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Abstract
The privacy risks of processing human locations and their trajectories have been demonstrated by a large number of studies and
real-world incidents. As a result, many efforts are aimed at making human location trajectories available for processing while
protecting the privacy of individuals. A majority of these, however, are based on concepts and evaluation methodologies that
do not always provide convincing results or obvious guarantees. The processing of locations and trajectories yields benefits in
numerous domains, frommunicipal development over traffic engineering to personalized navigation and recommendations. It
can also enable a variety of promising, entirely new applications, and is, therefore, the focus of many ongoing projects. With
this article, we describe common trajectory types and representations and give a classification of meaningful utility measures,
describe risks and attacks, and systematize previously published privacy notions. We then survey the field of protection
mechanisms, classifying them into approaches of syntactic privacy, masking for differential privacy (DP), and generative
approaches with DP for synthetic data. Key insights are that syntactic notions have serious drawbacks, especially in the field
of trajectory data, but also that a large part of the literature that claims DP guarantees is considerably flawed. We also gather
evidence that there may be hidden potential in the development of synthetic data generators, probably especially using deep
learning with DP, since the utility of synthetic data has not been very satisfactory so far.

Keywords Privacy-preserving data publishing · Trajectory privacy · Syntactic notions · Differential privacy · Synthetic data ·
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1 Introduction

Trajectory data mining and analysis have emerged as a sig-
nificant field of study owing to their extensive range of
applications [76]. Beyond their potential to enhance every-
day life through navigation and route recommendations,
these processes have found diverse institutional data-analytic
applications in both public and private sectors. The remark-
able growth of trajectory analysis owes to the ability of
personal devices (e.g., wearables, smartphones [7]) and nav-
igation systems to collect, process, and analyze data with
accuracy, coupled with their pervasive availability, all of
which have been made possible by recent technological
advancements. The domains benefiting from trajectory anal-
yses span trafficmanagement, urban planning, transportation
systemdesign, routing advice, and homeland security, among
others [50].

While data analysis brings about economic and societal
benefits, concerns related to privacy risks are on the rise
[95, 112]. Thus, safeguarding data subjects and minimiz-
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ing potential harm inflicted upon them assume paramount
importance. Consequently, legal frameworks in the European
Union and other regions explicitly restrict the collection,
processing, and sharing of personal data. For instance, the
European General Data Protection Regulation (GDPR) man-
dates the anonymization of personal data as ameans to bypass
processing restrictions [43]. Therefore, ensuring rigorous pri-
vacy preservation when analyzing location trajectories is not
only a matter of best practice but also a legal obligation.

In essence, trajectories are sequences of timestamped
locations, such asGPS coordinates.While seemingly innocu-
ous with regard to user privacy, trajectories can inadvertently
expose precise home locations and even reveal accurate
behavioral patterns [105]. They readily disclose specific
activities and their durations for individual users. By exploit-
ing this information, one can infer circumstances and trends
that impact sensitive aspects of an individual’s life, includ-
ing health status, religious beliefs, social relationships, and
sexual preferences [23].

In this paper, we investigate the feasibility of publishing
complete trajectory databases while ensuring privacy guar-
antees for this purpose. To achieve this, the field of statistical
disclosure control (SDC) is employed, aiming to prevent
the identification of confidential information with specific
individuals when releasing data [66]. The objective is to
transform a raw database into a sanitized version thereof that
reduces the risk of disclosure while preserving the utility of
the data, i.e., ensuring that statistical analyses yield similar
results in both the original and sanitized databases. However,
adapting SDC techniques to protect human mobility trajec-
tories presents considerable challenges, as discussed in the
following sections. Prominent privacy metrics in the field,
such as k-anonymity [102] or ε-differential privacy (ε-DP)
[38], are not immediately applicable to sequential and high-
dimensional data.

The uniqueness of human traces implies that adversaries
can easily attack seemingly protected data with minimal
background knowledge about the individuals, such as their
home orworkplace locations [29, 130]. In this sense, deMon-
tjoye et al. [31] show that knowing only four spatio-temporal
points at low resolution is sufficient to uniquely identify 95%
of individuals in a large-scale database. Moreover, through
the use of auxiliary public information, such as road maps,
speed limits, or simple spatio-temporal correlation models,
a sanitized trajectory can be reconstructed within an obfus-
cated area [10, 125]. These factors contribute to inadequate
privacy protection. Although numerous proposals exist in the
literature, most suffer from evident deficiencies, including
vulnerabilities to simple attacks or compromised utility due
to the loss of information contained in trajectory data or the
publication of impossible trajectories.

Last but not least, many applications involving trajec-
tory data analysis require repeated computations as they

often monitor specific conditions, such as traffic. However,
regularly publishing updated versions of a database while
preserving privacy adds further complexity to the challenge.
Each publication introduces some degree of information
leakage about the individuals in the database, making it dif-
ficult to ensure that combinations of published sanitized data
will not compromise privacy at any given moment.

The aforementioned issues raise significant concerns
about the current state of the art in trajectory privacy. They
cast doubt on the effectiveness of existing technologies in
guaranteeing individuals’ privacy and achieving an accept-
able balance between privacy and data utility. Consequently,
a comprehensive systematization of use cases, limitations,
and misconceptions in the field is imperative, along with
the establishment of a standardized classification that aids
researchers in selecting appropriate privacymetrics, develop-
ing suitable mechanisms, and adequately measuring utility.

Contributions and Related Work: This paper presents a com-
prehensive and systematic analysis of the state of the art
in privacy-preserving trajectory publication, which aims to
publish trajectory databases that guarantee privacywhile pre-
serving utility. Our analysis explores two broad techniques
for achieving privacy protection: masking, which involves
modifying the original database [66], and synthetic data
generation, which generates new data preserving certain sta-
tistical properties of the original database [66]. In this paper,
we extend our previous work [90], in which we only covered
DP masking techniques, by adding novel systematizations
of two large families of trajectory protection mechanisms:
syntactic masking mechanisms, based on k-anonymity and
its extensions (syntactic privacy notions), and DP synthetic
data generation. This version also includes the analysis of
DP masking mechanisms from our original publication [90]
for completeness. Overall, in this paper, we completely cover
the private publication of entire trajectory databases under
formal privacy notions by reviewing 38 mechanisms in the
literature, doubling the number of mechanisms reviewed in
our previous work [90]. Note that we do not cover orthogonal
topics such as the publication of aggregated statistics in this
systematization.

The review and analysis of privacy technologies for tra-
jectory data in this paper include the following sections:
preliminary concepts, which cover utility metrics and attacks
(Sect. 2); privacy notions (Sect. 3); syntactic masking mech-
anisms (Sect. 4); DP masking mechanisms (Sect. 5); and DP
mechanisms for the generation of synthetic data (Sect. 6).
The contributions of this paper towards the systematization
of knowledge in the field are as follows:

– A systematic analysis of how the utility of sanitized
trajectory data can be measured, including a novel clas-
sification of utility metrics.
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– A review of syntactic privacy notions and DP adaptations
and granularity variations proposed for trajectory data.
The paper also discusses and recompiles the challenges
and limitations of DP as a privacy notion in the context
of trajectories.

– Proposals of novel taxonomies of privacy-protecting
technologies for trajectory data, along with systematic
surveys of the state of the art and recent advances in the
literature. The taxonomies cover:

– syntactic masking mechanisms, along with an
examination of the common structure and techniques
they employ;

– DP masking mechanisms, including mathematical
proofs demonstrating that a notable percentage of the
algorithms erroneously claim to satisfy DP; and

– synthetic trajectory generation with DP, exploring
of the current methods’ open problems.

In the sequel, we briefly describe the main differences
between our work and previous surveys in this field. Pri-
mault et al [99] provide a deep analysis of location-privacy
protection mechanisms, including a division of the protec-
tion mechanisms into online and offline methods. However,
the authors do not cover trajectory privacy extensively since
their main focus is on the more general field of location pri-
vacy. Note that trajectory data is inherently more complex
than simple location data: trajectories are not only com-
prised of visited locations but also include correlations and
connections between them. In consequence, attacks, privacy-
protectionmechanisms, and limitations are notably different,
even though these data types share a close relationship. In
addition, Portela et al. [97] focus on trajectory anonymiza-
tion mechanisms under syntactic notions, although they do
not explore those under DP. Fiore et al [44] offer a thorough
overview and classification of attacks on trajectory databases
and discuss privacy-preserving mechanisms. However, they
do not study the various privacy and utility metrics available
in the literature for trajectory protection, nor the limitations
of DP for trajectory data. More recently, Jin et al. [69] con-
duct a survey with an analysis and empirical evaluation of
trajectory-privacy models to quantify their privacy and util-
ity, but do not consider DP mechanisms in depth.

In particular, our work also explores DP masking mech-
anisms for private database publication, which the afore-
mentioned surveys do not fully cover. Other works focus
on orthogonal topics, such as location privacy (without dis-
cussing trajectories) [68].

2 Preliminaries

2.1 Trajectories and their data sets

Trajectories correspond to a path or trace generated or drawn
by a moving object, usually referred to as an individual or
user (we will refer as such independently on what they are,
e.g., a person walking, or a car carrying various people).

Different types of trajectories exist. Raw trajectories con-
sist of an ordered sequence of spatio-temporal points T =
〈p1, . . . , pm〉, also written as T = p1 → · · · → pm , where
|T |:=m denotes the length of T and pi = (xi , yi , ti ) corre-
sponds to the location (xi , yi ) at timestamp ti . Trajectories
respect the temporal order (i.e., ti+1 must happen strictly
after ti ), which ensures there are no movements back in time,
and no one is in two different locations at once. The term
subtrajectory usually refers to a subset of a trajectory, includ-
ing those formed by non-necessarily consecutive locations,
while n-grams (also called subsequences) are subtrajectories
formed by n consecutive spatio-temporal points. The prefixes
of a trajectory T = 〈p1, . . . , pm〉 are the n-grams (n ≤ m)
starting at p1, i.e., 〈p1, . . . , pn〉.

Semantic trajectories are alternative representations
where every spatio-temporal point contains additional seman-
tic meaning, such as a name and description (e.g., “coffee
shop” or “work”), possibly augmented with additional infor-
mation such as the number of visitors or opening hours.
In this latter case, locations are called point of interest
(POI). More complex trajectories, called multiple aspect
trajectories [89], additionally consider any possible type
of recordable information, like weather variations, trans-
portation mode, or the current heart rate or emotions of
individuals. Simplified trajectories havebeen suggested, such
as T = 〈(x1, y1), . . . , (xm, ym)〉, where time is omitted and
only the order of locations is retained [18, 19, 57, 61].

Wewill refer to the spatial and temporal aspects as dimen-
sions of a trajectory, which are both commonly represented
as numerical data. Semantic locations additionally have a
categorical dimension.

Trajectory databases consist of one or multiple trajecto-
ries from individuals, usually over a shared region. We can
represent them as collections of rows, where each row con-
tains the data of a single individual:

D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T1 : p(1)
1 p(1)

2 · · · p(1)
m1

T2 : p(2)
1 p(2)

2 · · · p(2)
m2

...
...

...

Tr : p(r)
1 p(r)

2 · · · p(r)
mr

,

where Ti denotes a trajectory belonging to user i . The length
of each trajectory is denoted here bymi and depends on each
user. In some contexts, the same user can contribute multiple
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trajectories to the database. In this latter case, i is just a label
of the trajectory and does not necessarily relate to a user.

Differences in structure between such databases exist.
Some consist only of trajectories of equal length, and oth-
ers assume that trajectories are periodically recorded (i.e.,
every trajectory has a spatio-temporal point for every time
interval) [9, 40]. Further types include those with irregular
recordings, with spatio-temporal points only included when
the user is at a relevant location [13].

A particular scenario in trajectory publishing is the data-
stream scenario, where a flow of information is received and
published periodically. Therefore, a streaming database can
be viewed as a sequence D = {S1, . . . , St , . . . }, where each
update Si represents the information corresponding to time i :

D =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

S1 S2 · · ·
T1 : p(1)

1 p(1)
2 · · · p(1)

m1

T2 : p(2)
1 p(2)

2 · · · p(2)
m2

...
...

...

Tr : p(r)
1 p(r)

2 · · · p(r)
mr

.

The database at time t is denoted Dt = {S1, . . . , St } and
called a stream prefix. Note that since some databases consist
of non-periodically recorded trajectories, “gaps” in this rep-
resentation are possible. Hence, Ti may not have a location
for time t , and remain empty in row i of St .

The structure of trajectory data and databases makes its
protection exceptionally difficult. Long trajectories cause
problems due to the curse of dimensionality [4, 35], and
the sparseness and uniqueness of trajectories can aid in re-
identification. Another risk factor is the semantic meaning of
points since this information can be enough to expose indi-
viduals.

A notorious statistical property of trajectory databases
is the presence of correlation. Two conceptually different
correlations are present in trajectory data (see also Fig. 1):
Correlations between trajectories refers to the case when
multiple user’s records are correlated. In families’ trajecto-
ries, for instance, we are bound to observe high correlations
between their corresponding records as they engage in shared
activities. Furthermore, an extreme case is regular repetitions
of trajectories contributed by the same individual. Corre-
lations between attributes refers to the correlation in the
data a single user contributes to the database. In the case
of trajectories, it refers to the correlations within the spatio-
temporal and semantic dimensions. A high-correlation level
exists between close timestamps due to the laws of physics,
route distribution, or social patterns. It is also termed auto-
correlation for time series data. We present in Sect. 3.2.3 the
implications of correlation in privacy.

Fig. 1 Two types of correlation in a trajectory database. In the green
ellipse, we see correlations between users living in the same house
so that their initial steps are the same. In the blue ellipse, we see the
autocorrelation of the user trajectory

2.2 Utility metrics

Privacy mechanisms aim to balance two conflicting goals:
strong privacy and high utility. Typically, these mechanisms
introduce obfuscation and remove detail in the data, so
improving privacy usually comes with a reduction in utility.
Measuring the utility and privacy provided by an algorithm
is laborious since trajectory data are very complex, and the
presence of semantic values can complicate its study.

In this section, we explore utility metrics to assess pro-
tected trajectories and provide a new classification. We
identify two major goals a sanitization mechanism can aim
to preserve: data and statistics. Here, we understand data
preservation as how much of the output data correspond to
the original one (i.e., remains unaltered after sanitization);
and statistic preservation as the preservation of specific prop-
erties of the database (e.g., numbers of visits to important
locations), usually extracted from it with query functions.
Our classification thus follows this idea, dividing into data
and statistics preservation. Since assuring data realism is a
significant utility condition, we also introduce the orthogo-
nal category of realism assurance. The right-most columns
of Tables 3, 4 and 5 show the types of metrics used for mech-
anisms explored in this work.

2.2.1 Data preservation

These metrics measure utility based on the number or pro-
portion of data that is left unaltered after sanitization, or the
extent to which it is changed. Technically speaking, not mod-
ifying the database would yield the highest possible utility,
obviously at the cost of total privacy loss. We further dis-
tinguish two subclasses for data preservation: total, which
looks at how much data remains exactly the same; and close,
which instead measures some distance since, typically, per-
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turbing trajectories slightly (e.g., moving locations by a few
meters) does not strongly hinder the utility of the mechanism
in question.

