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Abstract. The Elliptic Curve Digital Signature Algo-
rithm (ECDSA) is the elliptic curve analogue of the Dig-
ital Signature Algorithm (DSA). It was accepted in 1999
as an ANSI standard and in 2000 as IEEE and NIST
standards. It was also accepted in 1998 as an ISO stan-
dard and is under consideration for inclusion in some
other ISO standards. Unlike the ordinary discrete loga-
rithm problem and the integer factorization problem, no
subexponential-time algorithm is known for the elliptic
curve discrete logarithm problem. For this reason, the
strength-per-key-bit is substantially greater in an algo-
rithm that uses elliptic curves. This paper describes the
ANSI X9.62 ECDSA, and discusses related security, im-
plementation, and interoperability issues.

Keywords: Signature schemes – Elliptic curve cryptog-
raphy – DSA – ECDSA

1 Introduction

The Digital Signature Algorithm (DSA) was specified
in a U.S. Government Federal Information Processing
Standard (FIPS) called the Digital Signature Standard
(DSS [70]). Its security is based on the computational in-
tractability of the discrete logarithm problem (DLP) in
prime-order subgroups of Z∗p .

Elliptic curve cryptosystems (ECC) were invented by
Neal Koblitz [49] and Victor Miller [67] in 1985. They can
be viewed as elliptic curve analogues of the older discrete
logarithm (DL) cryptosystems in which the subgroup of
Z
∗
p is replaced by the group of points on an elliptic curve

over a finite field. The mathematical basis for the security
of elliptic curve cryptosystems is the computational in-
tractability of the elliptic curve discrete logarithm prob-
lem (ECDLP).

Since the ECDLP appears to be significantly harder
than the DLP, the strength-per-key-bit is substantially
greater in elliptic curve systems than in conventional
discrete logarithm systems. Thus, smaller parameters,
but with equivalent levels of security, can be used with
ECC than with DL systems. The advantages that can
be gained from smaller parameters include speed (faster
computations) and smaller keys and certificates. These
advantages are especially important in environments
where processing power, storage space, bandwidth, or
power consumption is constrained.

The Elliptic Curve Digital Signature Algorithm
(ECDSA) is the elliptic curve analogue of the DSA.
ECDSAwasfirstproposed in 1992 by Scott Vanstone [108]
in response to NIST’s (National Institute of Standards
and Technology) request for public comments on their
first proposal for DSS. It was accepted in 1998 as an ISO
(International Standards Organization) standard (ISO
14888-3), accepted in 1999 as an ANSI (American Na-
tional Standards Institute) standard (ANSI X9.62), and
accepted in 2000 as an IEEE (Institute of Electrical and
Electronics Engineers) standard (IEEE 1363-2000) and
a FIPS standard (FIPS 186-2). It is also under consid-
eration for inclusion in some other ISO standards. In
this paper, we describe the ANSI X9.62 ECDSA, present
rationale for some of the design decisions, and discuss
related security, implementation, and interoperability
issues.

The remainder of this paper is organized as follows. In
Sect. 2, we review digital signature schemes and the DSA.
A brief tutorial on finite fields and elliptic curves is pro-
vided in Sects. 3 and 4, respectively. In Sect. 5, methods
for domain parameter generation and validation are con-
sidered, while Sect. 6 discusses methods for key pair gen-
eration and public key validation. The ECDSA signature
and verification algorithms are presented in Sect. 7. The
security of ECDSA is studied in Sect. 8. Finally, some im-
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plementation and interoperability issues are considered in
Sects. 9 and 10.

2 Digital signature schemes

2.1 Background

Digital signature schemes are designed to provide the dig-
ital counterpart to handwritten signatures (and more).
A digital signature is a number dependent on some se-
cret known only to the signer (the signer’s private key),
and, additionally, on the contents of the message being
signed. Signatures must be verifiable – if a dispute arises
as to whether an entity signed a document, an unbiased
third party should be able to resolve the matter equi-
tably, without requiring access to the signer’s private key.
Disputes may arise when a signer tries to repudiate a sig-
nature it did create, or when a forger makes a fraudulent
claim.

This paper is concerned with asymmetric digital sig-
natures schemes with an appendix. “Asymmetric” means
that each entity selects a key pair consisting of a private
key and a related public key. The entity maintains the se-
crecy of the private key that it uses for signing messages,
and makes authentic copies of its public key available
to other entities which use it to verify signatures. “Ap-
pendix” means that a cryptographic hash function is used
to create a message digest of the message, and the sign-
ing transformation is applied to the message digest rather
than to the message itself.

Security. Ideally, a digital signature scheme should be
existentially unforgeable under chosen-message attack.
This notion of security was introduced by Goldwasser et
al. [33]. Informally, it asserts that an adversary who is
able to obtain entity A’s signatures for any message of
its choice is unable to successfully forge A’s signature on
a single other message.

Applications. Digital signature schemes can be used
to provide the following basic cryptographic services:
data integrity (the assurance that data has not been
altered by unauthorized or unknown means), data ori-
gin authentication (the assurance that the source of
data is as claimed), and non-repudiation (the assur-
ance that an entity cannot deny previous actions or
commitments). Digital signature schemes are commonly
used as primitives in cryptographic protocols that pro-
vide other services including entity authentication (e.g.,
FIPS 196 [72], ISO/IEC 9798-3 [40], and Blake-Wilson
and Menezes [10]), authenticated key transport (e.g.,
Blake-Wilson and Menezes [10], ANSI X9.63 [4], and
ISO/IEC 11770-3 [41]), and authenticated key agreement
(e.g., ISO/IEC 11770-3 [41], Diffie et al. [21], and Bellare
et al. [8]).

Classification. The digital signature schemes in use to-
day can be classified according to the hard underlying

mathematical problem which provides the basis for their
security:

1. Integer factorization (IF) schemes, which base their
security on the intractability of the integer factoriza-
tion problem. Examples of these include the RSA [85]
and Rabin [84] signature schemes.

2. Discrete logarithm (DL) schemes, which base their se-
curity on the intractability of the (ordinary) discrete
logarithm problem in a finite field. Examples of these
include the ElGamal [23], Schnorr [90], DSA [70], and
Nyberg-Rueppel [78, 79] signature schemes.

3. Elliptic curve (EC) schemes, which base their security
on the intractability of the elliptic curve discrete loga-
rithm problem.

2.2 The Digital Signature Algorithm (DSA)

The DSA was proposed in August 1991 by the U.S. Na-
tional Institute of Standards and Technology (NIST) and
was specified in a U.S. Government Federal Information
Processing Standard (FIPS 186 [70]) called the Digital
Signature Standard (DSS). The DSA can be viewed as
a variant of the ElGamal signature scheme [23]. Its secu-
rity is based on the intractability of the discrete logarithm
problem in prime-order subgroups of Z∗p .

DSA domain parameter generation. Domain parameters
are generated for each entity in a particular security do-
main. (See also the note below on the secure generation of
parameters.)

1. Select a 160-bit prime q and a 1024-bit prime p with
the property that q | p−1.

2. (Select a generator g of the unique cyclic group of
order q in Z∗p .)

Select an element h ∈ Z∗p and compute g = h(p−1)/q

modp. (Repeat until g �= 1.)
3. Domain parameters are p, q, and g.

DSA key pair generation. Each entity A in the domain
with domain parameters (p, q, g) does the following:

1. Select a random or pseudorandom integer x such that
1≤ x≤ q−1.

2. Compute y = gx mod p.
3. A’s public key is y; A’s private key is x.

DSA signature generation. To sign a message m, A does
the following:

1. Select a random or pseudorandom integer k, 1≤ k ≤
q−1.

2. Compute X = gk mod p and r = X mod q. If r = 0
then go to step 1.

3. Compute k−1 mod q.
4. Compute e= SHA-1(m).
5. Compute s = k−1{e+xr} mod q. If s = 0 then go to

step 1.
6. A’s signature for the messagem is (r, s).
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DSA signature verification. To verify A’s signature (r, s)
on m, B obtains authentic copies of A’s domain parame-
ters (p, q, g) and public key y and does the following:

1. Verify that r and s are integers in the interval [1, q−1].
2. Compute e= SHA-1(m).
3. Compute w = s−1 mod q.
4. Compute u1 = ew mod q and u2 = rw mod q.
5. ComputeX = gu1yu2 mod p and v =X mod q.
6. Accept the signature if and only if v = r.

Security analysis. Since r and s are each integers less
than q, DSA signatures are 320 bits in size. The security
of the DSA relies on two distinct but related discrete log-
arithm problems. One is the discrete logarithm problem
in Z∗p where the number field sieve algorithm (see Gor-
don [35] and Schirokauer [89]) applies; this algorithm has
a subexponential running time. More precisely, the ex-
pected running time of the algorithm is

O
(
exp

(
(c+ o(1))(ln p)1/3(ln ln p)2/3

))
, (1)

where c ≈ 1.923, and lnn denotes the natural logarithm
function. If p is a 1024-bit prime, then the expression (1)
represents an infeasible amount of computation; thus the
DSA using a 1024-bit prime p is currently not vulnera-
ble to this attack. The second discrete logarithm problem
works to the base g in the subgroup of order q in Z∗p : given
p, q, g, and y, find x such that y ≡ gx (mod p). For large
p (e.g., 1024 bits), the best algorithm known for this prob-
lem is Pollard’s rho method [83], and takes about√
πq/2 (2)

steps. If q ≈ 2160, then the expression (2) represents an
infeasible amount of computation; thus the DSA is not
vulnerable to this attack. However, note that there are
two primary security parameters for DSA: the size of p
and the size of q. Increasing one without a corresponding
increase in the other will not result in an effective increase
in security. Furthermore, an advance in algorithms for
either one of the two discrete logarithm problems could
weaken DSA.

Secure generation of parameters. In response to some
criticisms received on the first draft (see Rueppel et
al. [86] and Smid and Branstad [99]), FIPS 186 spec-
ified a method for generating primes p and q “ver-
ifiably at random”. This feature prevents an entity
(e.g., a central authority generating domain parame-
ters to be shared by a network of entities) from in-
tentionally constructing “weak” primes p and q for
which the discrete logarithm problem is relatively easy.
For a further discussion of this issue, see Gordon [34].
FIPS 186 also specifies two methods, based on DES and
SHA-1, for pseudorandomly generating private keys x
and per-message secrets k. FIPS 186 mandates the use
of these algorithms or any other FIPS-approved security
methods.

3 Finite fields

We provide a brief introduction to finite fields. For further
information, see Chapt. 3 of Koblitz [52], or the books by
McEliece [61] and Lidl and Niederreitter [59].

A finite field consists of a finite set of elements F
together with two binary operations on F , called add-
ition and multiplication, that satisfy certain arithmetic
properties. The order of a finite field is the number of
elements in the field. There exists a finite field of order
q if and only if q is a prime power. If q is a prime
power, then there is essentially only one finite field of
order q; this field is denoted by Fq. There are, how-
ever, many ways of representing the elements of Fq.
Some representations may lead to more efficient imple-
mentations of the field arithmetic in hardware or in
software.

If q = pm where p is a prime and m is a positive
integer, then p is called the characteristic of Fq and
m is called the extension degree of Fq. Most standards
which specify the elliptic curve cryptographic tech-
niques restrict the order of the underlying finite field
to be an odd prime (q = p) or a power of 2 (q = 2m).
In Sect. 3.1, we describe the elements and operations
of the finite field Fp. In Sect. 3.2, elements and the
operations of the finite field F2m are described, to-
gether with two methods for representing the field elem-
ents: polynomial basis representations and normal basis
representations.

3.1 The finite field Fp

Let p be a prime number. The finite field Fp, called
a prime field, is comprised of the set of integers {0, 1, 2,
. . . , p−1} with the following arithmetic operations:

– Addition: If a, b ∈ Fp, then a+ b= r, where r is the re-
mainder when a+ b is divided by p and 0≤ r ≤ p−1.
This is known as addition modulo p.

– Multiplication: If a, b∈ Fp, then a ·b= s, where s is the
remainder when a · b is divided by p and 0≤ s≤ p−1.
This is known as multiplication modulo p.

– Inversion: Ifa is a non-zero element in Fp, the inverse
of a modulo p, denoted a−1, is the unique integer c ∈
Fp for which a · c= 1.

