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Abstract
The power grid is a constant target for attacks as they have the potential to affect a large geographical location, thus affecting
hundreds of thousands of customers. With the advent of wireless sensor networks in the smart grids, the distributed network
has more vulnerabilities than before, giving numerous entry points for an attacker. The power grid operation is usually not
hindered by small-scale attacks; it is popularly known to be self-healing and recovers from an attack as the neighboring areas
can mitigate the loss and prevent cascading failures. However, the attackers could target users, admins and other control
personnel, disabling access to their systems and causing a delay in the required action to be taken. Termed as the biggest
machine in the world, the US power grid has only been having an increased risk of outages due to cyber attacks. This work
focuses on structuring the attack detection literature in power grids and provides a systematic review and insights into the
work done in the past decade in the area of anomaly or attack detection in the domain.

Keywords Attack detection · Anomaly detection · Intrusion detection system · Cyber physical system · Power grid · Smart
grid

1 Introduction

The power system is one of the most critical infrastructures
in modern society. It has been a target for cyber and physi-
cal attacks in the past two decades. It has many components
that depend on each other and work in a coordinated manner
for seamless operation. Hence, when any major component
fails to operate, it causes cascading effects on the other com-
ponents as well. For better monitoring and security, smart
meters, sensors and IoT devices are being integrated. An
objective of the so-called “smart grid” is to use more infor-
mation in a smarter way to optimize power systems [107].
Security is one of the important challenges in cyber-physical
systems due to this integration which has made them vul-
nerable on both the physical and cyber sides [124]. With
different attacks that have occurred and have been recog-
nized, anomaly or intrusion detection systems are now in
demand in the power domain [9]. Anomaly detection sys-
tems (ADS) are used to identify events or observations that
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seem suspicious when compared to the normal behavior of
the data.

In this survey, we review a collection of 190 papers cov-
ering the power grid architecture, its vulnerable points, and
primarily, the range of anomaly detection techniques that
have been proposed in the domain to detect exploits. The
systematization led us to a range of challenges that are
promising avenues for future research to enhance the effi-
cacy of anomaly detection methods while aiding traditional
attack detection and response platforms.

Figure 1 shows an overview of this survey’s organization.
We begin in Sect. 2 with a discussion of the methodology for
carrying out the systematization of knowledge. We then pro-
vide relevant background information in Sect. 3, regarding
the power grid architecture and its processes (Sect. 3.1), the
different attack types and targets in the power grid (Sect. 3.2),
and the different locations in the power grid where anomaly
detection can be applied, as well as the types of anomalies
that can be detected (Sect. 3.3). Next, we motivate the need
for detection methods in Sect. 4, by discussing some of the
past attacks that have taken place (Sect. 4.1), the new demand
manipulation attack (MAD) and how they can be carried out
using IoT devices (Sect. 4.2), and lastly the attack impact
on the power grid (Sect. 4.3). We then dive deeper into the
anomaly detection methods proposed for the power grid and
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Fig. 1 Overview of the organization in this survey

discuss the various methods identified in the literature in
Sect. 5. Next, in Sect. 6, we discuss the current challenges in
the area of anomaly detection in power grids, and highlight
potential future directions of research. Lastly, we conclude
the paper in Sect. 7.

1.1 Related work and contribution

In this work, we focus on assimilating the different types of
anomaly detection methods used in the power grid in a single
place. One of the most comprehensive surveys on anomaly
detection was done by Chandola et al. which focuses on
all types of detection techniques applied to any application
domain [29]. Cyber security for smart grid infrastructure and
the issues in the smart grid are discussed in [10] and [226].
There are several open threats and attacks on the smart grid
that have been identified, with potential solutions includ-
ing access control, security of network protocols and attack
detection methods [67, 94, 98, 148]. With the increasing
usage of IoT devices for collecting readings and monitor-
ing the grid states, the security of the smart grid that is aided
by IoT devices is discussed in [172].

The papers that focus on surveying or reviewing vari-
ous detection techniques in the power grid context are done
either by choosing a single technique or a single power grid
application. For example, some surveys focus on detection
techniques for consumption data [56, 73], multimodal image
data [241] or for time series data in the smart grids [233],
whereas we consider any type of data. Mohammadi Rouzba-
hani et al. focus onmachine learning techniques for detection
in cyber-physical systems [56]; we consider any kind of
detection technique that may be statistical, rule-based, or
graph-based, among others. Unlike in [190], where the the-
matic analysis is carried out on process data and features
considered for detection, we also consider the paper type,
power grid application, attack type and detection types. We
show a comparison of this survey with similar existing sur-
veys in the last five years in Table 1. While reviews and Ta
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surveys have been published in this area, this is the first paper
to our knowledge that includes a comprehensive review of
detection methods across the entire power grid considering
different types of data. To this end, our main contributions in
this work are as follows: (i) provide an overview across dif-
ferent themes that are identified during the systematic review,
(ii) provide a detailed taxonomy of different detection tech-
niques used in the power grid domain, and (iii) point out the
gaps and challenges that currently exist in this domain.

2 Methodology

The researchworks used in this review are obtained and orga-
nized through a four-step process: (i) database search, (ii) title
screening, (iii) abstract screening and (iv) thematic analysis.
In this section, we discuss the methodology in detail.

2.1 Database and keyword search

We search through Google Scholar for three key phrases and
obtain the first 100 results for each. The key phrases used are
(i) “anomaly detection power consumption”, (ii) “anomaly
detection power grid”, and (iii) “anomaly detection smart
grid”. We select the option to sort by relevance and to obtain
papers from any time range. At the end of this search, we
get 300 papers that include work in progress (WiP), journal
articles and conference papers. There are 50 unique papers
that occurred multiple times in different keyword searches
which are merged into a single version. After removing the
duplicates, 238 papers remained for the next step of the anal-
ysis.

2.2 Inclusion and exclusion criteria

The selection criteria that are applied to the 238 papers are:
(i) the paper should be related to any of the power grid pro-
cesses, (ii) the paper should include anomaly detection or
attack detection approaches in the power grid, (iii) the full
text should be available through institutional access to the
published conferences, journals or workshops, and (iv) the
paper is not a WiP work. First, a title screening is done based
on these criteria, after which 23 papers are excluded. Next,
a thorough abstract screening is performed after which 21
papers are excluded. There are 4 papers that we cannot view
through institutional access. A total of 48 papers are excluded
leaving us with 190 papers for the analysis.

2.3 Thematic analysis

Wefollow a deductive approach to perform the thematic anal-
ysis and use a list of preconceived themes to find the codes in
each theme. The themes, sub-themes and codes are listed in

Table 2. The themes are identified before starting the analysis
to categorize each paper with a code from every theme. There
are 95 codes that are created. Once the codes are finalized,
sub-themes are identified to provide a hierarchical view of
the different types of codes that are observed. The codes are
further divided into sub-codes specifically for the “Detec-
tion technique” theme, where each sub-code represents the
method used. This is covered in detail in Sect. 5 with a taxon-
omy of methods identified. In this section, we discuss about
the themes and sub-themes. The number of papers catego-
rized into a single sub-theme is given in Table 2. The list of
works under a specific code is available in Table 3.

2.3.1 Paper type

The Paper Type theme is used to recognize what type of
research is conducted in every paper. This theme consists
of five sub-themes that are mutually exclusive. A Review,
Survey and Evaluation types include papers that con-
ducted a thorough review, survey or evaluation of existing
detection techniques that may be focused on a single area
such as machine learning techniques, deep learning algo-
rithms, techniques used for power consumption data, or
communication network data. Papers that propose a new
method or variation of existing methods to solve a detec-
tion problem in any power grid application are themed under
Methodology type. A Framework sub-theme is where a
paper proposes a new architecture thatmay not be necessarily
implemented.

Within theMethodology sub-theme, the codefeature
handling is for papers that focus on treatment and extrac-
tion of features from the raw data for anomaly detection
[174], big data is for techniques that are proposed for big
data applications and visual analysis is for methods
that focus on detection using visualization techniques.

2.3.2 Focus area

The Focus Area theme is for recognizing the area of
contribution of the paper in the power grid domain. A
paper may be categorized into multiple focus areas based
on the proposed methodology. Targeted Detection
is used to categorize papers that are focused on con-
tributing a detection technique while optionally considering
other aspects like concept drift, early detection, collective
and contextual anomalies that may improve the detection
process. When papers consider distributed computing and
other edge detection concepts, we categorize them into
Big Data and distributed computing sub-themes. As the
names suggest, Profiling and Privacy sub-themes
are for papers that analyze behavior profiles and propose
privacy-preserving techniques respectively. Wide Area
Protection is used to represent research that applies to
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Table 2 Summary of themes, sub-themes, paper count per sub-theme and codes identified in this work; Table 3 provides the list of works under a
specific code

Theme Sub-theme Count Codes

Paper type Review 5 review

Survey 8 survey

Methodology 130 new method, new methodology, feature handling,
visual analysis, big data

Framework 12 framework, architecture

Evaluation 23 evaluation

Focus area Targeted Detection 139 detection, drift, transfer learning, early
detection, contextual, optimization, efficiency

Big Data 24 cloud computing, fog computing, federated
learning, edge detection, data-driven

Profiling 5 behavior analysis

Privacy 6 privacy-preserving

Wide area protection 7 wide sensor network, sensor placement

Blockchain 3 blockchain

Data type Single Feature 145 consumption, network, voltage, current, frequency,
sensors

Multiple Features 27 system logs, weather, operational

Visual 2 image

Grid process Generation 6 generator, power plant, solar plant, wind turbine

Transmission 18 transmission lines, transmission buses,
substation, transmission sensors

Distribution 28 distribution lines, DERs, distribution sensors,
substation, power line modems

Utility 80 AMI, building, commercial, edge devices, industrial,
residential, smart home, smart meter

Other 34 control software, grid sensors, scada

Attack type Attack 65 brute force, coordinated, DDoS, DoS, insider,
operational,network,intrusion,FDI,tripping lines,
trojan, electricity theft, demand manipulation,
zero day

Other Anomalies 95 fault detection, anomalous behavior, anomalous
usage, monitoring

Detection Supervised 39 classification, neural network

Semi-supervised 48 regression, statistical, distance-based, neural
network, rule-based

Unsupervised 69 clustering, neural network, nearest neighbor, OC
classification, tree-based

Other Techniques 11 fuzzy learning, reinforcement learning,
graph-based

multiple sensors that are located across different power grid
processes. Lastly, Blockchain is used to identify works
that utilize blockchain technology for detection.

2.3.3 Data type

Different types of data features are used for the detection
systembased on the application in the power grid. This theme
is used to categorize the papers based on the type of data that
is used for the detection process. Generally, streaming data

of a single device is used to detect anomalous behavior, but
multiple featuresmay also be used for identifying anomalous
behavior that can be recognized with specific states of the
different features. Additionally, images may also be used to
monitor and identify faults using video data.

2.3.4 Power grid process

We categorize the detection methods based on the applica-
tion location in the power grid. There are fourmain processes
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in the power grid, namelyGeneration,Transmission,
Distribution andUtility. Any detectionmethod that
does not apply to any of the four processes is themed into
Other that consists of detection in energy management sys-
tems (EMS), software, sensors and supervisory control and
data acquisition (SCADA). Within each of the power grid
processes, we identify which devices are used for the detec-
tionmechanism to categorize them into their respective code.

