∩ |X \A| = ∅;

then the inclusion (|X \{Q}| , |A\{Q}|) ↪→ (|X | , |A|) induces an isomorphism in
homology.

Proof. To simplify the notation, define X ′ := |X \{Q}| and A′ := |A\{Q}|. For
(i) and (ii) consider the following commutative diagram:

Hk(A′) −→ Hk(X ′) −→ Hk(X ′, A′) −→ Hk−1(A′) −→ Hk−1(X ′)�∼= �∼= � �∼= �∼=
Hk(A) −→ Hk(X) −→ Hk(X, A) −→ Hk−1(A) −→ Hk−1(X),

where the rows are fragments of the exact sequences for the pairs (X ′, A′) and
(X, A), respectively, and the maps indicated by the vertical arrows are the homo-
morphisms induced by the corresponding inclusion maps. Note that in both cases
(i) and (ii), the inclusions A′ ↪→ A and X ′ ↪→ X induce isomorphisms in homol-
ogy by Lemma 7.1 (however, in case (i) the inclusion A′ ↪→ A is just the identity
map). The five lemmas imply that also the inclusion (X ′, A′) ↪→ (X, A) induces
an isomorphism in homology.

For case (iii) notice that since X\X ′ = A\A′, the inclusion map (X ′, A′) ↪→
(X, A) is an excision map and therefore it induces an isomorphism in
homology.

Proof of Proposition 4.2. The isomorphism part follows directly from Lemma
7.2. The inclusion S ⊂ X̃ follows from the fact that in Algorithm 4.1 only cubes
from X \S are analyzed and therefore no cube which belongs to S is removed
from X .

Proof of Proposition 4.4. We only need to prove that if F and F |A are acyclic
then so are F |X̃ and F |Ã, because the rest follows directly from Proposition 4.2.
Note that in each step of the algorithm, �F |X �||X \{Q}| differs from �F |X \{Q}� only
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on the proper faces of Q, and the acyclicity of these images is verified in the
condition for the removal of Q.

Lemma 7.3. Let A ⊂ X ⊂ Kn
n . Let Q ∈ X . If Q ∩ |A| is acyclic, then the

inclusion (|X | , |A|) ↪→ (|X | , |A ∪ {Q}|) induces an isomorphism in homology.

Proof. If Q ∈ A, then this is trivial. Otherwise, we use Lemmas 7.1 and the five
lemmas in the following way.

To simplify the notation, let Ā := |A ∪ {Q}|. Consider the following commu-
tative diagram:

Hk(A) −→ Hk(X) −→ Hk(X, A) −→ Hk−1(A) −→ Hk−1(X)�∼= �∼= � �∼= �∼=
Hk( Ā) −→ Hk(X) −→ Hk(X, Ā) −→ Hk−1( Ā) −→ Hk−1(X),

where the rows are fragments of the exact sequences for the pairs (X, A) and
(X, Ā), respectively, and the maps indicated by the vertical arrows are the ho-
momorphisms induced by the corresponding inclusion maps. By Lemma 7.1, the
inclusion A ↪→ Ā induces an isomorphism in homology (we apply this lemma to
the inclusion |(A ∪ {Q})\{Q}| ↪→ A ∪ {Q}). The inclusion X ↪→ X induces the
identity isomorphism. By the five lemma, also the inclusion (X, A) ↪→ (X, Ā)
induces an isomorphism in homology.

Proof of Proposition 4.6. This follows directly from Lemma 7.3.

Proof of Proposition 4.8. The fact that the inclusion i induces an isomorphism
in homology follows directly from Lemma 7.2, case (i). For the inclusion j , note
that the condition “reduce (B ∪ F(Q), ∅, B) = B” implies that the inclusion
|B| ↪→ |B ∪ F(Q)| induces an isomorphism in homology, and so does the inclu-
sion (Y, |B|) ↪→ (Y, |B ∪ F(Q)|) (see the proof of Lemma 7.3 for details).

The inclusion F(Ã) ⊂ B̃ follows from the fact that whenever Q is added toA,
its image is added to B.

The acyclicity of F on Ã follows from the same argument as used in the proof
of Proposition 4.4.

Lemma 7.4. Let A ⊂ X ⊂ Rn be cubical sets. Let Q ⊂ X , Q �⊂ A, be
a free face in X . Let P ⊂ X be the elementary cube such that Q ⊂ P and

dim P − dim Q = 1. Then the inclusion (X\(
◦
Q ∪ ◦

P), A) ↪→ (X, A) induces an
isomorphism in homology.

Proof. In [11] such a modification of (X, A) is called a free face collapse. A minor
modification of the proof therein shows that the inclusion in question induces an
isomorphism in homology.
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Proof of Proposition 4.10. The isomorphism part follows directly from Lemma

7.4. The inclusion K ⊂ X̃ follows from the fact that whenever Q ⊂ K , neither
◦
Q

nor
◦
P is removed from X (note that if P ⊂ K , then also Q ⊂ K ).

Proof of Proposition 4.13. The fact that F̃ is an upper semicontinuous cubical
multivalued map follows directly from the way F̃ is constructed. Since for every
x ∈ X̃ its image F̃(x) is constructed from F(x) with Algorithm 4.9, the inclusion
F̃(x) ⊂ F(x) is obvious. Moreover, G̃ := G| Ã is a submap of F̃ , because when-

ever
◦
Q ⊂ Ã, its image by G is added to K so that F̃(

◦
Q) contains it. The acyclicity

of F̃ and G̃ follows from Proposition 4.10, because each F̃(
◦
Q) is obtained from

an acyclic set F(
◦
Q) with Algorithm 4.9.
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