Example 1. (The finite field F23) The elements of F23
are {0, 1, 2, . . . , 22}. Examples of the arithmetic opera-
tions in F23 are: (1) 12+20 = 9; (2) 8 · 9 = 3; and (3)
8−1 = 3.

3.2 The finite field F2m

The field F2m , called a characteristic two finite field or
a binary finite field , can be viewed as a vector space
of dimension m over the field F2, which consists of the
two elements 0 and 1. That is, there exist m elements
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α0, α1, . . . , αm−1 in F2m such that each element α ∈ F2m
can be uniquely written in the form:

α= a0α0+a1α1+ · · ·+am−1αm−1, where ai ∈ {0, 1}.

Such a set {α0, α1, . . . , αm−1} is called a basis of F2m over
F2. Given such a basis, a field element α can be repre-
sented as the bit string (a0a1 . . . am−1). Addition of field
elements is performed by bitwise XOR-ing the vector rep-
resentations. The multiplication rule depends on the basis
selected.

There are many different bases of F2m over F2. Some
bases lead to more efficient software or hardware imple-
mentations of the arithmetic in F2m than other bases.
ANSI X9.62 permits two kinds of bases: polynomial bases
and normal bases.

3.2.1 Polynomial basis representations

Let f(x) = xm+fm−1x
m−1+ · · ·+f2x2+f1x+f0 (where

fi ∈ {0, 1} for i= 0, 1, . . . ,m−1) be an irreducible poly-
nomial of degree m over F2. That is, f(x) cannot be
factored as a product of two polynomials over F2, each
of degree less than m. Each such polynomial f(x) de-
fines a polynomial basis representation of F2m , which is
described next. f(x) is called the reduction polynomial.

Field elements. The finite field F2m is comprised of all
polynomials over F2 of degree less thanm:

F2m = {am−1x
m−1+ · · ·+a1x+a0 : ai ∈ {0, 1}}.

The field element am−1x
m−1+ · · ·+a1x+a0 is usually

denoted by the bit string (am−1 . . . a1a0) of length m, so
that

F2m = {(am−1 . . . a1a0) : ai ∈ {0, 1}}.

Thus the elements of F2m can be represented by the set
of all binary strings of lengthm. The multiplicative iden-
tity element (1) is represented by the bit string (00 . . . 01),
while the additive identity element (0) is represented by
the bit string of all 0’s.

Field operations. The following arithmetic operations are
defined on the elements of F2m when using a polynomial
basis representation with reduction polynomial f(x):

– Addition: Ifa= (am−1 . . . a1a0) and b= (bm−1 . . . b1b0)
are elements of F2m , then a+ b= c= (cm−1 . . . c1c0),
where ci = (ai+ bi) mod 2. That is, field addition is
performed bitwise.

– Multiplication: Ifa= (am−1 . . . a1a0) and b= (bm−1 . . .
b1b0) are elements of F2m , then a · b= r = (rm−1 . . .
r1r0), where the polynomial rm−1x

m−1+ · · ·+ r1x+
r0 is the remainder when the polynomial

(am−1x
m−1+ · · ·+a1x+a0) ·

(bm−1x
m−1+ · · ·+ b1x+ b0)

is divided by f(x) over F2.
– Inversion: If a is a non-zero element in F2m , the in-

verse of a, denoted a−1, is the unique element c ∈ F2m
for which a · c= 1.

Example 2. (A polynomial basis representation of the fi-
nite field F24) Let f(x) = x

4+x+1 be the reduction poly-
nomial. Then the 16 elements of F24 are:

0(0000) x3(1000)
1(0001) x3+1(1001)
x(0010) x3+x(1010)

x+1(0011) x3+x+1(1011)

x2(0100) x3+x2(1100)
x2+1(0101) x3+x2+1(1101)
x2+x(0110) x3+x2+x(1110)

x2+x+1(0111) x3+x2+x+1(1111).

Examples of the arithmetic operations in F24 are:

– (1101)+(1001)= (0100).
– (1101) · (1001) = (1111) since (x3+x2+1) · (x3+1) =
x6+x5+x2+1 and (x6+x5+x2+1) mod (x4+x+1)=
x3+x2+x+1.
– (1101)−1 = (0100).

The element α= x= (0010) is a generator of F∗24 since its
order is 15 as the following calculations show:

α1 = (0010) α2 = (0100) α3 = (1000)
α4 = (0011) α5 = (0110) α6 = (1100)
α7 = (1011) α8 = (0101) α9 = (1010)
α10 = (0111) α11 = (1110) α12 = (1111)
α13 = (1101) α14 = (1001) α15 = (0001).

Selecting a reduction polynomial. A trinomial over F2
is a polynomial of the form xm+xk+1, where 1 ≤ k ≤
m− 1. A pentanomial over F2 is a polynomial of the
form xm+xk3 +xk2 +xk1 +1, where 1≤ k1 < k2 < k3 ≤
m−1. ANSI X9.62 specifies the following rules for select-
ing the reduction polynomial for representing the elem-
ents of F2m .

1. If there exists an irreducible trinomial of degree m
over F2, then the reduction polynomial f(x) must be
an irreducible trinomial of degreem over F2. To maxi-
mize the chances for interoperability, ANSI X9.62 rec-
ommends that the trinomial used should be xm+xk+1
for the smallest possible k.

2. If there does not exist an irreducible trinomial of de-
gree m over F2, then the reduction polynomial f(x)
must be an irreducible pentanomial of degree m over
F2. To maximize the chances for interoperability,
ANSI X9.62 recommends that the pentanomial used
should be xm+xk3 +xk2 +xk1 +1 chosen according
to the following criteria:1 (1) k3 is as small as possible;

1 Actually, ANSI X9.62 recommends the following criteria for se-
lecting the pentanomial: (1) k1 is as small as possible; (2) for this
particular value of k1, k2 is as small as possible; and (3) for these
particular values of k1 and k2, k3 is as small as possible. However,
the ANSI X9F1 committee agreed in April 1999 to change this rec-
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(2) for this particular value of k3, k2 is a small as pos-
sible; and (3) for these particular values of k3 and k2,
k1 is as small as possible.

3.2.2 Normal basis representations

A normal basis of F2m over F2 is a basis of the form
{β, β2, β2

2
, . . . , β2

m−1
}, where β ∈ F2m . Such a basis

always exists. Any element a ∈ F2m can be written as

a =
∑m−1
i=0 aiβ

2i , where ai ∈ {0, 1}. Normal basis repre-
sentations have the computational advantage that squar-
ing an element can be done very efficiently (see Field
Operations below). Multiplying distinct elements, on the
other hand, can be cumbersome in general. For this rea-
son, ANSI X9.62 specifies that Gaussian normal bases be
used, for which multiplication is both simpler and more
efficient.

Gaussian normal bases (GNB). The type of a GNB is
a positive integer measuring the complexity of the multi-
plication operation with respect to that basis. Generally
speaking the smaller the type, the more efficient the mul-
tiplication. For a given m and T , the field F2m can have
at most one GNB of type T . Thus it is proper to speak of
the type T GNB of F2m . See Mullin et al. [69] and Ash et
al. [5] for further information on GNBs.

Existence of Gaussian normal bases. AGNB exists when-
ever m is not divisible by 8. Let m be a positive integer
not divisible by 8, and let T be a positive integer. Then
a type T GNB for F2m exists if and only if p= Tm+1 is
prime and gcd(Tm/k,m) = 1, where k is the multiplica-
tive order of 2 modulo p.

Field elements. If {β, β2, β2
2
, . . . , β2

m−1
} is a normal ba-

sis of F2m over F2, then the field element a=
∑m−1
i=0 aiβ

2i

is represented by the binary string (a0a1 . . . am−1) of
lengthm, so that

F2m = {(a0a1 . . . am−1) : ai ∈ {0, 1}}.

The multiplicative identity element (1) is represented by
the bit string of all 1’s, while the additive identity element
(0) is represented by the bit string of all 0’s.

Field operations. The following arithmetic operations are
defined on the elements of F2m when using a GNB of type
T :

– Addition: Ifa= (a0a1 . . . am−1) and b= (b0b1 . . . bm−1)
are elements of F2m , then a+ b= c= (c0c1 . . . cm−1),
where ci = (ai+ bi) mod 2. That is, field addition is
performed bitwise.

ommendation in a forthcoming revision of ANSI X9.62 to the one
given above in order to be consistent with the IEEE 1363-2000 and
FIPS 186-2 recommendations.

– Squaring: Let a= (a0a1 . . . am−1) ∈ F2m . Since squar-
ing is a linear operation in F2m ,

a2 =

(
m−1∑
i=0

aiβ
2i

)2
=
m−1∑
i=0

aiβ
2i+1

=
m−1∑
i=0

ai−1β
2i = (am−1a0a1 . . . am−2),

with indices reducedmodulom. Hence squaring a field
element can be accomplished by a simple rotation of
the vector representation.

– Multiplication: Let p = Tm+1, and let u ∈ Fp be an
element of order T . Define the sequence F (1), F (2),
. . . , F (p−1) by

F (2iuj mod p) = i for 0≤ i≤m−1, 0≤ j ≤ T −1.

If a= (a0a1 . . . am−1) and b= (b0b1 . . . bm−1) are elem-
ents of F2m , then a · b= c= (c0c1 . . . cm−1), where

cl =




∑p−2
k=1 aF (k+1)+lbF (p−k)+l if T is even,∑m/2
k=1 (ak+l−1bm/2+k+l−1
+am/2+k+l−1bk+l−1)

+
∑p−2
k=1 aF (k+1)+lbF (p−k)+l if T is odd,

for each l, 0 ≤ l ≤m− 1, where indices are reduced
modulom.

– Inversion: If a is a non-zero element in F2m , the in-
verse of a in F2m , denoted a

−1, is the unique element
c ∈ F2m for which a · c= 1.

Example 3. (A Gaussian normal basis representation of
the finite field F24) For the type T = 3 GNB for F24 , let
u = 9 ∈ F13 be an element of order 3. The sequence of
F (i)’s is:

F (1) = 0F (2) = 1F (3) = 0 F (4) = 2 F (5) = 1 F (6) = 1

F (7) = 3F (8) = 3F (9) = 0F (10) = 2F (11) = 3F (12) = 2.

The formulas for the product terms cl are:

c0 = a0(b1+ b2+ b3)+a1(b0+ b2)+a2(b0+ b1)+a3(b0+ b3)

c1 = a1(b2+ b3+ b0)+a2(b1+ b3)+a3(b1+ b2)+a0(b1+ b0)

c2 = a2(b3+ b0+ b1)+a3(b2+ b0)+a0(b2+ b3)+a1(b2+ b1)

c3 = a3(b0+ b1+ b2)+a0(b3+ b1)+a1(b3+ b0)+a2(b3+ b2).

For example, if a= (1000) and b= (1101), then c= a · b=
(0010).

Selecting a Gaussian normal basis. ANSI X9.62 specifies
the following rules for selecting a GNB for representing
the elements of F2m (whenm is not divisible by 8).

1. If there exists a type 2 GNB of F2m , then this basis
must be used.

2. If there does not exist a type 2 GNB of F2m but there
does exist a type 1 GNB, then the type 1 GNBmust be
used.
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3. If neither a type 1 nor a type 2 GNB of F2m exists,
then the GNB of the smallest type must be used.

The selection of type 2 GNBs over type 1 GNBs was some-
what arbitrary – both types of GNBs admit efficient im-
plementation of field arithmetic. This is not a practical
concern since finite fields which have both type 1 and
type 2 GNBs are relatively scarce – the only such fields
F2m withm between 160 and 600 are F2210 and F2378 . Nei-
ther of these two fields are among those recommended by
NIST (see Sect. 10.2).

4 Elliptic curves over finite fields

We give a quick introduction to the theory of elliptic
curves. Chapter 6 of Koblitz’s book [52] provides an intro-
duction to elliptic curves and elliptic curve systems. For
a more detailed account, consult Menezes [63] or Blake
et al. [9]. Some advanced books on elliptic curves are
Enge [24] and Silverman [94].

4.1 Elliptic curves over Fp

Let p > 3 be an odd prime. An elliptic curve E over Fp is
defined by an equation of the form

y2 = x3+ax+ b, (3)

where a, b ∈ Fp, and 4a3+27b2 �≡ 0 (mod p). The set
E(Fp) consists of all points (x, y), x ∈ Fp, y ∈ Fp that
satisfy the defining equation (3), together with a special
point O called the point at infinity.

