International Journal of Information Security (2024) 23:119-140
https://doi.org/10.1007/s10207-023-00742-7

SURVEY O‘)

Check for
updates

A review on graph-based approaches for network security monitoring
and botnet detection

Sofiane Lagraa' - Martin Husék? - Hamida Seba3 - Satyanarayana Vuppala® - Radu State® - Moussa Ouedraogo’

Published online: 30 August 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE 2023

Abstract

This survey paper provides a comprehensive overview of recent research and development in network security that uses
graphs and graph-based data representation and analytics. The paper focuses on the graph-based representation of network
traffic records and the application of graph-based analytics in intrusion detection and botnet detection. The paper aims
to answer several questions related to graph-based approaches in network security, including the types of graphs used to
represent network security data, the approaches used to analyze such graphs, the metrics used for detection and monitoring,
and the reproducibility of existing works. The paper presents a survey of graph models used to represent, store, and visualize
network security data, a survey of the algorithms and approaches used to analyze such data, and an enumeration of the most
important graph features used for network security analytics for monitoring and botnet detection. The paper also discusses
the challenges and limitations of using graph-based approaches in network security and identifies potential future research
directions. Overall, this survey paper provides a valuable resource for researchers and practitioners in the field of network
security who are interested in using graph-based approaches for analyzing and detecting malicious activities in networks.

Keywords Graph theory - Machine learning - Network security - Botnet detection - Monitoring - Cybersecurity

1 Introduction

Cyberattacks are nowadays sophisticated, complex, and
unpredictable, and detecting them is a real challenge due
to the massive volume of heterogeneous data that typically

B Sofiane Lagraa
sofiane.lagraa@fujitsu.com

Martin Husdk needs to be processed to detect an attack. The enduring
husakm@ics.muni.cz major threats are botnets and large-scale attacks performed
Hamida Seba by orchestrated bots; the attacks include network scanning,

hamida.seba@univ-lyonl.fr sending spam, and launching distributed denial-of-service

Satyanarayana Vuppala
satyanarayana.vuppala@citi.com

Radu State
radu.state @uni.lu

Moussa Ouedraogo
moussa.ouedraogo @fujitsu.com
Fujitsu Luxembourg, Capellen, Luxembourg

Institute of Computer Science, Masaryk University, Brno,
Czech Republic

Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205,
69622 Villeurbanne, France

Citibank, Dublin, Ireland

SnT, University of Luxembourg, Esch-sur-Alzette,
Luxembourg

(DDoS) attacks. In recent years, we have observed a steep
rise in the number of ransomware attacks, which became a
prevalent threat in today’s networks. Both distributed bot-
net activities and ransomware infection hopping from one
machine to another can be comprehensively visualized using
graphs. A simple question is—if we can use graphs to visu-
alize and understand such phenomena, can they also be used
to detect them?

In cybersecurity, there are three globally accepted tasks
for network security: prevention, detection, and investiga-
tion. The objective of prevention is to prevent and reduce the
attack surface by discovering vulnerable nodes in the net-
work [12, 40, 49, 50]. The objective of detection is to analyze
network data or system logs to detect malicious activities

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-023-00742-7&domain=pdf

120

S.Lagraa et al.

and anomalies and raise alerts using intrusion detection tools
such as Snort [16] and Zeek (formerly Bro) [66, 86]. The
objective of investigation is to discover the attack process
and path and find compromised machines or users [3]. The
common approach to these tasks in network security is net-
work traffic monitoring and intrusion and anomaly detection
based on network traffic analysis [79]. However, network
monitoring produces enormous amounts of data which com-
plicates its analysis. There is a need to use comprehensive
approaches to filter and sample the data and find patterns in
them; a promising approach is using graphs. The emerging
field of graph-based data representation and analysis allows
the automatic construction of large graphs from big data and
their analysis via advanced graph-theoretical algorithms and
techniques, which opens vast opportunities for network secu-
rity and traffic analysis.

There are early papers from the 1980s and 1990s using
graph models to reason about certain security properties [28,
34]. However, they did not have a lot of impact due to the
lack of a real and complex environment with the advent
of large data, complex attacks, and heterogeneity of sys-
tems. The concept of attack graph has been used for decades
mostly to model cyberattacks and calculate their impact [46],
predict the next step of an adversary [41], or host-based mal-
ware detection that rely on various graph types such as—call
graphs, mainly directed acyclic graphs where the graphs are
extracted from disassembled malware binaries [9] or inter-
action with system resources [84], and API call sequence
graph where the graphs are constructed from a sequence of
API events [57].

Such models are popular for their high comprehensibility,
straightforward visualization, and extensibility up to recent
times [54]. Another well-known use of graphs is for modeling
the networks in order to achieve cyber-situational awareness
[64]. The obtained graph-based models proved to be valu-
able to keep track of hosts, services, users, security events,
and other entities. Such network-wide graphs allow assessing
risks to the organization operating the network, optimiz-
ing the network defenses, or facilitating incident response.
Recently, network security monitoring and botnet detec-
tion systems leveraged communication graph analysis using
machine learning to deal more efficiently with the increasing
volume of data related to security monitoring [40, 49].

Specifically, the approaches using graph-based data mod-
els turned out to be suitable for botnet detection [49, 80],
attack visualization [11, 63], and alert correlation [40, 62].
The main advantages of graph-based modeling are its suit-
ability to deal with large volumes of data, its extensibility,
its straightforward visualization, and its comprehensibility.
Graph-based modeling facilitates understanding complex
events and attacks or determining their root cause.

@ Springer

1.1 Objectives and contributions

Our objective is to provide a structured and comprehensive
overview of recent research and development in network
security that uses graphs and graph-based data representation
and analytics. We are especially interested in the graph-based
representation of network traffic records and the application
of graph-based analytics in intrusion detection. Namely, we
aim at understanding:

1. What types of graphs are used to represent net-
work security data? Are they small or large, densely
or sparsely connected, labeled, or weighted?

2. What kind of approaches are used to analyze such
graphs to detect or analyze malicious network activ-
ities? Are they used for human-friendly visualization
or are they processed by machine or even with machine
learning approaches?

3. What metrics are used for the detection and moni-
toring? We are especially interested in metrics intrinsic
to graphs and their representation over the common
metrics of intrusion detection.

4. Are the existing works reproducible? A research
work is reproducible when others can reproduce the
results of a scientific study given only the original data,
code, and documentation [26].

To meet these objectives, we go thoroughly through exist-
ing works and present the following contributions:

1. We present a survey of graph models used to represent,
store, and visualize network security data, correlating
intrusion detection alerts and constructing attack sce-
narios.

2. We present a survey of the algorithms and approaches
used to analyze such data. Most importantly, we
illustrate the most common approaches based on sim-
ilarity and clustering. Further, we review the emerg-
ing approaches based on graph mining. The litera-
ture review shows that the main application of such
approaches is in botnet detection, among the detection
of other malicious activities.

3. We enumerate the most important graph features used
for network security analytics, discuss their semantics,
and point to their use in related work. We dedicate spe-
cial attention to the features used in graph mining and
learning which turned out to be an emerging and highly
promising issue of current research and development.

A review on graph-based approaches for network security monitoring and botnet detection 121

1.2 Literature search methodology and previous
surveys

The main challenge of this study is that the theme is covered
by several communities. Although the discussed problems
are studied in the field of cybersecurity, the topics are often
addressed in journals and conferences on computer networks
and communications, database systems, formal methods in
computer science, and data mining and knowledge discov-
ery. There is no journal nor conference dedicated specifically
to graph-based methods in cybersecurity but the topic fre-
quently appears as a topic of special issues and conference
workshops, such as GraSec! and CNASYS.?

Our study is distinguished by covering all these fields. It
focuses on papers published in the last five years that dis-
cuss specifically the issues of network security monitoring
and intrusion and botnet detection using graph models, algo-
rithms, and tools.

There are several comprehensive surveys on graph-based
approaches to network security analytics. The earliest survey
by Akoglu et al. [1] from 2014 surveyed graph-based tech-
niques to anomaly detection in diverse domains, including
network traffic analysis. Later surveys mentioning graph-
based approaches focused on particular issues such as attack
graph construction [46], network-wide situational awareness
[64], threat detection and investigation [56], classification
and detection of botnets [2, 33], detecting and preventing
insider threats [58], and predicting and projecting cyberat-
tacks [41]. However, none of the previous surveys discusses
the different representations of network traffic records into
graphs for the needs of network security monitoring and
intrusion detection. The exceptions are earlier surveys on
botnet detection [2, 33] from 2014 and 2015. The emer-
gence of graph-based data mining and machine learning calls
for systemizing the knowledge and surveying these novel
approaches. To the best of our knowledge, there is no recent
survey covering the progress in the last years. An exception
is a brief and thematically broad survey by Shevchenko et al.
[75] written in Ukrainian language.

1.3 Paper overview and organization

The papers found in the literature search were grouped into
three categories, each described in its own section. The first
group contains works in which a graph is used as a data
structure. Typically, such works use graph models and graph
databases to represent and store the data for analysis and
visualization. We illustrate various types of graphs used in
cybersecurity, their properties, and construction. The second
group contains works that use graph algorithms or graph min-

1 https://grasec.uni.lu/.
2 https://www.fvv.um.si/eicc2022/cnacys.html.

ing to detect malicious activities. Typical work in this section
uses graph similarity or graph clustering to detect malicious
patterns or anomalies in the data. The third group focuses
specifically on graph mining and graph-based features used
in graph mining. The papers in this group do not discuss the
detection methods or analysis but describe the graph features,
their semantics, and significance for the security analysis of
network traffic.

The paper is organized as follows. Section2 lists the
challenges of using graphs in network security and basic
definitions useful for understanding the paper. Sections 3, 4,
and 5 survey the literature in the three categories: graph-based
data representation, graph analytics, and graph features. Sec-
tion 6 summarizes and discusses the existing solutions. We
conclude and provide future directions in Sect. 7.

2 Graphs in network security

Graphs have multiple uses in network security. Herein, we
first provide the basic definitions and terms from graph theory
and graph analytics. Subsequently, we highlight the major
benefits and challenges of using graphs in network security
monitoring. The section closes with an overview of graph-
based technologies, including graph databases.

2.1 Basic definitions

In this section, we provide the basic definitions related to
graphs, graph-based data representation, and the important
graph algorithms used for botnet detection and network secu-
rity monitoring. First, we define various types of graphs used
in network security and botnet detection: undirected graphs,
directed graphs, bipartite graphs, and weighted graphs.

Definition 1 (Graph) A graph G = (V, E) consists of a
nonempty set V of vertices (or nodes) and a set E of edges.
Each edge has two nodes associated with it. A graph is
undirected if the edges do not have a direction. Otherwise,
the graph is directed.

Definition 2 (Bipartite graph) A graph G = (V, E) is called
bipartite if its node set can be partitioned into two disjoint
subsets V. = V| U V3, such that every edge has the form
e = (u,v) where u € V; and v € V, and no nodes both in
V1 or both in V; are connected.

Definition 3 (Multigraph) A graph G = (V, E) is called
multigraph if V is a set and E is a multiset of 2-element
subsets of V, i.e., pair of nodes joined by more than one edge,
such edges are called multiple or paralleledges.

Definition 4 (Weighted graph or property graph) A graph
G = (V, E) is called weighted if it is attributed by a func-
tion w that assigns a weight w(e) to each edge e € E.

@ Springer

https://grasec.uni.lu/
https://www.fvv.um.si/eicc2022/cnacys.html

122

S.Lagraa et al.

These kinds of graphs are also called property graphs in the
database community.

Moreover, there are three terms used frequently through-
out this survey and in related work, namely:
Graph edit distance Given g; and gy, the edit distance
between two graphs g1, and g» is defined by the minimum
set of edit operations that are necessary to transform g into
g2 using edit operations such as insertion, deletion, or re-
labeling for both nodes or edges [15, 71].
Clustering A clustering algorithm measures the density of the
partition of nodes of a graph into subgraphs called modules or
communities by measuring the density of edges inside groups
as compared to edges between groups [61]. The nodes in the
same group are more close to each other than to those in
other groups. An example of a clustering algorithm is the
modularity algorithm [61].
Shortest path A pathin adirected graphis a sequence of nodes
where there is a directed edge pointing from each node in the
sequence to its successor in the sequence. However, finding
all possible paths is an NP-hard problem [45].
Graph embedding In machine learning, an auto-encoder
learns a representation (encoding) from data, typically for
dimensional reduction, and is considered a feature discovery
or extraction method. In graph theory, the encoding method
of graph data, called graph embedding, encodes both the
structure of the graph (i.e., nodes and the edges) and the spe-
cific information (attributes) associated with them within a
vector representation.