Location preservation [36] is a good example of total data
preservation: one maintains high utility when the protected
trajectories include many locations present in the original
data and not fake ones. Similarly, some proposals evaluate
utility as the number or percentage of discarded trajectories
[36, 37] or locations [20, 36, 93, 117], or as the size of the
restricted area of the map with perturbation [122].

A popular way [12, 22, 28, 36, 60, 64, 78, 82, 92, 104,
140] to quantify close data preservation is by using similar-
itymeasures, which output a value representing howdifferent
two trajectories are. For example, in mechanisms such that
a one-to-one correspondence between the original and san-
itized trajectories exists, we can use similarity measures to
compute the average values between each pair. Similarity
measures are also frequently used within the privacy mech-
anism to, for example, determine which trajectories should
be clustered and merged, considering it preferable to clus-
ter the most similar ones. We previously explored in depth
existing similarity measures [90], and we provide a quick
recompilation in Table 1. There are also other compilations
of trajectory similarity functions [86, 107, 111, 114, 119].
Traffic management is one exemplary use case that can ben-
efit from this group of metrics.

Another popular utility metric is to compare the size of
anonymized regions or the final resolution of sanitized data
with respect to the original [2, 3, 54, 91, 98, 117]. Other close
metrics includemap inference metric [122], which infers the
geometry of the road maps drawn by trajectories between the
original and sanitized databases. Preservation range query
[28] represents the percentage of obfuscated locations in a
data set that remain at a distance no greater than δ from their
original counterpart.

2.2.2 Statistics preservation

In contrast with the previous categories, this one does not
look at the preservation of the data comprising the database,
but at specific extractable information. These statistics are
extracted using query functions, and therefore the relative
error query function [2, 3, 12, 18, 19, 33, 34, 36, 57–59,
124, 139] is frequently employed to study their preservation.
Given the query q, it computes the difference between the
outputs when using the original database D and the sanitized
D′ as

error(q) = |q(D) − q(D′)|
max{q(D), b} ,

where b is the sanity bound used for extremely selective
queries (usually chosen to be equal to 0.1% or 1% of |D|).

Since these queries can be defined to extract any informa-
tion from the database, we find multiple diverse examples
in the literature. Some of the most common ones relate to
visitor numbers and location popularity. For example, fre-
quent sequential pattern mining looks at the k most common
subtrajectories in the original and sanitized database, either
by seeing if they match over the databases [3, 18, 19, 34,
57–59, 61, 96, 98, 138] or by comparing the counts of such
[12, 19, 122]. Similarly, count queries [18, 19, 34, 57–59, 82,
139] can be utilized to check whether the number of visitors
to locations is retained or not. Additionally, some metrics
tackle the preservation of number of trajectories [82], most
visited locations [34, 58, 84], hotspots [28], location popu-
larity [122], frequency over roads [37], flow density [12, 93,
122], being inside/outside a region [2, 3, 36, 60, 93], the start
and end points distribution (trip error [34, 57–59, 61, 122])
and home and work distributions [54].

Another popular metric type is trajectory length preser-
vation [34, 54, 57–59, 61, 84, 122, 141]. Three variations
have been suggested in the literature, varying in usefulness:
preservation of the total travel distance (i.e., the sum of the
physical length between locations), the trajectory diameter
(i.e., the maximum physical length between any two of its
points), and the total number of points in the trajectory.

These metrics are of special interest for commercial pur-
poses, where specific information on trajectories is needed
rather than whole trajectories. For example, vendors may be
interested in placing their advertising banners on the busiest
streets, and city hall may be interested in the distribution of
start and end points to decide where to build parking lots.
Note this information can be preserved and extracted from
sanitized trajectories, without being similar to the original
ones in all other respects.

2.2.3 Realism assurance

Finally, we introduce this category that measures the abil-
ity of an algorithm to output realistic values. It is motivated
by the fact that some methods produce geospatial inconsis-
tencies (i.e., with points in illogical places) or unreachable
points (i.e., a consecutive pair of locations is unattain-
able in the given time [36]). Accordingly, reachability
is a straightforward guarantee of realism, which can be
checked by measuring the distance between consecutive
points (xi , yi , ti ), (xi+1, yi+1, ti+1) to see if they are indeed
reachable, i.e., if d((xi , yi ), (xi+1, yi+1)) ≤ v(ti+1 − ti )
where v is the maximum velocity of the user. Similarly, the
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previouslymentionedmap inferencemetric [122] canbeused
to check for geospatially incoherent points.

Observe that there currently are only a few metrics in the
literature that fall into this last category, but we believe that
checking or ensuring realism is essential when providing
privacy mechanisms. Hence, we introduce this category to
demonstrate this notable gap.

2.2.4 Conclusions on utility metrics

To sumup,mechanisms should naturally achieve goodutility,
and one needs to be aware that some metrics are better suited
for different use cases. Notably, there is no universal utility
metric for all applications, and therefore a single proposal
can use multiple ones in its evaluation to widen its scope.

Data-preservation metrics are excellent for scenarios
where the whole trajectory is considered, such as traffic
management. Total data preservation is usually a stronger
statement than its close counterpart; however, it can some-
times provide disproportionately poor values for unsuitable
mechanisms. For example, if looking at location preserva-
tion, a total-preservation metric will output “no utility” given
a mechanism that perturbs the coordinates of all points (such
as in some DP mechanisms). In such cases, it may be more
suitable to use a close variant instead. Statistics-preservation
metrics are convenient for publishing information like pop-
ular locations or sequences, but they do not reflect the
preservation of the whole structure of trajectories.

Assuring that the database contains realistic values is
essential. Beyond reflecting good utility, it may furthermore
complicate attacks such as those that aim at reconstructing
original trajectories.

2.3 Risks and attacks

Having explored howwe canmeasure the utility of trajectory
data, we now discuss possible privacy risks. Themain goal of
trajectory privacy is to protect against risks and threats when
unintended actors get access to the data.

We illustrate the tangible risks associated with a lack of
privacy protection in trajectory data in the following exam-
ples. TheNewYork City taxi data set, which included around
173 million taxi trips and the corresponding tips [115], was
published in 2013. Since then, plenty of attacks on this
data, using background knowledge, quickly appeared: Tockar
[113, 115] used paparazzi photos to link celebrities’ identi-
ties to the corresponding trip in the data discovering where
they went, which establishments they visited, and how much
they tipped. Deneau [45] figured out that one could link stops
with daily praying time to identifyMuslim cab drivers. These
examples are excellent representatives of two important pri-
vacy risk classes [66], identity and attribute disclosure. We

review them in the context of trajectory data in the following
subsections.

Furthermore, sensitive location disclosure represents a
risk that does not refer to leaking private information relat-
ing to users, but rather to locations. Disclosure examples are
the discovery of secret Israeli and US army bases through
the publication of running trails recorded by Strava through
soldiers’ mobile apps [55, 62].

To show the privacy risks in human traces, we expose
the possible attacks and threats of the literature. The attacks
correspond to the major classification of Fung et al. [48],
adapted by Jin et al. [69] (adding group linkage attacks), with
our extension of reconstruction and prediction attacks. We
also provide examples, some of which have previously been
extensively surveyed [44, 69].

2.3.1 Identity disclosure

Identity disclosure is the primary risk: It happens when an
adversary is able to assign an individual to their correspond-
ing record or records in a database. Such assignation may be
possible from the database alone (if it directly contains iden-
tifying information) by combining the database with external
knowledge or auxiliary data, or by probabilistic inference.

Record linkage attacks (or identity linkage attacks)
attempt to infer individuals’ identities. Re-identification
attacks [87] are the simplest form of this type. They uti-
lize auxiliary information, i.e., information exposed through
other means and thus available to the adversary. In particular,
personal context linking attacks [56, 125] use known infor-
mation about a victim (e.g., they have been to a coffee shop)
to discover their trajectory in the database.

Some record linkage attacks aim to discover uniquely
identifiable traits to determine the victim’s path. In the case
of trajectories, little information suffices to do so. For exam-
ple, knowing four locations of an individual is sufficient
to uniquely identify 95% of trajectories [31], i.e., using
background information to successfully reduce the possible
trajectories corresponding to the victim to exactly one. Fur-
thermore, if using highly accurate GPS data, two points are
proven to be sufficient to uniquely identify all individuals in
the database [101].

Attack models can be designed to use location probabil-
ity distributions, mobility preferences and patterns, exposed
locations, and physical encounters in order to detect the
unique traitsmore successfully [44]. Along this line, DeMul-
der et al [32] show that human movement is characterized by
strong regularities and can link 80%of users in real databases.
Freudiger et al. [47] exploit the uniqueness of home andwork
locations to design an attackmodel that identifies trajectories
of real databases. Rossi et al [101] show that one can uniquely
identify up to 95% of users when using movement data such
as traveled distance, speed, and direction. In addition, loca-
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tion traces can reveal speed and acceleration patterns that
can identify the type of vehicle that generated the trajectory
(car, truck, or motorcycle) [135]; and knowing the physical
dimension of the vehicle can also help identify trajectories
in vehicular data [42]. It is also easier to single out indi-
viduals in trajectories drawn by location systems of mobile
devices usingminor information such as the size of the users’
social network [136] or their writing style in posts attached
to locations [52]. We refer the interested reader to Fiore et
al’s survey [44] for a comprehensive list of similar attacks.

Membership attacks (a generalization of table attacks
[48, 69] for non-tabular data) aim to discover whether or
not a specific individual is present in the database, regard-
less of whether their records can be directly identified. For
example, if the database shows one trajectory leaving a home
location, then an adversary can deduce an inhabitant par-
ticipated in the database. Learning merely the presence or
absence of an individual in a trajectory database can be a
direct privacy threat (e.g., consider a database of trajecto-
ries with traffic violations). Well-known examples include
adaptations of membership linkage attacks and membership
inference attacks in trajectory data [100, 108].

2.3.2 Attribute disclosure

The second risk is attribute disclosure: An adversary learns
additional information about the previously unknown indi-
vidual without necessarily identifying their exact record in
the database. In trajectory data, this includes thewhereabouts
and temporal information (e.g., when no one is at home). The
disclosure of the user’s spatial and temporal information
[125] is sensitive itself but can also be indirectly damag-
ing, since it may be associated with semantic knowledge and
values. Presence at a hospital for extended amounts of time
allows adversaries to infer a user’s health status; while being
at a place and time where a specific protest is happening may
leak information about a user’s political opinions.

In attribute linkage attacks, adversaries aim to learn
attributes by relying on their ability to unambiguously assign
the victim to a set of records that share the same revealing
attribute [48], or an exceptional distribution of attributes.
In the example of Muslim taxi drivers mentioned above,
the attacker inferred an attribute: the victims’ religion, even
though they did not identify anyone’s trajectory. Sui et
al [109] observe that 40% of the records that cannot be
immediately identified in their data and seem anonymous
were instead homogeneous and directly disclose the shared
attribute.

Users’ most sensitive locations are another attribute that
can be exposed, for example, point-clustering algorithms that
can deterministically find them already exist [142]. Gambs et
al [49] demonstrate how this violates the privacy of sensitive
attributes.

Group linkageattacks [69] discover connections between
individuals. Relationships are particular attribute cases, and
both social links and kinship can be inferred from corre-
lated movement [23]. Their disclosure may entail different
threats. Predisposition to hereditary diseases, communica-
tion between dissidents, homophily in friendships sharing
religious and political views, or homosexual partnerships in
certain jurisdictions are just a few prominent examples.

Another attack type is probabilistic attacks, which aims
to improve the probabilistic belief on the sensitive informa-
tion of a victim after accessing the published data [48]. One
typical example is the Bayesian inference attack, where the
attacker adversary the difference between prior and posterior
beliefs about sensitive information, succeeding in the attack
when this difference is high (or the posterior exceeds a cho-
sen threshold). We describe in more detail its implications to
trajectory data in Sect. 3.2.3.

Reconstruction attacks aim at rebuilding trajectories in
the database. For example, Buchholz et al [10] introduce a
reconstruction algorithm that can construct trajectories closer
to the original data than the perturbed one. Similarly, filter-
ing attacks [120] also aim at reducing noise added. On the
other hand, Xu et al. [128] develop an iterative attack that can
exploit the uniqueness and regularity of human mobility to
step-by-step recover individual’s trajectories from mobility
data without using any background knowledge.

Finally, we point out that the possibility of predicting
a user’s locations (prediction attacks) is also a threat,
since attackers can discover the user’s destination, probably
even before they arrive. Additionally, adversaries can infer
whether users will be home or not, and plan, e.g., a robbery.
As an instance of this, Song et al. [105] demonstrate suc-
cessful movement pattern predictions [49] with up to 93%
average chance to correctly predict mobility behavior.

3 Privacy notions

There are twowell-known families of privacy notions in SDC
[66]: syntactic and semantic notions [24]. Syntactic notions
specify conditions a sanitized database should exhibit; while
semantic notions1 describe guarantees that the mechanism
chosen for releasing the data should satisfy [30].

Algorithms for trajectory anonymization have been pro-
posed based on these two families. These are essentially
represented by the formal privacy guarantees of k-anonymity
(syntactic) and ε-DP (semantic). The former assures the pri-

1 Do not confuse “semantic privacy notions” with “semantic mean-
ing” of a location. The term “semantic privacy” comes from the related
cryptographic notion of semantic security, while the term “semantic
meaning” of a location relates to its real-world definition and aspects
(i.e., the location is a restaurant).
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vacy principle of indistinguishability [131], under which
an attacker cannot distinguish an individual from a group,
defending then against record linkage attacks. DP, on the
other hand, assures the principle of uninformativeness [79],
i.e., an attacker cannot considerably improve on their prior
knowledge after accessing the database, and protects against
probabilistic attacks. These notions have then been adapted
to trajectory data, introducing new variations, such as (k, δ)-
anonymity [2] and �-trajectory privacy [13].

There are also other mechanisms defined exclusively for
trajectory anonymization that do not achieve any formal
notion of privacy. Fiore et al. [44] groups them undermitiga-
tion, which aims at reducing privacy risks without pursuing
any well-known privacy principle. These include [44, 69,
122]: obfuscation (adding noise), cloaking or path confu-
sion (increasing sample coarsening; or selectively removing
points), segmentation (splitting trajectories), swapping (seg-
menting but reconnecting trajectories of different users),
mix-zones (swapping but restricted to specific regions),
dummy (creating synthetic trajectories), time perturbation
(making the speed constant), and heat-map modification. We
do not explore them in this paper because they do not verify
any formal privacy notion.

In general, semantic notions can provide stronger privacy
guarantees than syntactic notions because they do not require
assumptions about the adversary’s knowledge. Further bene-
fits over syntactic notions are, for instance, that the sequential
composition in DP holds: Specific subsequent publications
of the same data yield well-defined leakage that can be con-
trolled. We hence devote the greater part of the paper to
semantic notions under DP, but still cover syntactic notions.