Example 4. (Elliptic curve over F23) Let p= 23 and con-
sider the elliptic curve E : y2 = x3+x+4 defined over
F23. (In the notation of (3), we have
a= 1 and b= 4.) Note that 4a3+27b2 = 4+432 = 436≡
22 (mod 23), so E is indeed an elliptic curve. The points
in E(F23) areO and the following:

(0, 2) (0, 21) (1, 11) (1, 12) (4, 7)
(4, 16) (7, 3) (7, 20) (8, 8) (8, 15)
(9, 11) (9, 12) (10, 5) (10, 18) (11, 9)
(11, 14) (13, 11) (13, 12) (14, 5) (14, 18)
(15, 6) (15, 17) (17, 9) (17, 14) (18, 9)
(18, 14) (22, 5) (22, 19).

Addition formula. There is a rule, called the chord-and-
tangent rule, for adding two points on an elliptic curve
E(Fp) to give a third elliptic curve point. Together with
this addition operation, the set of points E(Fp) forms
a group withO serving as its identity. It is this group that
is used in the construction of elliptic curve cryptosystems.

The addition rule is best explained geometrically. Let
P = (x1, y1) and Q = (x2, y2) be two distinct points on
an elliptic curve E. Then the sum of P and Q, denoted
R = (x3, y3), is defined as follows. First draw a line
through P and Q; this line intersects the elliptic curve at

Fig. 1. Geometric description of the addition of two distinct ellip-
tic curve points: P +Q=R

a third point. Then R is the reflection of this point in the
x axis. This is depicted in Fig. 1. The elliptic curve in the
figure consists of two parts, the ellipse-like figure and the
infinite curve.

If P = (x1, y1), then the double of P , denoted R =
(x3, y3), is defined as follows. First draw a tangent line
to the elliptic curve at P . This line intersects the elliptic
curve at a second point. Then R is the reflection of this
point in the x axis. This is depicted in Fig. 2.

The following algebraic formulas for the sum of two
points and the double of a point can now be derived from
the geometric description.

1. P +O =O+P = P for all P ∈E(Fp).
2. If P = (x, y) ∈E(Fp), then (x, y)+ (x,−y) =O. (The

point (x,−y) is denoted by−P , and is called the nega-
tive of P ; observe that −P is indeed a point on the
curve.)

3. (Point addition) Let P = (x1, y1) ∈ E(Fp) and
Q= (x2, y2) ∈ E(Fp), where P �= ±Q. Then P +Q=
(x3, y3), where

x3 =

(
y2−y1
x2−x1

)2
−x1−x2 and

Fig. 2. Geometric description of the doubling of an elliptic curve
point: P +P =R
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y3 =

(
y2−y1
x2−x1

)
(x1−x3)−y1.

4. (Point doubling) Let P = (x1, y1) ∈ E(Fp), where
P �=−P . Then 2P = (x3, y3), where

x3 =

(
3x21+a

2y1

)2
−2x1 and

y3 =

(
3x21+a

2y1

)
(x1−x3)−y1.

Observe that the addition of two elliptic curve points
in E(Fp) requires a few arithmetic operations (addition,
subtraction, multiplication, and inversion) in the under-
lying field Fp.

Example 5. (Elliptic curve addition) Consider the ellip-
tic curve defined in Example 4.

1. Let P = (4, 7) andQ= (13, 11). Then P +Q= (x3, y3)
is computed as follows:

x3 =

(
11−7

13−4

)2
−4−13= 32−4−13

= −8≡ 15 (mod 23),

and

y3 = 3(4−15)−7=−40≡ 6 (mod 23).

Hence P +Q= (15, 6).
2. Let P = (4, 7). Then 2P = P +P = (x3, y3) is com-

puted as follows:

x3 =

(
3(42)+1

14

)2
−8 = 152−8

= 217≡ 10 (mod 23),

and

y3 = 15(4−10)−7=−97≡ 18 (mod 23).

Hence 2P = (10, 18).

4.2 Elliptic curves over F2m

An elliptic curve E over F2m is defined by an equation of
the form

y2+xy = x3+ax2+ b, (4)

where a, b ∈ F2m , and b �= 0. The set E(F2m) consists of
all points (x, y), x∈ F2m , y ∈ F2m that satisfy the defining
equation (4), together with a special point O called the
point at infinity.

Example 6. (Elliptic curve over F24) Consider F24 as
represented by the irreducible trinomial f(x) = x4+x+1

(see Example 2 of Sect. 3). Consider the elliptic curve
E : y2+xy = x3+α4x2+1 over F24 . (In the notation of
(4), we have a= α4 and b = 1.) Note that b �= 0, so E is
indeed an elliptic curve. The points in E(F24) are O and
the following:

(0, 1) (1, α6) (1, α13) (α3, α8) (α3, α13)
(α5, α3) (α5, α11) (α6, α8) (α6, α14) (α9, α10)
(α9, α13) (α10, α) (α10, α8) (α12, 0) (α12, α12).

Addition formula. As with elliptic curves over Fp, there
is a chord-and-tangent rule for adding points on an el-
liptic curve E(F2m) to give a third elliptic curve point.
Together with this addition operation, the set of points
E(F2m) forms a group with O serving as its identity.

The algebraic formula for the sum of two points and
the double of a point are the following.

1. P +O =O+P = P for all P ∈E(F2m).
2. If P = (x, y) ∈ E(F2m), then (x, y)+ (x, x+ y) = O.

(The point (x, x+y) is denoted by −P , and is called
the negative of P ; observe that−P is indeed a point on
the curve.)

3. (Point addition) Let P = (x1, y1) ∈ E(F2m) and
Q = (x2, y2) ∈ E(F2m), where P �= ±Q. Then P +
Q= (x3, y3), where

x3 =

(
y1+y2
x1+x2

)2
+
y1+y2
x1+x2

+x1+x2+a and

y3 =

(
y1+y2
x1+x2

)
(x1+x3)+x3+y1.

4. (Point doubling) Let P = (x1, y1) ∈ E(F2m), where
P �=−P . Then 2P = (x3, y3), where

x3 = x
2
1+

b

x21
and y3 = x

2
1+

(
x1+

y1

x1

)
x3+x3.

Example 7. (Elliptic curve addition)
Consider the elliptic curve defined in Example 6.

1. Let P = (α6, α8) and Q = (α3, α13). Then P +Q =
(x3, y3) is computed as follows:

x3 =

(
α8+α13

α6+α3

)2
+
α8+α13

α6+α3
+α6+α3+α4

=

(
α3

α2

)2
+
α3

α2
+α6+α3+α4 = 1

and

y3 =

(
α8+α13

α6+α3

)
(α6+1)+1+α8

=

(
α3

α2

)
(α13)+α2 = α13.

Hence P +Q= (1, α13).
2. Let P = (α6, α8). Then 2P = P +P = (x3, y3) is com-

puted as follows:

x3 = (α6)2+
1

(α6)2
= α12+α3 = α10
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and

y3 =
(
α6
)2

+

(
α6+

α8

α6

)
α10+α10

= α12+α13+α10 = α8.

Hence 2P = (α10, α8).

4.3 Basic facts

Group order. Let E be an elliptic curve over a finite field
Fq. Hasse’s theorem states that the number of points
on an elliptic curve (including the point at infinity) is
#E(Fq) = q+1− twhere |t| ≤ 2

√
q; #E(Fq) is called the

order of E and t is called the trace of E. In other words,
the order of an elliptic curveE(Fq) is roughly equal to the
size q of the underlying field.

Group structure. E(Fq) is an abelian group of rank 1 or
2. That is, E(Fq) is isomorphic to Zn1×Zn2 , where n2 di-
vides n1, for unique positive integers n1 and n2. Here, Zn
denotes the cyclic group of order n. Moreover, n2 divides
q−1. If n2 = 1, then E(Fq) is said to be cyclic. In this
case E(Fq) is isomorphic to Zn1 , and there exists a point
P ∈E(Fq) such thatE(Fq) = {kP : 0≤ k≤ n1−1}; such
a point is called a generator of E(Fq).

Example 8. (Cyclic elliptic curve)
Consider the elliptic curve E(F23) defined in Example 4.
Since #E(F23) = 29, which is prime, E(F23) is cyclic and
any point other than O is a generator of E(F23). For ex-
ample, P = (0, 2) is a generator, as the following shows:

1P = (0, 2) 2P = (13, 12) 3P = (11, 9)
4P = (1, 12) 5P = (7, 20) 6P = (9, 11)
7P = (15, 6) 8P = (14, 5) 9P = (4, 7)
10P = (22, 5) 11P = (10, 5) 12P = (17, 9)
13P = (8, 15) 14P = (18, 9) 15P = (18, 14)
16P = (8, 8) 17P = (17, 14) 18P = (10, 18)
19P = (22, 18) 20P = (4, 16) 21P = (14, 18)
22P = (15, 17) 23P = (9, 12) 24P = (7, 3)
25P = (1, 11) 26P = (11, 14) 27P = (13, 11)
28P = (0, 21) 29P =O.

5 ECDSA domain parameters

The domain parameters for ECDSA consist of a suitably
chosen elliptic curve E defined over a finite field Fq of
characteristic p, and a base point G ∈E(Fq). Domain pa-
rameters may either be shared by a group of entities, or
specific to a single user.

Section 5.1 describes the requirements for what consti-
tutes “suitable” domain parameters. In Sect. 5.2, a pro-
cedure is specified for generating elliptic curves verifiably
at random. Section 5.3 outlines a method for generating

domain parameters, while Sect. 5.4 presents a procedure
for verifying that a given set of domain parameters meets
all requirements.

5.1 Domain parameters

In order to facilitate interoperability, some restrictions
are placed on the underlying field size q and the repre-
sentation used for the elements of Fq. Moreover, to avoid
some specific known attacks, restrictions are placed on
the elliptic curve and the order of the base point.

Field requirements. The order of the underlying finite
field is either q = p, an odd prime, or q = 2m, a power of 2.
In the case q = p, the underlying finite field is Fp, the in-
tegers modulo p. In the case q = 2m, the underlying finite
field is F2m whose elements are represented with respect
to a polynomial or a normal basis as described in Sect. 3.

Elliptic curve requirements. In order to avoid Pollard’s
rho [83] and the Pohlig-Hellman [81] attacks on the el-
liptic curve discrete logarithm problem (see Sect. 8.1), it
is necessary that the number of Fq-rational points on E
be divisible by a sufficiently large prime n. ANSI X9.62
mandates that n > 2160. Having fixed an underlying
field Fq, n should be selected to be as large as possible,
i.e., one should have n ≈ q, so #E(Fq) is almost prime.
In the remainder of this paper, we shall assume that
n > 2160 and that n > 4

√
q. The co-factor is defined to be

h=#E(Fq)/n.
Some further precautions should be exercised when

selecting the elliptic curve. To avoid the reduction algo-
rithms of Menezes et al. [64] and Frey and Rück [29],
the curve should be non-supersingular (i.e., p should
not divide (q+1−#E(Fq))). More generally, one should
verify that n does not divide qk− 1 for all 1 ≤ k ≤ C,
where C is large enough so that it is computationally
infeasible to find discrete logarithms in FqC (C = 20 suf-
fices in practice [3]). Finally, to avoid the attack of Se-
maev [93], Smart [98], and Satoh and Araki [88] on Fq-
anomalous curves, the curve should not be Fq-anomalous
(i.e., #E(Fq) �= q).

A prudent way to guard against these attacks, and
similar attacks against special classes of curves that may
be discovered in the future, is to select the elliptic curve
E at random subject to the condition that #E(Fq) is
divisible by a large prime – the probability that a ran-
dom curve succumbs to these special-purpose attacks is
negligible. A curve can be selected verifiably at random
by choosing the coefficients of the defining elliptic curve
equation as the outputs of a one-way function such as
SHA-1 according to some pre-specified procedure. A pro-
cedure for accomplishing this, similar in spirit to the
method given in FIPS 186 [70] for selecting DSA primes
verifiably at random, is described in Sect. 5.2.