2.2 Benefits of using graphs

We highlight three main reasons that make graph-based
approaches beneficial to prevention, detection, and investi-
gation in network security compared to classical methods,
which are mainly signature-based or machine learning-
based. The main benefits are:

Strong and robust representation The representation
and visualization of graphs are straightforward and intu-
itively comprehensive. The security analysts may have a
global view of the entire communication network or a com-
plex attack that can be used for prevention, detection, and
investigation [64].

Relational nature of network security data The nature
of network attacks could exhibit themselves as relational. For
example, the propagation of botnet attacks and the commu-
nications between source and destination IP addresses can
be modeled by graphs. Both of these situations point to the
relational treatment of network attacks [62].

Heterogeneity of security related data The network data
often exhibit linked dependencies that are related to each
other. In addition, the graph is used to model homogeneous
and heterogeneous data coming from multiple sources [63].

@ Springer

It represents relational data that necessitates being analyzed
for finding anomalies [1].

2.3 Challenges of using graphs

The issues of graph modeling are twofold: how to represent
the data by graphs and how complex the resulting graphs can
be. Using graphs in network security is beneficial but also
challenging. Herein, we describe the challenges related to
using graph models with respect to domain-specific issues of
network security.

Lack of common approaches for security data model-
ing There are several approaches to graph representation of
security related data and no consensus on which represen-
tation is the best. This is an important issue as the analysis
algorithms as well as the interpretation of the events depend
on the representation [54].

Complexity of graph algorithms We need rapid algo-
rithms to respond in real-time on dynamic graphs while most
graph problems are hard problems. In fact, many graph prob-
lems are NP-hard [45].

Visualization of large graphs In security monitoring,
visualizing the data is important. Even if a graph has an
accessible visualization, visualizing large dense graphs is not
simple and may be more complex than row data [11].

Explaining the suspicious behavior or attacks Explain-
ing the suspicious behavior or attacks in the post-detection
phase to security experts involves mainly explaining the root
cause of an attack. Comprehensive representation and visu-
alization based on graphs would be a welcome addition, but
it remains a challenging problem due to the complexity of
attacks, the heterogeneity of the data, and the combination
between them [78].

2.4 Graph databases and tools

A graph database is a NoSQL database designed for structur-
ing the data in the form of an attributed, directed, and labeled
multigraph. The fundamental abstraction behind a database
system s its database model. Popular graph databases include
ArrangoDB [8], OrientDB [65], DGraph [25], Caley [17],
and JanusGraph [43], and Neo4j [53, 59]. Neo4j [59] is the
most widely used graph database in network security. It is
a native disk-based storage manager that offers high perfor-
mance and robustness. It also implements an object-oriented
API and a framework for graph traversals. A comparison
between Neo4;j and the other SQL and NoSQL databases [51]
highlighted its capabilities of executing complex queries in
analyzing security events.

Graph databases use query languages that allow query-
ing the graph-based data. A well-known example is Neo4j’s
declarative language called CQL (Cypher Query Language
[60]). Another popular query language is Gremlin, a query

A review on graph-based approaches for network security monitoring and botnet detection 123

language co-development with Apache TinkerPop [5], a
vendor-agnostic graph-computing framework. Using such a
framework allows the user to approach the graph data stored
in any supported graph database via a unified interface, be it
an in-memory database or a distributed multi-head database.
Another interesting graph-processing framework is GraphX
[6], a component of Apache Spark engine [4] which is pop-
ular among Big Data analysts. While graph databases are
suitable for persistent storage of data, GraphX aims at their
real-time processing, often on a large scale.

3 Graph-based data representation

In this section, we present the graph-based models used
to represent network security data such as network traffic
records (PCAP or NetFlow), system logs, or alerts from IDS.
We show how existing works model this data into a graph and
what entities and relations they represent as nodes and edges.
The graph models are categorized by the data they represent;
each type of data is surveyed in a dedicated subsection.

3.1 Network traffic

The raw data in network security are the packet captures
(PCAP), where the full packets are saved for analysis, or
NetFlow data, in which the data from packet headers are
aggregated to so-called flows. NetFlows are used namely in
processing large volumes of data. A flow is a sequence of
packets that share the same source and destination address
and port and protocol. Each flow is accompanied with the
number of packets and bytes, timestamps, and protocol-
specific information, such as TCP flags. Various researchers
leveraged on NetFlow specification when building graph
models of network traffic.

Apruzzese etal. [7] proposed a temporal graph to represent
NetFlow, where the nodes represent the hosts in the network,
and the directed edges are bidirectional network flows with
a timestamp as an attribute, see Fig. 1 for example. This is
advantageous to represent time causality of network connec-
tions.

Leichtnam et al. [55] proposed Sec2graph, an approach
to detect anomalies in the network based on graphs con-
structed over network events. The nodes are called security

Fig.1 Temporal graph representing network flows between five hosts

(71

<— <host-data/uid> <Application>

— !

communicated <host-data> produced

originated ——>
—responded ——

Host Connection

Fig.2 Database scheme of GRANEEF [18]

objects (network connections, IP addresses, ports, protocols,
and other entities). The edges are their semantic links. The
entities are extracted from Zeek network security monitor
tool [86].

A slightly simplified version of Sec2graph tuned to the
needs of network forensics was proposed by Cermdk and
Sréamkova [18] in the GRANEF toolkit. In GRANEF, the
network connection between hosts in the network is stored
in a Dgraph database and visualized in a web-based user
interface. The paper focuses on conversion of data from logs
to a graph and performance issues. Methods of data analysis
are briefly outlined and left for future work (Fig. 2).

Bergeretal. [10] proposed an approach to detect malicious
websites by monitoring DNS traffic in access networks using
graph analysis. They represented their graph as follow: the
nodes are Fully Qualified Domain Names (FQDNs) and IP
addresses, and edges indicate the existence of a suspicious
mapping between them.

3.2 Alert correlation

Ben Fredj [29] proposed an approach of alert correlation
based on graphs and absorbing Markov chains. They pro-
posed the following weighted directed graph modeling: The
nodes represent the alert ID. The edges represent relation-
ships between alerts. Each edge has a weight that corresponds
to the number of repetitions of the transition from an alert
to another. The graph represents the behavior of alerts. It
aggregates and correlates alerts.

Noel et al. [62] proposed a modeling and analytical frame-
work for tracing cyber-attack vulnerability paths through
networks, correlated with observed security events. The
nodes represent exploit (i.e., attacks), machine, vulnerability,
or domain. The edges represent a relation between exploits,
machines, vulnerabilities, or domains. There are four rela-
tionship labels: IN, ON, LAUNCHES, AGAINST, VICTIM.
The directed graph represents an attack graph between sub-
nets, which contain machines with vulnerabilities. Figure 3
shows an attack graph represented as a property graph. The
nodes represent the exploits, machines, vulnerabilities, and
domains.

@ Springer

124

S.Lagraa et al.

Husék and Cermdk [40] proposed a graph-based repre-
sentation to capture the relations between sensors and alerts
for alert correlation in the SABU alert sharing platform [19].
The graph shows which sensor (e.g., IDS or honeypot) raises
which types of alerts (e.g., scanning, brute-forcing). Further,
it shows how often the sensors report the same events and
how often the alerts of different types pinpoint to the same
attacker. See Fig.4 for an example. It helps understanding
what is happening in a collaborative or distributed intrusion
detection system, and, subsequently, design advanced detec-
tion methods. The nodes in the graph represent either a sensor
or an alert type. Their properties are the numbers of reported
alerts. The edges indicate that the sensor detects the type of
alert, the two sensors detect attacks from the same source, or
that the alerts of two types contained the same target.

Haas et al. [36, 38] proposed two graph representations
for alert correlation for the detection of distributed multi-step
attacks. The first graph represents a transformation of alerts
into a weighted graph. The nodes represent the alerts and
the edge represents the similarity between two alerts. The
similarity function is based on the attribute of an alert: IP
source/destination and port source/destination. The second
graph represents the flow graph where the nodes represent
the IP source and destination. Both graphs are used for the
detection of multi-steps attacks. Figure5 shows the graphs

Launches

O Exploit

Machine

o

Vulnerability

. Domain

Domain

Fig.3 Attack graph represented as a property graph [62]

Attempt.
Exploit

AME_TARGET_ALERT DETR

SAME_SOURCE_SENSOR

SAME_SOURCE_SENSOR

Fig.4 Graph representing relations between sensors and alert types in
an alert sharing platform [40]

@ Springer

3/4=0.75

(a) Graph
of similar

alerts. (b) Graph of flows.

Fig.5 Graph models from alerts set [36, 38]

Source | Destination

P Port Port P

Fig.6 Graph communication from alerts set [37]

proposed by Haas et al. [36, 38]. The same authors proposed
another graph in [37] for attack correlation and identification
of attack scenarios based on network motifs. They build the
graph from alerts, where some nodes represent the source
and destination hosts and other nodes represent source and
destination hosts with their ports (Fig. 6).

Bohm et al. [11] proposed a concept for interactive visual
analytics of threat intelligence information. They used a
graph database as a back-end for their visual interface sup-
porting security experts in understanding and analyzing
incident descriptions. They proposed the following graph
representation: The nodes represent threat actors or threat
actor group names, individual or organization names. Each
node can have the following properties: the description of the
threat or organization, the date of first/last seen, and objec-
tive of threat or organization. The edges represent relations
between threats and individual/organization names. Each
edge has a label or a name providing a semantic of the rela-
tion between two nodes. For example, Alice “uses” the server
S1. “uses” is the edge name between the nodes Alice and S1.

3.3 Port scans

Lagraa et al. [50] and Evrard et al. [27] proposed a knowl-
edge discovery approach from port scans. They proposed the
following weighted directed graph modeling: The nodes rep-
resent targeted port numbers (destination port). The edges
represent successive targeted ports in port sequences. The
weights of an edge are then the number of dependency occur-
rences between two successive scanned ports. Figure 7 shows
a graph of scanned ports. The graph represents a partial order
of vertical scans by seeking the relationship of commonly

A review on graph-based approaches for network security monitoring and botnet detection 125

2433
1578
8009
5901
5902 0
18000 1433
53413
6888
2060 22 S s0007
0718 oo
308 18286
330856, 6 70 2484
585 NV

Fig.7 A graph of scanned ports [50]

‘@,\@

GO Gl G2

Fig. 8 A graph dataset for botnet detection. Each graph represents an
IP behavior [49]

scanned TCP ports. The authors use the constructed weighted
directed graph for extracting clusters of ports scanned com-
monly.

Lagraa et al. [52] extended their works in [50] to analyze
the horizontal scans with enriching clusters semantically.
They propose the same weighted directed graph as [50] by
replacing targeted port nodes by targeted IP nodes in order
to analyze the common IP scans in horizontal scans.

3.4 Botnet activity

Lagraaetal. [49] proposed a graph mining approach to detect
botnets in traffic flows. They proposed the following directed
graph modeling: The nodes represent event attributes or a set
of attributes. The edges represent successive events between
the event at #; and the event at 7; ;1. The graph represents the
behavior of an entity. An entity could be a user, a source IP,
or a pair of source and destination IP. Each entity is repre-
sented by a graph of successive event attributes. The entity
and event attributes are represented by a key and a value,
respectively. Then, the authors construct a set of graphs for
behavior analysis for entities. After the graph construction,
the authors performed an analysis of a set of graphs in order
to detect botnets. An example is given in Fig. 8. This figure
represents a graph dataset for botnet detection. Each graph
represents an IP behavior [49].