2.3.5 Attack type

The papers here are categorized by the attack type that the
detection system is targeted to identify. These attacks can be
performed by an adversary or can be operational faults and
unknown anomalous behavior. The codes for the attack types
are shown in Table 2 and denote the attack names.

2.3.6 Detection

TheDetection theme is used to categorize the paper based
on the type of detection that is carried out. This can be super-
vised, semi-supervised, unsupervised or any other category
that is not covered by the previous three. The codes specify
what type of method is used for the detection process. The
details about each of the detection techniques are covered
in Sect. 5. A single research paper may have multiple detec-
tion techniques going across sub-themes as well. The list of
works utilizing a specific detection technique is available in
Table 4.

3 Background

In this section, we discuss the power grid architecture, attack
targets in the power grid, and potential application points of
anomaly detection at different areas in the power grid.

3.1 Power grid architecture

The power grid is a complex and highly engineered network
that coordinates between the generation and distribution of
electricity to its customers. Modern power systems have
grown into a sophisticated cyber-physical system due to the
expansion of their electrical infrastructure and the conse-
quential application of diverse communication and informa-
tion protocols. Themodern power grid consists of two tightly
coupled layers: physical and cyber layers. The physical layer
is responsible for carrying electricity end-to-end and is the
core of the power system. It consists of four major domains:
generation, transmission, distribution and consumption, as
shown in Fig. 2. Electric power is produced at the generating
station and is then transmitted through a high voltage trans-

mission network. From there, it is distributed to the end users
which can be industrial or residential customers.

Over the years, power systems have become more hetero-
geneous in terms of all these domains. There have beenmajor
upgrades such as renewable energy plants, microgrids, and
electricity storage. This brings great challenges for the oper-
ation of the power system to coordinate between different
system components. Hence, efficient schemes are incorpo-
rated in the cyber layer that are responsible for ensuring
security, protection and monitoring of the power grid.

The cyber layer consists of secondarydevices and schemes
that are capable of communication, data collection, stor-
age, processing, and decision-making. For modern power
systems, there are three most critical cyber layer systems:
Supervisory Control and Data Acquisition (SCADA), wide
area measurement system (WAMS) and advanced meter-
ing infrastructure (AMI). A remote terminal unit (RTU) is
used to merge data from local secondary devices like sensors
and meters. SCADA systems are industrial control systems
responsible for distributed monitoring, control, collection
and analysis of real-time data from RTUs.WAMS is an alter-
native to SCADA which collects data at a higher sampling
rate from the phasormeasurement units (PMUs), whichmea-
sure and estimate the voltage, currentmagnitudes and relative
phase angles. AMI is a system that is placed in the distribu-
tion sector that monitors, collects and analyzes the energy
usage data of consumers. A large number of smart meters
are deployed to collect real-time energy usage data to derive
appropriate demand side control for reliable operations [205].

The smart grid network architecture includes Home Area
Network (HAN), Neighborhood Area Network (NAN) and
Wide Area Network (WAN) [224]. HAN and NAN are used
by the Advanced Metering Infrastructure that includes smart
meters, data concentrators and other metering components.
Customers can also access their consumption portal using
the HAN. NAN is built over the HAN and ensures communi-
cation between HANs, data centers and generation sources.
On the other hand, WAN is used by wide area monitoring
and controlling applications like SCADA and WAMS with
limited bandwidth and capacity in closed networks.

Transmission lines 
765, 500, 345, 230, and 138 kV

Transmission Customer
138 kV or 230 kV

Generating Station

Generating
Step Up

Transformer

Substation
Step Down
Transformer Subtransmission

Customer
26 kV and 69 kV

Primary Customer
13 kV and 4 kV

Secondary Customer
120 V and 240 V

Generation Transmission Distribution Customers

Fig. 2 Physical layer of the power grid; reproduced from [214] under
CC BY 3.0
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Fig. 3 Types of attacks on the power grid

3.2 Attack targets

Attacks can be targeted either towards the physical layer or
the cyber layer. It is possible that there can be attacks on
humans, such as on power system personnel, or even per-
formed by them due to threats or bribery from attackers.
We have three types of attacks on the power grid: physical
attacks, cyber attacks and human attacks. Fig. 3 summarizes
the different attacks possible on a power grid.

3.2.1 Physical attacks

Physical attacks are targeted at the physical components of
the power grid. These attacks can be performed in any power
grid domain, i.e. generation, transmission, or distribution.
The generation process can be affected when an adversary
disconnects the generators by remotely switching them off,
removing any supporting cords from outlets or hindering
the connection between the generator and other supporting
devices. A transformer failure can occur by lightning strikes,
degradation of any electrical insulation, power overload or
direct incursion on the transformer. An adversary can hinder
the tasks of current-carrying devices in the field that causes
tripping of lines or can steal energy by doing so. Lastly, an
adversary canmanipulate the demand by controlling the con-
sumers’ devices which can result in a chain reaction of the
above physical attacks.

3.2.2 Cyber attacks

Cyber attacks are classified based on the basic requirements
of a general cyber network into attacks against availability,
integrity and confidentiality. An attack against availability
can cause the loss of control of the local devices or a delayed
response. For example, an attacker can affect the communi-
cation network by launching a DoS attack and hence, cause
a delay of operation commands sent to local devices or
the measurements sent to the control center. Injecting mal-
ware into the network can also affect the availability of the
system by taking it offline or damaging existing files. An
attack against confidentiality can cause the leakage of criti-
cal information. SCADA devices comprise remote terminal
units (RTUs), programmable logic controllers (PLCs) and
intelligent electronic devices (IEDs) which do not incorpo-
rate authentication or encryption mechanisms and hence, are
at high risk of being exploited. Also, DNP3 is used by most
NorthAmerican utilities as a communication protocol, which
still lacks security features like encryption or authentication.
Due to these existing vulnerabilities, an adversary can get
access to a device or the network and can analyze the traf-
fic packets and information exchanged on the network. An
attack against integrity can compromise the data and informa-
tion communication in the cyber network,which can severely
affect the normal operation of the power grid. While all the
cyber attacks have negative impacts on the power grid, the
attacks against integrity would be relatively more severe.
Thus, it is further divided into attacks against measurements
and attacks against commands. The attacker can manipu-
late a set of measurements to change the state estimation
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outcome and mislead the operator to make non-optimal or
wrong dispatch decisions. This is achieved by either alter-
ing sensor data leading to a false data injection attack or by
injecting falsemeasurements in transmission and distribution
buses leading to a load redistribution attack. Fabricated con-
trol commands may be sent to power grid devices to hinder
its operation. This can be achieved by guessing passwords
to control systems, replaying network traffic messages to
perform specific actions, spoofing attacks and unauthorized
access to remote devices.

3.2.3 Human attacks

Human attacks occurwhen a power grid associated personnel
intentionally or unintentionally leak critical information or
are forced to take some detrimental actions. It can also be
possible that some consumers are misguided to perform an
action such as switching on or off the devices in their houses,
through false alerts sent to their phones. Such actions are
difficult to prevent and affect the power grid operation with
a huge impact.

3.2.4 Coordinated attacks

Coordinated attacks involvemultiple attacks at the same time
or a combination of any of the above three categories of
attacks to cause severe failure, thus having a high attack suc-
cess rate. For example, there can be coordinated physical
attacks on multiple lines, coordinated cyber attacks against
multiple substations or physically tripping a line and per-
forming a DDoS attack in the SCADA network to produce
a delayed operator’s response that may all lead to a severe
failure [218]. A coordinated attack was performed during
the 2015 cyber attack on the Ukrainian power grid attack
(detailed in the next section).

3.3 Anomaly detection

Anomaly detection refers to the problem of finding patterns
in data that do not conform to expected behaviour [29]. In
the power grid domain, anomaly detection is applied to a
variety of tasks like finding abnormal consumption behav-
iors, identifying compromised field devices, anomalous grid
states, line overloads, and attack detection. These techniques
vary based on the applied area or objective of the detection.
Figure 4 shows the different types of detection systems that
are applied based on the detection area in the grid [66, 205].
This model does not imply the application of a detection
technique at a physical location. This distinction is made to
understand different types of views that can be combined
by the grid operator for the detection of different anomalous
instances in power systems. We will discuss each of these
types and the assumed threat models.

Physical
Components

with Field
Anomaly
Detection

Communication
Networks with

Network
Anomaly
Detection

Management
Functions

with
Centralized

Anomaly
Detection

Operational & control software
Energy management systems
Anomaly detection software

Cloud/fog computing systems
Data analysis and modeling

D
at

a 
Fl

ow

SCADA, Wide area
management systems,

Control systems,
Power line modems

Advanced Metering
Infrastructure

Generation Transmission Distribution Consumption

Inverter
sensors, PLC,

RTU, Other
sensors

PMU, uPMU,
PLC, RTU,

Transmission
lines, Other

sensors

Smart meters,
Edge devices,
Other sensors

PMU, uPMU,
PLC, RTU,

Substations,
Distribution

lines, Wide area
sensors

Power
Grid

Processes

Fig. 4 Abstract architecture of a power grid with possible applications
of anomaly detection at different levels of data flow

3.3.1 Field anomaly detection

Field anomaly detection focuses on the field components
that are important for running the power grid. Based on the
area of the physical components placed in any of the power
grid essential processes, the components may differ based on
their functionality. In the following, we discuss the different
components that require anomaly and/or intrusion detection
systems and list the types of attacks that are expected to be
detected by such a system.

The Remote Terminal Units (RTUs) are used to interface
the different physical components mainly, Intelligent Elec-
tronic Devices (IEDs) which include transformers, PLCs and
circuit breakers, to the SCADA master station. It transmits
the data collected from these devices to a data collection
system using different communication protocols that can be
serial or Ethernet-based. PhasorMeasurement Units (PMUs)
are devices that measure and report phasor angle and mag-
nitude for the AC voltage or current at a specific location
on a power line. These measurements are used for monitor-
ing and analysis of the grid states. These values facilitate
improving the accuracies of modeling system conditions,
predicting and detecting stress and instability of the grid,
predicting and managing line congestion and identifying any
field inefficiencies. PMUs are used to replace the traditional
SCADA devices with the benefit that they can provide up
to 60 measurements a second compared to one in every 2
to 4 s [53]. Phasor Data Concentrators (PDCs) are used for
collecting data fromdifferent PMUs, aggregate and time syn-
chronize data and send it to synchrophasor applications that
use the data [135]. Smart meters are used in distribution and
consumption processes that record information like voltage,
current, consumption and power factor. They communicate
this information to the consumers for greater clarity of con-
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sumption behavior, as well as electric suppliers for system
monitoring and customer billing.

We can see that all these devices that are used in differ-
ent stages from electricity generation to delivery, have an
important role in the reliable transmission and delivery of
electricity from end to end. As these devices are crucial for
the collection of information required for estimation, opera-
tion and monitoring, the data coming from these devices can
be altered by an attacker, thus affecting the integrity of the
data. Therefore, the detection task in this category is to iden-
tify bad measurements and compromised devices at the field
level by using the normal behavior patterns of these devices
when not under attack.
Threat In SCADAsystems, the PLCs are used tomanage spe-
cific equipment and to run automation tasks in the power grid
and hence, are a common target to the attackers. As PLCs are
light weight devices that run a specific task based on the code
they run, attackers take advantage of these devices with less
security and change the code to do any malicious tasks. One
such attack was accomplished by using the Stuxnet worm
(discussed in Sect. 4.1.1). IEDs, which are used to manage
automation tasks in the power grid, can also be manipulated
similarly. There are inherent vulnerabilities in encryption and
authentication mechanisms of RTUs and PMUs which is
a threat that the attackers often use to perform False Data
Injection (FDI) attacks. FDI attacks aiming at the physical
layer give attackers the power to change the measurements
of these devices transmitted to the monitoring systems. This
will result in disruption of the analysis results of state esti-
mation, leading to the control center misjudging the power
grid into emergency and implementing maloperation, thus
damaging the economic benefits, monitoring capability and
safe operation of the power system [207].
Types of attacks that can be detected False data injection
attacks, load redistribution attacks, demand manipulation
attacks.