Summary. To summarize, domain parameters are com-
prised of:
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1. a field size q, where either q = p, an odd prime, or
q = 2m;

2. an indication FR (field representation) of the repre-
sentation used for the elements of Fq;

3. (optional) a bit string seedE of length at least 160 bits,
if the elliptic curve was generated in accordance with
the method described in Sect. 5.2;

4. two field elements a and b in Fq which define the equa-
tion of the elliptic curve E over Fq (i.e., y2 = x3+
ax+ b in the case p > 3, and y2+xy = x3+ax2+ b in
the case p= 2);

5. two field elements xG and yG in Fq which define a fi-
nite point G= (xG, yG) of prime order in E(Fq);

6. the order n of the pointG, with n> 2160 and n> 4
√
q;

and
7. the cofactor h=#E(Fq)/n.

5.2 Generating an elliptic curve verifiably at random

This subsection describes the method that is used for
generating an elliptic curve verifiably at random. The
defining parameters of the elliptic curve are defined to be
outputs of the one-way hash function SHA-1 (as speci-
fied in FIPS 180-1 [71]). The input seed to SHA-1 then
serves as proof (under the assumption that SHA-1 cannot
be inverted) that the elliptic curve was indeed generated
at random. This provides some assurance to the user of
the elliptic curve that the entity who generated the ellip-
tic curve did not intentionally construct a “weak” curve
which the entity could subsequently exploit to recover the
user’s private keys. Use of this generation method can
also help mitigate concerns regarding the possible future
discovery of new and rare classes of weak elliptic curves,
as such rare curves would essentially never be generated.

5.2.1 The case q = p

The following notation is used: t = �log2 p�, s =
�(t−1)/160�, and v = t−160 · s.

Algorithm 1:Generatingarandomellipticcurve

over Fp.
Input: A field size p, where p is an odd prime.
Output: A bit string seedE of length at least 160 bits
and field elements a, b ∈ Fp that define an elliptic curve E
over Fp.

1. Choose an arbitrary bit string seedE of length
g ≥ 160 bits.

2. Compute H = SHA-1(seedE), and let c0 denote the
bit string of length v bits obtained by taking the v
rightmost bits ofH.

3. LetW0 denote the bit string of length v bits obtained
by setting the leftmost bit of c0 to 0. (This ensures
that r < p.)

4. Let z be the integer whose binary expansion is given
by the g-bit string seedE.

5. For i from 1 to s do:
4.1. Let si be the g-bit string which is the binary ex-

pansion of the integer (z+ i) mod 2g.
4.2. ComputeWi = SHA-1(si).

6. Let W be the bit string obtained by concatenating
W0,W1, . . . ,Ws as follows:W =W0 ‖W1 ‖ · · · ‖Ws.

7. Let r be the integer whose binary expansion is given
byW .

8. If r = 0 or if 4r+27≡ 0 (mod p) then go to step 1.
9. Choose arbitrary integers a, b ∈ Fp, not both 0, such

that r · b2 ≡ a3 mod p. (For example, one may take
a= r and b= r.)

10. The elliptic curve chosen over Fp is E : y2 = x3+
ax+ b.

11. Output(seedE, a, b).

Isomorphism classes of elliptic curves over Fp. Two el-
liptic curves E1 : y

2 = x3+a1x+ b1 and E2 : y
2 = x3+

a2x+ b2 defined over Fp are isomorphic over Fp if and
only if there exists u ∈ Fp, u �= 0, such that a1 = u

4a2
and b1 = u

6b2. (Isomorphic elliptic curves are essentially
the same. In particular, if E1 is isomorphic to E2, then
the groups E1(Fp) and E2(Fp) are isomorphic as abelian
groups.) Observe that if E1 and E2 are isomorphic

and b1 �= 0 (so b2 �= 0), then
a31
b21

=
a32
b22
. The singular elliptic

curves, i.e., the curvesE : y2 = x3+ax+b for which 4a3+
27b2 ≡ 0 (mod p) are precisely those which either have

a= 0 and b = 0, or a
3

b2
=− 274 . If r ∈ Fp, r �= 0, r �=− 274 ,

then there are precisely two isomorphism classes of curves

E : y2 = x3+ax+ b with a3

b2
≡ r (mod p). Hence, there

are essentially only two choices for (a, b) in step 9 of Al-
gorithm 1. The conditions r �= 0 and r �=− 274 imposed in
step 8 ensure the exclusion of singular elliptic curves. Fi-
nally, we mention that this method of generating curves
will never produce the elliptic curves with a = 0, b �= 0,
nor the elliptic curves with a �= 0, b= 0. This is not a con-
cern because such curves constitute a negligible fraction
of all elliptic curves, and therefore are unlikely to ever be
generated by any method which selects an elliptic curve
uniformly at random.

The twist of an elliptic curve over Fp. The non-isomorphic
elliptic curves E1 : y

2 = x3+ax+ b and E2 : y
2 = x3+

ac2x2+ bc3, where c ∈ Fp is a quadratic non-residue mod-
ulo p, are said to be twists of each other. Note that both
these curves have the same r value. Their orders are re-
lated by the equation#E1(Fp)+#E2(Fp) = 2p+2.Thus,
if one is able to compute #E1(Fp), then one can easily
deduce #E2(Fp).

Algorithm 2: Verifying that an elliptic curve

was randomly generated over Fp.
Input: A field size p (a prime), a bit string seedE of
length g ≥ 160 bits, and field elements a, b ∈ Fp that de-
fine an elliptic curve E : y2 = x3+ax+ b over Fp.
Output: Acceptance or rejection that E was randomly
generated using Algorithm 1.
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1. ComputeH =SHA-1(seedE), and let c0 denote the bit
string of length v bits obtained by taking the v right-
most bits ofH.

2. LetW0 denote the bit string of length v bits obtained
by setting the leftmost bit of c0 to 0.

3. Let z be the integer whose binary expansion is given by
the g-bit string seedE.

4. For i from 1 to s do:
4.1. Let si be the g-bit stringwhich is the binary expan-

sion of the integer (z+ i) mod 2g.
4.2. ComputeWi = SHA-1(si).

5. Let W be the bit string obtained by concatenating
W0,W1, . . . ,Ws as follows:W

′ =W0 ‖W1 ‖ · · · ‖Ws.
6. Let r′ be the integer whose binary expansion is given

byW ′.
7. If r′ · b2 ≡ a3 (mod p) then accept; otherwise reject.

5.2.2 The case q = 2m

The following notation is used: s = �(m− 1)/160� and
v =m−160 · s.
Algorithm 3:Generatingarandomellipticcurve

over F2m .
Input: A field size q = 2m.
Output: A bit string seedE with a length of at least 160
bits and field elements a, b ∈ F2m , which define an elliptic
curve E over F2m .

1. Choose an arbitrary bit string seedE of length g ≥ 160
bits.

2. ComputeH =SHA-1(seedE), and let b0 denote the bit
string of length v bits obtained by taking the v right-
most bits ofH.

3. Let z be the integer whose binary expansion is given by
the g-bit string seedE.

4. For i from 1 to s do:
4.1. Let si be the g-bit stringwhich is the binary expan-

sion of the integer (z+ i) mod 2g.
4.2. Compute bi = SHA-1(si).

5. Let b be the field element obtained by concatenating
b0, b1, . . . , bs as follows: b= b0 ‖ b1 ‖ · · · ‖ bs.

6. If b= 0 then go to step 1.
7. Let a be an arbitrary element of F2m .
8. The elliptic curve chosen over F2m is E : y2+xy =
x3+ax2+ b.

9. Output(seedE, a, b).

Isomorphism classes of elliptic curves over F2m . Two el-
liptic curves E1 : y

2+xy = x3+a1x
2+ b1 and E2 : y

2+
xy = x3+a2x

2+ b2 defined over F2m are isomorphic over
F2m if and only if b1 = b2 and Tr(a1) = Tr(a2), where Tr is
the trace function Tr : F2m −→ F2 defined by Tr(α) = α+

α2+α2
2
+ · · ·+α2

m−1
. (Isomorphic elliptic curves are es-

sentially the same. In particular, if E1 is isomorphic to
E2, then the groupsE1(F2m) andE2(F2m) are isomorphic
as abelian groups.) It follows that a set of representatives
of the isomorphism classes of elliptic curves over F2m is

{y2+xy= x3+ax2+b | b∈ F2m , b �= 0, a∈ {0, γ}}, where
γ ∈ F2m is a fixed element with Tr(γ) = 1 (ifm is odd, we
can take γ = 1). Hence, having selected b, there are essen-
tially only two choices for a in step 7 of Algorithm 3.

The twist of an elliptic curve over F2m . The non-iso-
morphic elliptic curves E1 : y

2+xy = x3+a1x
2+ b and

E2 : y
2+xy = x3+a2x

2+ b where Tr(a1) �= Tr(a2) are
said to be twists of each other. Their orders are related by
the equation #E1(F2m)+#E2(F2m) = 2m+1+2. Thus, if
one is able to compute #E1(F2m), then one can easily de-
duce #E2(F2m). The order of an elliptic curve over F2m
is always even. Furthermore, #E1(F2m) ≡ 0 (mod 4) if
Tr(a1) = 0, and #E1(F2m)≡ 2 (mod 4) if Tr(a1) = 1.

Algorithm 4: Verifying that an elliptic curve

was randomly generated over F2m .
Input: A field size q = 2m, a bit string seedE of length
g ≥ 160 bits, and field elements a, b ∈ F2m , which define
an elliptic curve E : y2+xy = x3+ax2+ b over F2m .
Output: Acceptance or rejection that E was randomly
generated using Algorithm 3.

1. ComputeH =SHA-1(seedE), and let b0 denote the bit
string of length v bits obtained by taking the v right-
most bits ofH.

2. Let z be the integer whose binary expansion is given by
the g-bit string seedE.

3. For i from 1 to s do:
4.1. Let si be the g-bit string which is the binary ex-

pansion of the integer (z+ i) mod 2g.
4.2. Compute bi = SHA-1(si).

4. Let b′ be the field element obtained by concatenating
b0, b1, . . . , bs as follows: b

′ = b0 ‖ b1 ‖ · · · ‖ bs.
5. If b= b′ then accept; otherwise reject.

5.3 Domain parameter generation

The following is one way to generate cryptographically se-
cure domain parameters:

1. Select coefficients a and b from Fq verifiably at random
using Algorithm 1 or Algorithm 3. Let E be the curve
y2 = x3+ax+ b in the case q = p, and y2+xy = x3+
ax2+ b in the case q = 2m.

2. ComputeN =#E(Fq).
3. Verify that N is divisible by a large prime n (n > 2160

and n > 4
√
q). If not, then go to step 1.

4. Verify that n does not divide qk− 1 for each k,
1≤ k ≤ 20. If not, then go to step 1.

5. Verify that n �= q. If not, then go to step 1.
6. Select an arbitrary point G′ ∈ E(Fq) and set
G= (N/n)G′. Repeat until G �=O.

Point counting. In 1985 Schoof [91] presented a polyno-
mial-time algorithm for computing #E(Fq), the number
of points on an elliptic curve over Fq in the case when
q is odd; the algorithm was later extended to the case
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of q = 2m by Koblitz [50]. Schoof’s algorithm is rather
inefficient in practice for the values of q which are of prac-
tical interest (i.e., q > 2160). In the last few years a lot of
work has been done on improving and refining Schoof’s
algorithm, now called the Schoof–Elkies–Atkin (SEA) al-
gorithm; for example, see Lercier and Morain [58] and
Lercier [56]. With these improvements, cryptographically
suitable elliptic curves over fields whose orders are as
large as 2200 can be randomly generated in a few hours on
a workstation (see Lercier [57] and Izu et al. [44]). More
recently, Satoh [87] (see also M. Fouquet et al. [26]) pre-
sented a new algorithm for point counting over binary
fields that is superior to the SEA algorithm.With Satoh’s
algorithm, the number of points on an elliptic curve over
F2m form≈ 200 can be determined in only a few seconds
on a fast PC.

The complex multiplication (CM) method. Another
method for generating cryptographically suitable ellip-
tic curves is the CM method. Over Fp the CM method
is also called the Atkin–Morain method [68]; over F2m it
is also called the Lay–Zimmer method [55]. A detailed
description of the CM method can be found in IEEE
1363-2000 [39].