3.1 Syntactic notions under k-anonymity and its
extensions

In this subsection, we give an overview of the syntactic
notions proposed for trajectory data.

3.1.1 Base notions

Thenotionof k-anonymity [102, 103] and its extensions, such
as l-diversity [85] and t-closeness [79], are traditional repre-
sentatives in the field.We say that a database is k-anonymous
if the information about any individual in the database cannot
be distinguished from that of at least k−1 others, or,more for-
mally, if each quasi-identifier (QID) value D(QID) appears
in at least k records [103]. QIDs are the set of attributes in the
database known to the attacker that can be linked to exter-
nal information to re-identify individuals [102]. The privacy
designer chooses which attributes are considered QIDs, and
this decisionmay vary for each user and the knowledge of the
attacker. Even though k-anonymity is secure against simple

Fig. 2 Three trajectories from a database that visit the same coffee shop

re-identification attacks, it may still expose other informa-
tion:

Example 1 Suppose we have a 3-anonymous database, such
that each point is visited by at least 3 users (here, every
spatio-temporal point is a QID), and suppose an attacker
knows that their victim has visited a particular coffee shop
at 15:00. Looking at the database, the attacker sees Fig. 2,
where only three trajectories including this point. Thus, the
attacker cannot learn which trajectory corresponds to the
victim. However, the three trajectories end up at the same
university, indicating that the victim works or studies there.

The notion of l-diversity is introduced to try to solve this
last problem. A k-anonymous database is said to be (distinct)
l-diverse if the number of distinct values for the sensitive
attribute in the equivalence class (i.e., records containing
D(QID)) is at least l [85]. That is, for all the individuals
sharing the same quasi-identifier, there are always at least
l different values for each sensitive attribute. This protects
against some attribute linkage attacks, where the adversary
cannot determine which of at least l values correspond to the
victim. In the above example, l-diversity is satisfied if there
are at least l ending locations between all trajectories that
visit the coffee shop at 15:00.

Even though l-diversity ensures the variety of the sensitive
attributes, it can still disclose information. For example, we
could have scenarios where even though l-diversity is satis-
fied, 80%of the trajectories that visit the coffee shop end up at
the university. This fact would allow the attacker to conclude
that it is likely a student or university employee. Similarly,
we could have diverse sensitive attributes, but semantically
close, such as “university”, “library”, “university cafeteria”,
etc. To better protect against these attacks, t-closeness is
introduced, which ensures that the difference between the
distribution of the sensitive attribute in the equivalence class
and its distribution in the whole database does not exceed a
threshold t [79].
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3.1.2 Determining the QIDs in trajectory data

It is necessary to define what the QIDs are when introduc-
ing k-anonymity. Anonymization can be divided according
to the type of QIDs assumed [8]: QID-blind anonymization
defines constant QIDs for all users (e.g., each location is a
QID), whileQID-aware anonymization allows a user’s QIDs
to be different from others. Using the latter can lead to com-
plications in the implementation, since QIDs and sensitive
information can vary drastically between users, or depend
on external characteristics. Next, we review some of the pro-
posed QID-blind definitions.

For starters, every point can be defined as a QID (such as
in Example 1). This means that if a point (or a set thereof)
appears in one trajectory, then it must appear in at least
k − 1 different trajectories. This is the simplest type of pro-
tection, and while it is straightforward, it does not ensure
that sequences are k-anonymous. Note that the sequentiality
of data is central to trajectories and it remains unprotected
under this definition.

Domingo-Ferrer and Trujillo-Rasua [36] go even fur-
ther and introduce a variation protecting any proper subset
of locations. Formally, their definition of trajectory k-
anonymity is satisfied if the probability of correctly linking
the anonymized trajectory T ′ with the original T , given a
strict subset S of locations of T , is no greater than 1

k . In other
words, the probability of correct identification is worse than
choosing a trajectory at random from a set of k trajectories.
The authors also introduce an adaptation of l-diversity, called
location k-diversity, that checks whether the probability of
correctly identifying a location that belongs to the original
trajectory T is not greater than 1

k . Being related to l-diversity,
this notion aims at protecting attribute linkage of locations.

To take advantage of data sequentiality, we can consider
subtrajectories as QID. For example, Poulis et al [98] say that
a data set is km-anonymous if every subtrajectory of length
at most m is contained in at least k distinct trajectories. This
model assumes that the adversary knows some background
information and is useful in situations where the attacker
does not have access to many of a user’s locations. Although
its utility remains high, it does not protect against all back-
ground knowledge attackers, such as adversaries who have
background knowledge about more than one trajectory in the
database [98].

On the contrary, Gramaglia et al. [54] argue that the only
way to ensure indistinguishability against an adversary who
owns a generic subset of the victim’s trajectory is to ensure
full-length trajectory k-anonymity (i.e., each user’s trajec-
tory is equal to at least k others’ after anonymization). The
recurring problem of attribute leakage is particularly appar-
ent in this scenario, where knowledge of a single location can
reveal all of a user’s unprotected information.

Fig. 3 Cylinder with radius δ centered on a trajectory. If, for all tra-
jectories, k − 1 other trajectories are enclosed in this region, then
(k, δ)-anonymity is satisfied [2]

3.1.3 Variations for trajectory data

Several attempts have been made to translate or adapt these
notions specifically for trajectory data. Many variations of
k-anonymity play with the definition of QIDs, as we men-
tioned earlier. Some adapt k-anonymity to better represent
the sequential nature of trajectories. For example, we say
that a database is (k, δ)-anonymous [2] for each trajectory,
there exist at least k − 1 other trajectories such that at any
given timestamp, the corresponding locations are no more
than a distance of δ/2 apart. This allows these k trajec-
tories to be placed in a cylinder of radius δ, as shown in
Fig. 3. However, (k, δ)-anonymity does not satisfy trajectory
k-anonymity (Domingo-Ferrer and Trujillo-Rasua’s defini-
tion [36]) for δ > 0 [116]. Thus, it does not hide an original
trajectory in a set of k indistinguishable anonymized trajec-
tories.

Gramaglia et al. [53] identify the need for concepts that
protect against probabilistic attacks. They introduce kτ,ε-
anonymity, an uninformative extension of km-anonymity,
which limits the maximum additional knowledge an attacker
is allowed to learn. Also limiting the attacker’s knowledge,
(K ,C)L -privacy [20] ensures that the adversary (who knows
at most L locations) cannot distinguish the victim’s trajec-
tory from K − 1 other records, and their confidence in the
sensitive-value inference is bounded by C . This notion pro-
tects against both record linkage and attribute linkage attacks.
Furthermore, this notion is equivalent to l-diversity if C = 1

l
and L equals the maximum length of the trajectories. There-
fore, it is a more general notion. There are other notions with
the same goal as l-diversity, such as c-safety [92], which
bounds the probability of inferring whether a user has vis-
ited a sensitive location. More formally, a database is said
to be c-safe with respect to a set of locations Q if, for every
quasi-identifying sequence SQ , the probability of the attacker
inferring any user’s set of sensitive locations (for any given
set) is bounded by c ∈ [0, 1].
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3.1.4 Conclusions on syntactic privacy notions

Although syntactic notions can generally provide higher
utility when compared to other privacy notions (e.g., DP),
they present major privacy problems. Syntactic notions must
assume what the attacker may or may not know, i.e., which
attributes of the database are known and which are not, in
order to define what is considered a QID and what is a
sensitive attribute. In these cases, the attacker’s background
knowledge is assumed, and if the attacker has more informa-
tion than assumed, the protectionmay not hold. They are also
vulnerable to various well-known attacks (e.g., k-anonymity
falls victim to attribute linkage attacks). These two shortcom-
ings, along with the fact that the privacy guarantees of the
model are not preserved after repeated independent applica-
tion of the model (i.e., composability [106]), limit the use of
syntactic technology to continuously protect trajectory data.
Furthermore, data sets with sparse or short trajectories pose
a great challenge for these anonymization methods. In these
cases, the data must be heavily modified or even deleted,
which inevitably leads to a significant loss of utility.

3.2 Differentially private notions

Differential privacy (DP) [38] is the best-known semantic
notion. It aims to hide the presence or absence of any user in
the database such that an analyst can extract statistics about
the whole population, while an adversary cannot learn more
than a limited amount about any user. The difference between
the output probability of a DP mechanism, given a database
that contains a user’s data and one that does not, is bounded.
Thus, the publication of the anonymized output reveals only
bounded information about individuals, since the inference
capability of any attacker is restricted.

Formally, a randomized algorithmM is said to be ε-differ-
entially private (ε-DP) [38] if for all neighboring databases
D, D′ ∈ D (i.e., differing in exactly one entry) and all mea-
surable S ⊆ Range(M),

P{M(D) ∈ S} ≤ eε P{M(D′) ∈ S}, (3.1)

where D is the fixed universe of all possible input databases
of M.

The privacy budget ε > 0 represents a measure of the
privacy loss after seeing the output. From Equation (3.1), we
obtain ln(P{M(D) ∈ S}) − ln(P{M(D′) ∈ S}) ≤ ε for
all measurable S ⊆ Range(M), establishing thus a bound
ε over the difference in distributions of outputs between
two neighboring databases. Intuitively, the smaller ε, the
stronger the provided privacy, i.e., if ε is small enough, then
the difference between the two mentioned distributions is
negligible. Thus, the attacker has no reasonable criteria to
choose between the two possible input databases, limiting the

amount of information that can be learned about any given
individual.

One strong point of this notion is that it does not make any
assumptions about the backgroundknowledge of the attacker.
DP is a worst-case guarantee [15], which means it protects
the privacy of any database (including outliers) against the
strongest attackers.

A popular variation, called approximate DP or (ε, δ)-DP
[39] requires instead that

P{M(D) ∈ S} ≤ eε P{M(D′) ∈ S} + δ,

relaxing the definition to ensure bounds for rare events. In
this case, for every neighboring databases D, D′, P{M(D) ∈
S} ≤ eε P{M(D′) ∈ S} holds for all measurable subsets S
with probability at least 1 − δ.

Additionally, both original and approximate DP offer
two beneficial properties: composability ensures that the
combination of multiple DP algorithms is still DP, and post-
processing implies that subsequent processing does not affect
the privacy of data published with DP guarantees. These are
given by the sequential and parallel composition theorems,
and the post-processing property [39].

3.2.1 Central versus Local DP

The original, central DP notion assumes the presence of
a trusted party (data curator) who executes the mecha-
nisms protecting the sensitive data. If no party with shared
trust exists, it is necessary to distribute the curation to all
participants. The corresponding local ε-differential privacy
(ε-LDP) [39, 71], assumes every individual holds a database
containing their records and shares them only after local
obfuscation. They hence contribute partial answers to queries
on the whole data, enforcing DP locally.

Formally, a randomized algorithmM that takes as input a
user’s record is said to be ε-LDP [127] if for all possible pairs
of user’s records x, x ′ and all measurable S ⊆ Range(M),
P{M(x) ∈ S} ≤ eε P{M(x ′) ∈ S}.

This notion is stronger than central DP since there is no
need to assume a trusted party. However, it is usually harder
to achieve with the same utility constraints since each user
needs to perturb their own record, which does not happen
in the central case. Hence, the total amount of noise may be
higher in the local scenario. The differences between these
notions demand new hypotheses and conditions to satisfy
them, as well as adapted mechanisms. A well-known exam-
ple to achieve local DP in questionnaires is the randomized
response.
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3.2.2 Level of granularity

DP is a mathematical guarantee, so it is crucial to specify
exactly what information is protected by it. The specifica-
tion hinges on how the concept of neighboring databases is
instantiated. Hence, various adaptations of the concept of
neighborhood (i.e., what is considered a single entry in the
database) have been suggested in the literature. We refer to
the neighborhood definition as the level of granularity [39] of
a DP notion. For example, the original DP notion aims to pro-
tect the entire existence of an individual’s records or entries
in a database, thus assuming a one-to-one correspondence
between record and user.

In trajectory data, where several points form each user’s
record, the concept of granularity has special relevance. The
neighborhood definition directly impacts the privacy guar-
antee offered. We explore the details of the most common
granularity notions in our first paper [90] and provide a quick
summary of these in Table 2.

In terms of privacy protection, user-level privacy is the
strongest, followed by element-level, �-trajectory, and w-
event privacy. Finally, we fear event-level to be unreliable
regarding trajectory privacy.

Although choosing user-level privacy may result in exces-
sive loss of utility in the complex field of trajectory pub-
lication, none of the other granularity notions in Table 2
can provide convincing privacy guarantees. All of them
allow identity disclosure, and none provide effective pro-
tection against attribute disclosure. Even if participation
in a database was not sensitive information, leaking user
attributes seems unacceptable in terms of privacy. Element-
level privacy could be a promising attempt to protect against
attribute disclosure. However, it has not been adapted to tra-
jectory data yet. Therefore, it is difficult to assess the impact
of this notion on the utility of anonymized trajectories.

3.2.3 Challenges and limitations of DP in trajectory privacy
protection

DP has become the formal and de facto mathematical stan-
dard for privacy-preserving data release. Yet, recent works
[21, 25, 26, 46, 70, 74, 83, 129] have demonstrated vari-
ous challenges and shortcomings that this notion encounters
when applied to trajectories. First, we discuss some chal-
lenges and difficulties of the application of DP to trajectories
that are yet to be overcome in the literature.

Infinite streaming context. Trajectory data analysis usu-
ally requires users to continuously share spatio-temporal
updates. One of the advantages ofDP is its composition prop-
erty. It allows publishing subsequent database updates with
linearly increasing privacy loss: with r updates, the release
consumes rε privacy budget. Themain obstacle to protecting
subsequent releases of dynamicdata is that the overall privacy

budget is consumed completely at some time [77]. The sit-
uation worsens when aiming to publish sanitized databases
rather than global statistics since the corresponding sensi-
tivity is usually much higher. The possibility of protection
is finite in time, and parametrization gets complicated: the
larger the number of releases, the smaller the ε assigned to
each of them, and thus, the more noise added. This problem
affects various use cases of trajectory data release. Traffic-
jam prediction and avoidance are examples where users need
to update their locations and trajectories in real time. Stan-
dard DP hence cannot be used sensibly in the streaming
context, while granularity adaptations to this context, such
as event-level andw-event privacy, still show serious privacy
deficiencies [90]. Therefore, the DP adaptation to dynamic
trajectory sharing is still an open challenge in the scientific
community.

Outlier protection [58] is related to the significant utility
loss incurred by the amount of noise that outlying sequences
or trajectories (i.e., that they differ significantly from mostly
any others) require to be protected. As we mentioned in
Sect. 2.1, trajectories are high-dimensional and unique [31],
increasing the chances of singling out or identifying records
in comparison with simpler databases. In particular, the sen-
sitivity of this type of data remains high. However, DP is a
worst-casemetric and it must therefore add larger amounts of
noise to hide these outlying records. This is because, in most
DP mechanisms, the noise added is directly proportional to
the sensitivity and inversely to ε.