3.3.2 Network anomaly detection

Communication networks are used by SCADA, WAMS and
AMI to obtain data from the physical components and trans-
fer to management and control centers. Denial of service
attacks (DoS) are the most common attacks used by intrud-
ers in a network. In fact, aDoS attackwas one ofmany attacks
performed in a coordinated manner during the 2016 attack
on the Ukrainian power grid. The SCADA communica-
tion networks are increasingly interconnected with corporate
information technology (IT) networks for the collection and
processing of data in real-time, thus providing greater oppor-
tunities for intrusion [144]. With the advent of WAMS and
AMI, there are numerous devices and sensors connected to
this communication network and hence, there is a higher
chance of intrusion. Since the monitoring systems have the

permissions to change the control codes or the behavior of
the physical devices, this is a very critical layer in the power
grid operations. With AMI, the privacy of the data collected
from Smart Meters can also be compromised. Hence, con-
ventional cyber intrusion detection systems can be applied
in the networking environment.
Threat There can be intrusions into the network by attackers
that can stay undetected for a while to gain information about
the grid operations, obtain the data from the monitoring sys-
tems, lock the power systems personnel out of their systems,
password guessing, replay and spoofing attacks, reprogram-
ming or sending false commands to the underlying devices,
or sending incorrect information to the management centers.
Types of attacks that can be detected Insider attacks, intrusion
attacks, replay attacks, spoofing attacks, DoS/DDoS attacks,
information theft.

3.3.3 Centralized anomaly detection

Control and management centers receive the data that has
been collected from the physical components and also have
access to global system features. Hence, anomaly detection
can utilize numerous features to find general anomalous sys-
tembehavior, consumption demands from the consumers and
bad data measurements from the physical devices. This layer
uses a combination of both field and network detection sys-
tems, but gives a centralized view of the entire power system
to take control decisions. This layer aids in the detection of
coordinated attacks on the power grid. Though such attacks
are challenging to detect in practice, there is a possibility to
detect these attacks by analyzing multiple layers at the same
time using the centralized view.
Threat It is a combination of field and network threats and
are required to be analyzed together.
Types of attacks that can be detected Coordinated attacks.

4 Attacks and impact

There have been numerous attacks in the past decade target-
ing the power grid. The goal of attacks that have taken place
is not just to disrupt the power grid but also to steal electricity
and access confidential documents from the communication
networks. Other attacks are possible, such as false data injec-
tion attacks, which disrupt the grid system state estimation.
In 2014, the adversary stole and posted plans for two nuclear
reactors, aswell as the data of 10,000 employees fromaSouth
Korean nuclear and hydroelectric company Korea Hydro and
Nuclear Power (KHNP). TheUkrainian power gridwas taken
down by the adversary, cutting power to more than 200,000
households in 2015. It was attacked again in 2016 by dis-
abling an electricity substation, cutting power for an hour to
the customers. In 2019, the US Power grid was attacked for
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a 10-hour period where the attacker(s) exploited known vul-
nerabilities in an internet-connected firewall [198]. The US
Department of Energy (DoE) reported 150 successful attacks
between 2010 and 2014 that targeted systems holding infor-
mation regarding electricity grids [110].

SCADA workstations and PLCs have also been a target
for successful attacks on industrial control systems that use
these components [35, 119]. There have been attacks involv-
ing the Stuxnet worm which sabotages industrial equipment
controlled by a specific Siemens PLC by modifying PLC
code and then hiding changes using rootkits. Such worms
can cause severe damage to the underlying physical system
[144].

The failure of a power grid can cause direct permanent
effects on the equipment. It also results in failure of oper-
ation of other infrastructure as well. Hence, security of the
power grid has been popular among researchers to address
vulnerabilities and propose new mechanisms to detect intru-
sions. We discuss attacks that took place in the past and also
some that are newly proposed which is the motivation behind
creating new anomaly and attack detectionmethods. Figure5
shows an overview of the attacks discussed in this section.

4.1 Past attacks

In this section, we discuss two cyber attacks that took down
targeted critical infrastructure in 2010 and 2015. These
attacks were initiated through computers targeted to affect
the physical components of the infrastructure.

4.1.1 Stuxnet worm attack

Computer worms are well known to spread to many targets
as quickly as possible. They are aimed at computer systems
to exploit vulnerabilities, like Blaster which exploited the
remote procedure call (RPC) of Windows computers. Some
were used to physically impact the system, like Sobig which
flooded mail servers with copies of itself [32]. However, a
newwormwas discovered byVirusBlokAda in Iran’s nuclear

Attacks

Past Attacks

Demand
Manipulation

Attacks (MAD)

Stuxnet Worm
Attack

Ukraine Power
Grid Attack

MAD using IoT
Devices

MAD using Social
Engineering

Fig. 5 Overview of the attacks discussed in Sect. 4

power plant in July 2010 called the Stuxnet. Unlike tradi-
tional worms which targeted computer systems, Stuxnet was
developed to take control of critical physical infrastructure. It
is known to have infected approximately 100,000 hosts, with
more than 60,000 in Iran and more than 20,000 in Indonesia,
India and the USA according to a Symantec’s report [55].
This worm gained a lot of attention due to the stealth of the
attack, and is known to have been one of the most complex
threats. The following were the steps carried out to perform
the attack using Stuxnet [55]:

– The attackers conducted reconnaissance; as each PLC
is configured uniquely, they would first need the Indus-
trial Control System (ICS) schematics. The documents
required to attain knowledge of the computing environ-
ment in the facility were either stolen by an insider or
retrievedby anyother previous versionofStuxnet or other
malicious binary.

– Using the information attained, the attackers would now
develop the latest version of Stuxnet with the final goal
of potentially sabotaging the ICS.

– Once the code is ready, the attackers probably used a
setup mirroring the target environment to successfully
test the code.

– As the malicious binaries consisted of driver files that
were needed to be digitally signed, they compromised
two digital certificates to achieve this task and appear
legitimate.

– The initial infection vector is a USB stick to infect a
computer within the organization. This USB keeps count
and allows only three infections. Thiswas introduced into
the target perhaps by a compromised personnel who had
access to the facility. The infection running on a target
system attempts to spread only for 21 days. These limits
were enforcedperhaps tomaintain the stealth of the attack
[32].

– As soon as a single computer is infected, it searches for
other Field PGs, copies and executes itself on computers
running a WinCC database server. Field PGs are com-
puters used to program or interact with the PLCs and
are typically Windows systems. Most of these comput-
ers are non-networked and hence, cannot be remotely
controlled using the Internet. Hence, Stuxnet would first
try to spread on the LAN through a zero-day vulner-
ability that allowed infecting Step 7 projects through
removable devices. WinCC/Step 7 software is used by
the programmers to connect to the PLC and access the
memory contents, reconfigure it, download or debug a
program.

– All the functionality required to sabotage a system was
directly embedded in the Stuxnet executable and hence,
was complex and large for a malware being almost half
a megabyte written in multiple languages. Once it found
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a suitable computer that ran Step 7, it would then modify
the code on the PLC. These modifications could not be
detected as rogue PLC code as Stuxnet hides them using
a rootkit.

4.1.2 Ukraine power grid attack

On December 23, 2015, a Ukrainian regional electricity
distribution company reported outages to customers. The
outages were due to a third party’s illegal entry into the
company’s computer and SCADA systems. Approximately
225,000 customers were affected and lost power due to this
incident. Three Ukrainian power suppliers experienced coor-
dinated cyber attacks that were executed within 30min of
each other. Due to the large-scale impact, the suppliers were
required to move to manual operations in response to the
attack. Several consolidated technical components were used
to successfully perform the attack. These are the steps carried
out to perform the attack [26]:

– The attack phases are explained by using the Indus-
trial Control System (ICS) Cyber Kill Chain, which
details the steps an adversary must follow to perform
high-confidence attack on the ICS processes and cause
physical damage to equipment in a predictable and con-
trollable way. It consists of two stages: intrusion and
attack.

– The attacker was able to successfully intrude into the
system by weaponizing Microsoft Office documents
embedded with BlackEnergy 3 within the documents.
These documents were sent out by email. When these
documents were opened, a popup was displayed to users
to encourage them to enable macros which allowed the
malware to exploit the macro functionality to install
BlackEnergy 3 on the victim’s system.

– Upon installation, the malware connected to command
and control (C2) IP addresses to enable communication
by the adversary with the malware and the infected sys-
tems. These pathways allowed the adversary to gather
information from the environment and enable access.
They were also able to gain access to the remainder of
the systems including the SCADA dispatch workstations
and servers and extract data necessary to formulate a plan
for the second stage (ICS attack).

– For the second stage, the attackers learned how to interact
with the distribution management system environments
using the native control present in the systemandoperator
screens. The adversary completed installing malicious
software which was identified as a modified version of
KillDisk across the environment.

– The last act of modification was for the adversaries to
take control of the operatorworkstations and thereby lock
the operators out of their systems. The adversaries used

the Human Machine Interfaces (HMIs) in the SCADA
environment to open the breakers. At least 27 substations
were taken offline across the three energy companies,
impacting roughly 225,000 customers.

– Simultaneously, the attackers uploaded the malicious
firm-ware to the serial-to-ethernet gateway devices. This
ensured that even if the operatorworkstationswere recov-
ered, remote commands could not be issued to bring the
substations back online.

– During this same period, the attackers also leveraged a
remote telephonic denial of service on the energy com-
pany’s call center with thousands of calls to ensure that
impacted customers could not report outages.

4.2 Demandmanipulation attacks

While smart grids are often known to be vulnerable to cyber
attacks compared to traditional power grids, Dabrowski et
al. show how a non-smart grid is also vulnerable to coordi-
nated load changing attacks [41]. This attack is performed by
controlling a botnet of devices that can modulate the power
demand much faster than power plants can react. Demand
manipulation attacks take place at the utility side, where an
attacker can manipulate the consumption and operation of
the consumer devices, mostly being IoT devices that can be
remotely controlled [187]. The attacker can also influence
the behavior of the consumers by sending false messages
to mimic the demand response program either before, after
or during a peak consumption state [154, 155]. An advan-
tage to attackers is that there are multiple entry points to
carry out a demand manipulation attack. Unlike attacks on
SCADA systems, there are a variety of options that can be
used to manipulate the demand—using IoT devices, energy
theft and social engineering as a tool to make people per-
form a task. They also do not require access to the system
operations or understand how the grid works. It follows a
black-box approach with attackers not requiring power grid
domain knowledge, thus making it an option for a variety of
adversaries.