Let E be an elliptic curve over Fq of order N . Let
Z = 4q− (q+1−N)2 and write Z = DV 2 where D is
a squarefree integer. Then E is said to have complex mul-
tiplication by D. If one knows D for a given curve, then
one can efficiently compute the order of the curve.

The CM method first finds a D for which there exists
an elliptic curve E over Fq with complex multiplication
by D and having nearly prime order N = nh (where n
is prime), and furthermore where n �= q and n does not
divide qk−1 for each 1 ≤ k ≤ 20. It then constructs the
coefficients of E. The CM method is only efficient for
small D, in which case it is much faster than Schoof’s al-
gorithm. Thus, a potential drawback of the CMmethod is
that it can only be used to generate elliptic curves having
complex multiplication by smallD.

Koblitz curves. These curves, also known as anomalous
binary curves, were first proposed for cryptographic use
by Koblitz [51]. They are elliptic curves over F2m whose
defining equations have coefficients in F2. Thus, there are
two Koblitz curves over F2m : y

2+xy = x3+1 and y2+
xy = x3+x2+1. Solinas [100, 102], building on the ear-
lier work of Meier and Staffelbach [62], showed how one
can compute kP very efficiently for arbitrary k where
P is a point on a Koblitz curve. Since performing such
scalar multiplications is the dominant computational
step in ECDSA signature generation and verification (see
Sect. 7), Koblitz curves are very attractive for use in the
ECDSA.

5.4 Domain parameter validation

Domain parameter validation ensures that the domain
parameters have the requisite arithmetical properties.

Reasons for performing domain parameter validation in
practice include: (1) prevention of malicious insertion of
invalid domain parameters which may enable some at-
tacks; and (2) detection of inadvertent coding or trans-
mission errors. Use of an invalid set of domain parameters
can void all expected security properties.

An example of a concrete (albeit far-fetched) attack
that can be launched if domain parameter validation for
a signature scheme is not performed was demonstrated by
Blake-Wilson and Menezes [11]. The attack is on a key
agreement protocol which employs the ElGamal signa-
ture scheme.

Methods for validating domain parameters. The assur-
ance that a set D = (q,FR, a, b,G, n, h) of EC domain
parameters is valid can be provided to an entity using one
of the following methods:

1. A performs explicit domain parameter validation
using Algorithm 5 (shown below).

2. A generatesD itself using a trusted system.
3. A receives assurance from a trusted party T (e.g.,

a certification authority) that T has performed ex-
plicit domain parameter validation of D using Algo-
rithm 5.

4. A receives assurance from a trusted party T that D
was generated using a trusted system.

Algorithm 5: Explicit validation of a set of EC

domain parameters.
Input: A set of EC domain parameters D = (q,FR, a, b,
G, n, h).
Output: Acceptance or rejection of the validity ofD.

1. Verify that q is an odd prime (q = p) or a power of
2 (q = 2m).

2. Verify that FR is a “valid” representation for Fq.
3. Verify that G �=O.
4. Verify that a, b, xG, and yG are properly represented

elements of Fq (i.e., integers in the interval [0, p−1] in
the case q = p, and bit strings of length m bits in the
case q = 2m).

5. (Optional) If the elliptic curve was randomly gener-
ated in accordance with Algorithm 1 or Algorithm 3
of Sect. 5.2, verify that seedE is a bit string with
a length of at least 160 bits and use Algorithm 2 or Al-
gorithm 4 to verify that a and b were suitably derived
from seedE.

6. Verify that a and b define an elliptic curve over Fq (i.e.,
4a3+27b2 �≡ 0 (mod p) if q = p; b �= 0 if q = 2m).

7. Verify thatG lies on the elliptic curve defined by a and
b (i.e., y2G = x3G+axG+ b in the case q = p, and y2G+
xGyG = x3G+ax2G+ b in the case q = 2m).

8. Verify that n is prime.
9. Verify that n > 2160 and that n > 4

√
q.

10.Verify that nG=O.
11.Compute h′ = �(

√
q+1)2/n� and verify that h= h′.

12.Verify that n does not divide qk − 1 for each k,
1≤ k ≤ 20.
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13.Verify that n �= q.
14. If any verification fails, thenD is invalid ; otherwiseD

is valid .

Verifying the order of an elliptic curve. Recall that by
Hasse’s theorem, (

√
q−1)2 ≤#E(Fq)≤ (

√
q+1)2. Hence

n > 4
√
q implies that n2 does not divide #E(Fq), and

thus E(Fq) has a unique subgroup of order n. Also,
since (

√
q+1)2− (

√
q−1)2 = 4

√
q, there is a unique inte-

ger h such that q+1−2
√
q ≤ nh≤ q+1+2

√
q, namely

h = �(
√
q+1)2/n�. Thus steps 9, 10, and 11 of Algo-

rithm 5 verify that #E(Fq) is indeed equal to nh.
As noted in Sect. 5.2, counting the number of points

on a randomly generated elliptic curve is a complicated
and cumbersome task. In practice, one may buy software
from a vendor to perform the point counting. We note
that since the alleged order of an elliptic curve can be ef-
ficiently verified with 100% certainty, such software does
not have to be trusted.

6 ECDSA key pairs

An ECDSA key pair is associated with a particular set
of EC domain parameters. The public key is a random
multiple of the base point, while the private key is the
integer used to generate the multiple. Section 6.1 summa-
rizes the procedure for key pair generation. Section 6.2
presents a procedure for verifying that a given public key
meets all requirements. Section 6.3 discusses the impor-
tance of proving possession of a private key corresponding
to a public key to a certification authority (CA) when the
public key is being certified by the CA.

6.1 Key pair generation

An entity A’s key pair is associated with a particular set
of EC domain parameters D = (q,FR, a, b, G,n, h). This
association can be assured cryptographically (e.g., with
certificates) or by context (e.g., all entities use the same
domain parameters). The entity A must have the assur-
ance that the domain parameters are valid (see Sect. 5.4)
prior to key generation.

ECDSA key pair generation. Each entity A does the fol-
lowing:

1. Select a random or pseudorandom integer d in the in-
terval [1, n−1].

2. Compute Q= dG.
3. A’s public key is Q; A’s private key is d.

6.2 Public key validation

Public key validation, as first enunciated by Johnson [46],
ensures that a public key has the requisite arithmetical

properties. Successful execution of this routine demon-
strates that an associated private key logically exists,
although it does not demonstrate that someone has actu-
ally computed the private key nor that the claimed owner
actually possesses the private key. Reasons for performing
public key validation in practice include: (1) prevention of
malicious insertion of an invalid public key that may en-
able some attacks; and (2) detection of inadvertent cod-
ing or transmission errors. Use of an invalid public key can
void all expected security properties.

An example of a concrete attack that can be launched
if public key validation is not performed was demon-
strated by Lim and Lee [60]. The attack is on a Diffie–
Hellman-based key agreement protocol.

Methods for validating public keys. The assurance that
a public key Q is valid can be provided to an entity A
using one of the following methods:

1. A performs explicit public key validation using Algo-
rithm 6 (shown below).

2. A generatesQ itself using a trusted system.
3. A receives assurance from a trusted party T (e.g.,

a certification authority) that T has performed ex-
plicit public key validation of A using Algorithm 6.

4. A receives assurance from a trusted party T that Q
was generated using a trusted system.

Algorithm 6: Explicit validation of an ECDSA

public key.
Input: A public key Q= (xQ, yQ) associated with valid
domain parameters (q,FR, a, b,G, n, h).
Output: Acceptance or rejection of the validity ofQ.

1. Check that Q �=O.
2. Check that xQ and yQ are properly represented elem-

ents of Fq (i.e., integers in the interval [0, p−1] in the
case q = p, and bit strings of lengthm bits in the case
q = 2m).

3. Check that Q lies on the elliptic curve defined by
a and b.

4. Check that nQ=O.
5. If any check fails, then Q is invalid ; otherwise Q is

valid .

6.3 Proof of possession of a private key

If an entity C is able to certify A’s public keyQ as its own
public key, then C can claim that A’s signed messages
originated from C. To avoid this, the CA should require
all entities A to prove possession of the private keys cor-
responding to its public keys before the CA certifies the
public key as belonging to A. This proof of possession can
be accomplished by a variety of means, for example by re-
quiringA to sign a message of the CA’s choice, or by using
zero-knowledge techniques (see Chaum et al. [19]). Note
that proof of possession of a private key provides different
assurances than from public key validation. The former
demonstrates possession of a private key even though it
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may correspond to an invalid public key, while the latter
demonstrates validity of a public key but not ownership of
the corresponding private key. Doing both provides a high
level of assurance.

7 ECDSA signature generation and verification

This section describes the procedures for generating and
verifying signatures using the ECDSA.

ECDSA signature generation. To sign a message m, an
entityAwith domain parametersD= (q,FR, a, b,G, n, h)
and associated key pair (d,Q) does the following:

1. Select a random or pseudorandom integer k,
1≤ k ≤ n−1.

2. Compute kG = (x1, y1) and convert x1 to an integer
x1.

3. Compute r = x1 mod n. If r = 0 then go to step 1.
4. Compute k−1 mod n.
5. Compute SHA-1(m) and convert this bit string to an

integer e.
6. Compute s = k−1(e+dr) mod n. If s = 0 then go to

step 1.
7. A’s signature for the messagem is (r, s).

ECDSA signature verification. To verify A’s signature
(r, s) on m, B obtains an authentic copy of A’s domain
parameters D = (q,FR, a, b,G, n, h) and associated pub-
lic key Q. It is recommended that B also validates D and
Q (see Sects. 5.4 and 6.2). B then does the following:

1. Verify that r and s are integers in the interval
[1, n−1].

2. Compute SHA-1(m) and convert this bit string to an
integer e.

3. Compute w = s−1 mod n.
4. Compute u1 = ew mod n and u2 = rw mod n.
5. ComputeX = u1G+u2Q.
6. If X =O, then reject the signature. Otherwise, con-

vert the x coordinate x1 of X to an integer x1, and
compute v = x1 mod n.

7. Accept the signature if and only if v = r.

Proof that signature verification works. If a signature
(r, s) on a message m was indeed generated by A, then
s= k−1(e+dr) mod n. Rearranging gives

k ≡ s−1(e+dr)≡ s−1e+ s−1rd ≡ we+wrd

≡ u1+u2d (mod n).

Thus u1G+u2Q= (u1+u2d)G= kG, and so v = r as re-
quired.

Conversion between data types. ANSI X9.62 specifies
a method for converting field elements to integers. This
is used to convert the field element x1 to an integer in
step 2 of signature generation and step 6 of signature
verification prior to computing x1 mod n. ANSI X9.62

also specifies a method for converting bit strings to in-
tegers. This is used to convert the output e of SHA-1 to
an integer prior to its use in the modular computation
in step 5 of signature generation and step 2 of signature
verification.

Public-key certificates. Before verifying A’s signature
on a message, B needs to obtain an authentic copy of
A’s domain parameters D and associated public key Q.
ANSI X9.62 does not specify a mechanism for achieving
this. In practice, authentic public keys are most com-
monly distributed via certificates. A’s public-key certifi-
cate should include a string of information that uniquely
identifies A (such as A’s name and address), her domain
parameters D (if these are not already known from con-
text), her public key Q, and a CA’s signature over this
information. B can then use his authentic copy of the
CA’s public key to verify A’s certificate, thereby obtain-
ing an authentic copy of A’s static public key.

Rationale for checks on r and s in signature verifica-
tion. Step 1 of signature verification checks that r and
s are integers in the interval [1, n−1]. These checks can
be performed very efficiently and are prudent measures
in light of known attacks on related ElGamal signature
schemes that do not perform these checks (for examples
of such attacks, see Bleichenbacher [12]). The following
is a plausible attack on ECDSA if the check r �= 0 (and,
more generally, r �≡ 0 (mod n)) is not performed. Sup-
pose thatA is using the elliptic curve y2 = x3+ax+b over
Fp, where b is a quadratic residue modulo p, and suppose
that A uses a base point G = (0,

√
b) of prime order n.

(It is plausible that all entities select a base point with 0
x coordinate in order to minimize the size of domain pa-
rameters.) An adversary can now forge A’s signature on
any messagem of its choice by computing e= SHA-1(m).
It can easily be checked that (r = 0, s= e) is a valid signa-
ture form.