Therefore, if we assume the sensitivity is fixed, the only
way of reducing noise is by increasing ε. This problem leads
to two undesirable opposites: choosing a smaller ε to protect
the outliers, which itself leads to lower utility in the whole of
the database, or choosing a larger ε, leaving the outliers espe-
cially unprotected. Observe that this choice feels excessive
since, with larger ε, non-outliers likely remain protected; but
it is only the privacy concerns of possible outliers that impede
this scenario because they can be outliers even after saniti-
zation.

The challenge of finding a good trade-off between obfus-
cation and ε remains open in the literature. Some works [58]
already proposed additional outlier-control mechanisms to
ensure that the outliers plausibly blend into a crowd of users’
trajectories. Such techniques could help attain better ε while
avoiding the associated immense protection lost.

On the other hand, we also have intrinsic limitations of
the DP notion, especially notorious in the trajectory context,
that require modifications of the metric itself.

First, we encounter theBayesian inference threat, which
implies prior knowledge of an attacker. Taking the example
by Gursoy et al. [58]: Suppose that 10% of a population lives
in a district. The prior expected percentage of patients from
this neighborhood in the only hospital is around 10%. Imag-
ine now that the released data shows that 70% of trajectories
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Table 2 Granularity notions and
their concept of neighborhood

Type of privacy Difference between neighboring databases

User-level A user’s whole trajectories

Event-level A spatio-temporal point visited by a user (an event)

w-event A window of events over w consecutive timestamps

�-trajectory A sequence of � consecutive spatio-temporal points from a single user

Element-level A user’s set of points belonging to the same cluster

stopping in the hospital are from this district. Since the dif-
ference in values between the prior and posterior beliefs is
notable,we assert that there is a privacy leakage (i.e., a health-
related problem in the district). However, data should not
disclose health-related informationwhen thegoal is to predict
traffic jams, and there is no need to learn about health situ-
ations. DP by itself does not provide any guarantee against
this phenomenon. We cannot measure how much we mod-
ify the distance between prior and posterior beliefs or if it
is enough to hide sensitive information. Protection against
this attack must ensure that the difference between prior and
posterior about a sensitive attribute or information from data
participants is sufficiently small.

This attack should not be confused with the inference pri-
vacy fallacy [75]. Bounding all the posterior vs. prior beliefs
would end in zero utility and no possible inference process.
However, we aim to protect the people participating in the
database from sensitive inferences that are unnecessary for
the data-analysis purpose.

Finally, problems regarding correlation in trajectory
data in databases have recently been observed in several
works [14, 21, 25, 74, 83, 129]. DP inherently assumes
the database is a simple, independent random sample. This
assumption implies that the database records are identically
distributed (i.e., follow the same probability distribution) and
independent (in particular, non-correlated). As we explained
in Sect. 2.1, this is not the case for trajectory data.

One problem for DP caused by correlation relates to the
difference between theoretic and real-world sensitivity:

Example 2 Suppose that Alice and Bob are married and an
adversary who wants to infer the origin of Alice’s trajectory.
The corresponding inference attack determines how proba-
ble the output database is, conditioned to Alice starting at a
selected point or not, and chooses the answer that maximizes
the probability. Now, given their relationship, Alice’s and
Bob’s trajectories share points in their daily life. These could
relate to their home or their favorite supermarket. The origins
of Alice’s and Bob’s trajectories hence are highly correlated.

Suppose we select a location and query the database
for the number of trajectories starting at this point. If
we assume independence, the sensitivity of such a query
is 1 (user-level), as two neighboring databases can differ
in a single user’s trajectory, and each trajectory has only

Fig. 4 The green location is naturally no sensible alternative for the
original blue point. Jumping from one location to another far away
in seconds is not possible in real life, which is easily modeled with
correlations. Changing that location also would imply changing the
nearby points

one origin. Therefore, ε-DP is satisfied by adding Laplace
noise drawn from Lap( 1

ε
). However, in reality, Alice’s and

Bob’s answers are positively correlated. Therefore, with
very high probability, the difference in counts between a
database where Alice started in the selected location and
another where Alice did not is 2, since Bob’s answer also
changes.

The correlation model, considered background knowl-
edge, helps an attacker to infer Alice’s record as the proba-
bility distributions will be further apart than the expected ε

bound.

Cao et al. [14] demonstrate how this problem greatly
affects protection under event-level privacy due to the auto-
correlation between nearby spatial points. Aswe see in Fig. 4,
each spatio-temporal point affects other nearby points, sim-
ply due to the laws of physics and external limitations, such
as road networks. As wementioned, event-level privacy aims
to protect the existence of each spatio-temporal point in
the database. However, if the attacker uses autocorrelation
knowledge, then the difference between the output distribu-
tions of Equation (3.1), conditioned to whether the target
spatio-temporal point is in the database or not, will not be
bounded by ε anymore. This helps the attacker to guess
whether the point was originally in the database by just look-
ing at the output.

Attribute correlations allow an adversary to invert sim-
ple perturbations: Applying time-series filters, such as the
KalmanorWiener filters, effectively removes the noise added
by sanitization mechanisms, as shown by Wang et al. [120].
The post-processing property of DP should intuitively pre-
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vent such attacks. However, it relies on the independence of
records and breaks due to correlation.

Some notions of DP attempt to take correlations into
account to overcome this issue, such as Bayesian DP [129]
or dependent DP [83]. Unfortunately, they have not been
analyzed in the context of trajectory privacy yet, and their
adaptation is all but straightforward.

4 Syntactic maskingmechanisms

Having seen the privacy notions available for trajectory pri-
vacy, we now examine the various protectionmechanisms for
trajectories. In this section, we look at masking mechanisms
that provide syntactic privacy. First, we consider the many
techniques used to construct such mechanisms.

4.1 Fundamental techniques for syntactic notions

There are several anonymization techniques to enforce syn-
tactic privacy in trajectory data. Here we refer to techniques
as the technical concepts upon which various specific mech-
anisms are designed. Classifications of these techniques exist
in the literature (e.g., [97]), and although they generally
include the same classes, there is no standardized classifi-
cation. We provide here a list of techniques grouped into
perturbative and non-perturbative masking, following Wil-
lenborg and deWaal’s division [66, 126] of masking models.
The difference between them is that non-perturbative tech-
niques do not distort data, unlike perturbative ones, but rather
suppress or reduce details in the original data set [66]. In this
way, they preserve the truthfulness of data without distorting
it, albeit losing information.

The following is an overview of the most important tech-
niques in this area. Note that the techniques mainly ensure
k-anonymity and not all of them can provide l-diversity or
t-closeness.

4.1.1 Perturbative masking

We introduce some of the many perturbative anonymization
techniques.

Clustering, ormicroaggregation (as it is known in theSDC
field), refers to the technique of replacing a group of trajec-
tories with a single element. More often, the locations of
each trajectory, rather than the trajectory itself, are clustered
at each timestamp. Clustering is usually done in two steps
[3]. First, the universe of locations is partitioned into clusters
such that each shares common attributes (usually given by
some kind of similarity measure, e.g., they are nearby loca-
tions or share semantic information) and contains at least k
elements. Second, each record in the cluster is replaced by
the prototype of the cluster (usually a random location of the

cluster or its centroid is chosen). Unlike in generalization2

(see Sect. 4.1.2), the data is not simply reduced in resolution,
but rather replaced by different yet similar records.

Condensation starts with a partitioning of the universe of
locations into exactly k locations, and then, for each group,
these k locations are regenerated following the distribution
and covariance of the originals. This technique does not pre-
serve the original data, but its chosen statistics.

Other techniques modify the points within each trajectory.
Permutation splits all trajectories into points or subsequences
and then reconstructs the trajectories by sampling the split
trajectories. In this way, the locations are permuted between
the trajectories.

Finally, we also find data addition, such as the creation
of new trajectories, or the repetition of trajectories in the
database. This technique can be used to increase the number
of entries in the database, sometimes even to ensure that
the original and sanitized databases have the same number
of trajectories. Since it adds new trajectories that were not
previously in the database (although they could be copies of
existing ones), we classify this technique as perturbative.

4.1.2 Non-perturbative masking

Only two techniques represent non-perturbative masking:
generalization and suppression.

Generalization equalizes different records by reducing the
precision of the trajectories or by grouping samples into
larger areas. For example, spatio-temporal points can be
transformed into regions consisting of an area of the map
and a time window containing the original point. There are
slight variations, e.g., in grouping, points are replaced by a
set containing them, i.e., if p1, . . . , pn are to be grouped, then
each pi is changed to {p1, . . . , pn}. Closely related,merging
consists of joining similar locations or trajectories (usually
pair by pair) until the syntactic notion is satisfied. Gener-
alization can be seen as the first (non-perturbative) step of
clustering2.

Suppression removes location samples or entire trajec-
tories from the database. It is particularly effective in
combination with other techniques, where it helps to remove
locations or trajectories that are challenging to anonymize
[2], such as those that are isolated or visited by a single user.

2 We use the term “generalization” to refer to its original definition
[102, 110], but we find instances in the literature where “clustering”
and “generalization” are used interchangeably. For example, “gener-
alization” has also been used to define the technique that additionally
returns the generalized data to its original domain [91], which we refer
to as “clustering”. In this paper, we use these terms differently to avoid
confusion and also to make clear whether the approach is perturbative
or not.
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4.2 Syntactic mechanisms

In recent years, a large number of trajectory-anonymization
mechanisms have been introduced. In this subsection, we
review just some of the most relevant proposals. We note that
the vast majority of the anonymization algorithms combine
several of the aforementioned techniques. Therefore, we list
them according to their core technique, but they can (and
usually do) use others as well. We also provide a quick guide
to them in Table 3.

4.2.1 Clustering based

The first mechanism to use k-anonymity to tackle trajectory
anonymization is Never Walk Alone (NWA) [2]. It consists
of a two-step greedy algorithm that first groups trajectories
into clusters and then performs a specific clustering tech-
nique called minimum space translation to achieve (k, δ)-
anonymity. It also suppresses outlier trajectories. Because of
its historical relevance, NWA is the baseline against which
most other mechanisms are compared and has been thor-
oughly analyzed. For example, trajectories must be defined
over the same timestamps and have the same number of loca-
tions to ensure (k, δ)-anonymity. These are hard constraints
to meet [36]. Subsequent variations were later introduced
such as W4M [3], where the Euclidean distance function is
replaced by the EDR similarity measure [17] to avoid this
problem. This change allows time adjustments and avoids
the preprocessing step that cuts trajectories to equal lengths,
which harms the utility. They mention other improvements,
such as defining trajectories directly over road networks.

The rest of the proposals first generalize the data and then
return to the original domain (i.e., clustering according to
our classification, even though the papers refer to it as “gen-
eralization”). One of the earliest proposals is TGA [93, 94],
which is defined as a condensation-like approach. First, a
random trajectory is chosen and grouped with its k − 1 clos-
est trajectories. This process is then repeated until less than
k trajectories remain ungrouped, which are suppressed. The
points in each group of size k are either clustered into themin-
imum spatio-temporal bounding boxes or removed. Finally,
the trajectories are returned to their original domain by ran-
domly reconstructing representations from the original data
set.

Monreale et al. [91] introduce another algorithm. In their
mechanism, important locations are extracted from trajec-
tories to create clusters, the center of which produces a
tessellation of the rest of the map. For each trajectory, all
consecutive points in the same region are replaced by its
centroid. The authors also mention the possibility of adapt-
ing the notion to provide k-anonymity in the following ways:
ensuring that each location appears in at least k different tra-
jectories, that if someone goes from one region to another,

at least k − 1 other trajectories also do so, and that there is a
dispersion of locations between each region. The choice of
important locations can vary from user to user and must be
defined before anonymization.

Finally, TOPF [37] uses frequent paths to preserve data.
Defined over road networks, the method studies the fre-
quency of roads (i.e., connections between points) and
removes the infrequent ones, grouping the rest to ensure k-
anonymity. Then, one representative of each group is chosen
as the most similar trajectory to all others. These choices
ensure that the mechanism preserves frequent patterns and
has been empirically proven to outperform NWA.

4.2.2 Permutation based

Other perturbative algorithms include SwapLocations and
ReachLocations [36]. Ensuring trajectory k-anonymity, the
former first clusters trajectories using microaggregation and
then permutes the locations inside each cluster, as well as
allowing for local suppression. The latter consists instead
of only a permutation step, where locations are swapped
by others that are reachable (or removed if not possible).
It is also defined over road networks, which leads to better
utility, but achieves location k-diversity instead of trajectory
k-anonymity. Both mechanisms guarantee the publication of
real locations, but only ReachLocations actually ensures the
reachability constraint is satisfied.

4.2.3 Generalization based

One of the most well-known generalization approaches is
CAST [92], which anonymizes semantic trajectories to sat-
isfy c-safety. The three-step algorithm suppresses, for each
user, their quasi-identifying locations; then groups them into
sets of equal size with minimal effect on the categorical
dimension; finally, it generalizes QIDs and other sensitive
attributes until the database is c-safe. The ultimate goal of
thismechanism is to protect sequential patternmining results.
However, they do not use the spatio-temporal dimensions in
their computation, which limits their use cases. In addition,
generalization can only be applied to trajectories of equal
length, which can cause problems with certain databases.

Poulis et al. [98] also propose methods based on location
generalization. In the basic framework, SeqAnon, locations
are generalized to nearby ones (starting with the shortest
and least frequent trajectories) until the number of each tra-
jectory exceeds k and km-anonymity can be satisfied. They
also define two variants: SD-SeqAnon, which considers the
categorical dimension of trajectories and tries to generalize
according to their distance; and U-SeqAnon, which further
satisfies predefinable utility constraints and uses suppression
when generalization is not possible. Here, the utility con-
straints limit howmuch generalization each location receives
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by ensuring that all elements in the generalized locations span
a single utility constraint.

Furthermore, Gramaglia et al. [54] argue that it is not nec-
essary to provide a uniform generalization because many
records require little generalization. To this end, they intro-
duce an anonymization mechanism, GLOVE, that preserves
the truthfulness of mobile data at record level. The algorithm
first removes all outlying locations (not in the basic algo-
rithm, but in a variation of it). Then it applies a non-uniform
generalization by iteratively merging the two trajectories
with the weakest effect on accuracy. This is done so that each
sample undergoes an independent minimal accuracy reduc-
tion to ensure k-anonymity, where accuracy is defined in
terms of the size of the spatial and temporal regions: the larger
the size at merging, the lower the accuracy. Compared to
othermechanisms in the spatio-temporal dimensions, namely
W4M and TGA, GLOVE provides better utility results in
anonymizing mobile trajectory data. This is partly due to the
fact that the algorithm does not use perturbative techniques,
unlike the others.

Finally, Tu et al. [117] propose a mechanism similar
to GLOVE that tries to solve a more complex scenario.
They work with semantic trajectories and address pro-
tection against attacks that reveal semantic information.
As shown before, k-anonymity is not enough to protect
against these attribute disclosures, and therefore it is the
first trajectory-anonymization mechanism that satisfies k-
anonymity, l-diversity, and t-closeness. The algorithm first
merges locations to ensure l-diversity and t-closeness, and
then merges trajectories to ensure k-anonymity. It also sup-
presses points that lead to a huge reduction in granularity
when merged. Its experimental evaluation leads to a stronger
notion of privacy with little reduction in utility.