Demand manipulation attacks are the newest kinds of
attacks that do not test the security of the power grid systems,
but affect the power grid from the utility side by changing
the demands of the consumers. There are successful DDoS
attacks using IoT devices and botnets that were previously
carried out (e.g. Mirai botnet attack) and there are open secu-
rity issues when it comes to IoT devices and protocols. Since
power grid devices and the consumers cannot be removed
from the power grid scenario, but are used as a tool to perform
adverse attacks, there remains an advanced persistent threat
to the power grid. Though communication networks and
power grid devices are being enhanced in terms of security,
the threat from consumers will always exist until host-based
anomaly and intrusion detection systems are established in
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each home. We discuss two attack examples that were pro-
posed by [187] and [154].

4.2.1 Attack Example 1: Demandmanipulation using IoT
devices

The poor security measures and ubiquity of IoT devices have
been an advantage to attackers for creating botnets to per-
form DDoS attacks. Access to compromised high-wattage
devices can allow an adversary to disrupt the power grid’s
normal operation by manipulating the total power demand.
Since there are many types of IoT devices in a household, a
common question is whether it is possible to get access to all
of them. However, by gaining access to home assistants such
as Amazon Echo or Google Home, control of such devices
is possible [187]. The attack model is described below.

– The adversary obtains access to various high-wattage
IoT devices such as air conditioners, space heaters, and
electric ovens frommultiple households in the same geo-
graphical location.

– If the target of the attack is the generators, then an abrupt
increase or decrease in the power demands causes fre-
quency instability of the generators resulting in their
tripping. This is achieved by synchronously switching
on/off many high wattage devices. A black start is a sys-
tem’s restarting process after a blackout, which can also
be disrupted by causing frequency instability in the sys-
tem.

– When a frequency instability that does not have a sig-
nificant effect happens, the primary controller of the
generators stabilizes the system frequency. Line failures
and cascading failures can be caused by increasing the
demands, as an increase of only 1% can cause an outage
in 86% of the loads at this stage when simulated in the
2008 Summer peak Polish Grid. The reason these lines
are sensitive is because the way power is transmitted fol-
lows Kirchhoff’s laws and the grid operator has almost
no control after the response of the primary controllers.
Line failures can also occur by redistributing demand
via increasing demand in some places and decreasing
demand in others.

– An increase in the operating costs is caused when the
demand goes above the predicted demand; this is when
the operator needs to purchase additional electric power
from reserve generators. By simulations, it is observed
that a 5% increase in power demand during peak hours
results in a 20% increase in power generation costs.

4.2.2 Attack Example 2: Demandmanipulation using social
engineering

Research in behavioral psychology predicts that people who
are normally lulled into a sense of cognitive ease, do not
question the validity of the information unless it is signifi-
cantly different than those from previous events [154]. Based
on this expectation, Raman et al. report an unconventional
mode of malicious attack which demonstrates that consumer
behaviors could be manipulated by an attacker using false
communications that could significantly impact the system
reliability [154]. The attack model is described below.

– The adversary obtains access to some form ofmedia such
as SMS, e-mail or other platforms that could be used to
send legitimate communications to the residents.

– The adversary invites the consumers to participate in an
upcoming Demand Response (DR) event, with the time,
duration and task specified. At the same time, the attacker
also needs to block communications from the utility com-
pany.

– The consumerwho receives themessage decideswhether
to accept or reject the DR event request. If the consumer
accepts the event, then they take steps either manually
or using an automated home energy management sys-
tem (HEMS) to reduce consumption during the specified
event period.

– The attack can be performed to fake a DR event or before
a real DR event takes place. The resulting overshoot in
demand due to the fake event would reduce the effect of
the consumer response to the actual event. These mes-
sages can be sent to fake maintenance shutdown alerts,
suggesting the consumers to use appliances during high
stress time periods. They can also be used to follow a
legitimate DRmessage sent by a utility to declare that an
event was canceled.

– For example, the consumers might be asked to schedule
washing machines, dryers and dishwashers during a spe-
cific time like 7 PM to 9 PM. Right after a peak demand
time, if these high-wattage appliances are switched on,
then itwould impact the performance of tap changing reg-
ulatorswhichwouldhave to respond to the sudden change
in the system voltage. Prolonged operation of such appli-
ances can deteriorate the life of such transformers having
to work under high loading conditions. It is observed in
simulations that if 50% of consumers believe the fake
message, the attacker could alter the system’s daily peak
demand by more than 2% which is quite significant to
the utility.
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Fig. 6 Taxonomy of anomaly detection algorithms discussed in this work; Table 4 provides the list of works under a specific detection technique

4.3 Attack impact

When attacks are carried out such that the physical compo-
nents are affected, then the power grid operation is hindered,
due to which the consequences are likely to be catastrophic.
Any attack that collapses the power grid has cascading effects
on other critical infrastructure as well, like water treatment
plants and food production industries. Many people will be
affected by the lack of basic elements that are necessary to
sustain life in urban and suburban communities.

Some believe that the cyber threat to critical infrastructure
is rather exaggerated. This is because cyber threats to this
infrastructure that belongs to the nation have never caused the
loss of human life, never injured a person or never damaged a
building [164]. However, damage to the physical equipment
requires bringing in new or reserve equipment that affects the
operational costs. Power outages cost between $18 and $33
billion per year in the United States. The most recent 2021
Texas power crisis which was caused due to winter storms
resulted in a $20.4 billion excess expenditure, being the most
costly winter event in the US affecting 10 million people and
resulting in more than 150 deaths [129]. Therefore, cyber
attacks combined with climate and other external factors,
can lead to heavy damage and losses to the power grid.

The energy industry is far behind most other industries
when it comes to security best practices and maintaining
systems as these industrial systems rely on 1970s-era tech-
nology. It doesn’t get upgraded, because doing so would
interrupt service [140]. The root causes of the increasing

number of blackouts are aging infrastructure and a lack of
investment and clear policy tomodernize the grid. Also, elec-
tricity demand has grown 10 percent over the last decade,
even though there are more energy-efficient products and
buildings than ever [130]. Hence, the problem is only getting
worse with this combination of legacy systems and increas-
ing demands. The electric power industry spends over $1.4
billion annually to replace electromechanical systems and
devices that involve manual operation with new SCADA
equipment [213]. This shows that investment in physical
infrastructure and security is consistent every year, but the
progress is slow. This gives time for attackers to take advan-
tage of vulnerabilities that are persistent in the power grids.

4.3.1 Physical impact

As power needs to be delivered to a large scale of consumers,
it is impractical and costly to have electric power storage for
them. Therefore, stable operation of the power grid relies on a
balance between the power supply and demand. The demand
is usually estimated by the operator based on theweather data
and historical consumption data. This allows them to deploy
enough generators to meet the demand beforehand, without
overloading any power lines. The increase or decrease in
demands, thus leading to an increase or decrease in the fre-
quency of the system cannot be tolerated for a long time since
frequencies lower than a nominal value cause severe damage
to the generators. An unpredicted supply and demand setting
may result in electric power overload on some of the power
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lines. Once a line is overloaded, it may be tripped by the pro-
tective relay, or it may break due to overheatingwhich should
be avoided by the relay. Another issue is voltage instabil-
ity caused when the generated power becomes inadequate.
In such cases, power flow equations fail which forces the
grid operator to perform load shedding to recover the system
from the voltage collapse and make the equations feasible
again. This causes outages around the grid due to failures in
a few lines. Failure of components such as generators, lines
or transformers has a high impact on the operation of the
grid. It might result in even a blackout and when the system
tries to recover from a blackout (black start), it is weak and
more vulnerable to a repeated attack which can have adverse
effects on the frequency of the operation.

5 Anomaly detectionmethods in power grid

Anomaly detection methods are broadly classified into three
approaches: supervised, semisupervised and unsupervised
[29]. In this summary, each of these categories is further
divided into sub-categories based on the detection technique.
An overview of the detection techniques discussed is shown
in Fig. 6. The list of works utilizing a specific detection tech-
nique is available in Table 4.

5.1 Supervised approaches

Supervised anomaly detection is a technique that assumes
the availability of labeled training data for both normal and
anomalous classes. A typical approach is to build a predic-
tive model and compare unseen data against the model to
determine the class it belongs to [29]. In this subsection, we
categorize supervised techniques into classification-based
and neural network-based models.

5.1.1 Classification

Classification is used to learn a model (classifier) from a set
of labeled data instances (training) and then, classify a test
instance into one of the classes using the learned model (test-
ing) [29]. Several traditional classifiers are known and are
used in power grid applications namely, Logistic Regression
(LR) [133],GradientBoosting,GaussianNaiveBayes (Gaus-
sianNB) [2, 37, 142], AdaBoost, XGBoost, Decision Tree
(DT) [2, 68], Decision Tree as base learner (DTBoost), K-
Nearest Neighbors (KNN) [72, 159], Multi-layer Perceptron
classifier (MLP), Quadratric Discriminant Analysis (QDA),
Support Vector Machine (SVM) [2, 42, 54, 95, 173], bag-
ging ensemble classifier with decision trees as base learner
(DTBagg) and Random Forest classifier (RForest) [2, 95,
137, 142]. The classification techniques are applied for dif-
ferent detection tasks like anomalous power consumption,

anomalous network traffic, denial-of-service attacks on com-
munication networks, electricity theft, false data injection,
intrusion and tripping attacks.

Traditional classifiers are used by Xu et al. to deter-
mine anomalies in the running power consumption data of
the Distribution Terminal Unit (DTU) as the consumption
is influenced by the strong correlation to its running pro-
grams [220]. If the DTU is attacked, the running program
will be modified slightly that influences the consumption as
well. Two other works also compare different classifiers and
different sampling techniques to solve the imbalanced data
problem i.e. unequal distribution between the classes [109,
149]. Wang et al. perform a similar comparison and propose
a novel model in which random forest is used as the basic
classifier of AdaBoost followed by weighted voting on the
prediction labels to decide the final class [203]. AdaBoost is
also used by Qu et al. for detecting electricity theft attacks
in residential areas using the power consumption data [152].
To provide wide area protection of the smart grid, Singh and
Govindarasu evaluate different classification techniques for
sensor data to detect multiple attacks like FDI, DoS, lines
tripping and cyber events [181].

Classification can be performed on features that are
extracted or modified for better performance of the clas-
sifier. Al-Abassi et al. pass the voltage data to a stacked
autoencoder to obtain a different representation of the input
data and apply random forest for classifying the anomalous
data [5]. Ouyang et al. propose a hierarchical time series
feature extraction algorithm and an ensemble classification
model that uses XGBoost, RForest, and LR [138, 139]. The
extracted time-series features are mainly used to find the
abnormal sample distribution rules as well as the information
from normal power consumption activities. Li et al. pro-
pose a blockchain-based anomaly detection based approach
to detect anomalous consumption in smart grids using KNN
[102]. They use different sensor data from the smart grid
which records environmental factors and also use smartmeter
data to analyze the power consumption in combination with
the sensor data.