Abou Daya et al. [23] proposed a graph-based machine
learning approach for bot detection. They proposed the
following weighted directed graph modeling. The nodes rep-
resent source or destination IP addresses in the NetFlow data.
The edge is a directed edge from source to destination IPs
and from destination to source IPs. The weights of the edges
are the number of transferred bytes in NetFlow record.

Jaikumar et al. [42] proposed the following weighted,
undirected graph-based modeling. The graph represents how
the infected computers evolve with time: The nodes repre-
sent infected computers. The edges represent an interaction
between bots. The edge weight means that two nodes are part
of the same botnet. Edge weights are bounded between 0 and
1. A high probability means that an edge weight is close to
1 and the two nodes belong to the same botnet, while a low
probability means that an edge weight is close to 0 and the
two nodes belong to different botnets. The edge weights rep-
resent the temporal co-occurrences of malicious activities.

Wang et al. [83] proposed the following weighted directed
graph modeling: The nodes represent source or destination
IPs. The edges represent relationships between IPs. The edge
weight represents the number of communications between
source and destination IPs.

Chowdhury et al. [20], Sinha et al. [76], Shang et al. [73],
Wang et al. [81, 82], and Venkatesh et al. [80], proposed
the following directed/undirected/bipartite graph modeling:
The nodes represent source or destination IPs. The edges
represent a relationship between IPs.

Chowdhury et al. [20] represented connections between
IP addresses by a directed graph. Sinha et al. [76] repre-
sented network communications over time (120s window)
for a set of malicious nodes from a P2P botnet by a directed
graph. Wang et al. [73, 81, 82] represented the network com-
munications by an undirected graph. Venkatesh et al. [80]
represented P2P communications by an undirected graph for
P2P bots detection.

Bou-Harb et al. [12] proposed the following graph for
inferring darknet data: The nodes represent bots and the edges
denote the probability of behavioral similarity computed by
piece-wise comparisons between the feature vectors of each
of the nodes.

3.5 Authentication events

Amrouche et al. [3] proposed a graph-based malicious login
events investigation approach. They proposed the following
directed graph modeling: The nodes represent authentication
event attributes performed by a user achieving an attack. An
event attribute contains all information except the time field:
source/destination computer, authentication type, logon type,
etc. The edges represent successive events between the event
at#; and the event at #; ;1. The weights of an edge are then the
number of occurrences between two successive events. The

@ Springer

126

S.Lagraa et al.

Normal event

C17693-C1438-NTLM-Network-LogOn-S

o Attack event €801-C801-NA-Network-LogOff-S

(1438-C1438-NA-Network-LogOff-S
A-Network-LogOff-S

Fig.9 Graph of user U7394 in LANL dataset (attack in black) [3]

graph represents the behavior of a user. Then, each user is
represented by a graph of successive events. After the graph
construction, the authors performed a graph analysis in order
toinvestigate the paths reaching an attack. Figure 9 represents
a behavior of a user targeting a machine for an attack. The
attack is represented by a red node.

Kaiafas et al. [44] proposed an approach for detecting
malicious authentication events. They proposed two bipartite
graphs-based modeling for detecting malicious authentica-
tion events. The first bipartite graph is represented as follows:
The nodes represent source users and destination comput-
ers. The edges represent the relationships between source
users and destination computers. An edge shows the rela-
tions between a user and the accessed destination computer
by a user. They proposed a list of properties represented by
tuples as edge properties. A tuple is composed of time and
destination user. The second bipartite graph is represented as
follows: The nodes represent source and destination comput-
ers. The edges represent the relationships between source and
destination computers. An edge shows the relations between
the used computer to target a destination computer. In the
edge property, they used a tuple composed of time and source
user. These graphs are constructed from sets of events, by
different combinations of user and computer values. The
computed bipartite graphs are used to extract features such
as graph properties. Figure 10 represents bipartite graphs
extracted from the event logs: one for user—destination rela-
tions, Hy ; (in the top of the figure), and the second for
computer relations, Hc; (in the bottom of the figure). It
presents a simple example of these graphs. Each graph has 2
nodes and 1 edge.

Bowman et al. [13, 14] proposed to model the authentica-
tion events into a graph called authentication graph where
the nodes represent IPs, users, and services and the edges
represent the authentication of a user u to a service s using
IP ip. The authentication graph is used for the detection of
lateral movement of the attacker. Figure 11 shows an example
of the authentication graph.

@ Springer

€j Hy,i

<50722, U1534, U1534, C13024, C1624> . .
h A= [(50687, U1534)

i

<50687, U1534, U1534, C13024, C1624> (50152, U1534)
<50556, U832, U832, C3176, C2825> H
<50152, U1534, U1534, C13024, C1624> (40056, U1534)
<40081, U1535, U1534, C13024, C1624>
<40056, U1534, U1534, C13025, C1624>]
<39240, U330, U330, C6064, C1532>

Hg,i
<36860, U330, U330, C6064, C1532> .—. ’ @
<36743, U3998, U3998, C10054, C10344> A =[(50687, U1534)

<36515, U499, U499, C4554, C631> (50152, U1534)

(33638, U1534)

<33638, U1534, U1534, C13868, C1624> (40081, U1535)
<33627, U1534, U1534, C13868, C2148> H]

Fig. 10 In the left, the set of authentication event logs. In the right,
the two bipartite graphs extracted from the event logs: one for user—
destinationrelations, Hy ;, and the second for computers relations, Hc ;
[44]

O Admin

TN
. R&D . /) HR

-
/ N

1/
l\hr—fserv}

Fig. 11 Authentication graph [13, 14]

3.6 Insider threats

Gamachchi and Boztas [30] proposed the use of attributed
graph anomaly detection techniques for malicious activ-
ity detection. They proposed a model using a weighted
directed graph where the nodes represent users, and the edges
represent relationships between users. It is built based on
organizational hierarchy or email communications between
two users. The undirected graph represents the email commu-
nications to capture user relationships within the enterprise
network. The relationship between users is captured by ana-
lyzing all addresses of emails within an enterprise domain.
Then, an edge between the sender and the recipient is created.

Gamachchi et al. [31] proposed a graph-based framework
for malicious threat detection. They proposed the follow-
ing weighted, undirected, bipartite graph-based modeling:
The nodes represent users or devices. The edges represent
user’s interaction with the devices. Edge weights correspond
to the number of Log-off activities which appeared during

A review on graph-based approaches for network security monitoring and botnet detection 127

the whole time duration between an individual user and a
device. The graph represents relationships between users and
devices.

4 Graph-based analytics and mining
approaches

Graph algorithms and analytics tools are used to mine net-
work data and infer knowledge about attacks and attackers.
Herein, we first comment on the papers discussing various
use cases for graph-based analytics in network security. The
detection of botnets and botnet-related activities turned out
to be the most frequent application of graph analytics in net-
work security and, thus, is discussed in its own subsection.

4.1 Security monitoring
4.1.1 Intrusion detection

Sadreazami et al. [70] proposed a statistical-based intrusion
detection approach for distributed sensor networks. First,
they constructed a graph from both the sensor measurements
and placements, resulting in the corresponding similarity
and Laplacian matrices. Second, intrusion detection uses a
Bayesian method. The authors evaluated their approach on
simulated sensor data.

Apruzzese et al. [7] proposed an algorithm to detect piv-
oting activity, i.e., an activity in which the attacker uses one
or more other machines to propagate commands from their
machine to another to avoid detection or bypass security
measures. Pivoting is considered as a path in the temporal
communication graph in which each edge has a timestamp
no bigger than the timestamp of the previous edge plus a
predefined maximal value of propagation delay.

4.1.2 Port scan detection

Lagraa et al. [50] proposed a solution to discover and detect
patterns of port scans. They proposed a graph-based model
to represent network packets into a graph. The graph con-
tains the targeted ports by an attacker. It highlights semantic
relationships between port numbers. They discovered and
inferred the dependency between services using graph clus-
tering in order to analyze the behavior patterns when the
port scans are performed. They used methods utilized for
clustering discovery in large graphs in order to identify clus-
ters of common scanned services. They showed that there
are particular relationships between sequences of scanned
ports. They discovered important clusters of port nodes. The
clusters are fully connected and contain nonconsecutive and
non-randomly probes. It means that the attackers do not ran-
domly target a ports of an organization but there is a semantic

behind the probing. In fact, the authors highlight that all the
database ports are jointly targeted. It is the same for med-
ical tool ports where medical services are jointly targeted.
The weakness of using port numbers with advanced meth-
ods is the lack of a proper metric to apprehend the similarity
between the scanned ports. This weakness is tackled by the
authors in [27, 52]. Lagraa et al. [52] provided an enrichment
of the graph model proposed in [50] by meta-data related to
services. This is helpful for the security analysts to analyze
and evaluate the strategy of the attacker by understanding the
types of jointly targeted applications or environments.

Evrard et al. [27] proposed a similarity measure between
TCP port numbers which is able to catch the semantic of the
port scans by taking into account semantic relations between
port numbers. The semantic similarity is based on the shortest
path between two ports.

4.1.3 Attack investigation

Amrouche et al. [3] proposed an approach for investigating
and tracking malicious activities with authentication events
logs. They constructed a behavioral graph from the authen-
tication dataset, where the nodes represent the successive
events of an attacker. They profiled the behavior of authen-
tications in order to understand the different steps of attacks
using a shortest path algorithm. The shortest path algorithm
is used for extracting previous events that occurred before a
malicious event.

4.1.4 Alert correlation

Ben Fredj et al. [29] proposed an alert correlation system
based on graph modeling. The system deals with heteroge-
neous alerts in order to recognize multi-step attacks. They
use Defcon’s datasets. Defcon is the largest Internet security
community in the world.

4.2 Botnet detection

Lagraa et al. [49] proposed BotGM, a tool to detect bot-
net behavior based on network traffic flows. It constructs a
graph of behavior and uses graph-based mining techniques to
detect the dependencies among flows. The advantage of their
approach is to trace-back the root causes of an attack. They
transformed NetFlow into a behavioral graphs dataset. Each
graph represents the behavior of a source IP or pair of source
and destination IPs. The nodes of a graph can be successive
source/destination ports, etc. For detecting abnormal behav-
ior, BotGM uses pairwise comparisons on a set of behavior
graphs using graph edit distance measure. Based on the dis-
tances, BotGM uses a statistical method for outlier detection
which is the inter-quartile method (boxplot). They applied
BotGM on a CTU-13 [77] dataset, where it detects vari-

@ Springer

128

S.Lagraa et al.

ous botnet behaviors with a high accuracy without any prior
knowledge of them. Their results show that their approach
works better in terms of accuracy compared with the tech-
niques developed on the same dataset for three systems,
namely BClus, CAMNEP, and BotHunter [32]. However,
BotGM implies a high overhead and cannot scale well for
large datasets. In fact, for every pair of unique IPs (source
and destination IP), a graph is constructed in each time win-
dow. Every node in the graph represents a unique 2-tuple of
source and destination ports.

Venkatesh et al. [80] proposed BotSpot for C2 chan-
nel detection which is an essential component of a botnet.
BotSpot exploits the degree of a node, the edge density, and
communities in a graph in order to identify dense subgraphs.
In addition, BotSpot is based on the differences in the assor-
tativity 3 and density properties of the structured P2P botnets.
Based on a classification approach it differentiates between
the structured P2P botnets and the legitimate structured P2P
applications.

Wang and Paschalidis [81] detected botnets by analyzing
the relationships of IPs, modeled as graphs. They proposed
an anomaly detection in a graph using large deviations on
the degree distribution, and community detection. They also
proposed a refined modularity measure (community detec-
tion measure) adapted for botnet detection. The authors used
the CAIDA dataset [22] for experiments. The results show
that it has high detection accuracy. The same authors pro-
posed in [82], a two-stage approach for botnet detection.
The first stage applies a sliding window to network traffic
and monitors anomalies in the network. While the second
stage identifies the bots by analyzing these anomalies using a
community detection algorithm. In each sliding window, the
anomaly detection method constructs an interaction graph
between IPs from packets and monitors the degree distribu-
tion in order to detect their deviations. They also detect bots
by detecting the community in the graph that exhibits high
interaction with highly interactive nodes. For their experi-
ments, they use both CAIDA and CTU-13 datasets.