Comparing DSA and ECDSA. Conceptually, the ECDSA
is simply obtained from the DSA by replacing the sub-
group of order q of Z∗p generated by g with the subgroup
of points on an elliptic curve that are generated by G.
The only significant difference between ECDSA and DSA
is in the generation of r. The DSA does this by taking
the random element X = gk mod p and reducing it mod-
ulo q, thus obtaining an integer in the interval [1, q−1].
The ECDSA generates r in the interval [1, n−1] by taking
the x coordinate of the random point kG and reducing it
modulo n.

8 Security considerations

The security objective of ECDSA is to be existentially un-
forgeable against a chosen-message attack. The goal of an
adversary who launches such an attack against a legiti-
mate entity A is to obtain a valid signature on a single
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message m, after having obtained A’s signature on a col-
lection of messages (not including m) of the adversary’s
choice.

Some progress has been made in proving the security
of ECDSA, albeit mostly in strong theoretical models.
Slight variants of DSA and ECDSA (but not ECDSA
itself) have been proven to be existentially unforge-
able against chosen-message attack by Pointcheval and
Stern [82] (see also [14]) under the assumptions that the
discrete logarithm problem is hard and that the hash
function employed is a random function. ECDSA itself
has been proven secure by Brown [15] under the assump-
tion that the underlying group is a generic group and that
the hash function employed is collision resistant.

The possible attacks on ECDSA can be classified as
follows:

1. Attacks on the elliptic curve discrete logarithm prob-
lem.

2. Attacks on the hash function employed.
3. Other attacks.

This section summarizes the current knowledge of these
attacks and how they can be avoided in practice.

8.1 The elliptic curve discrete logarithm problem

One way in which an adversary can succeed is to com-
pute A’s private key d from A’s domain parameters
(q,FR, a, b,G, n, h) and public key Q. The adversary can
subsequently forge A’s signature on any message of its
choice.

Problem definition. The elliptic curve discrete logarithm
problem (ECDLP) is: given an elliptic curve E defined
over a finite field Fq, a point P ∈ E(Fq) of order n, and
a point Q= lP where 0≤ l≤ n−1, determine l.

8.1.1 Known attacks

This subsection overviews the algorithms known for solv-
ing the ECDLP and discusses how they can be avoided in
practice.

1. Naive exhaustive search. In this method, one simply
computes successive multiples of P : P , 2P , 3P , 4P, . . .
until Q is obtained. This method can take up to n
steps in the worst case.

2. Pohlig–Hellman algorithm. This algorithm, due to
Pohlig and Hellman [81], exploits the factorization of
n, the order of the point P . The algorithm reduces the
problem of recovering l to the problem of recovering
l modulo each of the prime factors of n; the desired
number l can then be recovered by using the Chinese
remainder theorem.
The implications of this algorithm are the follow-
ing. To construct the most difficult instance of the
ECDLP, one must select an elliptic curve whose order

is divisible by a large prime n. Preferably, this order
should be a prime or almost a prime (i.e., a large prime
n times a small integer h). For the remainder of this
section, we shall assume that the order n of P is prime.

3. Baby-step giant-step algorithm. This algorithm is
a time-memory trade-off of the method of exhaustive
search. It requires storage for about

√
n points, and its

running time is roughly
√
n steps in the worst case.

4. Pollard’s rho algorithm. This algorithm, due to Pol-
lard [83], is a randomized version of the baby-step
giant-step algorithm. It has roughly the same ex-
pected running time (

√
πn/2 steps) as the baby-step

giant-step algorithm, but is superior in that it requires
a negligible amount of storage.
Gallant et al. [31] and Wiener and Zuccherato [111]
showed how Pollard’s rho algorithm can be sped up
by a factor of

√
2. Thus the expected running time of

Pollard’s rho method with this speedup is (
√
πn)/2

steps.
5. Parallelized Pollard’s rho algorithm. Van Oorschot

and Wiener [80] showed how Pollard’s rho algorithm
can be parallelized so that when the algorithm is run
in parallel on r processors, the expected running time
of the algorithm is roughly (

√
πn)/(2r) steps. That is,

using r processors results in an r-fold speedup.
6. Pollard’s lambda method. This is another random-

ized algorithm due to Pollard [83]. Like Pollard’s
rho method, the lambda method can also be paral-
lelized with a linear speedup. The parallelized lambda
method is slightly slower than the parallelized rho
method [80]. The lambda method is, however, faster
in situations when the logarithm being sought is
known to lie in a subinterval [0, b] of [0, n−1], where
b < 0.39n [80].

7. Multiple logarithms. R. Silverman and Stapleton [97]
observed that if a single instance of the ECDLP
(for a given elliptic curve E and base point P ) is
solved using (parallelized) Pollard’s rho method, then
the work done in solving this instance can be used
to speed up the solution of other instances of the
ECDLP (for the same curve E and base point P ).
More precisely, if the first instance takes an expected
time t, then the second instance takes an expected
time (

√
2− 1)t ≈ 0.41t. Having solved these two in-

stances, the third instance takes an expected time
(
√
3−
√
2)t ≈ 0.32t. Having solved these three in-

stances, the fourth instance takes an expected time
(
√
4−
√
3)t ≈ 0.27t, and so on. Thus subsequent in-

stances of the ECDLP for a particular elliptic curve
become progressively easier. Another way of looking
at this is that solving k instances of the ECDLP (for
the same curve E and base point P ) takes only

√
k

as much work as it does to solve one instance of the
ECDLP. This analysis does not take into account stor-
age requirements.
Concerns that successive logarithms become easier
can be addressed by ensuring that the elliptic param-
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eters are chosen so that the first instance is infeasible
to solve.

8. Supersingular elliptic curves. Menezes et al. [63, 64]
and Frey and Rück [29] showed how, under mild as-
sumptions, the ECDLP in an elliptic curve E defined
over a finite field Fq can be reduced to the ordinary
DLP in the multiplicative group of some extension
field Fqk for some k ≥ 1, where the number field sieve
algorithm applies. The reduction algorithm is only
practical if k is small – this is not the case for most
elliptic curves, as shown by Balasubramanian and
Koblitz [6]. To ensure that the reduction algorithm
does not apply to a particular curve, one only needs
to check that n, the order of the point P , does not di-
vide qk−1 for all small k for which the DLP in Fqk is
tractable – in practice, when n > 2160 then 1≤ k ≤ 20
suffices [3].
An elliptic curve E over Fq is said to be supersin-
gular if the trace t of E is divisible by the charac-
teristic p of Fq. For this very special class of ellip-
tic curves, it is known that k ≤ 6. It follows that the
reduction algorithm yields a subexponential-time al-
gorithm for the ECDLP in supersingular curves. For
this reason, supersingular curves are explicitly ex-
cluded from use in the ECDSA by the above divisibil-
ity check.
More generally, the divisibility check rules out all el-
liptic curves for which the ECDLP can be efficiently
reduced to the DLP in some small extension of Fq.
These include the supersingular elliptic curves and el-
liptic curves of trace 2 (elliptic curves E over Fq for
which #E(Fq) = q−1).

9. Prime-field anomalous curves. An elliptic curve E
over Fp is said to be prime-field-anomalous if
#E(Fp) = p. Semaev [93], Smart [98], and Satoh
and Araki [88] showed how to efficiently solve the
ECDLP for these curves. The attack does not ex-
tend to any other classes of elliptic curves. Con-
sequently, by verifying that the number of points
on an elliptic curve is not equal to the cardinal-
ity of the underlying field, one can easily ensure
that the Semaev–Smart–Satoh–Araki attack does not
apply.

10.Curves defined over a small field. Suppose that E
is an elliptic curve defined over the finite field F2e .
Gallant et al. [31], and Wiener and Zuccherato [111]
showed how Pollard’s rho algorithm for computing
elliptic curve logarithms in E(F2ed) can be further
sped up by a factor of

√
d – thus the expected run-

ning time of Pollard’s rho method for these curves
is (
√
πn/d)/2 steps. For example, if E is a Koblitz

curve (see Sect. 5.3), then Pollard’s rho algorithm
for computing elliptic curve logarithms in E(F2m)
can be sped up by a factor of

√
m. This speedup

should be considered when doing a security analysis of
elliptic curves whose coefficients lie in a small
subfield.

11.Curves defined over F2m ,m composite. Galbraith and
Smart [30], expanding on earlier work of Frey [27, 28],
discuss how the Weil descent might be used to solve
the ECDLP for elliptic curves defined over F2m where
m is composite (such fields are sometimes called
composite fields). More recently, Gaudry et al. [32]
refined these ideas to provide some evidence that
when m has a small divisor l, e.g., l = 4, the ECDLP
for elliptic curves defined over F2m can be solved
faster than with Pollard’s rho algorithm. See also
Menezes and Qu [66] for an analysis of the Weil
descent attack. In light of these results, it seems
prudent to not use elliptic curves over composite
fields.
It should be noted that some ECC standards, in-
cluding the draft ANSI X9.63 [4], explicitly exclude
the use of elliptic curves over composite fields. The
ANSI X9F1 committee also agreed in January 1999 to
exclude the use of such curves in a forthcoming revi-
sion of ANSI X9.62.

12.Non-applicability of index-calculus methods. Whether
or not there exists a general subexponential-time al-
gorithm for the ECDLP is an important unsettled
question, and one of great relevance to the security
of ECDSA. It is extremely unlikely that anyone will
ever be able to prove that no subexponential-time al-
gorithm exists for the ECDLP. However, much work
has been done on the DLP over the past 24 years,
and more specifically on the ECDLP over the past 16
years, and no subexponential-time algorithm has been
discovered for the ECDLP. Miller [67] and J. Silver-
man and Suzuki [96] have given convincing arguments
for why the most natural way in which the index-
calculus algorithms can be applied to the ECDLP is
most likely to fail.

13.Xedni-calculus attacks. A very interesting line of at-
tack on the ECDLP, called the xedni-calculus attack
was recently proposed by J. Silverman [95]. One in-
triguing aspect of the xedni-calculus attack is that
it can be adapted to solve both the ordinary dis-
crete logarithm and the integer factorization prob-
lems. However, it was subsequently shown by a team
of researchers including J. Silverman (see Jacobson et
al. [45]) that the attack is virtually certain to fail in
practice.

14.Hyperelliptic curves. Hyperelliptic curves are a family
of algebraic curves of arbitrary genus that includes el-
liptic curves. Hence, an elliptic curve can be viewed
as a hyperelliptic curve of genus 1. Adleman et al. [1]
(see also Stein et al. [106]) presented a subexponential-
time algorithm for the discrete logarithm problem
in the jacobian of a large genus hyperelliptic curve
over a finite field. However, in the case of elliptic
curves, the algorithm is worse than naive exhaustive
search.

15.Equivalence to other discrete logarithm problems.
Stein [105] and Zuccherato [113] showed that the dis-
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crete logarithm problem in real quadratic congruence
function fields of genus 1 is equivalent to the ECDLP.
Since no subexponential-time algorithm is known for
the former problem, this may provide further evidence
for the hardness of the ECDLP.

8.1.2 Experimental results

The best general-purpose algorithm known for the
ECDLP is the parallelized version of Pollard’s rho algo-
rithm, which has an expected running time of (

√
πn)/(2r)

steps, where n is the (prime) order of the base point P and
r is the number of processors utilized.

Certicom’s ECC challenge. Certicom initiated an ECC
challenge [18] in November 1997 in order to encourage
and stimulate research on the ECDLP. Their challenges
consist of instances of the ECDLP on a selection of el-
liptic curves. The challenge curves are divided into three
categories listed below. In the following, ECCp-k de-
notes a random curve over a field Fp, ECC2-k denotes
a random curve over a field F2m , and ECC2K-k de-
notes a Koblitz curve (see Sect. 5.3) over F2m ; k is the
bitlength of n. In all cases, the bitsize of the order of
the underlying finite field is equal or slightly greater than
k (so curves have either prime order or almost prime
order).

1. Randomly generated curves over Fp, where p is prime:
ECCp-79, ECCp-89, ECCp-97, ECCp-109, ECCp-
131, ECCp-163, ECCp-191, ECCp-239, and ECCp-
359.