Support Vector Machine (SVM) is used in several works
from the literature by combining itwith othermethods.Zhang
et al. first use an unsupervised approach, Gaussian Mixture
Model Linear Discriminant Analysis (GMM-LDA) to label
the consumption data and send it to Particle Swarm Opti-
mization Support Vector Machine (PSO-SVM) for training
with labeled data. Then, the test data is classified using the
SVM model to identify the labels of the new data whether it
is abnormal or not [236]. Another work also uses PSO and
one-class SVM (OC-SVM) for the detection process [211].
Wang et al. propose an efficient home power anomaly detec-
tion using SVM and Hidden Markov Model with improved
monitoring performance in terms of electricity usage as well
as changes in the daily living activities of residents via
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the provision of detailed feedback [209]. Wang et al. pro-
pose a supervised learning algorithm named Support Vector
Machine embedded Layered Decision Tree [206]. First, it
segregates the training data set into subsets based on all nom-
inal features which reduces the dimensionality of the feature
space. Then, for each subspace, only the numeric features
are considered to run Decision Tree-based Support Vector
Machine. SVM is applied recursively to the tree to detect the
anomalies. This detection process is carried out by each agent
separately, but the final decision depends on the consensus
among all interconnected agents.

5.1.2 Neural network

Artificial and deep neural network models can be useful in
learning patterns and generalizing from past data to iden-
tify normal and anomalous instances [73]. Feedforward and
recurrent neural networks are used for prediction and classi-
fication tasks in power grid anomaly detection.

Yuan and Jia use smart meter data for detecting anoma-
lies but is done in a distributed manner where an IoT-based
distributed structure is implemented to execute the data inter-
action [231]. They propose a deep learning approach that uses
a stacked sparse autoencoder which is a multi-layer neural
network consisting of several basic sparse autoencoders fol-
lowed by a softmax layer for classification. Reuter et al. use
a deep feed-forward neural network for classification and
a deep autoencoder for the detection of anomalous data in
SCADA communication systems [163]. Wang and Ahn use
time series modeling in combination with an artificial neu-
ral network, SVM and KNN to yield accurate results for the
detection of anomalies in residential application [208]. The
artificial neural network is used for consumption prediction
and to compensate for the non-linearity that traditional time
series models like ARIMA fail to capture.

Wavelet transform (WT) provides a unified framework for
signal processing applications. WT can decompose a signal
in coefficients, and it can localize an anomalous behavior in
both the time and frequency domains with different scales.
Hence, Ghanbari et al. use WT followed by variance fractal
dimension (VFD) to measure the complexity of the coeffi-
cients extracted during WT [61]. Additionally, they use a
feed-forward artificial neural network to enhance the detec-
tion rate of anomalous behaviors in a short duration of the
attack.

Some attacks involve hijacking the controller code that
controls the actuators of the physical system, making the
control behave abnormally. The PLCs consist of the control
code to perform a specific task in the power grid. They are rel-
atively stable as the code running on the controller changes
infrequently. The key idea for the detection used by He et
al. is that the normal behavior of the controller is predictable
using a temporal deep learningmodel and low-costHardware

Performance Counters (HPC) features [70]. LSTM and Con-
ditional Restricted Boltzmann Machine (CRBM) are used to
predict normal controller behavior and a reconstruction error
distribution of HPCs is used to detect controller anomalies.
The squared error of the actual and the predicted behavior is
used to indicate the anomalies. LSTM is also used for pre-
dicting power consumption data in a supervised manner by
training with normal and abnormal samples [199].

Efstathopoulos et al. use operational data and examine
whether smart grid attacks can be detected by analyzing them
[48]. Operational data is generated fromphysical devices that
are used to run the power plant, e.g. temperature of a cool-
ing system. They apply and compare different techniques
like PCA, Isolation Forests (Iforest), Angle-based outlier
detection (ABOD), one-class SVM,StochasticOutlier Selec-
tion (SOS) and deep fully connected autoencoders. Wilson
et al. use stacked autoencoder to develop machine learning
features against transmission SCADAattacks [215]. The net-
work is first pretrained with a greedy layer-wise pre-training
procedure after which the parameters of the whole deep net-
work are initialized by the corresponding parameters learned.
After the training phase, a classifier layer is added to the deep
neural network model and the fine-tuning takes place in a
supervised manner.

Convolutional neural networks are used for image anomaly
detection by actively monitoring fire breakout and working
personnel [77]. Supervised classification is also achieved by
adding a classifier layer to a neural network [171]. Such a
method is used in [22, 43, 234] to identify anomalies in volt-
age data from the distribution power lines and traffic packets
in communication networks using a CNN. Moreover, [234]
uses multi-headed attention before classification to capture
themulti-dimensional relationship between each packet from
the traffic cluster.

5.2 Semisupervised approaches

Semisupervised techniques assume that the training data has
labeled instances only for the normal class. Since they do
not require labels for anomaly class, they are more widely
applicable. The typical approach used in such techniques is to
build a model for the class corresponding to normal behavior
and use the model to identify anomalies in the test data [29].
We categorize semisupervised techniques into regression-
based, distance-based and statistical models.

5.2.1 Neural network

Pattern matching is the ability to store known patterns of
information flow within a given network and to perform a
rapid comparison of real-time information with stored cor-
relations in sub-patterns stored previously. The correlation
between localized device readings is viewed as a pattern.
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As the power grid networks contain resource-constrained
devices, Baig proposes an in-network, light-weight decen-
tralized pattern recognition algorithm which can form an
associative memory structure by interconnecting individual
SGI device readings in a graph like structure called the GN
(Graph Neuron) array [19]. The GN-based pattern recogni-
tion process is a comparison of SGI device readings at any
given point in time to establish conformance with normal
readings.

An extreme learning machine-based (ELM) anomaly
detection technique is used in edge devices that enables
on-device learning and detection [197]. LSTM and Gated
Recurrent Unit (GRU) are used for predicting the power con-
sumption and the loss between the predicted and actual is
used for the anomaly detection process [58, 62, 113, 131,
143, 194, 210, 219, 242]. Spectral residual CNN is used by
Oprea et al. to detect anomalous usage in residential con-
sumption data [136].

5.2.2 Regression

The basic regression model-based anomaly detection tech-
nique consists of two steps. In the first step, a regression
model is fitted to the data. In the second step, for each test
instance, the residual for the test instance is used to determine
the anomaly score. The residual part (e.g. anomaly score) is
not explained by the regression model and can be chosen
based on the use case.

Demand response programs are designed to reduce energy
consumption for relatively short time periods and are widely
recognized to help meet both reliability and market needs.
However, it is critical to predict the reduction in energy dur-
ing events and the increase due to the rebound effect after
events. Zhang et al. focus on predicting the consumption
accurately specifically for demand response programs [238].
A piece-wise linear regression is performed using the corre-
lations between temperature and consumption to be able to
predict the consumption accurately. An instance is then clas-
sified as an anomaly if the ratio of the predicted and observed
consumption values are less than a threshold that depends on
the historical consumption data of the user.

Badrinath Krishna et al. use ARIMA for power con-
sumption prediction followed by computing time-window
statistics of mean and standard deviation for detecting elec-
tricity theft [18]. Janetzko et al. use a prediction-based
anomaly detection method using weighted average predic-
tion by using daily seasonality and compute a normalized
anomaly score for the detection process [87].Higher anomaly
scores denote a higher chance of it being an anomaly. Aligho-
lian et al. use support vector regression (SVR) as a load
prediction method, after which the difference between the
real and predicted data is characterized by using a distribution
function to detect the outliers with a 3-sigma rule [7]. Hos-

seinzadehtaher et al. propose a condition monitoring vector
(CMV) equipped with a learned ultra short demand forecast-
ing (USTDF) mechanism for detecting anomalies in AMI
readings and smart inverters data [76]. The USTDF is based
on the consumption data and temperatures and this model is
built using multi-dimensional regression (MDR). Jaiswal et
al. use four different types of regression techniques including
linear regression, random forest regression (RFR), support
vector regression (SVR) and gradient boosting regression
(GBR) on consumption data followed by a 2-standard devi-
ation for tagging anomalies [85].

Hybridmodels are usually developedwhen differentmod-
els perform better in different time windows. Cui et al.
propose a detection system for school electricity data that
combines polynomial regression for weekends and Gaussian
distribution for week days [39]. Polynomial regression with
Hampel identifier is usedbyHuang et al. for detecting anoma-
lous consumption values in a research facility [79]. Kosek
and Gehrke use an ensemble of non-linear artificial neural
network models to detect anomalies in distributed energy
resources (DERs) in a power grid that can be accessed and
controlled remotely [97]. This model uses contextual param-
eters like hour of the day and other meteorological data for
the training and detection process.

5.2.3 Distance-based techniques

Chen et al. use a Multi Layer Perceptron (MLP) and Maha-
lanobis distance-based statistical approach to find anomalies
in power consumption data [30]. Yijia and Hang propose a
detection method for identifying abnormal electricity users
by combining the line loss and power analysis [228]. They
use the Slope Extract Edge Point(SEEP) algorithm to extract
the edge point sequence of power consumption and then
apply the vector space cosine similarity to measure the sim-
ilarity between the extracted sequence and the consumption
sequence of the users. Consine similarity matching is applied
after a Kalman filter estimation in [160], for detecting FDI
attacks in smart grid communication systems.

Valenzuela et al. use principal component analysis (PCA)
on the power flow data of the power grid transmission system
and use principal components in the new subspace as well as
the original values to construct an anomaly score [201].

5.2.4 Statistical models

Several works use matrix-based methods to find the changes
between the states as the base for detecting anomalies in the
target network [193, 237]. Zhang et al. used random matrix
theory to detect anomalies in big data which can include a
large volume of operational data in real-time such as power
consumption, voltage, current, active power, and reactive
power [237]. These data are usually random due to distur-
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bances from external factors like climate or electrical factors
like technical failures. Hence, a random matrix is used to
denote these random variables. After constructing a high-
dimensional random matrix, the sample covariance matrix
is determined by approximating it using maximum likeli-
hood estimation, subjecting it to a unitary singularization
treatment and calculating its eigen values. Mean Spectral
Radius (MSR) is used as the metric to represent the mean
distance between all of the eigenvalues and the center on the
complex plane. The single ring law is used to determine the
extent of random deviation of the data in a randommatrix. To
detect anomalous behavior in transmission lines and buses,
Moslemi et al. use covariance matrices for voltage, current
and frequency data [126].

Replay attacks aim to intercept authentication informa-
tion. In the smart grid, replay attacks intercept the usage
pattern along the varying smart meters and replay this data
to carry out an undetected intrusion. Kalman filtering along
with a chi-square detector is used for the detection of the
replay attack for the system controller of the smart grid [240].
Kalman filter-based technique is also used in [90, 160].

Yilmaz et al. consider a hierarchical data collection smart
grid infrastructure and propose a general and scalable mit-
igation approach called Minimally Invasive Attack Mitiga-
tion via Detection Isolation and Localization (MIAMI-DIL)
[232]. The authors use Geometric Entropy Minimization
(GEM) with Cumulative sum (CUSUM) to learn the min-
imum volume sets that represent the nominal probability
distribution of the expected data instances. If a data instance
is out of this distribution, then it is an outlier. Entropy-based
metrics, such as normalized entropy and Shannon entropy,
can be calculated on the selected features. An attack can be
identified based on the value of the calculated entropy [80,
88]. For finding anomalies in load data, extreme studentized
deviate test (ESD) is used in [212].

Nasr and Varjani propose a statistical anomaly detection
method that uses mean and standard deviation techniques
to learn the behavior of the system over time and then
use a threshold to differentiate between normal and anoma-
lous data in SCADA systems [128]. Kwon et al. also use
mean and standard deviation to detect DoS and other com-
munication network attacks [100, 101]. Ishimaki et al. use
harmonic to arithmetic mean ratio-based detector to iden-
tify false data and preserve the privacy of the consumers
using fully homomorphic encryption (FHE) scheme called
the Cheon-Kim-Kim-Song (CKKS) scheme [83].