Haas et al. [36, 38] proposed GAC a graph-based alert
correlation approach that can be used for the detection of
distributed attacks such as DDoS, port scans, and worm
spreading. GAC is composed of three blocks: alert cluster-
ing, context of attack scenarios, and attack interconnection.
Each of the blocks use a specific graph representation. They
detected clusters from a graph of alerts (block 1), then, they
contextualize the clustering by specifying and tagging the
type of attacks on each cluster (block 2), and finally, they
interconnect the attacks based on the context of the clusters
(block 3). For the experiments, they evaluated their approach

3 A network is said to be assortative when high degree nodes are, on
average, connected to other nodes with high degree and low degree
nodes are, on average, connected to other nodes with low degree [85].

@ Springer

on artificial data and how to identify distributed attack sce-
narios based on the node-degree among the hosts involved in
malicious communication.

In [37], the same authors (Haas et al.) proposed a cor-
relation approach that transforms clusters of alerts into a
graph structure on which they computed signatures of net-
work motifs to characterize these clusters. Network motifs
are characteristic subgraphs and a motif signature summa-
rizes the occurrence of different types of motifs in a graph
of communication. The motifs are used as fingerprints for
the attack detection. Their solution is based on a clustering
algorithm on a similarity metric. For the experiments, they
evaluate their approach on synthetic alerts as well as real-
world alerts from DShield [72].

Bou-Harb et al. [12] proposed an approach that exploits
darknet data for the following goals: inferring Internet-scale
infected bots in a prompt manner, attributing the latter infec-
tions to a certain malware type or family, employing a set
of behavioral analytics that model the infected machines in
conjunction with several graph-theoretical notions.

Bergeretal. [10] proposed an approach to detect malicious
websites by monitoring DNS traffic in access networks using
graph analysis features. Their approach is composed of two
steps: the partition of the graph and finding the set of con-
nected components, i.e., subgraphs or clusters which are not
connected to each other. In the second step, they removed all
clusters which contain only one FQDN and one IP address
as such mappings do not represent any kind of agile activity.
Agile groups are subject to filtering rules, which are based
on a set of queries and statistical metrics such as: the number
of FQDNSs and IP per agile group. For the experiments, they
used datasets from an Internet service provider.

5 Graph features

Machine learning and data mining have gained a lot of atten-
tion in network security, recently. The approaches based on
graphs (colloquially referred to as graph learning and graph
mining) are not exceptions. Thus, we decided to delve into its
crucial aspect, the feature selection. In fact, in machine learn-
ing, features are variables or measurable properties that act as
an input to the machine learning model. The model uses the
features for different tasks: classification, clustering, predic-
tion, etc. The construction of the features has a high impact on
the quality of the model for the different machine learning
tasks. In network security, constructing features from Net-
Flow data or logs is not trivial. The accuracy of the machine
learning models depends on the quality of the features, their
relationships, and the need of the knowledge of the expert
which is important for the construction of features. The lit-
erature review shows a significant amount of papers using

A review on graph-based approaches for network security monitoring and botnet detection 129

graph features to detect botnets and several papers using them
to detect malicious authentication.

5.1 Malicious authentication detection

Kaiafas et al. [44] developed a feature engineering pro-
cess for detecting malicious authentication. The features are
constructed from Windows-based authentication events. For
instance, a feature is the number of connections used by auser
for connecting to a remote machine during a time period, the
number of machines used by a user, etc.

Bowman et al. [14] introduced the use of graph embed-
ding and highlighted the advantages over traditional machine
learning techniques. They showed how graph-learning can
leverage the topology of the graph to produce improved
unsupervised learning results. They applied a graph embed-
ding algorithm by first building an authentication graph
(relations between IPs, users, and services), and then apply-
ing node2vec [35] for embedding the authentication graph.
They evaluated their approach on datasets from Los Alamos
National Labs (LANL) [47]. The same authors (Bowman
et al.) proposed a technique for detecting lateral movement
of Advanced Persistent Threats inside enterprise level com-
puter networks using unsupervised graph learning [13]. The
approach consists of two phases: the construction of an
authentication graph (similar to the one discussed previously)
and an unsupervised graph-based machine learning pipeline.
They used auto-encoders algorithms such as DeepWalk [67]
and node2vec [35] for embedding the authentication graph.
They applied their approach on two distinct datasets repre-
senting two contrasting computer networks: The first dataset
is from a simulated environment they developed with only a
few hosts and the second dataset is from LANL [47].

5.2 Graph features in botnet detection

Several graph-based models of network events have been
developed for adding new contributions and perspectives to
botnet detection and traffic classification. The graph mod-
els are proposed in order to use them for extracting features.
Then, the features will be used in machine learning algo-
rithms.

In[20, 76, 80, 81], the authors use graph-based features for
botnet detection. They proposed a directed graph which rep-
resents connections between IP addresses. Chowdhury et al.
[20] extracted the following features from the constructed
graph: in-degree (weight), out-degree (weight), clustering
coefficient, betweenness (measures the number of shortest
paths that pass through a node), and eigenvector centrality.
Then, the authors applied a clustering method to construct
clusters of nodes in the network based on these features.

Sinha et al. [76] extracted the following features from
the constructed graph in each time interval: in-degree,

out-degree, in-neighbors, out-neighbors, PageRank, central-
ity, betweenness eigenvector centrality, authority and hub
centralities, and local clustering coefficient (quantifies the
neighborhood connectivity of a node). They extracted fea-
tures in each time interval. It allows to track the temporal
evolution of botnet communication structure and analyze net-
work activity over time. Then, a supervised approach such as
long short-term memory (LSTM) [39] based neural network
architecture is used to detect malicious botnet hosts.

Abou Daya et al. [23] proposed an anomaly-based
approach for bot detection, robust to zero-day attacks. Their
approach is based on feature extraction from the constructed
graph. The features are: in-degree, out-degree, in-degree
weight, out-degree weight, betweenness centrality, local
clustering coefficient, alpha centrality (measures the central-
ity of a node). The features are used for machine learning
algorithms such as logistic regression support vector machine
feed-forward neural network and decision trees. Their system
detects the different types of bots in the CTU-13 dataset.

Shang et al. [73] proposed a hybrid analysis approach on
flow-based and graph-based features of network traffic for
botnet detection. The graph-based features are in-degree, out-
degree, in-degree weight, out-degree weight, local clustering
coefficient, betweenness and pageRank. The flow-based
features are statistical metrics, excluding the source and
destination IP and port. For instance, total number of trans-
mitted packets, number of small packets less than 400 bytes.
The authors applied anomaly detection models including k-
means, K-nearest neighbor (k-NN), and one-class support
vector machine (On-class SVM) on combined both features.
For the experiments, they evaluated their approach on a sim-
ulated and a real computing environment.

We see that there are common metrics extracted from a
graph in order to use them as features for machine learning
algorithms. There metrics are: in-degree (weight), out-degree
(weight), clustering coefficient, betweenness, and eigen-
vector centrality. We notice that the graph-based features
approaches are very recent from 2017 to 2019. Most of them
target the problem of botnet detection on NetFlow and par-
ticularly on CTU-13 dataset. Using the graph properties as
features in order to apply machine learning algorithms for
botnet detection is a good start. In fact, the graph concen-
trates the structure of the communications or connections
that cannot be shown by the classical methods which extract
features directly from NetFlow or event log data.

Recently, Leichtnam et al. [55] proposed an unsuper-
vised learning approach based on auto-encoder algorithm
for detecting network attacks. Leichtnam et al. [55] devel-
oped their own auto-encoder due to their specific graphs, i.e.,
multi-attributes and heterogeneous graphs. For the experi-
ments, they applied their approach to the CICIDS2017 [74]
dataset.

@ Springer

S.Lagraa et al.

130

Surures] aumyORW I9POOUL-0INY JUSWIOAOW [BIJE] uonoNRq pajoaIIpun) uoneonuUAYINY QOIAIOS ‘IOSN ‘d[[#1 ‘€1] 'Te 30 uewmog
SuTUIRI[QUIYORW ‘IOPOJUI-0)NY UOT}0319p YoeNy UOT}09)9(] SN0AUAT0I)Y pue SANGLIIE-HNJA diysuoneroy $109[qo Atnoag [SS] Te 30 wewmyodIa
SuisnD U01}0319p Joujog uonoR pajoaIpun UOTEOTUNWO)) dI [¢£] 'Te 3o Sueys
Jurures auIyoRI UoT}0319p Joujog uonoRq Pa10aII(PAIYITOM UOTEITUNWWO)) dI [€8] 'Te 1o Suep
YI0MIQU [eINAN Uuo10319p Joujog uonoR Po10aII(PAIYITOM SUOT}BOTUNWITIO)) dI [$2] Te 10 vAeq
JuruIes auIyORIA U01}0319p Joujog uonoR Po30aII(PAIYITOM SUOT}ROTUNWITIO)) dI [€2] Te 10 AR
INLST uo1d3)9p Joujog uonocRq payoarg SUOT}BOTUNWITIO)) dI [92] 'Te 3o eyuIS
SursnD uo1d319p Joujog uonoRq payoarg SUOT}BOTUNWITIO)) dI [0Z] ‘T8 30 Amypmoy)
SJUQAQ UOTIROIUAYINE
Surures] pesiatedng SNOIDI[RIAL uondNRq pajoaIIpun SUOI}OAUUOD) 19)ndwoo/1as) [$+] 'Te 10 sejerey]
s24mpaf pasvq-ydp.io)
Suusnp ydein uonodep dWILIOIRqAD) SULIO)IUOIA ydei3 payoarpun diysuoneoy SNAOA dI [01] 'Te 10 1o810g
K100t ydein sonA[eue Joraeyeg SULIOIUOIA ydei3 payySrop diysuoneoy dI [21] ‘T8 30 qreH-nog
SuikionQ) SOISUQIOJ YI0MION UOTIBZI[ENSIA/UOT)EIIISOAU] paroarq SUONDY SUONOAUUOD PUE SISOH [§]] PAONWEIS puE YeuLd)
SIOSUQS
[eo1STIBIS UI UOTIO)p UoIsnnu uonoRq ydei3 payySrop diysuoneoy dI [0L] 'Te 3o TwezeaIpRS
syjed Surpurj uor919p JunoAlg uonoRq payoaIqg UuonEIIUNWWO)) S1ISOH [£] Te 30 9sozznidy
SuikionQ) UOTJRZI[BNSIA UOTRZI[BNSIA payoarIpun) diysuoneoy uonezmuesio/eaIy], [11] ‘1B 30 wyog
SuikionQ) UOTB[OLIO) O] UOIRZI[BNSIA/SULIOIIUOIA pajoAIIpUN diysuoneoy SV PUB SIOSUIS [ot] ‘T8 32 YesnyH
SuusnD UOTIB[QLI0D JIJ[Y uonoRq Pa10211g PAIYITOM UONEIIUNWIWO)) 1od:dT ‘dI [L€] 'Te 12 seey
Suuisny) UOTJB[OLI0 I uondNRq paroan((un) pAYSm (un) diysuoneoy dI ‘WeIY [8€ ‘O¢] 'Te 10 seeH
uonedyIsse[) UOTB[OLI0D 1Ay uonuaAld Pa10RIIJ PAIYSTOM diysuonejoy 1oy [62] T 30 [pa1g ueg
U0I309)3p AJewiouy U01}0319p Joujog uonoR pajoaIrpun SUOT}BOTUNWITIO)) dI [28] 'Te 1o Suepp
SuisnD Uuo1}0319p Joujog uonoR pajoaIpun SUOT}BOTUNWITIO)) dI [18] 'Te 3o Suep
SuisnD uo1399)3p 109 d2d uonoR pajoaIIpun SUOT}BOTUNWITIO)) dI [08] 'Te 10 ysayesyuap
Qoue)sIp 31p2 ydein oo} Joujog uonoRq P30 SIU9AY/s)I0d ATSSR0ONG SIUQAQ/S)HOJ [6%] ‘Te 30 veISe]
SyorIE WOIJ
syjed 1S91I0YS UOTOBIIXD 9FPI[mouy] uonesnsaAu] payoang SJUQAD QAISSIOING SJUAAH [€] 8 32 ayonoswry
SQIILIB[TWIS
syjed iseuoys Suruueoss 11od onueweg SuLI0)TUOTA payoarg sy10d oATSS200NS s)104 [£Z] ‘Te 3° preiag
SOTLIBTIITS
Sururw ureped/3urisni) Suruueds 3104 SuLI0JIUOIA payoang su10d oA1ss900Ng $1104 [zS] ‘Te 10 veISE]
SQIILIB[TWIS
SusnD Juruueds 104 SULIO)TUOTA payarg s110d oATSSQ00NS s)104 [0S] ‘Te 30 veade]
sonkpup pup Surunu ydp.ioy
uomnnjos ydein wo[qoig uonedrddy ydein sa3pg SOPON 1odeq