4.2.4 Suppression based

Although suppression is usually used as a subordinate tech-
nique (as we have seen), some proposals revolve around it.
This is the case of BF-P2kA [96]. This algorithm first con-
structs a prefix tree, prunes the subsequences that do not
reach the k threshold in counts, and then adds the counts
of the pruned trajectories to the closest trajectory under the
LCSS similaritymeasure [118].However, any trajectory pub-
lished in BF-P2kA corresponds to a real trajectory without
any other protection, and even though k-anonymity is satis-
fied, the indistinguishable setmay contain the same trajectory
k times, thus revealing it (i.e., a homogeneity attack).

Chen et al. [20], on the other hand, define a method based
purely on suppression. It first identifies the minimal subse-
quences that can be removed to ensure (K ,C)L -privacy, and
then deletes them following either local or global suppres-
sion (i.e., suppression of a subsequence or all of its instances

in the database). It preserves instances of spatio-temporal
points and frequent sequences in the trajectory data.

4.2.5 Conclusions on syntactic mechanisms

Some of the general problems of syntactic mechanisms arise
directly from the techniques used.

Gramaglia et al. [53] state, regarding perturbative tech-
niques, that to preserve data veracity, one cannot rely on
randomized, perturbed, permuted, or synthetic data since the
addition of fictitious data introduces unpredictable record-
level biases in the final sanitized data sets. In addition, such
mechanisms can lead to the creation of impossible trajecto-
ries with unreachable locations or geospatial inconsistencies.
For example, the clustering-based methods (e.g., [91, 93])
can produce new points that may be illogical, such as coor-
dinates on buildings or rivers.

The privacy problems of non-perturbative approaches can
lead to a severe loss of utility. For example, generalization
can be inadequate if applied inappropriately. Models that
generalize a single trajectory dimension (e.g., [37, 92]) are
vulnerable to attacks on the other dimensions,whichmay still
contain sensitive information. Also, the manner in which the
generalization “regions” are defined is crucial, as inappropri-
ate choices can lead to information loss due to unnecessary
generalization [11], or result in data that is susceptible to
background knowledge attacks.

To make matters worse, generalization methods that gen-
eralize over all points may be ineffective for databases with
long trajectories. This is known as the curse of dimensional-
ity [4, 35], which refers to the events that occur only when
working with high-dimensional data (here referring to trajec-
tory length) that do not exist in lower dimensions. In other
words, if we generalize point by point so that each trajectory
is indistinguishable from k − 1 others, the generalization
regions of each point will be much larger for long trajectory
lengths than in the smaller cases.

Generalization also works poorly on its own, as two
experiments on real databases illustrate: just to guarantee
2-anonymity in Gramaglia et al’s setting [54], the precision
must be coarsened from100mand 1min granularity to 20km
and 8h regions; while Abul et al. [2] show that 99.9% of
information is completely lost when generalizing improp-
erly. Similarly, suppression can drastically change the size
of the sanitized database, removing important information
when used alone.

The other major problem relates to the basic notion of pri-
vacy, k-anonymity, which does not protect against attribute
linkage attacks, asmentioned above. Althoughwe have some
mechanisms that achieve a higher notion of privacy, the
vast majority still only guarantee k-anonymity. Furthermore,
some proposals [54, 96, 117], consider the QIDs as the whole
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trajectory, where the problem of attribute linkage is even
more apparent.

Even though we conclude that syntactic mechanisms suf-
fer from many shortcomings, we can draw some insights
from the proposals presented. First, many syntactic mech-
anisms take into account the temporal (e.g., [3, 20, 36, 54,
93, 94, 98, 117]) and even the categorical dimensions (e.g.,
[92, 98, 117]) of trajectory data and use this information in
their anonymization processes. Additionally, we find propos-
als [36, 37] that consider data over road networks.We believe
that such mechanisms can be used to inspire DP algorithms
that consider more complex data, since the literature, as we
will see in the following sections, has very few proposals for
doing so.

Second, the use of suppression has been shown to sig-
nificantly aid in anonymization at little cost to utility. The
structure of trajectory data often contains sparse and far-away
trajectories and locations, so suppressing them can allow for
better utility results in the rest of the database while main-
taining the same level of privacy. Since suppression can be
implemented to any protection algorithm, evaluations and
comparisons can be defined as to whether this improvement
is achievable.

Finally, regarding their utility metrics, we see in Table 3
that both data and statistic preservation metrics are often
used. Note, however, that since many of the mechanisms
use suppression, many of the authors use the percentage of
removed points or trajectories in their evaluation. In addition,
calculating the size of the anonymized region is also a popular
metric, since the anonymized databases satisfy k-anonymity.

5 DPmaskingmechanisms

Next, we examine masking algorithms that adapt trajectory
databases for publication with DP guarantees. The corre-
sponding state of the art we review in this work covers the
static-context publication in which the sanitized database is
released just once in its entirety, without subsequent updates.
We classify them according to their fundamental concept.We
provide an overviewof our classification inTable 4, including
information on the privacy notion they satisfy, their proper-
ties, and the utility metrics used for their evaluation. Observe
that most of the reviewed proposals aim to achieve user-level
DP.

Note that DP algorithms require a randomized approach
since deterministic algorithms cannot achieve DP guaran-
tees [39]. The two classical mechanisms to provide DP are
the Laplace and exponential mechanisms [39]. Nearly all the
algorithms presented in this section leverage these mecha-
nisms in some way.

5.1 Noisy counts

We include in this class the anonymization approaches that
add Laplace noise to the count of trajectories or their subse-
quences.

5.1.1 Exploration tree

Chen et al. [18] first construct an exploration prefix tree from
the trajectory database. Each node is labeled with a possible
location, which can only be an element of a predefined finite
set of locations (the universe of locations). Every possible
prefix trajectory is represented uniquely as a walk from the
root node to another (i.e., we represent prefix 〈p1, . . . , pm〉
by the node obtained after walking through the tree following
the labels: root → p1 → · · · → pm). This node stores the
number of times (i.e., the counts) the prefix appeared in the
database. The tree includes all the possible trajectories drawn
from the universe of locations, including those not present in
the database (i.e., with a count of 0).

This way the count of each prefix of length n is stored at
the nth level of the tree. To guarantee DP, Laplace noise is
added to the count of each node (including the 0 ones, poten-
tially creating sequences not contained in the original data).
Since each trajectory has only one prefix of length n, the sen-
sitivity of the mechanism is 1. A node with a noisy count of 0
becomes a leaf; otherwise expands until a maximum allowed
length.

Then, to release the trajectory database, we only need to
explore the resulting tree. Based on the noisy prefix tree, we
can draw the sanitized database by traversing it once, calcu-
lating the number r of trajectories terminated at each node,
and appending r copies of the prefix saved in that node to
the output. Since creating and exploring the tree are inverse
operations, there is a one-to-one correspondence between the
database and the prefix tree. Note we need a post-processing
module to maintain the tree consistency (i.e., the sum of
counts of descendant nodes cannot be higher than that of
their ancestors).

In subsequent work, the same authors improved this
approach by introducing an n-gram exploration tree [19] that
looks at n-grams instead of prefixes, which leads to higher
counts in each node and higher sensitivity. In this case, each
trajectory could add its total length to a node count. There-
fore, the sensitivity is the maximum trajectory length, lmax,
allowed in the database (any trajectory longer than lmax is
cut before introducing it in the data). The authors also add
Laplace noise on the n-grams counts. Once again, by explor-
ing the tree, we recover the perturbed version of the original
trajectories, obtaining a sanitized trajectory database. The
proposed solution [19] additionally offers the possibility of
creating trajectories using a Markov process, where they
compute the probabilities using the noisy counts. This option

123



À. Miranda-Pascual et al.

Ta
bl
e
4

Su
m
m
ar
y
of

ex
pl
or
ed

D
P-
ba
se
d
m
ec
ha
ni
sm

s
ac
co
rd
in
g
to

ou
r
cl
as
si
fic
at
io
n
an
d
ex
ac
tp

ri
va
cy

no
tio

n
th
ey

Pr
iv
ac
y
no

tio
n

C
la
ss
ifi
ca
tio

n
R
ef
.

L
ap
la
ce

E
xp

on
en
tia

l
C
on

si
de
rs
tim

e
U
nb
.l
oc
.u
ni
v.

R
ea
lis
m

C
or
re
ct
D
P
no
tio

n
M
ec
h.

(Δ
)

Pr
op
er
tie
s

U
se
r-
le
ve
l

ε
-D

P*
N
oi
sy

co
un
ts

E
xp
lo
ra
tio

n
tr
ee

[1
22

]
l m

ax
◦

✓

ε
-D

P
[1
8]

1
◦

[1
9]

l m
ax

◦
[3
3]

l m
ax

◦
Se
qu
en
ce

tr
ee

[1
41

]
✗

•
◦

[1
39

]
✗

•
◦

[1
34

]
✗

•
◦

T
ra
je
ct
or
y
co
un
t

[1
38

]
✗

•
◦

✓
✓

T
re
e
+
M
ar
ko
v

[1
2]

✗
•

◦
✓

C
lu
st
er
in
g

R
an
do
m

ce
nt
ro
id

◦
◦

E
xp
.:
k-
m
ea
ns

[2
2,

64
]

✗
•

•
✓

[7
8]

✗
•

•
✓

E
xp
.:
H
ilb

er
tc
ur
ve
s

[6
0]

✗
•

•
✓

U
ni
ve
rs
al
cl
us
te
ri
ng

[1
40

]
✗

•
◦

✓

E
ve
nt
-l
ev
el

(0
,
δ
)-
D
P

Sa
m
pl
in
g
+
in
te
rp
ol
at
io
n

[1
04

]
◦

◦
✓

U
se
r-
le
ve
l

(ε
,
δ
)-
D
P

[8
2]

Δ
X

◦
✓

✓

ε
-L
D
P

Pe
rt
ur
ba
tio

n
[2
8]

◦
Δ
d w

✓
✓

✓

Pr
iv
ac
y
no

tio
n

C
la
ss
ifi
ca
tio

n
R
ef
.

SM
:E

uc
li
de
an

SM
:H

au
sd
or
ff

SM
:O

th
er

O
th
er

L
oc
.v
is
it
co
un
ts

F
re
q.

se
q.

Sp
at
ia
ld

en
si
ty
O
th
er

To
ta
ld

at
a
pr
es
er
v.
C
lo
se

da
ta
pr
es
er
v.

St
at
is
tic

s
pr
es
er
v.

R
ea
lis
m

as
su
ra
nc
e

U
til
ity

m
et
ri
cs

U
se
r-
le
ve
lε

-D
P*

N
oi
sy

co
un
ts

E
xp
lo
ra
tio

n
tr
ee

[1
22

]
•

◦
◦

◦
•

•
•

•
•

•
ε
-D

P
[1
8]

◦
◦

◦
◦

◦
•

•
◦

◦
◦

[1
9]

◦
◦

◦
◦

◦
•

•
◦

◦
◦

[3
3]

◦
◦

◦
◦

•
•

◦
◦

◦
◦

123



An overview of proposals towards ...

Ta
bl
e
4

co
nt
in
ue
d

Pr
iv
ac
y
no

tio
n

C
la
ss
ifi
ca
tio

n
R
ef
.

SM
:E

uc
li
de
an

SM
:H

au
sd
or
ff

SM
:O

th
er
O
th
er
L
oc
.v
is
it
co
un
ts
F
re
q.

se
q.
Sp
at
ia
ld

en
si
ty
O
th
er

To
ta
ld

at
a
pr
es
er
v.
C
lo
se

da
ta
pr
es
er
v.

St
at
is
tic

s
pr
es
er
v.

R
ea
lis
m

as
su
ra
nc
e

U
til
ity

m
et
ri
cs

Se
qu
en
ce

tr
ee

[1
41

]
◦

◦
◦

◦
◦

◦
◦

◦
•

◦
[1
39

]
◦

◦
◦

◦
◦

•
◦

◦
◦

◦
[1
34

]
◦

◦
◦

◦
◦

◦
◦

◦
•

◦
T
ra
je
ct
or
y
co
un
t

[1
38

]
◦

◦
◦

◦
◦

◦
•

◦
◦

◦
T
re
e
+
M
ar
ko
v

[1
2]

◦
•

◦
◦

◦
◦

•
•

◦
◦

C
lu
st
er
in
g
R
an
do
m

ce
nt
ro
id

E
xp
.:
k-
m
ea
ns

[2
2,

64
]◦

◦
•

◦
◦

◦
◦

◦
◦

◦
[7
8]

◦
◦

•
◦

◦
◦

◦
◦

◦
◦

E
xp
.:
H
ilb

er
tc
ur
ve
s[
60

]
◦

◦
•

◦
◦

◦
◦

◦
•

◦
U
ni
ve
rs
al
cl
us
te
ri
ng

[1
40

]
◦

•
◦

◦
◦

◦
◦

◦
◦

◦
E
ve
nt
-l
ev
el

(0
,
δ
)-
D
P
Sa
m
pl
in
g
+
in
te
rp
ol
at
io
n

[1
04

]
◦

•
◦

•
◦

◦
◦

◦
◦

◦
U
se
r-
le
ve
l

(ε
,
δ
)-
D
P

[8
2]

◦
◦

◦
•

◦
•

◦
◦

•
◦

ε
-L
D
P

Pe
rt
ur
ba
tio

n
[2
8]

◦
◦

◦
•

•
•

◦
◦

◦
◦

sa
tis
fy

“C
or
re
ct

D
P
no

tio
n”

la
be
ls
m
ec
ha
ni
sm

s
th
at

in
co
rr
ec
tly

cl
ai
m

D
P.
W
e
sh
ow

if
th
e
al
go

ri
th
m

us
es

th
e
L
ap
la
ce

or
ex
po

ne
nt
ia
lm

ec
ha
ni
sm

,a
nd

th
e
co
rr
es
po
nd
in
g
se
ns
iti
vi
ty

(Δ
)
of

co
rr
ec
t

pr
op

os
al
s
(s
en
si
tiv

ity
is
no

tw
el
l-
de
fin

ed
fo
r
th
e
in
co
rr
ec
ta
lg
or
ith

m
s)
.N

ex
t,
w
e
co
ve
r
ba
si
c
pr
op

er
tie

s:
w
he
th
er

th
ey

co
ns
id
er

tim
e,
al
lo
w
fo
r
an

un
bo
un
de
d
lo
ca
tio

n
un
iv
er
se
,a
nd

as
su
re

re
al
is
m
.