Karimipour et al. use a detection method based on sta-
tistical correlation between measurements [91]. Marino et
al. propose a detection system that models the communica-
tion network using Poisson distributions while using data to
learn the model parameters [116]. Matthews and Leger use
fano factor to tag anomalies in streaming PMU data in the
distribution network [121].

5.2.5 Rule-based techniques

Rashid et al. propose a rule-based system to detect anomalies
at the application level [158]. Most of the detection mecha-
nisms focus on meter-level detection which does not identify
the anomaly causing appliance. The authors use both sub-
metered and non-intrusive load monitoring (NILM) data and
perform post-processing on the NILM data to improve the
performance of the detection process. Azizi et al. also use a
rule-based approach to detect anomalous usage in household
consumption data by using non-intrusive load monitoring
[17].

A hierarchical architecture is used for monitoring the
micro-phasor measurement unit data, by providing a set of
rules based on different events and using correlation matri-
ces to examine the state of the grid [86]. Zhang et al. propose
a time series anomaly detection model that is applied on
the network level packets in the power grid communications
between SCADA’s HMI and PLCs [235]. It is based on Dis-
crete Fourier transform, and periodicity of network packets
which are then checked for abnormality based on the time
deviation period.

5.3 Unsupervised detection

Unsupervised anomaly detection is a technique where we do
not require training data, thus making it most widely appli-
cable. It is based on the assumption that the normal instances
are frequent when compared to the anomalous ones. This
assumption will prevent the technique from having a high
false positive rate [29]. For building models that do not have
prior knowledge about anomalous consumption, the model
is trained using the normal consumption behavior along with
the definition of classifying consumption values as abnormal
or normal [73].

5.3.1 Clustering

Clustering is a machine learning scheme used to categorize
unlabelled consumption data into various clusters, mainly
normal and abnormal clusters. Clustering can also be done
on normal data and the data points that are farther away from
the formed normal clusters are usually tagged as anomalies
[233]. Some of the common clustering methods used in the
context of power grids are K-means, Partitioning Around
Medoids (PAM) [14, 169, 185] and Density-based spatial
clustering of applications with noise (DBSCAN) [60, 62,
137, 243],

K-means clustering is a popular unsupervised approach
that is used to categorize the observations into k clusters
with the nearest means or the cluster’s centroid. This method
has been used for detecting anomalous power consumption
in residential buildings [49, 117], flooding of UDP packets,
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ICMPpackets and Ping ofDeath in communication networks
[122] and anomalous behavior in a distributed framework on
network and PMU data [188]. Two clustering methods are
also combined to achieve better performance in detection.
K-means and Isolation Forest (IForest) are used in communi-
cation networks [177] and distribution PMU networks [93].
Rahimi et al. use a genetic algorithm to get an optimal K
value for the K-means to find anomalous usage in power
consumption data [153]. A combination of clustering and
prediction methods, specifically K-means and LSTM is used
by [27, 28, 59] to cluster the consumption observations to
detect the anomalies as well as find anomalies in advance
by using the prediction method (i.e. LSTM) to forecast the
value into the future. Chou and Telaga also followed a sim-
ilar approach by using K-means followed by a combination
of neural networks and autoregression (NNAR) [34].

In an attempt to detect contextual and collective anoma-
lies, Rossi et al. propose an approach based on frequent item-
set mining by encoding the different event types streamed
from smart meters, applying segmentation of the data and
using categorical clustering for the evaluation of the col-
lective data and detection of unexpected patterns [165].
Contextual information is also used by [14, 169, 185]
to detect anomalies in the consumption by computing an
anomaly score for each user considering historical consump-
tion data. The anomaly score for a user is then adjusted by
analyzing other contextual variables such as seasonal varia-
tion day of the week and other users with the same historical
pattern. All three works use models based on Partitioning
Around Medoids (PAM). PAM is also used for anomaly
detection in solar farms on voltage and current data that is
collected from micro-PMUs [44].

Commercial buildings consume a lot of energy and hence,
motivate research to improve building energy efficiency. Bel-
lala et al. propose an anomaly detectionmechanism for power
meter data to detect anomalous points using an unsupervised
cluster-based algorithm to model the occupancy using Hid-
den Markov Model [24]. This algorithm takes as input the
power time series of ameter over several days and outputs the
probability of a particular day being anomalous. The values
are computed through a KNN density estimation algorithm.
The probability scores can be used to rank the days in terms
of anomalousness, providing a building administrator with
a prioritized list of data points that require further inspec-
tion. Janetzko et al. use the same clustering-based approach
to detect anomalies in power consumption data and provide
various time series visualization schemes,whichhelps in ana-
lyzing and understanding the energy consumption behavior
[87].

DBSCAN is used for detecting anomalous behavior in IoT
devices [60], phasor data from PMUs [243], streaming con-
sumption values [62] and communication networks [137].
Zhang et al. propose an anomaly detection method for smart

meters data which is based on Gaussian Mixture Model Lin-
ear Discriminant Analysis (GMM-LDA) clustering used for
feature learning [236]. Self-Organizing Maps (SOM) is an
unsupervised machine learning technique used to produce a
low-dimensional representation of a higher dimensional data
set while preserving the topological structure of the data.
SOMs are used in [200] and [196] for detecting faults and
FDI attacks using consumption data.

Visual analysis makes it easier to identify anomalies on
a large scale. When analyzing data streaming from multiple
sensors, it is important to identify similar patterns among
them, so that the sensors can be grouped based on their
behavior. This grouping can be done by using similaritymea-
sures between the different streaming data [189]. This aids
in the initial analysis of the sensor data coming from a power
grid, that can be used for creating anomaly detection models
that represent the underlying patterns. Similarly, dissimilar-
ity measures are also used to cluster similar groups together
[65].

5.3.2 Neural network

Neural networks are used in anomaly detection techniques to
let the network itself discover the patterns, features from the
input data and the relation of the input data over the output.

Recurrent neural networks (RNN) are used for predicting
the time series. It is used by Xu et al. for power consumption
data followed by quantile regression to build probabilistic
power consumption forecasting models with a quantile inter-
val that is chosen beyond which the instance will be flagged
as an anomaly [222].

Autoencoders are used to reconstruct the input data with
the reconstruction error as the anomaly score that gives the
extent to which the reconstructed output is different from
the input. The input can consist of multiple features that are
contextual or behavioral (day of the year, season, month,
etc.) along with power consumption [12, 13]. Other neural
networks can be combined with autoencoders like a varia-
tional autoencoder combined with RNN and attention [127,
146] for power consumption data or a CNN with an autoen-
coder [40] for smart home sensor data. Autoencoders are
also used for anomaly detection in the power generation pro-
cess specifically for wind turbine fault detection [239] and
inverter sensors in solar power plants [82]. They are also used
for PMU data in the power grid distribution network [3].

Generative adversarial networks (GANs) consist of a gen-
erator that generates adversarial samples and a discriminator
that is trained on differentiating anomalous data from normal
data. This is used for detecting intrusion attacks in communi-
cationnetworks that canoccur in any smart grid infrastructure
consisting of communicating IoT devices [36, 184] as well
as in a federated setting [1].
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Restricted Boltzmann Machine (RBM) is used for detect-
ing large-scale attacks in the transmission lines using the
voltage and current data [92].

5.3.3 Nearest neighbor and density-based techniques

Principal component analysis (PCA) is used by [114, 151] for
selecting features that represent trend, variability, volatility
and other statistically representative data of the consumption.
Qui et al. use the first two principal components to represent
the power consumption pattern of each user [151]. Local
Outlier Factor (LOF) is used to quantify the extent to which
each user’s point is an anomaly. LOF uses a concept of local
density where each data instance needs the distance of its
k nearest neighbors. Large distances result in low-density
regions for anomalous data instances as compared to normal
data instances. LOF is also used in communication networks
for identifying anomalous traffic packets [64] and in com-
mercial and residential buildings [156, 157]. Shylendra et al.
use kernel density estimation (KDE) for detecting anomalous
usage in power consumption data for wide sensor networks
[178].

5.3.4 Tree-based techniques

Isolated forest is an unsupervised technique based on the
decision tree algorithm. It is used for detecting anomalies in
communication networks [64, 177], household power con-
sumption [7, 114], power grid parameters in SCADAsystems
[175], inverter sensors in solar power plants [82] PMU data
[93] and micro-PMU data in distribution networks [50].

5.3.5 One class classification

One class SVM is an unsupervised approach that uses only
normal instances for the training and categorizes the data that
deviate from the estimated model as anomalies. Though the
performance of OC-SVM is similar to a binary class SVM,
OC-SVM is preferred as it is trained only on normal data
and detects anomalies from the new data by comparing it to
the normal behavior [45]. It is used for identifying attacks in
power consumption data of IoT devices [72, 211], commu-
nication networks [64] and transmission lines [51, 217].

5.4 Other techniques

Other techniques that have been used in smart grids include
hierarchical temporal memory (HTM) [21] for anomalous
behavior ofmicro-PMUdata, an onlinemodel-free reinforce-
ment learning approachwhich does not require attackmodels
[23, 99] and an evolutionary technique based on fuzzy learn-
ing for improving clustering performance [105]. Passerini
et al. use power-line communication signals to identify and

localize faults in the distribution network such as electrical
faults, impaired cables and unexpected impedance changes
[145]. They utilize a two part algorithm, the first detects and
tracks the evolution of faults over time while the second uses
information about the network topology to localize the faults
identified by the first algorithm.

5.4.1 Graph-based techniques

Byusingnodes and edges in a graph to represent the buses and
branches in the electric network, graphs are constructed using
the topological information of the network. The power grid is
represented as a graph and the topology change is observed
over a time period [104]. Anwar and Mahmood propose a
graph matching approach to detect anomalies that exist in
an electric topological and configuration database [11]. A
query graph is anomalous if it has different number of nodes
or edges than the reference graph. Graph-based techniques
are also used to represent edge devices [221], sensors in smart
homes [125] and transmission lines [75]. Chen et al. propose
a graph technique that uses correlation grouping [31] and a
graph convolution network with attention [33] to learn graph
structures of the sensor data in power grids.

5.4.2 Big data

For data-driven anomaly detection, the processing of big data
often becomes a challenge [204]. Lipcak et al. showcase the
application of big data platforms using Apache Flink, Storm
and Spark and compare the performances of the three while
using weighted average prediction using previous three days
of the consumption data and the temperature [106]. Apache
Spark and Spark Streaming are also used for creating dis-
tributed computing framework [47, 108]. Chen et al. aim
at implementing an online real-time detection algorithm for
handling huge amounts of data using Storm and Hadoop-
based framework [30]. For processing large-scale data from
smart meters, Moghaddas and Wang propose a hierarchical
framework that uses smart meter event data rather than con-
sumption [123]. Matthews and Leger leverage MapReduce
for the processing of millions of data from the PMUs and
detect anomalies [120].