K)1noas yromiau 10y sayoeordde peseq-ydeis jo Arewwng | ajqel

pringer

Qs

131

syder3 Kuew J0J spuels * [OqUIAS Y, "SOINIOA JO J3S Y} ST A "[BAISIUL SWT)

Aue uU99M)aq SMOY JO JquINU WNWIXeW Ay} ST 2 pue ‘yPIud] yred payoreds Jo wnwWixew ay) S1 Y747 ‘mopuim duir} B UIiim SMO} JI0MIau Jo Joquinu dy st w -ddures ay) jo 9zis ay) sjuasaxdar §

pringer

As

A review on graph-based approaches for network security monitoring and botnet detection

ON ON ON ON S9A ON ON TINVT ‘pae[nuitg I [¥1 ‘€1 T8 10 vewmog
ON ON ON ON S9A ON ON L10ZSdIDID I [SS] Te 10 wrewyore T
ON ON ON ON ON ON BN [egny I [€L] 'Te 12 Sueys
ON ON ON ON ON ON BN ON I (€8] Te 10 Suep
ON ON ON ON ON ON ON €I-NLdD I [+2] Te 12 eAeq
ON ON ON ON ON ON ON €I-NLd I [zl Te 10 eheq
BN ON ON ON ON ON ON €I-NLd * [9L] Te 10 equUIS
ON ON ON [69] (z8)o = ON ON ON €I-NLd I [0Z] 'Te 10 Amypamoy)
ON ON ON ON SOX ON SO INVT [y¥] e 30 seyeren]
s24mpaf pasvq-ydp.ix
SOX ON SOX. 7T+ Ao SOX. SOX SOR 19p1A01d 9O1AISS JouIju] 1 [01] 'Te 30 1o810g
ON ON SOX. ON ON ON SOX jouyIeq 1 [z1] ‘T 30 qreg-nog
ON ON ON ON SIA ON ON A7 I [81] paoywRIS pUE YpULIa))
ON ON SR ON ON ON ON [eognIy I [0L] Te 19 twrezearpes

(2 (w)T80;
ON SOA SOX o W) Q) ON ON SOK MO[JION [£] ‘Te 32 9sozznidy
BN ON ON ON S9A ON ON XILS I [11] T8 10 wyeg
ON ON ON ON SR ON ON ngvs I [0¥] T8 10 ypsny
ON ON ON ON ON ON BN PIRWSA ‘TeroynIy [[Lg] T8 1 seey
ON ON ON ON ON ON ON [eogny C [8€ ‘9¢] Te 12 seey
ON ON ON Tesury ON ON BN uosjed * [62] e 10 [parg uog
ON ON ON ON ON ON SOk €1-NLD ‘VAIvD # [28] Te 10 Suepm
ON ON ON ON ON ON ON varvo [18] Te 30 Suepm
ON ON ON (IAl8ono ON Sox Sox varvo [08] "Te 10 ysareyuap
ON ON ON ON ON ON ON €I-NID [6¥] Te 10 eRISE]
ON ON ON ON ON ON Sox TINVT * [€] 'Te 10 ayonoTwry
ON ON ON ON ON ON SOR. JowIRq I [2Z]Te 10 preIag
ON ON ON ON ON ON SOX JouIR(q I [zS] ‘Te 30 veade]
ON ON ON ON ON ON SOX JouIR(I [0S] ‘Te 30 ve1SE]
sondppup pup Surunu ydp.ao

An

9pod -quEoHo. ydeis sydeid

J[qe[reAy Aypiqereos qununy Quy, SNOQUAT0I01OH 93re] eyep 3ig pasn el Jjo 'ON 1adeq

panunuod | sjqer

132

S.Lagraa et al.

6 Summary and discussion

In this section, we first provide a summary of all the sur-
veyed works. Subsequently, we discuss the findings of the
survey, starting with the answers to questions stated in the
introduction and followed by the discussion of the metrics.
Finally, we summarize the resolved problems and formulate
open research challenges.

6.1 Summary of related work

Table 1 summarizes all the approaches within the three cate-
gories presented in previous sections. The table summarizes
these approaches according to the following facets:

— Graph The type of graph, e.g., directed or weighted.

— Nodes/Edges What do the nodes and edges represent.

— Application The targeted application, such as intrusion
detection or network forensics.

— Problem The problem targeted in the related work.

— Solution The solution used to solve the problem. The
solution could be based on graph representation, analysis,
mining or learning, or specific graph features.

— Number of graphs The number of graphs used for
resolving a problem. It means the number of constructed
graphs for analysis. The symbol * stands for many graphs.

— Data used The dataset used for the experiments.

— Big data It is a Boolean metric measuring how much
the IP traffic is big? A data is big when the size of the
IP traffic is greater than 35.5 gigabytes per month. This
number is estimated from the report published by CISCO
in [21].

— Large graph We say that a graph is large if the number
of vertices and edges are greater than million.

— Heterogeneous A graph is heterogeneous if it contains
different types of nodes and edges.

— Time complexity It is a notion which is often addressed
in algorithmic classes, but not in machine learning algo-
rithms. It is harder to evaluate the complexity of a
machine learning algorithm, especially as it may be
implementation dependent, input parameters passed to
the algorithm, properties of the data (categorical, numer-
ical) may lead to other algorithms. In our comparison, we
put the exact time complexity of graph theory algorithms
and approximate the machine learning algorithms. The
approximation is noted by the symbol ~~.

— Runtime It is a Boolean variable showing if the authors
compute the runtime of their algorithm.

— Scalability Itis a Boolean variable showing if the authors
measure the scalability of their algorithm.

— Available code It is a Boolean variable showing if the
source code of the proposed tool is public or not.

@ Springer

Table 2 Graph dataset characteristics in each research paper

Paper Avg of vertices Avg of edges Type

Graph mining and analytics

Lagraa et al. [50] 1169 290,359 Sparse
Lagraa et al. [52] 1169 290,359 Sparse
Evrard et al. [27] N/D N/D N/D
Amrouche et al. [3] 657 189,871 Sparse
Lagraa et al. [49] N/D N/D N/D
Venkatesh et al. [80] 1,997,513 9,488,076 Dense
Wang et al. [81] 396 N/D N/D
Wang et al. [82] 396 N/D N/D
Ben Fredj et al. [29] ~17 ~53 Dense
Haas et al. [36, 38] N/D N/D Dense
Haas et al. [37] N/D N/D Sparse
Husék et al. [40] N/D N/D N/D
Bohm et al. [11] N/D N/D N/D
Apruzzese et al. [7] N/D N/D N/D
Sadreazami et al. [70] N/D N/D N/D
Cermék and Srdmkovd [18] 718,475 397,632 Sparse
Bou-Harb et al. [12] 87 N/D N/D
Berger et al. [10] 14.6M N/D N/D
Graph-based features

Kaiafas et al. [44] 403 N/D N/D
Chowdhury et al. [20] 227,949 N/D N/D
Sinha et al. [76] N/D N/D N/D
Daya et al. [23] 250,359 N/D N/D
Daya et al. [24] 250,359 N/D N/D
Wang et al. [83] N/D N/D N/D
Shang et al. [73] N/D N/D N/D
Leichtnam et al. [55] N/D N/D N/D
Bowman et al. [13, 14] N/D N/D N/D

Avgof vertices: average number of vertices. Avg of Edges: average num-
ber of edges. Type: type of a graph (sparse/dense). N/D is not defined

The important findings of this survey are listed in the
following subsection as either resolved problems or open
challenges.

Throughout this survey, we can see that various solu-
tions are proposed for graph modeling, analysis, and mining
for network security purposes. Most of the works construct
and analyze one graph. The prevalent use case, outstanding
among other network security use cases, is botnet detection.

6.1.1 Graph-based data representation

Our survey shows that there are a plethora of models designed
to approach various goals; there is no unifying or com-
mon model used by a significant number of researchers.
The existing works typically create their own model and
choose custom semantics to nodes, edges, and their proper-

A review on graph-based approaches for network security monitoring and botnet detection 133

ties. Different types of graphs have been used: (un)directed,
(un)weighted graphs for a problem due to different manners
of representing data into a graph and the difficulty to find the
best representation. Many works represent the IP addresses
as nodes and the communication between them as edges.
Nevertheless, the graph representation should include more
information. The vital pieces of information are the times-
tamps, port numbers, numbers of transferred bytes. Most of
the graphs are static and do not take into consideration the
time, which would make them dynamic.

The most common network data to model as a graph are
network traffic records in PCAP or NetFlow format, includ-
ing the data generated by Zeek [66, 86]. CTU-13, a publicly
available dataset containing 13 separate scenarios and dif-
ferent botnet families [32], is the most widely used in the
surveyed works. It might be worth recommending using the
dataset in future work to allow for comparison to previous
work.

Table 2 shows graph dataset characteristics in each
research paper. We highlight the average number of vertices
and edges as well as the type of graph: sparse or dense. A
dense graph is a graph in which the number of edges is close
to the maximal number of edges. A sparse graph is a graph
in which the number of edges is much less than the possible
number of edges. We notice that the majority of works do
not describe the constructed or used graph. The description
of the graph is important for comparisons and measuring the
performance of the proposed detection tool. It allows to have
an overview of the graph. We see that in the defined graph
characteristics, the graphs are not large and in some cases
they do not reflect the real-world cases.

6.1.2 Graph analysis

Several works have been proposed to tackle the modeling
of data into a graph for both security monitoring and botnet
detection problems. The graphs are modeled for each prob-
lem and objective, and the application of mining algorithms
depend on the targeted problem and objective.

For the graph solutions, most of the works use classical
graph theory algorithms such as shortest paths or clustering,
but recently the use of neural network solutions provides an
interesting perceptive by increasing the detection of bots.

Table 3 shows the advantage and disadvantage of the pro-
posed approaches. The algorithm column focuses on the main
contribution which is the use of a graph algorithm. In the case,
when the graph algorithm in the feature discovery process,
we put the type of the machine learning approach.

6.1.3 Graph features

Regarding graph-based machine learning, the authors apply
different unsupervised and supervised machine learning

models depending on the problem and objectives; there is
no prevalent approach. On the contrary, the authors extract
quite similar sets of graph features such as the degree of
nodes, centrality of the graph, communities. The graph met-
rics are used as features for machine learning algorithms.

6.2 Evaluation metrics

Table 5 shows a comparison of computed metrics for the
network security. These metrics are used for measuring the
performance of a detection tool. In fact, there are various
ways to evaluate a model. We enumerate some of the most
popular metrics used for the attack and threat detection.

Confusion Matrix Confusion matrix is not a metric, but
it is a key concept in classification performance of machine
learning models. It is a tabular visualization of the model
predictions versus the ground-truth labels. Each row of con-
fusion matrix represents the instances in a predicted class and
each column represents the instances in an actual class. For
example, let us consider we are building a binary classifica-
tion to classify attack events from non-attack events. Let us
assume our test set has 1100 events (non-attack events, and
100 attack events), with the confusion matrix in Table 4.

Out of 100 attack events the model has predicted 90 of
them correctly and has misclassified 10 of them. If we refer
to the attack events class as positive and the non-attack events
class as negative class, then 90 samples predicted as attack
events are considered as true-positive (TP), and the 10 sam-
ples predicted as non-attack events are false negative (FN).
Out of 1000 non-attack events, the model has classified 940
of them correctly, and misclassified 60 of them. The 940 cor-
rectly classified samples are referred as true-negative (TN),
and those 60 are referred as false-positive (FP).