W
e
th
en

sp
ec
if
y
w
hi
ch

cl
as
se
s
of

ut
ili
ty

m
et
ri
cs

ar
e
us
ed

to
ev
al
ua
te

th
e
m
ec
ha
ni
sm

(c
f.
Se
ct
.2
.2
).
W
e
hi
gh

lig
ht

th
e
m
os
t
re
pr
es
en
ta
tiv

e
m
et
ri
cs

ac
co
rd
in
g
to

th
e
se
le
ct
ed

m
ec
ha
ni
sm

s.
“C

lo
se

da
ta
pr
es
er
va
tio

n”
in
cl
ud

es
tw
o
sp
ec
ifi
c
si
m
ila

ri
ty

m
ea
su
re

(S
M
)
ty
pe
s:
E
uc
lid

ea
n
an
d
H
au
sd
or
ff
di
st
an
ce
s.
“S

ta
tis
tic

s
pr
es
er
va
tio

n”
in
cl
ud

es
“l
oc
at
io
n
vi
si
tc
ou

nt
s”

(i
nc
lu
di
ng

lo
ca
tio

n
po

pu
la
ri
ty

m
et
ri
cs
),
“f
re
qu

en
ts
eq
ue
nc
es
”
an
d
“s
pa
tia

ld
en
si
ty
”.
Fo

r
no

is
y
co
un

ts
an
d
cl
us
te
ri
ng

,c
ol
or
ed

ce
lls

in
di
ca
te
th
e
or
ig
in
al
pr
op

os
al
s
fr
om

w
hi
ch

th
e
ot
he
rs
in

ea
ch

fa
m
ily

st
em

∗ I
tp

ro
vi
de
s
ε
-D

P
on

ly
w
he
n
re
st
ri
ct
ed

to
ce
rt
ai
n
sp
at
ia
la
re
as

123



À. Miranda-Pascual et al.

does not create a modified database from the original (mask-
ing) but instead generates synthetic data (see Sect. 6).

Other proposals modify these algorithms in various ways.
Firstly, Wang and Kankanhalli [122] define sensitive zones
and apply Chen et al’s method [19] only to these zones,
which provides better utility. However, their privacy notion is
weaker since they do not provide DP for the whole database
but only for sensitive zones.

DPLG [33] constructs the same noisy n-gram tree (there-
fore, the sensitivity of each node count is lmax) but provides
a non-uniformly distributed privacy level by regulating the
amount of noise added, so the location will be more or less
protected depending on the area of the map it is.

All the exploration-tree–based methods have some com-
mon problems: For instance, it is necessary to assume a
fixed and discrete universe of possible locations and set
the maximum length of trajectories. We need these strong
assumptions to bound their sensitivity. Also, the size of the
trees increases exponentially with the number of locations
and allowed length of trajectories. Note that limiting length
would considerably reduce utility. Hence, a small location
universe is required to perform these methods, which is not
usually the case in real-world applications. Additionally, the
mechanisms only retain spatial information and counts, with
the loss of temporal information further reducing utility.

The spatio-temporal correlations of human trajectories,
their regularity, and self-similarity can be easily represented
by autocorrelation models (see Sect. 3.2.3). Some of the new
sequences generated by the processes do not follow realis-
tic patterns and hence can easily be identified and removed
from the data by the adversary. The accuracy of this attack
depends on the quality of the adversary’s correlation model.
The Laplace mechanism, however, does not consider corre-
lations and is bound to choose impossible or highly unlikely
sequences when adding noise to the original zero counts of
these hypothetical trajectories. A simple stochastic model
aggregating road-map information and physical movement
laws will suffice to eliminate these cases.

5.1.2 Sequence tree

More recent approaches try to build trees storing the counts of
subsequences in each node instead of only one location (i.e.,
sequence trees). This is the case of NTPT [141]. This mech-
anism first tries to overcome data sparseness by simplifying
the trajectories. By performing an optimal segmentation pro-
cess, the trajectories are divided into sequences, and then, it
constructs a prefix tree where each node stores a sequence.
Afterward, it adds Laplace noise to the counts of each node.

Related approaches are presented in [134, 139], with the
difference that they rely on a similarity factor. More specifi-
cally, they save sequences of spatio-temporal points in a tree
structure according to the number of location points they have

in common. As usual, they add Laplace noise to the count of
each sequence node.

5.1.3 Trajectory count

Finally, one work considers the correlation between individ-
uals in the database [138]. Here, the authors measure the
correlation coefficients between the different trajectories in
the database, which translate into privacy risk: the more cor-
related trajectories are, the more risk they pose. Therefore,
they allocate different privacy budgets adding more Laplace
noise to the counts of the risky ones.

5.1.4 Correctness of DP in noisy-counts mechanisms

We would like to note that the above suggestions [134, 138,
139, 141] suffer from a common formal mistake and do
not provide DP. They output perturbed counts of only those
segments, subsequences, or trajectories present in the orig-
inal database, but do not change the output of hypothetical
sequences with zero counts, as in the exploration-tree–based
methods we discussed. These conditions contradict the defi-
nition of DP, and thus cannot provide DP. We show in the
following proof that a meaningful DP mechanism cannot
simply change the counts of the elements in the database:

Proposition 1 Let M be a randomized algorithm with
domain D.3 Suppose M changes the counts of the rows of
D ∈ D (where it is possible to change a positive count into
0, but not the other way around). IfM is ε-DP, thenM is the
void algorithm (i.e., it outputs the empty set independently of
the input).

Proof LetM be an ε-DP algorithm, as described in the state-
ment. By definition, the output domain of M is a subset
S ⊆ D.

Fix D ∈ D. For every x ∈ D, denote kx < ∞ as the
number of times x appears in D and Dx as the database
obtained after removing all elements x from D. For every
x ∈ D, there exists a sequence of neighboring databases of
D:

D = D0 → D1 → · · · → Dkx−1 → Dkx = Dx ,

i.e., Di−1 and Di are neighboring for all i ∈ {1, . . . , kx }.
Then, sinceM is ε-DP, we obtain for all measurable S ⊆ S
and x ∈ D that

P{M(D) ∈ S} ≤ eε P{M(D1) ∈ S}
3 We will use Dwork and Roth ’s definition of database [39], defined
as a multiset drawn from X , the universe of database rows (represented
too by their histograms from N

|X |). To simplify notation, we use D to
denote a set of finite databases.
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≤ e2ε P{M(D2) ∈ S} ≤ · · ·
≤ e(kx−1)ε P{M(Dkx−1) ∈ S}
≤ ekx ε P{M(Dx ) ∈ S} = 0.

Let SD ⊆ S be the set of all possible outputs of M(D).
It is clear that P{M(D) ∈ SD} = 1. Furthermore, SD is
contained in the discrete set {S multiset | for all x ∈ S, x ∈
D}, and therefore SD is discrete, and

P{M(D) ∈ SD} =
∑

s∈SD
P{M(D) = s}.

For every non-empty s ∈ SD , we select an element x ∈ s.
By the previous inequalities, we obtain that

P{M(D) = s} ≤ ekx ε P{M(Dx ) = s} = 0,

since x /∈ Dx and x ∈ s. Therefore,

1 = P{M(D) ∈ SD} =
∑

s∈SD
P{M(D) = s}

= P{M(D) = ∅}.

Since M(D) is a discrete random variable, it proves that
it can only output the empty set. Then, we repeat the proof
for every possible database D ∈ D, proving that M is the
void algorithm. �


This fact is not reflected in the privacy analysis of these
papers [134, 138, 139, 141], as the authors provide proof
of the DP tools they incorporated, such as the Laplace
mechanism, but do not of the privacy met by their global
algorithm. Consequently, if the count of the victim’s trajec-
tory is positive after perturbation, and this trajectory contains
a quasi-identifier knownby the attacker, such as their home or
work, the victim and the rest of its path can still be identified.

In general, a DPmechanism needs to be able to output any
possible output independently of the database. We formalize
this statement with the precise hypotheses in Propositions 2
and 3, which cover the bounded and unbounded scenarios of
DP.Recall that inunboundedDP, twodatabases are neighbor-
ing if we obtain one from the other by adding or removing
one element; and that in bounded DP, these are neighbor-
ing if we obtain them instead by replacing one element with
another [74, 80].

Proposition 2 Let M be a randomized algorithm that sat-
isfies unbounded ε-DP, D its domain, and Range(M) the
set of all possible outputs of M. Then, given any mea-
surable S ⊆ Range(M), if there exist D ∈ D such that
P{M(D) ∈ S} > 0, it is also true for all other D′ ∈ D.

Proof Consider ameasurable S ⊆ Range(M) such that there
exist D ∈ D in a way that P{M(D) ∈ S} > 0. We then

proceed by reductio ad absurdum: that is, we assume that
there exists D′ ∈ D such that P{M(D′) ∈ S} = 0 and we
will end in a contradiction.

Since we assume all databases are finite, there exists a
finite sequence of neighboring databases from D to D′ of
length k. As in the proof of Proposition 1, we obtain

P{M(D) ∈ S} ≤ ekε P{M(D′) ∈ S} = 0.

This contradicts that P{M(D) ∈ S} > 0. �

Proposition 3 Let M be a randomized algorithm that sat-
isfies bounded ε-DP, D its domain, and Range(M) the
set of all possible outputs of M. Then, given any mea-
surable S ⊆ Range(M), if there exist D ∈ D such that
P{M(D) ∈ S} > 0, it is also true for all other D′ ∈ D such
that |D′| = |D|.
Proof This proof is the same as that of Proposition 2, but
we must impose that |D| = |D′| to ensure that there is a
sequence of neighboring databases between D and D′. �


5.1.5 Conclusions on noisy counts

We conclude that the only noisy-count mechanisms that
achieve acceptable privacyguarantees are theoriginal exploration-
tree approaches [18, 19, 33, 122]. However, due to their high
computational cost for large databases, we only see these
methods used for cases with reduced universes, such as the
analysis of public-transport lines of a city.

These algorithms excel at preserving statistics (e.g., loca-
tion counts). This result is reflected in Table 4, where we
see that many of the algorithms evaluate their utility using
statistic-preservation metrics. On the other hand, we find
fewer evaluations using data-preservationmetrics and, in par-
ticular, no similarity measures.

5.2 Clustering

The next category contains mechanisms [12, 22, 60, 64,
78, 140] that cluster locations and subsequently release tra-
jectories through these clusters with some perturbation to
guarantee privacy.

They follow a common structure that consists of two pri-
vacy mechanisms: A generalization mechanism M1, which
generalizes the set of locations by grouping them into clus-
ters, and a releasing mechanism M2, which outputs resulting
trajectories drawn from the generalized sets. To achieve DP
publication, both M1 and M2 have to be DP.

5.2.1 Exponential clustering

Hua et al. [64] is the first proposal using clustering. Their
idea for M1 is to cluster and merge concurrent locations
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Fig. 5 Example of how trajectory data are anonymized through cluster-
ing techniques. Different trajectories are represented in different colors,
with points corresponding to the physical location over each timestamp.
The colored areas represent the clusters defined by the selected parti-
tion, and the stars denote the centroids of each subset. In this case,
trajectories are of length |T | = 4, and the selected partition contains
m = 2 subsets

from different trajectories, following a probabilistic parti-
tioning based on the exponential mechanism. Then, using
the Laplace mechanism, M2 connects the merged locations
and forms the final generalized trajectories.

Specifically, the authors suggest a score function to
measure distances between trajectories crossing the corre-
sponding locations at each timestamp. Using the exponential
mechanism and this score function, they choose one of the
candidate partitions (intom groups) ofΓi , the set of locations
of the database at time i . Finally, the locations of each subset
are clustered together and replaced by their corresponding
centroid (see Fig. 5).

After selecting a partition and replacing the locations with
centroids, the location set Γi is replaced by a smaller one, Γ̃i ,
which contains perturbed information. They build the new
trajectories from this reduced set Γ̃i using themechanismM2,
which draws sequences from Γ̃i at random. The counts are
attributed following the Laplace mechanism until obtaining
a sanitized database of the same size as the original.

Works based on this proposal also exist. For example,
Chen et al [22] import Hua et al’s proposal [64] as the final
part of their recurrent neural network to ensure privacy. Later,
Li et al [78] design an M2 algorithm with bounded Laplace
noise. In addition, Han et al. [60] propose a new private clus-
ter mechanism M1 based on Hilbert curves, where it is not
necessary to fix the number of clusters in advance.

5.2.2 Correctness of DP in exponential-clustering
mechanisms

After studying these approaches [22, 60, 64, 78], we observe
an issue when applying the exponential mechanism. The
exponential mechanism [39] selects the best element of a
certain given set R, the range of this mechanism. The best
assignments for each database are chosen using a score
function u, which associates scores to each element in the
database: the higher the score, the higher its chances to
be chosen. More formally, given a database D ∈ D, the
exponential mechanism outputs r ∈ R with probability pro-

portional to exp
(
ε
u(D,r)
2Δu

)
, where u : D × R −→ R is the

aforementioned score function and

Δu:=max
r∈R

max
neighb.
D,D′

|u(D, r) − u(D′, r)|

is its sensitivity. Note, in particular, that R needs to be data
independent.

In the original framework [64] (fromwhich the others stem
out), the exponential mechanism is used to output the cen-
troids of the partitions of the location set at every timestamp i .
In this work, the score function is defined as u : D×τ −→ R,
with τ being the set of partitions of the locations set at time
i of a specific database D. The previous expression is not
well-defined, since τ depends on the chosen element D ∈ D,
and varies when changing to another D, as mentioned in the
paper. As a direct consequence, Δu is not theoretically com-
putable (even if fixing D, since the definition compares two
different databases), and an exponential mechanism cannot
be defined. Hence, one cannot claim the algorithm ensures
DP via the exponential mechanism.

This error leads to some anomalies in the suggested pro-
posal. First, the cluster size does not affect the privacy
guaranteed: i.e., we can choose to partition into sets of size
1, which would simply be a mechanism outputting the orig-
inal unmodified database, providing no privacy. Secondly,
u(D, r) ≤ 1 for all possible combinations, would imply that
the absolute difference between any possible score function
is at most 1. If the exponential mechanism were correctly
applied, it would mean that changing the whole database
has the same effect as changing one record, which is highly
improbable.

Having explained why the mechanism is not the expo-
nential mechanism, we discuss why it is not DP. We know
that given two different sets, S and S′, their sets of parti-
tions into m groups, Pm

S and Pm
S′ , are disjoint. For example,

consider S = {1, 2, 3} and S′ = {1, 2}. The only parti-
tion of S′ into two clusters is PS′ = {{1}, {2}}, while for
S we have P(1)

S = {{1, 2}, {3}}, P(2)
S = {{1, 3}, {2}} or

P(3)
S = {{2, 3}, {1}}. It is then easy to see thatP2

S ∩P2
S′ = ∅.

More formally, consider twoneighboringdatabasesD, D′ ∈
D and their respective location set at time i , Γi and Γ ′

i . Let
P,P ′ ⊆ Range(M) be the set of all possible partitions
of Γi and Γ ′

i , respectively, into m groups. As mentioned,
P ∩ P ′ = ∅, so

1 = P{M(D) ∈ P} ≤ eε P{M(D′) ∈ P} = 0,

resulting in a contradiction with the definition of DP. As we
already proved in Proposition 2, if an output is possible for a
database, it needs to be possible for all the remaining ones,
which simply cannot happen if the range of outputs is data
dependent.
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In summary, the protection mechanisms (M1, in particu-
lar) of the proposed approaches [22, 60, 64, 78] donot provide
DP because they do not use correct exponential mechanisms,
since their abstract range of outputs is completely depen-
dent on the input database. Furthermore, we can construct an
example attack that shows how DP breaks in this case [90].