2. Randomly generated curves over F2m , where m is
prime: ECC2-79, ECC2-89, ECC2-97, ECC2-109,
ECC2-131, ECC2-163, ECC2-191, ECC2-238, and
ECC2-353.

3. Koblitz curves over F2m , where m is prime: ECC2K-
95, ECC2-108, ECC2-130, ECC2-163, ECC2-238, and
ECC2-358.

Results of the challenge. Escott et al. [25] report on
their 1998 implementation of the parallelized Pollard’s
rho algorithm which incorporates some improvements of
Teske [107]. The hardest instance of the ECDLP they
solved was the Certicom ECCp-97 challenge. For this
task they utilized over 1200 machines from at least 16
countries, and found the answer in 53 days. The total
number of steps executed was about 2× 1014 elliptic
curve additions, which is close to the expected time
((
√
πn)/2≈ 3.5×1014, where n ≈ 297). Escott et al. [25]

conclude that the running time of Pollard’s rho algorithm
in practice fits well with the theoretical predictions. They
estimate that the ECCp-109 challenge could be solved by
a network of 50 000 Pentium Pro 200MHz machines in
about 3 months.

8.1.3 Hardware attacks

Van Oorschot and Wiener [80] examined the feasibil-
ity of implementing parallelized Pollard’s rho algorithm
using special-purpose hardware. They estimated that if
n ≈ 1036 ≈ 2120, then a machine with r = 330000 pro-
cessors could be built for about U.S. $10 million that
could compute a single elliptic curve discrete logarithm in
about 32 days. Since ANSI X9.62 mandates that the pa-
rameter n should satisfy n > 2160, such hardware attacks
appear to be infeasible with today’s technology.

8.2 Attacks on the hash function

Definition. A (cryptographic) hash function H is a func-
tion that maps bit strings of arbitrary lengths to bit
strings of a fixed length t such that:

1. H can be computed efficiently;
2. (Preimage resistance) For essentially all y ∈ {0, 1}t it

is computationally infeasible to find a bit string x such
thatH(x) = y; and

3. (Collision resistance) It is computationally infeasi-
ble to find distinct bit strings x1 and x2 such that
H(x1) =H(x2).

SHA-1 security requirements. The following explains
how attacks on ECDSA can be successfully launched if
SHA-1 is not preimage resistant or not collision resistant.

1. If SHA-1 is not preimage resistant, then an adversary
E may be able to forge A’s signatures as follows. E se-
lects an arbitrary integer l and computes r as the x
coordinate of Q+ lG reduced modulo n. E sets s= r
and computes e = rl mod n. If E can find a message
m such that e= SHA-1(m), then (r, s) is a valid signa-
ture form.

2. If SHA-1 is not collision resistant, then an entity
A may be able to repudiate signatures as follows.
A first generates two messages m and m′ such that
SHA-1(m) = SHA-1(m′); such a pair of messages is
called a collision for SHA-1. She then signs m and
later claims to have signed m′ (note that every signa-
ture form is also a signature form′).

Ideal security. A t-bit hash function is said to be have
ideal security [65] if both: (1) given a hash output, pro-
ducing a preimage requires approximately 2t operations;
and (2) producing a collision requires approximately 2t/2

operations. SHA-1 is a 160-bit hash function and is be-
lieved to have ideal security. The fastest method known
for attacking ECDSA by exploiting properties of SHA-1 is
to find collisions for SHA-1. Since this is believed to take
280 steps, attacking ECDSA in this way is computation-
ally infeasible. Note, however, that this attack imposes an
upper bound of 280 on the security level of ECDSA, re-
gardless of the size of the primary security parameter n.
Of course, this is also the case with all present signature
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schemes with appendix since the only hash functions that
are widely accepted as being both secure and practical are
SHA-1 and RIPEMD-160 (see Dobbertin et al. [22]), both
of which are 160-bit hash functions.

Variable output length hash functions. It is expected that
SHA-1 will soon be replaced by a family of hash func-
tions Hl, where Hl is an l-bit hash function having ideal
security. If one uses ECDSA with parameter n, then one
would useHl, where l = �log2 n�, as the hash function. In
this case, attacking ECDSA by solving the ECDLP and
attacking ECDSA by finding collisions for Hl both take
approximately the same amount of time. The new family
will have output lengths of 256, 384, and 512 bits [76].

8.3 Other attacks

Security requirements for per-message secrets. The per-
message secrets k in ECDSA signature generation have
the same security requirements as the private key d.
This is because if an adversary E learns a single per-
message secret k which was used by A to generate
a signature (r, s) on some message m, then E can re-
cover A’s private key since d = r−1(ks− e) mod n where
e = SHA-1(m) (see step 6 of ECDSA signature gener-
ation). Hence per-message secrets must be securely gen-
erated, securely stored, and securely destroyed after they
have been used.

Repeated use of per-message secrets. The per-message
secrets k used to sign two or more messages should be
generated independently of each other. In particular,
a different per-message secret k should be generated for
each different message signed; otherwise, the private key
d can be recovered. Note that if a secure random or pseu-
dorandom number generator is used, then the chance
of generating a repeated k value is negligible. To see
how private keys can be recovered if per-message se-
crets are repeated, suppose that the same per-message
secret k was used to generate ECDSA signatures (r, s1)
and (r, s2) on two different messages m1 and m2. Then
s1 ≡ k−1(e1 + dr) (mod n) and s2 ≡ k−1(e2 + dr)
(mod n), where e1 = SHA-1(m1) and e2 = SHA-1(m2).
Then ks1 ≡ e1+dr (mod n) and ks2 ≡ e2+dr (mod n).
Subtraction gives k(s1−s2)≡ e1−e2 (mod n). If s1 �≡ s2
(mod n), which occurs with overwhelming probability,
then k ≡ (s1− s2)−1(e1− e2) (mod n). Thus, an adver-
sary can determine k and then use this to recover d.

Vaudenay’s attacks. Vaudenay [109] demonstrated a the-
oretical weakness in DSA based on his insight that the
actual hash function used in the DSA is SHA-1 modulo q,
not just SHA-1, where q is a 160-bit prime. (Since SHA-1
is a 160-bit hash function, some of its outputs, when
converted to integers, are larger than q. Hence, in gen-
eral, SHA-1(m) �= (SHA-1(m) mod q).) This weakness al-
lows the selective forgery of one message if the adversary

can select the domain parameters. This weakness is not
present in ECDSA because of the requirement that n (the
analogous quantity to q in the DSA) be greater than 2160.

Duplicate-signature key selection. A signature scheme
S is said to have the duplicate-signature key selection
(DSKS) property if given A’s public key PA and given
A’s signature sA on a messageM , an adversary E is able
to select a valid key pair (PE , SE) for S such that sA is
alsoE’s signature onM . Note that this definition requires
that SE is known to E. Blake-Wilson and Menezes [11]
showed how this property can be exploited to attack a key
agreement protocol which employs a signature scheme.
They also demonstrated that if entities are permitted to
select their own domain parameters, then ECDSA pos-
sesses the DSKS property. To see this, suppose that A’s
domain parameters areDA = (q,FR, a, b,G, n, h),A’s key
pair is (QA, dA), and (r, s) is A’s signature on M . The
adversary E selects an arbitrary integer c, 1 ≤ c ≤ n−
1, such that t := ((s−1e+ s−1rc) mod n) �= 0, computes
X = s−1eG+ s−1rQ (where e = SHA-1(M)) and G =
(t−1 mod n)X. E then forms DE = (q,FR, a, b,G, n, h)
and QE = cG. Then it is easily verified that DE and QE
are valid and that (r, s) is also E’s signature onM .

If one mandates that the generating point G be se-
lected verifiably at random during domain parameter
generation (using a method akin to those in Sect. 5.2 for
generating elliptic curves verifiably at random), then it
appears that ECDSA no longer possesses the DSKS prop-
erty. It must be emphasized that possession of the DSKS
property does not constitute a weakness of the signature
scheme – the goal of a signature scheme is to be exis-
tentially unforgeable against an adaptive chosen-message
attack. Rather, it demonstrates the importance of audit-
ing domain parameter and public key generation.

Implementation attacks. ANSI X9.62 does not address
attacks that could be launched against implementations
of ECDSA such as timing attacks (Kocher [53]), dif-
ferential fault analysis (Boneh et al. [13]), differential
power analysis (Kocher et al. [54]), and attacks which ex-
ploit weak random or pseudorandom number generators
(Kelsey et al. [48]).

9 Implementation considerations

Before implementing ECDSA, several basic choices have
to be made including:

1. Type of underlying finite field Fq (Fp or F2m).
2. Field representation (e.g., polynomial or normal basis

for F2m).
3. Type of elliptic curveE over Fq (e.g., random curve or

Koblitz curve).
4. Elliptic curve point representation (e.g., affine or pro-

jective coordinates [39]).

There are many factors that can influence the choices
made. All of these must be considered simultaneously in
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order to arrive at the best solution for a particular appli-
cation. The factors include:

– Security considerations.
– Suitability of methods available for optimizing finite
field arithmetic (addition, multiplication, squaring,
and inversion).

– Suitability of methods available for optimizing elliptic
curve arithmetic (point addition, point doubling, and
scalar multiplication).

– Application platform (software, hardware, or firm-
ware).

– Constraints of a particular computing environment
(e.g., processor speed, storage, code size, gate count,
power consumption).

– Constraints of a particular communications environ-
ment (e.g., bandwidth, response time).

Selected references to the literature. The most detailed
and comprehensive reference available on techniques for
efficient finite field and elliptic curve arithmetic is IEEE
1363-2000 [39]. See Gordon [36] for a detailed survey
of various methods for scalar multiplication. For an im-
plementation report of elliptic curve operations over Fp
and F2m , see Schroeppel et al. [92], De Win et al. [112],
Hasegawa et al. [38], Brown et al. [16, 17], and Hankerson
et al. [37].

10 Interoperability considerations

The goals of cryptographic standards are twofold:

1. To facilitate the widespread use of cryptographically
sound and well-specified techniques.

2. To promote interoperability between different imple-
mentations.

Factors affecting interoperability. Interoperability is en-
couraged by completely specifying the steps of the cryp-
tographic schemes and the formats for shared data such
as domain parameters, keys, and exchanged messages,
and by limiting the number of options available to the
implementor. For elliptic curve cryptography and, in par-
ticular, the ECDSA, the factors that can impact interop-
erability include:

1. The number, and types, of allowable finite fields.
2. The number of allowable representations for the elem-

ents of an allowable finite field.
3. The number of allowable elliptic curves over an allow-

able finite field.
4. The formats for specifying field elements, elliptic

curve points, domain parameters, public keys, and sig-
natures.

10.1 ECDSA standards

Among the standards and draft standards which spec-
ify ECDSA, the ones which have been officially ap-

proved by their respective accredited organizations are
ANSI X9.62 [3], FIPS 186-2 [74], IEEE 1363-2000 [39],
and ISO 14888-3 [42]. ECDSA has also been standard-
ized by the Standards for Efficient Cryptography Group
(SECG) [103], which is a consortium of companies formed
to address potential interoperability problems with cryp-
tographic standards.

The salient features of these standards are described
first, and then the standards are compared with regards
to their compatibility with each other. This is followed by
a brief overview of some other standards that specify or
use ECDSA.

Core ECDSA standards.

1. ANSI X9.62 : This project began in 1995 and was
adopted as an official ANSI standard in January 1999.
The primary objectives of ANSI X9.62 were to achieve
a high level of security and interoperability. The un-
derlying field is restricted to being a prime finite
field Fp or a binary finite field F2m . The elements of
F2m may be represented using a polynomial or a nor-
mal basis over F2. If a polynomial basis is desired,
ANSI X9.62 mandates that the reduction polynomial
be an irreducible trinomial, provided one exists, and
an irreducible pentanomial otherwise. To facilitate in-
teroperability, a specific reduction polynomial is rec-
ommended for each field F2m . If a normal basis is
desired, ANSI X9.62 mandates that a specific Gaus-
sian normal basis be used. The primary security re-
quirement imposed on elliptic curves in ANSI X9.62 is
that n, the order of the base point G, be greater than
2160. Elliptic curves may either be selected arbitrar-
ily (subject to the security constraints mentioned in
Sect. 5.1) or verifiably at random (using the procedure
described in Sect. 5.3). ANSI X9.62 defines a manda-
tory octet string representation for elliptic points in
either compressed, uncompressed, or hybrid form. Op-
tional ASN.1 (abstract syntax notation one) syntax
is provided for unambiguously describing domain pa-
rameters, public keys, and signatures.