In Table 4, the diagonal elements of this matrix denote the
correct prediction for different classes, while the off-diagonal
elements denote the misclassified events.

Classification accuracy Classification accuracy (accu-
racy) is defined as the number of correct predictions divided
by the total number of predictions. For example, in Table 4,
out of 1100 events 1030 are predicted correctly, resulting in
a classification accuracy of accuracy = (90 + 940) /(1000 +
100) = 1030/1100 = 93.6%.

Precision Classification accuracy is not a good indicator
of amachine learning model performance in many cases. One
of these cases in botnet detection is when a class distribution
is imbalanced. Imbalanced data is one class is more frequent
than others (attacks versus non-attacks). In this case, if the
prediction of all samples as the most frequent class, then the
model gets a high accuracy rate, which not accurate because
the model is not learning anything, and is predicting every-
thing as the top class. For example, in Table 4, if the model
predicts all samples as non-attack events, it would result in a
1000/1100 = 90.9%.

@ Springer

134

S.Lagraa et al.

Table 3 Advantage and disadvantage of each approach

Paper

Algorithm

Advantage

Disadvantage

Graph mining and analytics
Lagraa et al. [50]

Lagraa et al. [52]
Evrard et al. [27]
Amrouche et al. [3]

Lagraa et al. [49]

Venkatesh et al. [80]
Wang et al. [81]
Wang et al. [82]
Ben Fredj et al. [29]
Haas et al. [36, 38]

Haas et al. [37]

Husiék et al. [40]
Bohm et al. [11]

Apruzzese et al. [7]

Sadreazami et al. [70]

Cermak and Sramkov4 [18]

Bou-Harb et al. [12]
Berger et al. [10]

Graph-based features
Kaiafas et al. [44]

Chowdhury et al. [20]

Modularity clustering
Modularity clustering
Shortest paths
Shortest paths

Graph Edit Distance

Community detection
Community detection
Community detection
Classification
Clustering

Querying

Querying
Visualization

Finding path

Bhattacharyya distance

Querying

Graph inference

Clustering

Ensemble learning

Self-organizing map

Extracts clusters with quite-small
computational cost

Extracts clusters with quite-small
computational cost

Is enough efficient to use for
relatively large problems

Is enough efficient to use for
relatively large problems

Measuring the similarity between
pairwise graphs

Highlights the botnet as a
community

Highlights the botnet as a
community

Highlights the botnet as a
community

No prior knowledge and no
training required

Discovering similar alerts by
reducing the false-positive alerts

A motif representation of attack
characteristics is like a
signature-based detection

allows to focus on specific graph
patterns

Offers a global and local overview

Provides an interpreting
perspective to the analysts
regarding the root cause of an
attack

Appropriates for stochastic model
updating where the distributions
of the features cannot be exactly
determined

The connection of exploratory
analysis of network traffic with
results visualization allowing
analysts to easily go through the
acquired knowledge and visually
identify interesting network
traffic

Allows to define complex botnet

Discovering repeating patterns

Can make better predictions and
achieve better performance than
any single model

Very simple/easy to understand
and use

Fails to detect communities smaller than a
scale

Fails to detect communities smaller than a
scale

A blind search by consuming a lot of time
and resources, if not guided

A blind search by consuming a lot of time
and resources, if not guided

Computational complexity which is
exponential in the number of nodes of
the involved graphs

Some groups of the botnet may be
misclassified

Some groups of the botnet may be
misclassified

Some groups of the botnet may be
misclassified

Without prior knowledge sometime is not
good

Focusing on alerts for the detection may
be risky

May lose some unknown attacks (patterns)

Difficult and time-consuming to develop
the Querying patterns

Difficult to visualize when the graph is
huge

May lose some paths and increases false
negatives

Measures the similarity of two probability
distributions

Difficult to developed graph queries and
visualize a large graph

needs a little bit time-consuming

Focusing on a specific pattern can lose
others

Less interpretable and the output of the
ensembled model is hard to predict and
explain

Difficult to determine what input weights
to use

@ Springer

A review on graph-based approaches for network security monitoring and botnet detection 135
Table 3 continued
Paper Algorithm Advantage Disadvantage

Sinha et al. [76]
Daya et al. [23]
Daya et al. [24]
Wang et al. [83]
Shang et al. [73]

Leichtnam et al. [55]

Bowman et al. [13, 14]

Long Short-Term Memory (LSTM)
Unsupervised + Supervised
Unsupervised + Supervised

Hybrid analysis

Hybrid analysis

Novelty Detection

Anomaly detection

Uses previous time events for
training/prediction

Combines them together for better
results

Combines them together for better
results

The use of different techniques
allows to increase the results

The use of different techniques
allows to increase the results

The ability to adapt to
non-stationary data

Can help to detect unknown attacks

Requires a lot of resources and time to get
trained

Difficult to measure uncertainties of the
results from each individual model

Difficult to measure uncertainties of the
results from each individual model

The detection process is more likely to
take more time and effort

The detection process is more likely to
take more time and effort

Assumes that the positive class is very
well sampled, while the other class(es)
is/are severely under-sampled

May not be accurate

Thus, the precision metric is suitable for measur-
ing at class specific performance, which is defined as:
Precision =TP/(TP + FP).

The precision of attack events and non-attack events class
in Table 4 can be calculated as:

— Precision_attack_events = number of samples correctly
predicted attack events/number samples predicted as
attack events = 90/(90+60) = 60%.

— Precision_non_attack_events= 940/950= 98.9%.

Recall Recall is defined as the fraction of samples from a
class which are correctly predicted by the model. Formally
is defined as follows: Recall = T P /(T P + F N). Thus, the
recall rate of attack events and non-attack events classes can
be found as:

— Recall_attack_events = 90/100 = 90%.
— Recall_non_attack_events = 940/1000 = 94%.

F1-Score F1-Score is a combination of the precision and
recall into a single metric, which is the harmonic mean of
precision and recall defined as: F'1 —score = 2« Precisionx
Recall/(Precision + Recall). Thus, for our classification
example in Table 4, the F1-score is calculated as:

F1_attack_events =2 %0.6%0.9/(0.6 + 0.9) = 72%.

ROC Curve The receiver operating characteristic (ROS)
curve is a plot which shows the performance of a binary
classifier as a function of its cut-off threshold. It essentially
shows the true-positive rate (TPR) against the false-positive
rate (FPR) for various threshold values.

AUC The area under the curve (AUC) is an aggregated
measure of performance of a binary classifier on all possible

Table 4 Example of a confusion matrix

Actual class

Attack events Non-attack events

Predicted class
Attack events 90 60
Non-attack events 10 940

threshold values (and therefore it is threshold invariant). AUC
calculates the area under the ROC curve, and therefore, it is
between 0 and 1. The interpretation of AUC is as the proba-
bility that the model ranks a random positive example more
highly than a random negative example.

In Table 5, most of the works compute the true positive,
false positive, and accuracy. Few works go further in the
measurement of the performance models by computing the
precision, recall, F1-score, ROC, and AUC. These latter are
very important when the classes are imbalanced involving
two classes: a negative case with the majority of examples
(normal flows) and a positive case with a minority of exam-
ples (abnormal flows). They are used for diagnostic and in
the interpretation of binary classification models. The future
works need to compute these metrics in order to diagnostic
better their model.

6.3 Answers to questions

In the introduction, we asked questions in order to get
answers related to the graph-based representation of network
traffic records and the application of graph-based analytics
in network security problems such as the intrusion detection
and monitoring.

@ Springer

136

S.Lagraa et al.

Table 5 Comparison of

computed metrics Paper TP FP Accuracy Precision Recall Fl-score ROC AUC
Graph mining and analytics
Lagraa et al. [50] N/D N/D N/D N/D N/D N/D N/D N/D
Lagraa et al. [52] N/D N/D N/D N/D N/D N/D N/D N/D
Evrard et al. [27] N/D N/D N/D N/D N/D N/D N/D N/D
Amrouche et al. [3] N/D N/D N/D N/D N/D N/D N/D N/D
Lagraa et al. [49] ° ° ° N/D N/D N/D N/D N/D
Venkatesh et al. [80] N/D N/D o ° ° ° N/D N/D
Wang et al. [81] ° ° ° N/D N/D N/D ° N/D
Wang et al. [82] ° ° ° ° ° ° ° N/D
Ben Fredj et al. [29] N/D N/D N/D N/D N/D N/D N/D N/D
Haas et al. [36, 38] ° ° ° ° N/D N/D N/D N/D
Haas et al. [37] ° ° ° N/D N/D N/D N/D N/D
Husak et al. [40] N/D N/D N/D N/D N/D N/D N/D N/D
Bohmet al. [11] N/D N/D N/D N/D N/D N/D N/D N/D
Apruzzese et al. [7] N/D N/D o N/D N/D N/D N/D N/D
Sadreazami et al. [70] ° ° N/D N/D N/D N/D ° N/D
Cermik and Sramkova [18] N/D N/D N/D N/D N/D N/D N/D N/D
Bou-Harb et al. [12] ° ° ° N/D N/D N/D N/D N/D
Berger et al. [10] ° ° N/D ° N/D N/D N/D N/D
Graph-based features
Kaiafas et al. [44] ° ° ° ° ° ° N/D N/D
Chowdhury et al. [20] . N/D N/D N/D N/D N/D N/D N/D
Sinha et al. [76] ° ° N/D N/D N/D N/D ° °
Daya et al. [23] ° ° ° ° N/D N/D N/D N/D
Daya et al. [24] ° ° ° ° N/D N/D N/D N/D
Wang et al. [83] ° ° ° ° ° ° ° N/D
Shang et al. [73] ° ° ° ° ° ° ° N/D
Leichtnam et al. [55] ° ° ° ° ° ° N/D N/D
Bowman et al. [13, 14] ° ° N/D N/D N/D N/D N/D N/D

N/D is not defined

1. Question What types of graphs are used to represent

network security data? Answer The trivial represen-
tation of network security data is the directed graph.
However, a weighted directed graph is used for botnet
detection or network monitoring. Weighted undirected
graph is also used for monitoring and measuring the
similarity between entities (e.g., I[P addresses, domains,
users).

Question What approaches are used to analyze such
graphs to detect or analyze malicious network activi-
ties? Answer The frequent used approaches are unsu-
pervised learning approaches where there is no need of
labels for training and detecting. The network security
problems is translated either to outlier detection, clus-
tering, or querying problems. In outlier detection, the
outliers are considered as anomalies, threats, or attacks.
In clustering, the data is grouped into clusters to be

@ Springer

analyzed. In querying, the graph is queered for finding
specific patterns in a graph.

. Question What are the metrics used for the detection

and monitoring? Answer In machine learning domain,
the metrics are very important scores for measuring
the performance of a classifier tool. However, for the
network security problems, not all metrics are used,
most of them used the accuracy, true-positive, and false-
negative rates. These three metrics are not sufficient for
measuring the strength of amodel. Thus, all metrics can
be used for measuring the strong and weak points of a
model.

. Question Are the existing works reproducible? Answer

Very few research papers share their data and code, and
if so, it is not always well documented. This is an issue
for the progress of the network security research. Com-
paring with other domains, in which similar approaches
are used, such as natural language processing or image

A review on graph-based approaches for network security monitoring and botnet detection 137

processing, the code, data, and documentation are often
publicly available. Thus, the research community of
network security should progress in the reproducibil-
ity of research papers. However, we are aware that
the insufficient number of usable datasets in cyberse-
curity is given by their rapid obsolescence caused by
constantly changing threat landscape and the rapid evo-
lution of attackers and protected systems.

6.4 Open challenges and future prospects

Despite several research works in the past decades, there
are still several aspects to be explored in the intersection
of network security and graphs. In fact, the arrival of big
data, the complexity of attacks, and the heterogeneity of data,
there is a need for techniques and algorithms adapted to these
characteristics.

6.4.1 Graph-based data representation

The input data typically do not form a graph; it is up to
the researcher or security analysts to construct it. There are
many existing models and different types of graphs. In fact,
the authors model the data into a graph for each problem
and objective. Thus, there is no unique graph model for all
problems. Without expert knowledge, it is hard to select an
existing model or to design an optimal model for a specific
problem or objective, especially when graph mining or learn-
ing is considered.