The only way to avoid this issue would be to define a data-
independent universe of locations, for instance, based on the
city map, and output a partition of this universe. This way,
the mechanism could achieve DP. Being independent of the
actual patterns in the data could incur a significant utility loss
in some scenarios.

5.2.3 Universal clustering

Recently, Zhao et al. [140] introduce a protection proposal
independent of the specific clustering algorithm. It allows one
to choose any preferred clustering and run it on the database
without modification. They add Laplace noise to location
coordinates (using the polar form) and to the counts of these
data in the cluster. Finally, the authors calculate the noisy cen-
troid according to the noisy counts and locations and release
these centroids. The noisy count algorithm they use is the
same as in the works [134, 139, 141] that we have shown
to lack DP guarantees in Sect. 5.1. Furthermore, following
this scheme, we cannot release more than the correspond-
ing centroids since there is no private way of establishing
connections between centroids and thus forming trajectories
without using the original data. The authors do not propose
any mechanism for trajectory release (M2).

5.2.4 Random centroid

Finally,we highlightDPTD [12],which introduces a general-
ization module that clusters the locations without consuming
privacybudget (the proposed solution chooses a random loca-
tion instead of the centroid). For the release method M2,
the authors adapt the noisy prefix tree structure by Chen et
al. [19] to reduce the consumption of the privacy budget and
provide higher utility. Instead of adding Laplace noise to the
odd layers of the tree, they predict the new count with a
Markov process. This Markov process uses the frequencies
of the original database, apparently without protection (i.e.,
no noise or perturbation added to the frequencies). Although
the authors attempt to reduce the privacy budget consumed,
the generalization step indirectly uses the database in its elec-
tion of the centroid, thus breaking DP. The publications also
contain neither analyses nor proofs of privacy, so the actual
protection achieved remains unclear.

5.2.5 General problems

Apart from the privacy issues we have explained in each
proposal, we find general problems. First, the generation of
impossible trajectories challenges the utility of the resulting
output. Specifically, the presented methods can create trajec-
tories in which two consecutive locations are unreachable in
the given time and unrealistic centroids placed at impossi-
ble locations, such as in the middle of a river or on top of a
building.

Another limitation is that the used score function of the
exponential mechanism only depends on physical distance
and therefore does not consider time. These proposals are
thus inapplicable for non-periodically recorded and variable-
length trajectories, which represent a majority of real-world
databases.

Similarly, a problem arises related to stationary sequences
when disregarding time.When a driver stops, the spatial loca-
tion remains constant during each timestamp until the car
starts tomove again (e.g., see Fig. 5,where the dark blue point
is constantly in the same location at each timestamp because
it represents a stop position in the trajectory). The constant
spatial points will be substituted by the corresponding cen-
troids at each timestamp. However, since merging locations
is only based on distances, the sanitized data will likely not
reflect this stop. In Fig. 5, we can see that the locations of
the dark blue stationary trajectory change into different loca-
tions at each timestamp. This produces an apparent random
movement that hides the stop.

5.2.6 Conclusions on clustering

This category of approaches overcomes the applicability
problem of those using trees (see Sect. 5.1), as they do not
need to assume a small universe of locations. However,
we can still identify several deficiencies: merging without
considering time and using naïve mechanisms for releasing
data (M2) can yield poor utility and facilitate correlation
attacks. Also, as mentioned above, all of these proposals
contain erroneous DP analyses or proofs. It hence remains
unclear which protection they provide.

Unlike in the noisy-counts algorithms, these clustering
mechanisms evaluate utility mainly using similarity mea-
sures rather than statistic-preservation metrics (see Table 4),
even though these last ones could be used in the utility eval-
uation.

In combination with the development of better release
mechanisms and rigorous privacy analyses, these approaches
promise to be a fruitful path for future potential research.
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5.3 Sampling and interpolation

Another type of mechanism is based on point sampling and
interpolation [82, 104]. The sampling technique consists of
selecting a subset of the database (in this case, trajectory
points), while interpolation is used to counteract the size
reduction due to sampling by reconstructing intermediate
points of the trajectories. The sampling techniques used do
not satisfy ε-DP, but rather (ε, δ)-DP, and interpolation is
conducted without affecting the privacy guarantees.

Shao et al. [104] present two mechanisms, SFI and IFS,
for ship-trajectory privacy based on these techniques. SFI
first randomly samples points over each trajectory and then
redraws trajectories using a cubic Bézier interpolation (the “a
priori” mechanism). IFS first interpolates and then samples
(the “a posteriori” mechanism). The mechanisms are proven
to achieve event-level (0, δ)-DP. In their experimentation,
the authors conclude that SFI works better than IFS for small
values of δ and not-so-smooth trajectories.

Similar to the mechanisms discussed in the previous sub-
sections, this algorithm ignores the temporal dimension, and
impossible trajectories can thus occur. Furthermore, even
though SFI and IFS guarantee high utility for smooth ship
trajectories, we believe this result might not extrapolate well
for other trajectory types, like people or road vehicles, which
can contain sharper turns and need to fit into a road network.

Another proposal is VTDP [82], which consists of a
three-phased sampling with a final interpolation step and sat-
isfies (ε, δ)-DP. Each of the sampling phases constructs from
the previous following a well-known distribution. The first
phase considers position and counts, the second addition-
ally considers moving speed, and the third adds the temporal
component. Interpolation is computed simply using the basic
formulas between speed, acceleration, and time. The algo-
rithm also uses the Laplace mechanism during the first phase
to find how many elements points are to be sampled. The
sensitivity of this mechanism is ΔX = maxD,D′ ‖xi − x ′

i‖,
where xi and x ′

i are the optimal counts of points Pi returned
by an optimization process depending on D and D′, respec-
tively. However, there is no bound or further analysis of this
sensitivity. Without a bound, it is not possible to apply this
mechanism to satisfy DP properly.

The mechanism aims at preserving the original dis-
tributions and maintaining high utility throughout. With
this privacy guarantee, the probability of protection against
attacks such as record linkage is only 1 − δ. However, the
authors evaluate their proposal over a database consisting
only of a section of an arterial road, which asks whether the
mechanism will maintain the same utility results over other
trajectory databases.

5.4 Local perturbation

While LDP proposals for location privacy start to appear
[121], we only find one protection mechanism [28] that per-
turbs semantic trajectories to satisfy ε-LDP. Recall that these
trajectories are a time-ordered sequence of POIs visited by a
user. The authors integrate public knowledge to improve the
utility without affecting the privacy budget ε. The proposed
mechanism utilizes this public knowledge to partition the set
of all POIs into spatio-tempo-categorical regions, such that
each contains some number of POIs.

The mechanism is divided into four parts: first, it general-
izes every POI into the corresponding region; it partitions
these new trajectories into n-grams, which are then indi-
vidually perturbed following the exponential mechanism to
ensure ε-LDP, where the score function is a distance function
dw defined over the spatial, temporal and categorical dimen-
sions; then trajectories are reconstructed by minimizing the
distance function; and finally, the mechanism returns to the
initial domain by randomly picking a POI for each section,
making sure that consecutive locations in a trajectory are
reachable in the corresponding time.

This mechanism demonstrates several advantages over
those described above. First of all, ε-LDP is a stronger pri-
vacy guarantee than ε-DP since there is no need for a trusted
curator. Furthermore, it does consider the temporal dimen-
sion (and the categorical dimension of the trajectories). It
also takes into consideration publicly available information
to improve the overall utility of the mechanism, without any
effects on the privacy budget, and ensures that the published
data is realistic.

However, it also faces some challenges: First, to adapt
the mechanism to a multiple-release setting (i.e., the same
user contributing more than one trajectory), the user needs to
know in advance howmany trajectories they want to share, to
divide the overall privacy budget by this number [28]. Adapt-
ing this approach to a streaming scenario will encounter the
same challenge.

Second, the sensitivity of the exponential mechanism,
Δdw, depends on the fixed data universe. This means that it
can be reasonable in small spatial areas, short time intervals,
and reduced semantics, but if we consider huge spatio-
temporo-categorical domains, the amount of noise needed
will spoil the utility results. The authors also point out in
their utility analysis that the error increases with trajectory
length. The mechanism hence lends itself to small regions,
for instance, the mobility within a city, rather than databases
covering large areas.

It is also worth mentioning that this approach has been
presented as a solution for societal-contact-tracing applica-
tions. In other use cases (e.g., traffic management), driving
patterns and traffic flow are more important than semantic
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values. Adapting the approach to fields such as these seems
interesting, but has not yet been investigated.

6 Generating synthetic data with DP

Instead of masking techniques, i.e., creating a modified ver-
sion of the original data [66], we can design synthetic data
generation methods that generate new (artificial) data with
similar statistical properties to the real data. The utility of
the synthetic mechanism is considered good if the results of
an analysis performed on a synthetic data set (artificial data
generated by the mechanism) are close to what we would get
with real data [66].

A synthetic data generative mechanism can be based on
physics models using public and scientific knowledge and
run simulations based on them (synthesis without real data),
or it can use real databases to capture and structure the dis-
tributions and then build the generator. These original real
data are called training data [41]. The goal of this section is
to analyze the privacy concerns and state-of-the-art privacy
techniques in the publication of synthetic data in the latter
case, where these have been generated from a real training
database. Accordingly, in the rest of this section,wewill refer
to the synthetic data generation mechanisms using training
data simply as generative models.

A generative model performs two separate operations:

– Information extraction: Given one or more training
databases, the module extracts or learns the information
needed for the generative process.

– Generation: The training data are no longer accessible.
Now the generative module creates new databases using
the information learned by the extraction module.

Generators can be obtained using different techniques.
Particularly for private trajectory generation, we have classi-
fied the approaches of the literature into two categories:

i) Frequentist inference–based approaches: approaches
that explicitly define the aggregated statistics to be
extracted and use frequentist inference [27] techniques
to do so (see Table 5). Here, each extracted statistic cor-
responds to a parameter of thefinalmodel used to sample
a synthetic database.

ii) End-to-end machine learning (ML) approaches [51],
which use deep learning optimization to extract directly
the global distribution of the trajectory dataset, i.e.,
the entire inference process is performed by a single
model, often a neural network, without manual param-
eter extraction or separate inference stages as in the
previous category.

In frequentist inference–based approaches, it is necessary
to define manually which model parameters, the aggregated
statistics from the database, we want to learn. For example,
one parameter may be the distribution of the most visited
locations in the database, so that the fake databases sam-
pled from themodel preserve the location distribution. These
approaches have the advantage of being easy to interpret
since one knows at all times what information is being mem-
orized. However, the realism of the generated samples is
limited to the learned properties [66], which usually involve
only linear correlation or simple frequentist inference, while
unlikely to anticipate all possible statistics an analyst will be
interested in.

End-to-end ML approaches emerge in search of more
realistic results, able to copy more than just the statistical
properties. They aim to learn directly the distribution of the
whole database, ideally capturing non-linear correlations and
more complex properties that frequentist inference–based
approaches cannot achieve. Several proposals for ML gen-
erative models in trajectory data have been presented. The
most relevant ones can be reviewed in Luca et al’s survey
[84].

Being able to generate realistic synthetic data has many
use cases [41]. Synthetic data is easier to obtain in large quan-
tities and is flexible and scalable. The capacity to generate
large databasesmakes learning algorithmsmore effective and
accurate. In addition, the ability to sample outliers is inter-
esting for stress-testing models.

Despite its advantages, synthetic data (whether fromman-
ual frequentist inference or end-to-endML generators) poses
some challenges. Among these, we are particularly interested
in the privacy issues: even if synthetic data is fake and there is
no one-to-one correspondence between records and users (so
record linkage attacks are limited), it can still compromise
the privacy of the individuals in the training data, since it has
learned and is trying to mimic that database. If the generated
samples are very similar to the training databases or exploit
ML phenomena such as overfitting [132], new attacks such as
membership inference attacks [108] can threaten the privacy
of users whose records were in the training data.

One of the solutions proposed in the literature is to ensure
that the generative mechanism satisfies DP. In essence, we
want an attacker with access to a generator to be unable to
determine whether a trajectory was in the training database
or not. However, this simple broad interpretation leads to dif-
ferent scenarios depending on the type of access the attacker
has. For instance, we could assume that the attacker only
has access to the synthetic output database of trajectories
(black-box setting), or we could assume that the attacker also
has access to the trained generative mechanism with all the
learned parameters (white-box attack) [63]. Obviously, if we
can protect the training database against a white-box setting,
we can also ensure protection against a black-box setting.
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To guarantee privacy in the latter case, we need to ensure
that the information extraction mechanism satisfies DP, i.e.,
Equation (3.1) holds for Range(ML), the set of possible out-
put features (including probability distributions) learned by
the training process ML , and for all pairs of neighboring
training databases.

Therefore, we review here the recent proposals for syn-
thetic trajectory data generation with DP guarantees.

6.1 Frequentist inference-based approaches

Next, we analyze the traditional generative models that are
enhanced with DP to protect their training data (in this
domain more properly called sample data). All these mod-
els base their generation mechanism on sampling data from
learned distributions. However, they differ in the methods
used to extract the information. The explored proposals
belong to one of two main categories (see Table 5): those
that rely on a tree structure to infer mobility patterns, and
those that perform multiple feature extraction directly from
the database. The taxonomy of this classification is made
explicit in Fig. 6.

6.1.1 Tree based

These proposals base their mechanism on learning the prob-
abilities of sampling the next location conditioned on a
previous n-gram, a Markov process of order n − 1:

P{pi+1 | p1 → · · · → pi }
≈ P{pi+1 | pi−n+2 → · · · → pi }.

The probabilities of this equation are called transition
probabilities. They are computed from the counts of the
training database. Given a training database D, an n-gram
s = pi−n+2 → · · · → pi , and p a possible location in the
universe, we compute the transition probabilities in a fre-
quentist manner:

P{pi+1 | pi−n+2 → · · · → pi } = c(D, s → p)

c(D, s)
,

where c(D, s) is the total number of occurrences of s in the
database and c(D, s → p) is the number of occurrences of
the sequence pi−n+2 → · · · → pi → p. The generative
module uses the learned transition probabilities to sample
data sequences.

One of the first ideaswas based on the noisy-countmethod
by Chen et al. [19] (see Sect. 5.1.1). After constructing an
exploration tree that addsLaplace noise to the counts of the n-
grams, we can use these noisy counts c̃(D, s) = c(D, s) + z
with z ∼ Lap(Δc

ε
) to compute the transition probabilities.

Thanks to the post-processing property of DP [39], the gener-
ation process that uses only the noisy transition probabilities
to sample sequences still guarantees DP.

In fact, this generative mechanism satisfies DP. However,
it suffers from all the problems of the implementedDPmech-
anisms mentioned in Sect. 5.2.2, such as its assumption of a
discretized and small universe with highly frequent n-grams.