6 Future challenges

Our extensive review highlights that anomaly detection in
the power grid is an active area of research, and continues to
see novel explorations. At the same time, this broad look at
the variety of work performed helped us identify recurring
challenges in the domain. In this section, we discuss those
pressing challenges that persist in the area despite advances
in the complexity of adopted methods.
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6.1 Detection speed and accuracy

For critical infrastructure like the power grid, real-time
monitoring is essential and plays an important role in the
grid operator’s decisions. The importance of applying quick
detection approaches for not missing alarms during an active
attack is also addressed in the literature [38]. However, when
it comes to the detection of attacks, there is always a ques-
tion as to when to raise an alarm. The earlier the anomaly
is detected and reported, the sooner appropriate actions to
mitigate the impact could be undertaken [4]. With many
threshold-based approaches used in detection systems, hav-
ing too small of a threshold raises false alarms and having
it too large might miss anomalous instances. The selection
of a threshold plays a crucial role in anomaly detection. As
such, it is important to study the trade-off between detection
reliability and detection speed and to operate on the optimal
trade-off curve. In [112], it is shown that as the threshold is
increased for a power consumption anomaly detection sys-
tem, the detection rate or the true positive rate becomesworse
and on the other hand, the false alarm rate or the false pos-
itive rate improves. During this analysis, it is observed that
even when obvious anomalies that have very high wattage
are injected, the detection system is still unable to capture
them. Though an optimal threshold is chosen, the undetected
attack configurations still lead to a successful attack on the
power grid. Therefore, considering the detection accuracy
alone leads to an inevitable trade-off between the true pos-
itive and false positive rates which must be assessed before
deploying a model.

6.2 Concept drift and evolving attacks

Detection model updates over time are inevitable given that
a consumer’s energy usage changes throughout the year. For
example, when a new appliance is added or the number of
members in the household change, the consumption pattern
also is affected [238]. Therefore, handling concept drift and
distribution shifts in the data is an important aspect of detec-
tion models. However, this is not commonly discussed when
proposing new techniques.

Supervised detection algorithms perform better when
detecting known attack signatures. Due to the unavailability
of labeled data, detection becomes challenging when new
attacks come to the surface. It is required to have robust
mechanisms that can be updated to detect different types of
evolving attacks [16]. Though a semi-supervised or unsuper-
vised mechanism can be deployed for such a case of varying
attacks, there is a possibility for an attack to be constructed
such that it works within the tolerance levels of a model
and stay undetected. Adversarial attacks on machine learn-
ing models have been shown for image data and time series

data, and it remains as an advanced persistent threat to detec-
tion models.

Many power grid attacks begin with a compromise in
the communication network. Therefore, using state-of-the-
art countermeasures specifically formonitoring anddetecting
intrusions in the network will help in the early detection of an
attack. Application of software-defined networking (SDN)
to smart grids is known to enhance the SCADA system
resilience [46]. SDN is a networking paradigm that provides
separation between the control and data plane, allowing the
controller to configure the network operations dynamically.
If there is a failure of the network due to an attack, SDNs can
be leveraged to dynamically establish a faster route via the
internet as an emergency response. SDNs are also capable
of dynamically filtering out unwanted traffic and potentially
malicious traffic. This improves the efficiency, monitor-
ing and resiliency of smart grid communication networks.
Another promising countermeasure in industrial environ-
ments is the use of honeypots. In the context of smart grid
networks, a honeypot simulates the normal operation of a
device, such as a smart meter, to attract, deceive and ana-
lyze an attacker’s behavior [134]. Several proofs-of-concept
have been shown for the use of honeypots in smart grids [134,
147, 183]. The use of honeypots for privacy-preserving feder-
ated learning environments is discussed in [6]. Agame-based
honeypot selection has also been proposed which charac-
terizes the essence and objective of the defender to support
the choice of the honeypot type [25]. This helps in studying
evolving attacks on the devices and the underlying network.

6.3 Limited data

When using supervised approaches, there is an imbalance
between normal and anomalous data which makes it diffi-
cult to capture the characteristics of anomalous data points.
Imbalanced data refers to the unequal distribution of the data
instances in different classes, usually having the anomalous
class as the minority and the normal class as the majority.
This arises because the data that is collected from the system
is typically associated with normal behavior and not distur-
bances or attacks. In a lot of studies, it was proved that some
classifiers achieved better overall performance with a sam-
pled and balanced dataset [149]. This poses a challenge as
to how well the detection technique can perform with such
limited availability of anomalous data.

Unlabeled data poses a challenge for classification-based
anomaly detection as there is no clear indication of a specific
point is normal or anomalous. There is a significant lack of
labeled data andnew types of attacksmayhave a behavior dif-
ferent from the trained data [24], which is why unsupervised
detection approaches are preferred over supervised. How-
ever, unsupervised approaches usually end up having high
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false alarms, which might again misguide the grid operator
in terms of taking the wrong countermeasures.

Transfer learning has become an effective approach as
data and knowledge of older systems with richer power con-
sumption records can be utilized [223]. Using this technique
helps with the challenge of limited data, but there are other
factors to be considered, such as device upgrades, changes
in the consumption behavior of the consumers, new attack
scenarios and threats, among others.

6.4 Datasets for benchmarking

Standard datasets that mimic the operation of the power grid
in different locations, such as consumption at the utility level,
or voltages and currents of the transmission lines, along with
common anomalies or attacks that occur with such data will
make it easier to benchmark methods for each target applica-
tion. Though IEEEbus systems are used to generate synthetic
data to mimic such operations, the artificial anomalies that
are generated and the changes that are performed to the load
still differ between research papers. Therefore, datasets that
capture different anomalous events that are observed in the
real power grid will help in obtaining a better validation of
the constructed detection model.

6.5 Deployment and application in real world

While most of the detection mechanisms are trained and
tested on smaller datasets, deploying the same model in the
real world will be different. This is because the model begins
to receive streaming data which it must handle, making it a
real-time and onlinemodel. The efficiency of themodelwhen
deployed is not necessarily discussed in research papers. In
fact, as themodel must be trained using the historic data of its
target deployment, it will then be validated on data that has
different proportions of normal and anomalous instances. In
most cases, the data is even unlabelled, making the detection
performance to be heavily dependent on only the false pos-
itives. This changes the way a model perceives anomalies
in the real world. To bridge the gap between development
and deployment of detection mechanisms, the Digital Twin
Technology can be used for rigorous testing and studying the
detection performance of various attacks. A Digital Twin is a
digitalmodel of a physical system that reflects its behavior by
applying platforms and two way interactions of data in real-
time [84]. It provides a virtual environment to manipulate
costly grid devices allowing the development of standard-
ized models for the smart grids [15, 134].

6.6 Anomaly or attack source

An anomaly can be detected based on the observed data,
however, finding the source of the anomaly is rather chal-

lenging [158]. Most of the detection systems are unable to
find the attack source or the anomalous resources directly.
In addition, to quantify an anomaly, it is also important to
locate the anomaly especially aswe aremoving towards a dis-
tributed and federated learning environment. As the number
of devices that are managed by a single detection algorithm
increases, identifying the source of anomaly should also be
considered.

6.7 Thresholding in detection systems

When we use a score-based system, threshold selection
becomes an important step while deploying the model.
Majority of the research papers use a fixed threshold that
has been personalized for a specific scenario [108]. How and
when to change the threshold based on the underlying behav-
ior of the data then becomes an interesting problem. In fact,
fixed thresholds have been shown to have a significant impact
on the false positive rate of state-of-the-art neural networks
designed for anomaly detection in the power grid [112], and
leaves room for exploits irrespective of the choice made.
Dynamic thresholding techniques for time series data have
been proposed before. However, using or proposing such
a technique for thresholding is less observed in the power
grid domain [111]. As the power grid is evolving every day,
dynamic or recent window-based thresholding techniques
also play an important role in the performance of the detec-
tion system.

6.8 Scalability

Anomalydetection techniques proposedbydifferent researchers
aim to find anomalies in a specific dataset, that usually
consists of a single target variable such as the power
consumption, edge weights in graph-based approaches, or
number of alarms in behavior-based approaches. However,
numerous features are used to aid the detection process using
a model to help in taking the decision of flagging an instance
as an anomaly. For example, these features can be exter-
nal temperature variables, sensors or devices in the power
grid, or the number of personnel in an insider attack. With
a higher frequency of data being collected for better mon-
itoring of the grid, for example with 30 to 60 observations
per second in the case of PMUs, the scope of applying the
models to high frequency data needs to be evaluated for the
methods in the literature. Most data available publicly usu-
ally contain one minute frequencies, which many papers are
based on. However, the performance of the method in terms
of timingmay affect the detection results when tested on high
frequency data. It is also observed that the frequency of data
does affect the detection of short duration anomalies like sud-
den increase or decrease in demands [202]. This means that
there will be an increase in the frequency of the data for bet-
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ter detection capabilities. However, scalability is often less
discussed in terms of the practicality of the detection model,
especially with growing numbers of sensors and consumers
in the power grid every day.

6.9 Distributed and edge computing

As the volume of sensors and devices in the power grid is
increasing, the detection mechanisms are moving towards
a distributed approach and have detection mechanisms run
on-device. Classical machine learning-based methods are
useful when choosing lightweight devices compared to deep
learning-based methods [241]. However, they are not robust
to noisy data and their performance may saturate for a large
amount of data. This calls for simple methods that can be
used for a single device while being able to handle streaming
data without being susceptible to high errors.

Moreover, when we consider fog computing that involves
fog nodes to collect and run the detection algorithm on the
data from the underlying devices, it requires efficient algo-
rithms that can handle such high dimensional data [232].
We also need to take the storage, computation and com-
munication overhead into account when using a distributed
architecture [31].

6.10 Visualization techniques for large scale data

Whenmonitoring the power grid at a large scale, for example,
monitoring the demand requirements from multiple con-
sumers in an area, it becomes easier when using visualization
compared to listing the anomaly scores. Though [87, 189]
propose visual analytics to better visualize anomalies, it is not
observed to be proposed in anyother researchwork. Selecting
and constructing specific metrics and visualizations related
to anomaly detection is also a problem of interest. Choosing a
combination of visualizations and aggregate metrics that can
crunch down the anomaly metrics which are calculated for
multiple devices will aid the monitoring personnel in quick
detection and localization of the anomalies.