Although the use of graph databases is on the rise, there
are few works that use graph databases, namely for botnet
detection. If the researchers use a graph database, they most
often use Neo4j and Cypher query language. In future, we
may expect wider use of GraphQL [68], a graph query lan-
guage for API that allows for integration of graph databases
with other tools and integrating them to security services.

When the graph database is used, there are typically
no proofs of their efficiency for a resolved problem. The
efficiency could be in terms of speedup, horizontal and ver-
tical scalability, or memory consumption. Only a few works
discuss the differences between graph database and alterna-
tive options [51]. Instead of using graph databases, many
researchers load and save the graph models in a file. Loading
the graph in the memory each time when the user wants to
process or query the data can be a constraint, especially when
the graph is large.

6.4.2 Graph analysis

The analysis of graph is lacking computational streaming
models [48]. Streaming models address updating graph anal-
ysis results given a starting result and snapshot views of the
changing graph. Streaming models are suitable for dynamic

graphs. Another aspect not taken into consideration is the
scalability of graph-processing computations. In addition, the
analysis of large graphs has not received considerable atten-
tion. The proposed solutions would often not be suitable for
processing big graphs.

The reproducibility of research and experiments is a chal-
lenge in many fields; it is especially challenging in network
security. In fact, most of the research papers are difficult to
reproduce due to the insufficient description of the approach
or the data and source codes that are not published. We
already mentioned that many works on botnet detection use
the CTU-13 dataset. Nevertheless, the datasets in network
security become obsolete extremely fast due to the continu-
ously evolving threats, attacks, and network traffic patterns.
The situation is slowly changing due to the adoption of
Open Science practices. Still, it might be problematic to
compare novel approaches suited to detect current threats
to the previous work suited to detect past attacks. Moreover,
we face problems comparing the existing approaches to net-
work security (e.g., botnet detection) based on graphs to other
approaches. There will be the need to set up a set of metrics to
compare graph-based and non-graph-based approaches and
quantify the benefits of such approaches.

6.4.3 Graph features

The issue of explainability of approaches based on machine
learning was not discussed in the literature in the cyberse-
curity context and is an open challenge. The development
of new graph mining algorithms and explainable embed-
ding solutions could be one of the solutions. In fact, in the
existing solutions, we can find two types of features: fea-
tures extracted from the graph (e.g., in-degree, out-degree) or
learned graph (e.g., using neural networks). The approaches
based on the first type of features are very easy to understand,
and the model based on these features could be explainable
when they are combined with explainable machine learning
models (e.g., decision tree, k-means). However, they may suf-
fer from low accuracy. On the contrary, the approaches based
on the second type of features are not easily explainable,
but they may achieve higher accuracy. Experimental com-
parisons of the two types of features should be performed,
and a combination of them should be proposed in order to
find a balance between explainability and accuracy.

6.4.4 Graph neural network for network security

Machine learning, especially deep representation learning,
on graphs is an emerging field with a wide range of appli-
cations. Within this field, graph neural networks (GNNs)
have been recently proposed to model and learn over graph-
based data representation by generating graph embedding
(Sect.2.1). Due to their unique ability to generalize over

@ Springer

138

S.Lagraa et al.

graph data, GNNs are a central technique to apply artifi-
cial intelligence techniques to networking security as well as
networking applications. A combination between GNNs and
machine learning algorithms may provide better results than
machine learning algorithms alone or statistical tools.

7 Conclusions

In this survey, our aim has been to provide a comprehen-
sive overview of graph-based approaches to network security
problems. We surveyed qualitative and quantitative graph-
based approaches with special attention to network traffic
analysis and botnet detection. The surveyed works were cat-
egorized into three groups:

(i) graph-based data models, in which we observed a
prevalence of models of network traffic,

(ii) graph-based analysis, in which we observed the emerg-
ing topic of graph mining mostly applied to botnet
detection, and

(iii) graph features, in which we delved into the features
used for botnet detection via machine learning on
graphs.

The important message we aimed to highlight is the strength
of graphs in capturing network security data, including Net-
Flow, intrusion detection alerts, and authentication event
logs. Graphs are a powerful mechanism for prevention,
detection, and investigation in network security. In fact, we
highlight that

(i) data are often linked and inter-dependent between het-
erogeneous sources,
(ii) there are numerous graph models for resolving various
problems, and
(iii) the graphs are robust for understanding complex data
by capturing interactions and structures.

The goal of this paper was to convey the advantages of graphs
and their applications in network security by providing a
comprehensive list of available techniques and algorithms
that use graphs. Nevertheless, there are open challenges for
research and development in the field. Namely, it is up
to the security analysts to select the most suitable graph
models and algorithms, which might be complicated with-
out expert knowledge. Further, the graph databases and big
graph-processing systems are not used at their full potential
yet.

Author Contributions All authors contributed to the study conception
and design. The first draft of the manuscript was written by SL, and all
authors commented on previous versions of the manuscript. All authors
read and approved the final manuscript. Here are the details. SL and

@ Springer

MH, as experts in network security and machine learning at Fujitsu and
Masaryk University, respectively, wrote the main manuscript text and
figures. HS, as an expert in graph theory, contributed to and wrote a
machine learning and graph theory part with a machine learning point
of view. SV, as a cyber security expert at Citibank, provided a secu-
rity overview by reviewing each step of the writing process. RS, as an
expert in network and cybersecurity, reviewed the manuscript text, by
providing a cybersecurity and machine learning point of view. MO as
an expert and head of cybersecurity at Fujitsu, reviewed the manuscript
text by providing a cybersecurity point of view. All authors reviewed
the manuscript.

Funding For the research leading to these results, Hamida Seba received
funding from Agence National de la Recherche (ANR) under Grant
Agreement No. ANR-20-CE39-0008, Radu State received funding
from Fonds National de la Recherche (FNR) for CAFFE project.
Martin Husdk was supported by ERDF “CyberSecurity, CyberCrime,
and Critical Information Infrastructures Center of Excellence” (No.
CZ.02.1.01/0.0/0.0/16_019/0000822).

Research data policy and data availability Data sharing is not applica-
ble to this article as no datasets were generated or analyzed during the
current study.

Declarations

Conflict of interest All authors certify that they have no affiliations with
or involvement in any organization or entity with any financial interest
or non-financial interest in the subject matter or materials discussed in
this manuscript.

Ethical approval All authors declare that they adhere to the ethical prin-
ciples of the journal.

References

1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection
and description: a survey. Data Min. Knowl. Disc. 29(3), 626—-688
(2014)

2. Amini, P., Araghizadeh, M.A., Azmi, R.: A survey on botnet:
classification, detection and defense. In: International Electronics
Symposium (IES), pp. 233-238 (2015)

3. Amrouche, F., Lagraa, S., Kaiafas, G., State, R.: Graph-based
malicious login events investigation. In: IFIP/IEEE International
Symposium on Integrated Network Management (IM), pp. 63-66
(2019)

4. Apache Software Foundation: Apache Spark. https://spark.apache.
org/. Accessed 1 Nov 2021

5. Apache Software Foundation: Apache TinkerPop. https:/
tinkerpop.apache.org/. Accessed 1 Nov 2021

6. Apache Software Foundation: GraphX. https://spark.apache.org/
graphx/. Accessed 1 Nov 2021

7. Apruzzese, G.,Pierazzi, F., Colajanni, M., Marchetti, M.: Detection
and threat prioritization of pivoting attacks in large networks. IEEE
Trans. Emerg. Top. Comput. 8(2), 404—415 (2020)

8. ArrangoDB. https://www.arangodb.com. Accessed 1 Nov 2021

9. Bai, J., Shi, Q., Mu, S.: A malware and variant detection method
using function call graph isomorphism. Secur. Commun. Netw.
2019, 1043,794:1-1043,794:12 (2019)

10. Berger, A., D’Alconzo, A., Gansterer, W.N., Pescapé, A.: Mining
agile DNS traffic using graph analysis for cybercrime detection.
Comput. Netw. 100, 28-44 (2016)

https://spark.apache.org/
https://spark.apache.org/
https://tinkerpop.apache.org/
https://tinkerpop.apache.org/
https://spark.apache.org/graphx/
https://spark.apache.org/graphx/
https://www.arangodb.com

A review on graph-based approaches for network security monitoring and botnet detection

139

13.

17.
18.

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

30.

31.

32.

33.

. Bohm, F.,, Menges, F., Pernul, G.: Graph-based visual analytics for

cyber threat intelligence. Cybersecurity 1(1), 16 (2018)
Bou-Harb, E., Debbabi, M., Assi, C.: Big data behavioral analyt-
ics meet graph theory: on effective botnet takedowns. IEEE Netw.
31(1), 18-26 (2017)

Bowman, B., Laprade, C., Ji, Y., Huang, H.H.: Detecting lateral
movement in enterprise computer networks with unsupervised
graph Al In: 23rd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2020), pp. 257-268
(2020)

Bowman, B., Huang, H.H.: Towards next-generation cybersecurity
with graph Al. SIGOPS Oper. Syst. Rev. 55(1), 61-67 (2021)

. Bunke, H., Allerman, G.: Inexact graph matching for structural

pattern recognition. Pattern Recognit. Lett. 1(4), 245-253 (1983)
Caswell, B., Foster, J.C., Russell, R., Beale, J., Posluns, J.: Snort
2.0 Intrusion Detection. Syngress Publishing, Oxford (2003)
Cayley. https://cayley.io. Accessed 1 Nov 2021

Cermék, M., Srdmkov4, D.: GRANEF: utilization of a graph
database for network forensics. In: Proceedings of the 18th Inter-
national Conference on Security and Cryptography, pp. 785-790.
SCITEPRESS (2021)

CESNET and Masaryk University: SABU. https://sabu.cesnet.cz/
en/start. Accessed 1 Nov 2021

Chowdhury, S., Khanzadeh, M., Akula, R., Zhang, F., Zhang, S.,
Medal, H., Marufuzzaman, M., Bian, L.: Botnet detection using
graph-based feature clustering. J. Big Data 4(1), 14 (2017)
CISCO: global—2021 forecast highlights. https://www.cisco.
com/c/dam/m/en_us/solutions/service-provider/vni-forecast-
highlights/pdf/Global_2021_Forecast_Highlights.pdf (2021)
Data Collection, C., Sharing. https://www.caida.org/data/.
Accessed 1 Nov 2021

Daya, A.A., Salahuddin, M.A., Limam, N., Boutaba, R.: A graph-
based machine learning approach for bot detection. In: IFIP/IEEE
International Symposium on Integrated Network Management
(IM), pp. 144-152 (2019)

Daya, A.A., Salahuddin, M.A., Limam, N., Boutaba, R.: BotChase:
graph-based bot detection using machine learning. IEEE Trans.
Netw. Serv. Manag. 17(1), 15-29 (2020)

DGraph. https://dgraph.io. Accessed 1 Nov 2021

Essawy, B.T., Goodall, J.L.., Voce, D., Morsy, M.M., Sadler, J.M.,
Choi, Y.D., Tarboton, D.G., Malik, T.: A taxonomy for reproducible
and replicable research in environmental modelling. Environ.
Model. Softw. 134, 104,753 (2020)

Evrard, L., Frangois, J., Colin, J.: Attacker behavior-based metric
for security monitoring applied to darknet analysis. In: IFIP/IEEE
International Symposium on Integrated Network Management
(IM), pp. 89-97 (2019)

Fitch, J.A., 1II., Hoffman, L.J.: A shortest path network security
model. Comput. Secur. 12(2), 169-189 (1993). https://doi.org/10.
1016/0167-4048(93)90100-J

Fredj, O.B.: A realistic graph-based alert correlation system. SEC
Commun. Netw. 8(15), 2477-2493 (2015)

Gamachchi, A., Boztas, S.: Insider threat detection through
attributed graph clustering. In: IEEE Trustcom/BigDataSE/ICESS,
pp. 112-119 (2017)

Gamachchi, A., Sun, L., Boztas, S.: Graph based framework for
malicious insider threat detection. In: 50th Hawaii International
Conference on System Sciences, HICSS, pp. 1-10 (2017)

Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical com-
parison of botnet detection methods. Comput. Secur. 45, 100-123
(2014)