The computational cost of the mechanism increases expo-
nentially with respect to the height k of the tree, quickly
becoming unfeasible for larger location universes Γ and
long trajectories. Therefore, this method is only applicable
in small data domains, such as the public transportation lines
of a city. We refer to the problem of infeasible computational
cost on large data domains or universes of possible locations
as the scalability problem. We show the computational cost
of all the data-generation proposals with respect to Γ , which
are included in the last column of Table 5.

DPT [61] aims at overcoming the scalability problem.
It follows n-grams [18, 19] by proposing a tree construc-
tion with noisy counts using Laplace noise and consequently
sampling from the noisily computed transition probabilities.
However, to mitigate the scalability problem, they incorpo-
rate a hierarchical reference system (HRS),which attempts to
simplify the universe of locations into a grid system. While
the universe of possible locations is a continuous domain,
they associate each location with a cell of the grid, obtain-
ing a discrete domain with a finite number of possible cells.
They use grids of different resolutions to capture motion at
different speeds: Slow motions are stored in high-resolution
grids, while faster motions are stored in lower-resolution
grids. Each resolution grid is connected to a tree, creating
a forest. This is a data-dependent process, so it is neces-
sary to add calibrated noise to the HRS construction. First,
a reference system is constructed based on public knowl-
edge. Then, some of the trees are dropped from the model by
an optimization process using the noisy counts (after adding
Laplace noise) of the transitions occurring in each tree.

Despite the progress of DPT compared to the previous
work, certain shortcomings can still be identified. For exam-
ple, as shown in their evaluation, for small ε and large tree
heights, the optimization process produces a small subset
of reference systems that suffer utility loss. If one tries to
avoid this by keeping a smaller tree height, only the low-
order Markov model holds. As we explained in Sect. 2.2, an
important aspect of the utility of a mechanism is ensuring the
realism of the output trajectories. However, in DPT, location
points connected to the same cell of a grid are replaced by
their centroids, which can produce impossible locations (e.g.
the middle of a river). In terms of privacy, a good point of
this proposal is that it protects all trajectories contributed by
the same user, i.e., the user-level granularity with multiple
trajectories shared by each user. This can help to deal with
correlations between trajectories attacks (see Sect. 3.2.3).
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Fig. 6 Taxonomy of frequentist inference-based synthetic DP genera-
tors for trajectory data. We represent the tree-based approaches in the
upper green figure and the multiple-distribution-extraction approaches
in the lower blue figure. The core features common to all the mecha-
nisms in each class are summarized in the large rectangles.We highlight

the main improvements of a mechanism over its predecessors in the yel-
low boxes. The initial proposals, n-gram, and DP-STAR, do not have
any boxes, since they are not based on any previous proposals. Note
that the three mechanisms connected in a cycle additionally use the
map density distribution as one of their parameters

In general, the tree-based proposals compute onlyMarkov
probabilities, which leads to a loss of information and real-
ism, since trajectories aremore complex than just transitions,
e.g. they also save information about start and end points, trip
lengths, or the influence of the destination in the driving pat-
tern.

6.1.2 Multiple-distribution extraction

Recent proposals have sought to avoid the loss of informa-
tion and realism caused by relying solely on the computation
of Markov probabilities. The proposed methods extract the
transition probabilities as well as other feature distributions,
such as the distributions of start and end locations. The com-
bination of distributions is used to sample values and the
results are combined into trajectory data.

The first mechanism of this type is DP-STAR [57]. DP-
STAR starts by using a preprocessing model to reduce the
maximum length of each trajectory, or in other words, to sim-
plify it to just a few relevant points (reducing the maximum
length). To solve the continuous domain problem, DP-STAR

uses an adaptive grid as a reference system (RS). This RS
is not a set as in DPT, but a unique grid with a non-uniform
adaptive structure. This adaptive grid preserves the density
information of the database (or the actual number of reported
locations in each cell), as popular areas are coveredby smaller
cells with higher quantities, and empty areas are covered by
larger cells with lower quantities. In addition, the addition
of Laplace noise to the density counts is DP-STAR’s means
of ensuring DP. Despite all these components, DP-STAR’s
use of a single adaptive grid makes for a simpler model than
DPT.

DP-STAR overcomes tree-based limitations primarily
through its extraction model. During extraction, DP-STAR
decomposes these four statistical distributions into the fol-
lowing.

(a) The distribution of location density by area (as retained
by the adaptive grid RS).

(b) The distribution of the start and end points (tree-based
proposals suffer from the loss of correlation between the
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start and end points, which are pruned by the tree struc-
ture due to their sparseness).

(c) The transition probabilities from one cell to another.
(d) The length distribution of the original trajectories.

DP-STAR’s route-length estimation (step (d)) uses the
exponential mechanism to preserve the probability distribu-
tion of lengths for a tripwithin fixed start and end cells.While
tree-based methods suffer from correlation loss between
sparse start and end points pruned by the tree structure, DP-
STAR learns the distribution of trajectory start and end points
(step (b)). DP-STAR adds Laplace noise to the probabil-
ity counts to compute the empirical distribution of trip start
and endpoints. DP-STAR uses a first-order Markov chain
model to compute the transition probabilities from one cell
to another (step (c)), which are stored in a transition matrix
with values perturbed by Laplace noise.

The generator of DP-STARworks in four steps. First, start
and end cells are generated according to the noisy trip dis-
tribution. Second, the corresponding route lengths of the trip
are determined according to the noisy length distribution.
Third, the intermediate cells are sampled according to the
noisy matrix. Fourth, the locations in each cell of the final
trajectory path are randomly sampled.

Later, the same authors present an improvement of DP-
STARcalledAdaTrace [58]. The basis of this procedure is the
same as in DP-STAR, but they introduce a Markov model of
a higher order than one, thus storing more information about
the autocorrelation of the trajectories, and a specific defense
module to overcome the deficiencies of DP against Bayesian
inference and outlier-leakage attacks (see Sect. 3.2.3).

Gursoy et al. [59] subsequently introduced OptaTrace. Its
improvement over DP-STAR andAdaTrace is the addition of
an optimization module that attempts to minimize the error
between real and synthetic databases using Bayesian opti-
mization.

We raise several concerns about the accuracy ofDP-STAR
and its derivatives AdaTrace and OptaTrace. First, we ask
whether the random sampling of locations within the cell by
the generator may produce incoherent locations. Further, we
consider it likely that during decomposition D, the influence
of shorter trajectories over longer trajectories will cause a
bias in the learning process. DP-STAR uses the length of
the trajectory to normalize the number of transitions from
cell Ci to cell C j in each trajectory. The result is that the
sensitivity of the total number of transitions from Ci to C j in
the database is set to 1, a convenient value for the usefulness
of the Laplace mechanism. However, this sensitivity limit
also means that a transition that has occurred n times will
be retained as more likely to occur if the n occurrences were
recorded in a short rather than a long trajectory. The resulting
bias in the learning process is not considered in DP-STAR.

Two additional approaches, DP-MODR and DP-MODRT
[34], aim at approximating regional mobility only, instead of
generating exact trajectories. Thus, they generate synthetic
mobility traces between coarse-grained cellsmapped to cities
insteadof exact location trajectories. In contrast toDP-STAR,
DP-MODR only preserves the distribution of starting cells
and the mean length given a starting cell but does not directly
store end-cell information (although this information should
be stored indirectly through the mobility transition prob-
abilities). In addition, the discretization step is performed
uniformly without consuming ε or keeping any real density
information. Otherwise, this method follows the distribution
extraction and generation by sampling from learned distri-
butions.

The tree-extracted features are the starting-cell histogram,
the mean length starting in each cell, and the transition cost
matrix, which instead of storing the noisy transition proba-
bilities (Markov order 1) stores the logarithm of them. These
tree features are extracted using the same DP techniques of
previous work on noisy extraction [57–59]. As a novelty, the
transition cost matrix is integrated into cost-sensitive path
trees, i.e., instead of saving probabilities, they save the neg-
ative logarithm of the probabilities, so that a higher number
means more cost and less probability. Each cell is the root
of a path tree in which the transition costs along the possi-
ble paths starting from that cell are stored, allowing us to
compute the total cost of each path.

Then, trajectories are generated recursively using the
learned features. First, the noisy histogram is used to select
how many trajectories start in each cell, then the sampling
lengths are selected, and finally, the trajectory sequence is
generated using the costs aggregated in the cell trees until a
maximum length is reached.

Essentially, the proposed mechanism is similar to the pre-
vious one of the same group. The main difference is only
the storage of the initial properties instead of the start–end
distributions and a more deterministic sampling process.

The same work proposes an adaptation, called DP-
MODRT [34], that considers temporal information of real
trajectories. The procedure is the same, but the discretiza-
tion step is done in both spatial and temporal domains. The
temporal domain is discretized in intervals and the result is a
set of time-dependent cells (e.g., (C1, 1)). This increases the
number of possible states (cell and time pairs) and thus the
cost matrix. However, this matrix will have a large number
of entries with infinite costs, since the probability of many
transitions is 0 (which happens, e.g., because transitions back
in time are impossible).

In both cases, the final output is a sequence of cells, not
a trace of points as in DP-STAR, AdaTrace, and OptaTrace.
This makes comparing them difficult. For example, it is chal-
lenging to compare the position distribution error when some
mechanisms output real trajectorieswhile others output cells.
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Also, all evaluation metrics implemented by DP-MODR are
at the cell level. They report better results than AdaTrace.
However, the grid size of AdaTrace cannot be fixed, nor do
they report this data. If the grid size is different, the compar-
ison would be meaningless.

6.1.3 Conclusions on frequentist inference–based
approaches

Most of these proposals completely ignore the temporal
dimension by considering the trajectories as an ordered
sequence of locations. With such a model, a lot of informa-
tion is lost. For example, if we want to predict traffic jams, it
is really important to know at what time they will occur, not
just that they might occur at some time.

None of these proposals take correlations between records
into account, as they all make the common assumption of
independent data, which does not hold in trajectory databases
(as we already mentioned in Sect. 2.1).

To avoid scalability problems, the new mechanisms use
a lattice structure. This can lead to information loss when
the number of cells is small, and also to impossible locations
when we return to raw trajectories from cell trajectories.

Furthermore, we want to highlight AdaTrace as the only
method presented in this section that provides protection
against probabilistic attacks and reports good results in terms
of utility. DP-MODR also reports good results compared to
AdaTrace. However, due to the lack of grid information, we
question the reliability of these results.

6.2 End-to-endmachine learning generators with dp

Note that to the best of our knowledge, private learning has
not yet been applied to trajectory generation. However, it
could be an interesting place to explore, so we want to shed
some light on it here.

There are generative machine learning models that can
generate output with similar properties based on training
data. While this idea has been applied to trajectory data as
well [84], the corresponding approaches do not take privacy
into account. Private learning can indeed be achieved by DP.
The use of the DP stochastic gradient descent (SGD) [1] is
a notable approach towards this end. This technique con-
sists of introducing noise (usually Gaussian or Laplace) into
the SGD-optimization iteration process of the learning mod-
ule. Since the noise is added in the optimization process, it
is possible to generalize this method to many ML models,
including those that attempt to generate trajectories.

However, some doubts have been raised about the actual
privacy achieved by DP-SGD. Humphries et al [65] show
that it does not provide meaningful protection against mem-
bership inference attacks. Zhang et al [137] also show that
decreasing ε does not reduce the threat of an adversary suc-

cessfully breaking privacy at the same rate as utility degrades.
In conclusion, the application of privacy-enhancing tech-
nologies to synthetic trajectory ML generation is an open
field that has not yet been explored.

7 Conclusions

Human location traces reveal a wide range of highly sensi-
tive information. However, processing this information in a
privacy-preserving way could be very helpful in many areas
and enable completely new applications. In many efforts,
various mechanisms have been developed and published to
achieve privacy in trajectory data.

In this article, we have systematized the knowledge on
the private publication of trajectory data. We have classified
the protection mechanisms, broadly following their com-
mon distinction into syntactic privacy, semantic privacy of
the publication process, and DP generation of synthetic tra-
jectories. We also classified and described the corresponding
threats, potential attacks, privacynotions, andmetrics tomea-
sure the utility preserved in the protected trajectories.

In this effort, we carried out a comprehensive and sys-
tematic analysis of the published protection mechanisms.
The first part of this systematization covered syntactic pro-
tection in trajectory data by reviewing some of the most
relevant mechanisms in the literature. We emphasized their
drawbacks regarding privacy: They are vulnerable to known
attacks and require assumptions regarding the attacker’s
background knowledge. The syntactic mechanisms for tra-
jectory data are varied and use several techniques in their
computation. However, these techniques can be inefficient
when used independently and can lead to false trajectories
and results. Despite these drawbacks, we believe that syn-
tactic mechanisms can be a starting point for improving
semantic mechanisms, as several examples consider the tem-
poral and semantic dimensions of trajectories, or that use
road networks to improve utility. Suppression may also be
a technique whose applicability to other mechanisms can be
explored.

We also classified the masking mechanisms for trajecto-
ries that claim differential privacy into four categories and,
most importantly, proved formal errors in their analyses. We
showed that many of the protectionmechanisms in DPmask-
ing presented obvious flaws. In this context, we reiterate the
importance of the temporal dimension in trajectory privacy
and the need to consider it. In addition, given that a significant
fraction of the reviewed proposals do not actually provideDP
as they claim to do, we would like to emphasize the impor-
tance of carefully proving whether a mechanism does so. We
note that relying on pre-existing incomplete proofs can be
dangerous, and it is crucial that practitioners independently
verify the privacy protection provided by their mechanisms.
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Furthermore, many of these proposals rely on a well-known
DP mechanism but fail to define or adapt it correctly. This
raises concerns that the hypotheses of core DP mechanisms,
such as the exponential and Laplace mechanisms, are not
correctly understood in the literature. Among the proposals
on DP masking that we reviewed, we distinguish Cunning-
ham et al’smechanism [28] as themost promising solution: It
addresses the existing limitations and uses public knowledge
to enhance the mechanism’s utility.

As a third class, we investigated the privacy of generators
for synthetic trajectories. While we find several approaches
based on frequentist inference (traditional approaches) with
DP, we point out the lack of DP-enhancing technologies
in deep learning approaches. Traditional approaches meet
the privacy requirements of DP, but there is still room for
improvement concerning utility, both in terms of realism and
temporal information.

We have also highlighted the wide range of utility met-
rics that can be used to evaluate a mechanism and its output.
In particular, there is no universal metric, and the suitabil-
ity depends heavily on the scenario. A notable takeaway is
the importance of publishing realistic data (or using realistic
metrics), as unrealistic data generally hinders utility and can
be easily detected and attacked by adversaries.

One important challenge for future work is to address
the different correlations that are implicit in trajectories. We
would like to highlight that there is a need for more robust
metrics that are adapted to the aforementioned trajectory
properties.

In addition to overcoming these shortcomings, much
remains to be done in real-world scenarios. Much of the
research focuses on limited use cases, such as social con-
tact tracing, or is limited to small location universes. Other
areas (e.g., driving pattern detection) remain unexplored.

In conclusion, we are confident that research into privacy
in the public release of human mobility data is still an open
and quite fruitful area with many research challenges that lie
ahead.
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