2. FIPS 186-2 : In May 1997, NIST announced plans to
revise FIPS 186 by including RSA and elliptic curve
signature algorithms. In December 1998, FIPS 186
was revised to include both the DSA and RSA sig-
nature schemes (as specified in ANSI X9.31 [2]); the
revised standard was called FIPS 186-1 [73]. Shortly
after that, in June 1999, NIST presented a list of
15 elliptic curves that were recommended for U.S.
Federal Government use. These curves are compliant
with the ANSI X9.62 formats (and therefore also with
IEEE 1363-2000 formats) and are discussed further in
Sect. 10.2. In February 2000, FIPS 186-1 was revised
to include ECDSA as specified in ANSI X9.62 with the
aforementioned recommended elliptic curves; the re-
vised standard is called FIPS 186-2.

3. IEEE 1363-2000 : This project was formally approved
as an IEEE standard in August 2000. IEEE 1363’s
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scope is very broad and includes public-key crypto-
graphic techniques for encryption, key agreement, and
signatures based on the intractability of integer fac-
torization, discrete logarithms in finite fields, and el-
liptic curve discrete logarithms. It differs fundamen-
tally from ANSI X9.62 and FIPS 186-2 in that it does
not mandate minimum security requirements (e.g.,
lower bounds on the order n of the base point G) and
has an abundance of options. Consequently, 1363-2000
should neither be viewed as a security standard nor as
an interoperability standard, but rather as a reference
for specifications of a variety of techniques from which
applications may select. With regards to the elliptic
curve schemes and, in particular, ECDSA, the under-
lying field is restricted to being a prime finite field Fp
or a binary finite field F2m . The elements of F2m may
be represented with respect to any polynomial or nor-
mal basis over F2. The representation of Fp elements
as integers and F2m elements as bit strings are consis-
tent with ANSI X9.62 and FIPS 186-2 conventions.

4. ISO/IEC 14888-3 [42]: This standard contains high-
level descriptions of some signature algorithms includ-
ing ECDSA, whose description is consistent with that
of ANSI X9.62.

5. SEC 1 [103] and SEC 2 [104]: SEC 1 describes the
ECDSA, and also elliptic curve public-key encryp-
tion and key agreement protocols. A specific list of
recommended elliptic curve domain parameters are
provided in SEC 2. SEC 1 ECDSA is compliant with
ANSI X9.62, except that the former permits some
fields of bitlength less than 160.

Compatibility. Any ECDSA implementation that is con-
formant with FIPS 186-2 is also conformant with SEC 1;
however, the converse is not necessarily true. Any ECDSA
implementation that is conformant with SEC 1 (with
n > 2160) is conformant with ANSI X9.62; however,
the converse is not necessarily true. Furthermore, any
ECDSA implementation that is conformant with
ANSI X9.62 is also conformant with IEEE 1363-2000;
however, the converse is not necessarily true. Finally,
any ECDSA implementation that is conformant with
IEEE 1363-2000 is also conformant with ISO 14888-3, but
the converese is not necessarily true. This conformance
relationship between the five ECDSA standards is de-
picted in Fig. 3.

Other ECDSA standards. ECDSA is being considered for
inclusion in numerous core cryptography and applica-
tions standards. These include:

1. ISO/IEC 15946 [43]: This draft standard specifies var-
ious cryptographic techniques based on elliptic curves
including signature schemes, public-key encryption
schemes, and key establishment protocols. ISO/IEC
15946 allows any finite field, unlike ANSI X9.62,
IEEE 1363-2000, and FIPS 186-2 where the under-
lying field is required to be either a prime field or

ISO 14888-3

IEEE 1363-2000

ANSI X9.62

SEC 1

FIPS 186-2

Fig. 3. Compatibility of FIPS 186-2, SEC 1, ANSI X9.62, IEEE
1363-2000, and ISO 14888-3 specifications of ECDSA

a binary field. It is expected that the ECDSA descrip-
tion will be consistent with that of ANSI X9.62.

2. IETF PKIX (Internet Engineering Task Force Pub-
lic Key Infrastructure X.509-Based): An internet
draft [7] profiles the format of ECDSA domain pa-
rameters and public keys for use in X.509 certificates.
The formats are consistent with those present in
ANSI X9.62.

3. IETF TLS (Internet Engineering Task Force Trans-
port Layer Security): This is the IETF’s adoption
of SSL (secure sockets layer) which provides confi-
dentiality, integrity, and authentication for network
connections. ANSI X9.62 ECDSA is currently being
considered for inclusion as one of the signature algo-
rithms [20].

4. WAP WTLS [110] (Wireless Application Protocol
Wireless Transport Layer Security): Provides trans-
port layer security for an architecture that enables
secure web browsing for mobile devices such as cel-
lular phones, personal device assistants, and pagers.
ANSI X9.62 ECDSA is used for authentication.

10.2 NIST recommended curves

This section presents the 15 elliptic curves that were rec-
ommended (but not mandated) by NIST for U.S. Federal
Government use [74].

Recommended finite fields. There are 10 recommended fi-
nite fields:

1. The prime fields Fp for p= 2192−264−1, p = 2224−
296+1, p = 2256− 2224+2192+296− 1, p = 2384−
2128−296+232−1, and p= 2521−1.

2. The binary fields F2163 , F2233 , F2283 , F2409 , and F2571 .

The factors which influenced the choices of fields were:

(i) The fields were selected so that the bitlengths of
their orders are twice the key lengths of common
symmetric-key block ciphers – this is because ex-
haustive key search of a k-bit block cipher is ex-
pected to take roughly the same time as the solution
of an instance of the elliptic curve discrete logarithm
problem using Pollard’s rho algorithm for an ap-
propriately selected elliptic curve over a finite field
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whose order has bitlength 2k. The correspondence
between symmetric cipher key lengths and field sizes
is given in Table 1.

(ii) For prime fields Fp, the prime moduli p are of
a special type (called generalized Mersenne num-
bers) for which modular multiplication can be car-
ried out more efficiently than in general; see [74]
and [101].

(iii) For binary fields F2m ,m was chosen so that there ex-
ists a Koblitz curve of almost prime order over F2m .
Since #E(F2l) divides #E(F2m) whenever l divides
m, this requirement imposes the condition thatm be
prime.

Recommended elliptic curves. There are three types of el-
liptic curves:

1. Random elliptic curves over Fp.
2. Koblitz elliptic curves over F2m .
3. Random elliptic curves over F2m .

The parameters of these curves are presented below. In
these subsections, parameters are either given in decimal

Table 1. Recommended field sizes for U.S. Federal Government use.

Symmetric cipher Example Bitlength of p Dimension m of
key length algorithm in prime field Fp binary field F2m

80 SKIPJACK [77] 192 163
112 Triple-DES 224 233
128 AES small [75] 256 283
192 AES medium [75] 384 409
256 AES large [75] 521 571

form or in hexadecimal form preceded by ‘0x’. For the bi-
nary fields, the additive and multiplicative identities are
simply denoted by 0 and 1. A method for converting be-
tween polynomial and normal basis representations for
F2m is given at the end of this section.

10.2.1 Random elliptic curves over Fp

The following parameters are given for each elliptic curve:

p The order of the prime field Fp.
seedE The seed used to randomly generate the coeffi-

cients of the elliptic curve using Algorithm 1.
r The output of SHA-1 in Algorithm 1.
a, b The coefficients of the elliptic curve y2 = x3+

ax+ b satisfying rb2 ≡ a3 mod p. The selection
a = −3 was made for reasons of efficiency; see
IEEE 1363-2000 [39].

xG, yG The x and y coordinates of the base pointG.
n The (prime) order ofG.
h The co-factor.
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10.2.2 Koblitz elliptic curves over F2m

The parameters of the (same) Koblitz curve and base
point are given in both normal basis representation (in-
dicated by FR) and in polynomial basis representation
(indicated by FR2). A method for converting between
the two representations is given at the end of this sec-
tion. The following parameters are given for each Koblitz
curve:

m The extension degree of the binary field F2m .
FR An indication of the representation used for

the elements of F2m in accordance with ANSI
X9.62.

a, b The coefficients of the elliptic curve y2+xy =
x3+ax2+ b.

xG, yG The x and y coordinates of the base point G.
n The (prime) order of G.
h The co-factor.
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FR2 An indication of the second representation
used for the elements of F2m in accordance
with ANSI X9.62.

a2, b2 The coefficients of the (same) elliptic curve
using representation FR2.

xG2, yG2 The x and y coordinates of the (same) base
point G using representation FR2.

10.2.3 Random elliptic curves over F2m

Each random elliptic curve over F2m was generated using
Algorithm 3. The output of SHA-1 was interpreted as an
element of a binary field represented with a Gaussian nor-
mal basis. The parameters of the (same) elliptic curve and
base point are given in both normal basis representation



58 D. Johnson, A. Menezes, S. Vanstone: The Elliptic Curve Digital Signature Algorithm (ECDSA)

(indicated by FR) and in polynomial basis representation
(indicated by FR2). A method for converting between the
two representations is given at the end of this section. The
following parameters are given for each elliptic curve:

m The extension degree of the binary field F2m .
FR An indication of the representation used for

the elements of F2m in accordance with ANSI
X9.62.

seedE The seed used to randomly generate the co-
efficients of the elliptic curve using Algo-
rithm 3.

a, b The coefficients of the elliptic curve y2+xy =
x3+ax2+ b.

xG, yG The x and y coordinates of the base point G.
n The (prime) order of G.
h The co-factor.

FR2 An indication of the second representation
used for the elements of F2m in accordance
with ANSI X9.62.

a2, b2 The coefficients of the (same) elliptic curve
using representation FR2.

xG2, yG2 The x and y coordinates of the (same) base
point G using representation FR2.

10.2.4 Converting between polynomial and normal basis
representations

This section describes one method, utilizing multipli-
cation by a change-of-basis matrix, for converting the
elements of F2m represented with respect to a particu-
lar polynomial basis to the elements of F2m represented
with respect to a particular normal basis, and vice versa.
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The change-of-basis matrices for converting between the
polynomial basis and normal basis representations of the
fields F2163 , F2233 , F2283 , F2409 , and F2571 are presented.
There are other methods available for performing the con-
versions; e.g., see Kaliski and Yin [47].

Normal basis to polynomial basis conversion. Suppose
that α is an element of the field F2m . Let a be its
bit string representation with respect to a given nor-
mal basis, and let a be its bit string representation

with respect to a given polynomial basis. Then a can
be derived from a via the matrix computation a= aA,
where A is an m×m binary matrix. The matrix A,
which depends only on the bases, can be computed eas-
ily given its top row R as follows. Let β be the elem-
ent of F2m whose representation with respect to the
polynomial basis is R. Then the rows of A, from top
to bottom, are the bit strings representing the elem-
ents β, β2, β2

2
, . . . , β2

m−1
with respect to the polynomial

basis.
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The following gives the top row R for each conversion
from the normal bases indicated by FR to the polynomial
bases indicated by FR2.

Polynomial basis to normal basis conversion. Suppose
that α is an element of the field F2m . Let a be its
bit string representation with respect to a given nor-
mal basis, and let a be its bit string representation
with respect to a given polynomial basis. Then a can
be derived from a via the matrix computation a = aB,
where B is an m×m binary matrix. The matrix B,
which depends only on the bases, can be computed eas-
ily given its second-to-last row S as follows. Let β be
the element of F2m whose representation with respect
to the normal basis is S. Then the rows of B, from top

to bottom, are the bit strings representing the elem-
ents βm−1, βm−2, . . . , β2, β, 1 with respect to the normal
basis.

The following gives the second-to-last row S for each
conversion from the polynomial bases indicated by FR2
to the normal bases indicated by FR.

11 Conclusions

ECDSA is now an ANSI, IEEE, NIST, and ISO stan-
dard and is being standardized by several other standards
organizations. This paper described the ANSI X9.62
ECDSA, presented rationale for some design decisions,
and discussed related security, implementation, and in-
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teroperability issues. We hope that this paper con-
tributes to an increased understanding of the properties
of ECDSA, and facilitates its use in practice.
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