7 Conclusion

In the past few years, the attack surface of the power grid has
increased with the advent of internet-based devices. In this
work, we saw that past attacks that took place on the power

grid were caused by infecting the ICS system with malware
that is propagated over the network. We also discussed how
the availability of IoT devices from the consumers has made
it easier for the attacker to alter the load of the power grid
leading to severe damage. These attacks and any faults that
occur in the power grid can be identified by using anomaly
detection mechanisms. In this work, we provide a systematic
review of anomaly detection systems in the power grid while
categorizing the collected 190 papers into different codes for
each theme. We present a detailed taxonomy of methods that
are categorized based on the availability of labeled data into
supervised, semi-supervised and unsupervised techniques.
Lastly, we describe the current challenges for the detection
mechanisms highlighting the existing gaps and limitations,
to promote further research efforts addressing the mentioned
issues.
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Table 3 Breakdown of references in literature by code

Theme Sub-theme Code Count References

Paper type Review review 5 [16, 71, 73, 115, 204]

Survey survey 8 [4, 8, 10, 56, 124, 226, 233, 241]

Methodology big data 3 [108, 120, 136]

feature handling 6 [7, 50, 109, 138, 139, 181]

new method 58 [3, 11, 12, 14, 17, 20, 22, 24, 28, 33,
34, 40, 54, 57, 61, 65, 72, 74–76, 80,
86, 90, 93, 96, 100, 104, 105, 113,
116, 125, 132, 136–139, 146, 149,
152, 153, 156–158, 176–178, 180,
184, 194, 196, 197, 209, 211, 228,
230, 234, 236, 237]

new methodology 61 [1, 5, 13, 18, 19, 27, 30, 37, 44, 45,
49, 51, 58–60, 70, 77, 79, 83, 91, 92,
95, 97, 99, 105, 108, 114, 117, 120,
122, 126–128, 133, 145, 151, 159,
161, 163, 169, 171, 173, 175, 179,
181, 185, 193, 200, 201, 210, 212,
219, 221–223, 231, 232, 235, 239,
240, 243]

visual analysis 2 [87, 189]

Framework framework 8 [36, 47, 102, 106, 123, 165, 188,
229]

architecture 4 [88, 121, 195, 206]

Evaluation evaluation 23 [2, 7, 39, 48, 52, 62–64, 68, 82, 85,
118, 131, 142, 149, 150, 167, 191,
192, 217, 220, 227, 238]

Focus area Targeted detection contextual 7 [12, 13, 62, 96, 169, 185, 210]

detection 124 [2, 5, 7, 8, 11, 14, 17–19, 21, 22, 24,
27, 28, 30, 33, 34, 37, 39, 40, 42–
44, 48, 50–52, 54, 57, 58, 60, 61,
64, 65, 70–74, 76, 77, 80, 82, 87–
93, 95, 97, 99, 101, 104, 105, 109,
113–115, 118, 121, 122, 125, 127,
128, 131–133, 138, 139, 142, 143,
145, 146, 149–153, 156–158, 161–
163, 165, 171, 174, 175, 177, 178,
180, 184, 189, 192–196, 200, 201,
204, 206, 209, 212, 217, 219, 220,
222, 228, 229, 232, 233, 235–243]

drift 2 [3, 59]

early detection 2 [176, 227]

efficiency 2 [79, 167]

optimization 1 [211]

transfer learning 1 [223]

Big Data cloud computing 1 [56]

data-driven 3 [116, 166, 191]

distributed computing 10 [34, 47, 106, 108, 120, 123, 126,
136, 188, 231]

edge detection 3 [197, 199, 221]

federated learning 4 [1, 36, 81, 179]

fog computing 3 [1, 49, 85]

123



A survey of anomaly detection methods... 1821

Table 3 continued

Theme Sub-theme Code Count References

Profiling behavior analysis 5 [45, 86, 100, 101, 117]

Privacy privacy-preserving 6 [1, 23, 36, 83, 103, 225]

Wide Area Protection wide sensor network 6 [137, 159, 173, 181, 182, 230]

sensor placement 1 [75]

Blockchain blockchain 3 [23, 36, 102]

Data type Single feature consumption 84 [7, 12–14, 17, 18, 23, 24, 27, 28, 30,
34, 37, 39, 42, 45, 49, 56, 58, 59, 61,
62, 65, 71–73, 76, 79, 81, 83, 85, 87,
95, 97, 102, 106, 108, 113, 114, 117,
123, 125, 127, 131, 136, 138, 139,
143, 146, 151–153, 156–158, 165,
169, 174, 178, 185, 189, 192, 194,
196, 197, 199–201, 208–212, 219–
223, 228, 229, 231, 232, 236, 238]

current 5 [44, 75, 92, 126, 141]

frequency 2 [126, 141]

network 24 [2, 36, 64, 74, 80, 88, 89, 100, 101,
105, 116, 122, 137, 149, 162, 163,
171, 177, 184, 186, 188, 234, 235,
239, 240]

sensors 15 [1, 11, 31, 33, 40, 60, 74, 82, 102,
104, 159, 161, 181, 216, 230]

voltage 15 [5, 43, 44, 51, 58, 75, 91, 92, 96,
126, 141, 145, 168, 206, 242]

Multiple Features operational 24 [3, 21, 22, 44, 47, 48, 50, 68, 70,
86, 93, 99, 109, 120, 121, 128, 133,
150, 166, 175, 180, 188, 237, 243]

system logs 2 [74, 173]

weather 1 [210]

Visual image 2 [77, 241]

Grid process Generation generator 2 [91, 141]

power plant 1 [48]

solar plant 2 [44, 82]

wind turbine 1 [239]

Transmission substation 6 [74, 101, 128, 193, 219, 234]

transmission buses 2 [91, 126]

transmission lines 7 [11, 51, 91, 92, 126, 180, 201]

transmission sensors 3 [75, 86, 176]

Distribution DERs 2 [96, 97]

distribution lines 5 [5, 43, 99, 161, 242]

distribution sensors 17 [3, 21, 22, 47, 50, 68, 70, 90, 93,
109, 120, 121, 133, 159, 168, 188,
243]

power line modems 1 [145]

substation 3 [200, 217, 220]
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Table 3 continued

Theme Sub-theme Code Count References

Utility AMI 4 [76, 95, 153, 169]

building 9 [12, 13, 31, 34, 72, 106, 156, 157,
174]

commercial 5 [14, 39, 79, 81, 87]

edge devices 9 [1, 23, 60, 158, 171, 179, 197, 199,
221]

industrial 7 [30, 65, 138, 139, 194, 223, 237]

residential 27 [14, 17, 18, 27, 28, 58, 59, 61, 62,
85, 113, 114, 117, 131, 136, 143,
151, 152, 185, 192, 208–211, 222,
228, 238]

smart home 4 [40, 45, 122, 125]

smart meter 15 [7, 19, 49, 56, 57, 83, 102, 108, 123,
146, 165, 196, 229, 232, 236]

Other control software 2 [127, 173]

grid sensors 21 [16, 33, 36, 42, 77, 80, 100, 104,
105, 137, 149, 177, 178, 181, 184,
204, 206, 230, 233, 240, 241]

scada 11 [64, 88, 89, 116, 128, 162, 163, 166,
175, 176, 235]

Attack type Attack brute force 1 [45]

coordinated 1 [181]

DDoS 3 [45, 74, 232]

DoS 9 [2, 80, 88, 100, 101, 122, 171, 177,
181]

insider 1 [128]

operational 1 [30]

network 12 [2, 64, 80, 89, 105, 116, 163, 171,
184, 188, 234, 240]

intrusion 6 [36, 74, 97, 137, 193, 201]

FDI 17 [5, 22, 31, 54, 90–92, 99, 132, 141,
142, 159, 166, 168, 181, 196, 225]

tripping lines 3 [142, 180, 181]

trojan 1 [219]

electricity theft 7 [18, 57, 118, 152, 192, 210, 229]

demand manipulation 2 [76, 95]

zero day 1 [70]

Other Anomalies fault detection 6 [51, 181, 200, 229, 237, 239]

anomalous behavior 34 [3, 11, 19, 21, 33, 40, 43, 44, 50, 60,
68, 82, 83, 93, 104, 109, 117, 120,
121, 126, 133, 145, 149, 161, 173,
175, 188, 206, 216, 230, 235, 241]

anomalous usage 51 [7, 12–14, 17, 24, 27, 28, 34, 39, 47,
59, 61, 62, 72, 79, 81, 85, 87, 96,
106, 108, 113, 114, 127, 131, 136,
143, 146, 151, 153, 156–158, 169,
178, 185, 189, 194, 197, 199, 209,
211, 221–223, 228, 231, 236, 238,
242]

monitoring 4 [31, 77, 86, 220]
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Table 3 continued

Theme Sub-theme Code Count References

Detection Supervised classification 22 [2, 42, 48, 54, 68, 72, 95, 102, 133,
137–139, 142, 152, 159, 173, 203,
206, 208, 209, 211, 236]

neural network 17 [2, 5, 22, 34, 40, 43, 48, 61, 70, 77,
163, 171, 199, 208, 215, 231, 234]

Semisupervised distance-based 4 [30, 160, 201, 228]

neural network 12 [19, 58, 62, 113, 131, 136, 143, 194,
197, 210, 219, 242]

regression 8 [7, 18, 39, 76, 79, 85, 87, 238]

rule-based 4 [17, 86, 158, 235]

statistical 20 [39, 65, 80, 83, 88, 90, 91, 100, 101,
116, 121, 126, 128, 160, 189, 193,
212, 232, 237, 240]

Unsupervised clustering 32 [7, 14, 24, 27, 28, 34, 44, 48–50, 59,
60, 62, 64, 82, 87, 93, 114, 117, 122,
137, 153, 165, 169, 175, 177, 185,
188, 196, 200, 236, 243]

nearest neighbor 7 [48, 64, 114, 151, 156, 157, 178]

neural network 15 [1, 3, 12, 13, 27, 28, 36, 40, 59, 92,
127, 146, 184, 222, 239]

OC classification 6 [45, 51, 64, 72, 211, 217]

tree-based 9 [7, 48, 50, 64, 82, 93, 114, 175, 177]

Other Techniques fuzzy learning 1 [105]

reinforcement learning 2 [23, 99]

graph-based 8 [11, 31, 33, 75, 104, 125, 221, 230]

Table 4 Breakdown of references in literature by detection technique

Detection Type Technique References

Supervised Classification Bagging [2, 95, 137, 142, 206]

Boosting [2, 68, 138, 139, 152, 203]

Gaussian NB [2, 37, 142]

Hidden Markov Model [209]

KNN [72, 102, 159, 208]

Logistic Regression [133, 138, 139]

PSO-SVM [211, 236]

SVM [2, 42, 48, 54, 95, 173, 206, 208,
209]

Neural Network CBRM [70]

CNN [22, 40, 43, 77, 171, 234]

Deep AE [5, 48, 163, 215]

LSTM [70, 199]

MLP [2, 34, 61, 163, 208]

Sparse AE [231]

123



1824 S. Madabhushi, R. Dewri

Table 4 continued

Detection Type Technique References

Semisupervised Distance-based Cosine Similarity [160, 228]

Mahalanobis [30]

PCA [201]

Neural Network ELM [197]

GRU [58, 194, 242]

Graph neuron [19]

LSTM [58, 62, 113, 131, 143, 210, 219]

Spectral CNN [136]

Regression ARIMA [18]

GBR [85]

MDR [76]

Piecewise linear regression [238]

Polynomial regression [39, 79]

RFR [85]

SVR [7]

Weighted average [87]

Rule-based – [17, 86, 158, 235]

Statistical Descriptive statistics [65, 83, 91, 100, 101, 116, 121, 128,
189]

Entropy [80, 88, 232]

ESD [212]

Gaussian distribution [39]

Kalman filter [90, 160, 240]

MLE [237]

Random matrix [126, 193, 237]

Unsupervised Clustering DBSCAN [60, 60, 62, 62, 137, 137, 243, 243]

GMM [236]

HMM [24, 87]

K-means [27, 28, 34, 49, 59, 93, 117, 122,
153, 177, 188]

PAM [14, 44, 165, 169, 185]

SOM [196, 200]

Nearest Neighbor KDE [178]

LOF [64, 156, 157]

PCA [48, 114, 151]

Neural Network AE [3, 12, 13, 40, 127, 146, 239]

GAN [1, 36, 184]

LSTM [27, 28, 59]

RBM [92]

RNN [127, 146, 222]

One Class Classification OC-SVM [45, 51, 64, 72, 211, 217]

Tree-based iForest [7, 48, 50, 64, 82, 93, 114, 175, 177]

Other Techniques Fuzzy Learning – [105]

Reinforcement Learning – [23, 99]

Graph-based – [11, 31, 33, 75, 104, 125, 221, 230]
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