Garcia, S., Zunino, A., Campo, M.: Survey on network-based
botnet detection methods. Secur. Commun. Netw. 7(5), 878-903
(2014)

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Gligor, V.D.: A note on denial-of-service in operating systems.
IEEE Trans. Softw. Eng. SE-10(3), 320-324 (1984). https://doi.
org/10.1109/TSE.1984.5010241

Grover, A., Leskovec, J.: node2vec: scalable feature learning for
networks. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, pp. 855-864 (2016)

Haas, S., Fischer, M.: GAC: graph-based alert correlation for the
detection of distributed multi-step attacks. In: Proceedings of the
33rd Annual ACM Symposium on Applied Computing, SAC ’18,
pp- 979-988. Association for Computing Machinery (2018)
Haas, S., Wilkens, F., Fischer, M.: Efficient attack correlation and
identification of attack scenarios based on network-motifs. In:
2019 IEEE 38th International Performance Computing and Com-
munications Conference (IPCCC) (2019). https://doi.org/10.1109/
IPCCC47392.2019.8958734

Haas, S., Fischer, M.: On the alert correlation process for the detec-
tion of multi-step attacks and a graph-based realization. SIGAPP
Appl. Comput. Rev. 19(1), 5-19 (2019)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735-1780 (1997)

Husdk, M., Cermak, M.: A graph-based representation of relations
in network security alert sharing platforms. In: 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM),
pp. 891-892 (2017)

Husak, M., Komarkova, J., Bou-Harb, E., Celeda, P.: Survey of
attack projection, prediction, and forecasting in cyber security.
IEEE Commun. Surv. Tutor. 21(1), 640-660 (2019)

Jaikumar, P., Kak, A.C.: A graph-theoretic framework for isolating
botnets in a network. Secur. Commun. Netw. 8(16), 2605-2623
(2015)

JanusGraph. http://janusgraph.org. Accessed 1 Nov 2021
Kaiafas, G., Varisteas, G., Lagraa, S., State, R., Nguyen, C.D., Ries,
T., Ourdane, M.: Detecting malicious authentication events trust-
fully. In: 2018 IEEE/IFIP Network Operations and Management
Symposium (NOMS) (2018)

Kao, M.Y.: Encyclopedia of Algorithms. Springer, New York
(2007)

Kaynar, K.: A taxonomy for attack graph generation and usage in
network security. J. Inf. Secur. Appl. 29, 27-56 (2016)

Kent, A.D.: Comprehensive, Multi-Source Cyber-Security Events.
Los Alamos National Laboratory (2015). https://doi.org/10.17021/
1179829

Kiouche, A.E., Lagraa, S., Amrouche, K., Seba, H.: A simple graph
embedding for anomaly detection in a stream of heterogeneous
labeled graphs. Pattern Recognit. 112, 107,746 (2021)

Lagraa, S., Frangois, J., Lahmadi, A., Minier, M., Hammerschmidt,
C.A., State, R.: BotGM: unsupervised graph mining to detect bot-
nets in traffic flows. In: Cyber Security in Networking Conference,
CSNet (2017)

Lagraa, S., Francois, J.: Knowledge discovery of port scans from
darknet. In: 2017 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), pp. 935-940 (2017)

Lagraa, S., State, R.: What database do you choose for het-
erogeneous security log events analysis? In: 2021 IFIP/IEEE
International Symposium on Integrated Network Management
(IM), pp. 812-817. IEEE (2021)

Lagraa, S., Chen, Y., Francois, J.: Deep mining port scans from
darknet. Int. J. Netw. Manag. 29(3), €2065 (2019)

Lal, M.: Neo4J Graph Data Modeling. Packt Publishing, Birming-
ham (2015)

Lallie, H.S., Debattista, K., Bal, J.: A review of attack graph and
attack tree visual syntax in cyber security. Comput. Sci. Rev. 35,
100,219 (2020)

Leichtnam, L., Totel, E., Prigent, N., Mé, L.: Sec2graph: network
attack detection based on novelty detection on graph structured

@ Springer

https://cayley.io
https://sabu.cesnet.cz/en/start
https://sabu.cesnet.cz/en/start
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.caida.org/data/
https://dgraph.io
https://doi.org/10.1016/0167-4048(93)90100-J
https://doi.org/10.1016/0167-4048(93)90100-J
https://doi.org/10.1109/TSE.1984.5010241
https://doi.org/10.1109/TSE.1984.5010241
https://doi.org/10.1109/IPCCC47392.2019.8958734
https://doi.org/10.1109/IPCCC47392.2019.8958734
http://janusgraph.org
https://doi.org/10.17021/1179829
https://doi.org/10.17021/1179829

140

S.Lagraa et al.

56.

57.

58.

59.

61.

62.

63.

64.

65.

67.

68.

69.

70.

71.

72.

73.

74.

data. In: Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 238-258. Springer (2020)

Li, Z., Chen, Q.A., Yang, R., Chen, Y., Ruan, W.: Threat detection
and investigation with system-level provenance graphs: a survey.
Comput. Secur. 106, 102,282 (2021)

Li, S., Zhou, Q., Zhou, R., Lv, Q.: Intelligent malware detec-
tion based on graph convolutional network. J. Supercomput. 78(3),
4182-4198 (2022)

Liu, L., De Vel, O., Han, Q., Zhang, J., Xiang, Y.: Detecting and
preventing cyber insider threats: a survey. IEEE Commun. Surv.
Tutor. 20(2), 1397-1417 (2018)

Neod4;. https://neo4j.com/. Accessed 1 Nov 2021

. Neo4j: cypher query language. https://neodj.com/developer/

cypher/. Accessed 1 Nov 2021

Newman, M.E.: Modularity and community structure in networks.
Proc. Natl. Acad. Sci. USA 103, 8577-8582 (2006)

Noel, S., Harley, E., Tam, K.H., Gyor, G.: Big-Data Architecture
for Cyber Attack Graphs Representing Security Relationships in
NoSQL Graph Databases (2015)

Noel, S., Harley, E., Tam, K.H., Limiero, M., Share, M.: CyGraph:
graph-based analytics and visualization for cybersecurity. In:
Handbook of Statistics, vol. 35, pp. 117-167. Elsevier (2016)
Noel, S.: A Review of Graph Approaches to Network Security
Analytics, pp. 300-323. Springer, New York (2018)

OrientDB. https://orientdb.org. Accessed 1 Nov 2021

. Paxson, V.: Bro: a system for detecting network intruders in real-

time. Comput. Netw. 31(23-24), 2435-2463 (1999)

Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: Online Learning
of Social Representations, pp. 701-710. ACM (2014)

Quina Mera, A., Fernandez, P., Garcia, J.M., Ruiz-Cortés, A.:
GraphQL: a systematic mapping study. ACM Comput. Surv.
55(10), 25 (2023). https://doi.org/10.1145/3561818

Roussinov, D.G., Chen, H.: A scalable self-organizing map algo-
rithm for textual classification: a neural network approach to
thesaurus generation (1998)

Sadreazami, H., Mohammadi, A., Asif, A., Plataniotis, K.N.:
Distributed-graph-based statistical approach for intrusion detec-
tion in cyber-physical systems. IEEE Trans. Signal Inf. Process.
Netw. 4(1), 137-147 (2018)

Sanfeliu, A., Fu, K.: A distance measure between attributed rela-
tional graphs for pattern recognition. IEEE Trans. Syst. Man
Cybern. B 13(3), 353-363 (1983)

SANS Internet Storm Center: DShield. https://secure.dshield.org/.
Accessed 1 Nov 2021

Shang, Y., Yang, S., Wang, W.: Botnet detection with hybrid anal-
ysis on flow based and graph based features of network traffic. In:
Cloud Computing and Security, pp. 612—-621. Springer (2018)
Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating
a new intrusion detection dataset and intrusion traffic character-
ization. In: Proceedings of the 4th International Conference on
Information Systems Security and Privacy (ICISSP 2018), pp. 108—
116 (2018)

@ Springer

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Shevchenko, S., Zhdanova, Y., Skladannyi, P., Spasiteleva, S.:
Mathematical methods in cybersecurity: graphs and their appli-
cation in information and cybersecurity. Cybersecur. Educ. Sci.
Tech. 1, 25 (2021). https://doi.org/10.28925/2663-4023.2021.13.
133144

Sinha, K., Viswanathan, A., Bunn, J.: Tracking temporal evolution
of network activity for botnet detection (2019). https://doi.org/10.
48550/ARX1IV.1908.03443. arXiv:1908.03443

Stratosphere Lab: The CTU-13 Dataset. A Labeled Dataset
with Botnet, Normal and Background traffic. https://www.
stratosphereips.org/datasets-ctul3. Accessed 1 Nov 2021

Tiddi, I., Schlobach, S.: Knowledge graphs as tools for explainable
machine learning: a survey. Artif. Intell. 103627 (2021)

Umer, M.E,, Sher, M., Bi, Y.: Flow-based intrusion detection: tech-
niques and challenges. Comput. Secur. 70, 238-254 (2017)
Venkatesh, B., Choudhury, S.H., Nagaraja, S., Balakrishnan, N.:
BotSpot: fast graph based identification of structured P2P bots. J.
Comput. Virol. Hack. Tech. 11(4), 247-261 (2015)

Wang, J., Paschalidis, I.C.: Botnet detection using social graph
analysis. In: 2014 52nd Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), pp. 393-400 (2014)
Wang, J., Paschalidis, I.C.: Botnet detection based on anomaly and
community detection. IEEE Trans. Control Netw. Syst. 4(2), 392—
404 (2017)

Wang, W., Shang, Y., He, Y., Li, Y., Liu, J.: BotMark: automated
botnet detection with hybrid analysis of flow-based and graph-
based traffic behaviors. Inf. Sci. 511, 284-296 (2020)

Wiichner, T., Ochoa, M., Pretschner, A.: Malware detection with
quantitative data flow graphs. In: 9th ACM Symposium on Informa-
tion, Computer and Communications Security, pp. 271-282. ACM
(2014)

Yang, R.: Adjusting assortativity in complex networks. In: Proceed-
ings of the 2014 ACM Southeast Regional Conference, Kennesaw,
GA, USA, pp. 2:1-2:5 (2014)

Zeek: Zeek Network Security Monitor tool. https://zeek.org/.
Accessed 1 Nov 2021

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

https://neo4j.com/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://orientdb.org
https://doi.org/10.1145/3561818
https://secure.dshield.org/
https://doi.org/10.28925/2663-4023.2021.13.133144
https://doi.org/10.28925/2663-4023.2021.13.133144
https://doi.org/10.48550/ARXIV.1908.03443
https://doi.org/10.48550/ARXIV.1908.03443
http://arxiv.org/abs/1908.03443
https://www.stratosphereips.org/datasets-ctu13
https://www.stratosphereips.org/datasets-ctu13
https://zeek.org/

	A review on graph-based approaches for network security monitoring and botnet detection
	Abstract
	1 Introduction
	1.1 Objectives and contributions
	1.2 Literature search methodology and previous surveys
	1.3 Paper overview and organization

	2 Graphs in network security
	2.1 Basic definitions
	2.2 Benefits of using graphs
	2.3 Challenges of using graphs
	2.4 Graph databases and tools

	3 Graph-based data representation
	3.1 Network traffic
	3.2 Alert correlation
	3.3 Port scans
	3.4 Botnet activity
	3.5 Authentication events
	3.6 Insider threats

	4 Graph-based analytics and mining approaches
	4.1 Security monitoring
	4.1.1 Intrusion detection
	4.1.2 Port scan detection
	4.1.3 Attack investigation
	4.1.4 Alert correlation

	4.2 Botnet detection

	5 Graph features
	5.1 Malicious authentication detection
	5.2 Graph features in botnet detection

	6 Summary and discussion
	6.1 Summary of related work
	6.1.1 Graph-based data representation
	6.1.2 Graph analysis
	6.1.3 Graph features

	6.2 Evaluation metrics
	6.3 Answers to questions
	6.4 Open challenges and future prospects
	6.4.1 Graph-based data representation
	6.4.2 Graph analysis
	6.4.3 Graph features
	6.4.4 Graph neural network for network security

	7 Conclusions
	References

